Improving NeuCube spiking neural network for EEG-based pattern recognition using transfer learning
Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatia...
        Saved in:
      
    
          | Published in | Neurocomputing (Amsterdam) Vol. 529; pp. 222 - 235 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        07.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-2312 1872-8286  | 
| DOI | 10.1016/j.neucom.2023.01.087 | 
Cover
| Abstract | Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatially located synapses and neurons. As an original and unifying SNN architecture, NeuCube, is developed to model, recognize and understand EEG data. However, the NeuCube still faces some challenges for EEG-based pattern recognition, such as few labeled data and changes of data probability distribution. Hence, this paper proposes a novel method to improve the performance of the NeuCube for EEG-based pattern recognition by transfer learning. In the first place, the covariance matrix alignment of EEG data is implemented for every subject in the Euclidean space, which reduces the probability distribution discrepancy of EEG data between different subjects. Different estimation methods for reference covariance matrix are tested and the optimal one is selected for different subjects. Secondly, spatio-temporal features of EEG data are extracted based on the NeuCube reservoir. Since hyper-parameters of the NeuCube reservoir have a great impact on its spatio-temporal representation, an improved cuckoo search algorithm is proposed to discover the optimal hyper-parameters for obtaining the optimal spatio-temporal features. Last but not least, a weighted transfer support vector machine is proposed to improve the original output classifier of the NeuCube in order to make the model adaptive to the cross-domain variability of EEG data. The proposed method is tested on open dataset 2a from BCI competition IV 2008 and achieves good spatio-temporal pattern recognition results. Furthermore, the neuron connectivity and activation level associated with the process of mental tasks are illustrated. | 
    
|---|---|
| AbstractList | Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatially located synapses and neurons. As an original and unifying SNN architecture, NeuCube, is developed to model, recognize and understand EEG data. However, the NeuCube still faces some challenges for EEG-based pattern recognition, such as few labeled data and changes of data probability distribution. Hence, this paper proposes a novel method to improve the performance of the NeuCube for EEG-based pattern recognition by transfer learning. In the first place, the covariance matrix alignment of EEG data is implemented for every subject in the Euclidean space, which reduces the probability distribution discrepancy of EEG data between different subjects. Different estimation methods for reference covariance matrix are tested and the optimal one is selected for different subjects. Secondly, spatio-temporal features of EEG data are extracted based on the NeuCube reservoir. Since hyper-parameters of the NeuCube reservoir have a great impact on its spatio-temporal representation, an improved cuckoo search algorithm is proposed to discover the optimal hyper-parameters for obtaining the optimal spatio-temporal features. Last but not least, a weighted transfer support vector machine is proposed to improve the original output classifier of the NeuCube in order to make the model adaptive to the cross-domain variability of EEG data. The proposed method is tested on open dataset 2a from BCI competition IV 2008 and achieves good spatio-temporal pattern recognition results. Furthermore, the neuron connectivity and activation level associated with the process of mental tasks are illustrated. | 
    
| Author | Zheng, Hao Hu, Bingtao Wu, Xuanyu Tan, Jianrong Feng, Yixiong Hong, Zhaoxi Lou, Shanhe  | 
    
| Author_xml | – sequence: 1 givenname: Xuanyu surname: Wu fullname: Wu, Xuanyu organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Yixiong surname: Feng fullname: Feng, Yixiong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 3 givenname: Shanhe orcidid: 0000-0001-5984-9517 surname: Lou fullname: Lou, Shanhe email: loushanhe@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 4 givenname: Hao surname: Zheng fullname: Zheng, Hao email: haozheng@zju.edu.cn organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 5 givenname: Bingtao surname: Hu fullname: Hu, Bingtao organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Zhaoxi surname: Hong fullname: Hong, Zhaoxi organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China – sequence: 7 givenname: Jianrong surname: Tan fullname: Tan, Jianrong organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China  | 
    
| BookMark | eNqFkEFLwzAYhoNMcE7_gYf8gdYkbdPWgyBjzsHQi55Dmn4d2bqkJOnEf2_KPHnQ08f7wfPC-1yjmbEGELqjJKWE8vt9amBU9pgywrKU0JRU5QWa06pkScUqPkNzUrMiYRllV-ja-z0htKSsnqNmcxycPWmzw68wLscGsB_0Ycqx08k-nvBp3QF31uHVap000kOLBxkCOIMdKLszOmhr8OgnLDhpfAcO9yCdiZ8bdNnJ3sPtz12gj-fV-_Il2b6tN8unbaIywkNSFTljpGxKroBR4E2Wy6qIL8Y7TlhN6qJtSM4KVZQAILM87-qKQ8yKyEJlC5Sfe5Wz3jvoxOD0UbovQYmYPIm9OHsSkydBqIieIvbwC1M6yGlQXKL7_-DHMwxx2EmDE15pMApaHc0E0Vr9d8E3fSSJ8Q | 
    
| CitedBy_id | crossref_primary_10_1007_s11071_025_11073_8 crossref_primary_10_1016_j_bspc_2024_107000 crossref_primary_10_1016_j_asoc_2023_110675 crossref_primary_10_1016_j_neucom_2024_129314 crossref_primary_10_4081_jae_2024_1593 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1016_j_neucom_2025_130008 crossref_primary_10_3390_bioengineering10121341 crossref_primary_10_1007_s10548_025_01106_1 crossref_primary_10_1016_j_neucom_2024_128902 crossref_primary_10_1016_j_neucom_2023_126470  | 
    
| Cites_doi | 10.1016/j.neucom.2020.09.017 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1109/TBME.2017.2742541 10.1145/3360309 10.1126/science.1127240 10.3389/fpsyt.2021.677975 10.1016/j.neucom.2022.09.124 10.1038/nrn1437 10.1142/S0129065721500404 10.1109/ICIST.2015.7288989 10.1016/j.neunet.2017.12.005 10.1088/1741-2552/aace8c 10.1016/j.neuroimage.2019.116459 10.3389/fnins.2019.00095 10.1007/s11063-021-10562-2 10.1109/IJCNN.2015.7280696 10.1109/ICCV48922.2021.00266 10.1016/j.neunet.2019.09.036 10.1109/TNNLS.2016.2612890 10.2147/DNND.S228939 10.1016/j.neunet.2014.01.006 10.1016/j.neunet.2012.11.014 10.1109/IJCNN.2003.1224019 10.1109/TNN.2010.2091281 10.1109/TBME.2013.2253608 10.1016/j.neucom.2012.08.034 10.1016/j.compbiomed.2018.05.019 10.1109/MSP.2019.2931595 10.1016/j.neunet.2020.02.011 10.3233/JAD-2012-120412 10.1016/j.neucom.2018.04.087 10.4018/IJSPPC.2020040102 10.1016/j.neunet.2019.09.004 10.1016/j.neunet.2019.09.037 10.1016/S0031-3203(03)00035-9 10.1109/TBME.2019.2930186 10.3389/fnins.2017.00682 10.1016/j.patcog.2016.09.045 10.1088/1741-2552/aab2f2 10.3389/fnins.2019.01275 10.3389/fneur.2019.00325 10.1016/j.ins.2014.06.028 10.1109/PERCOM.2018.8444572 10.1155/2018/6323414 10.1109/TNSRE.2019.2923315 10.1038/35039062 10.1109/TNSRE.2020.2985996 10.1007/s12021-020-09481-9 10.1016/j.neuroimage.2009.02.006 10.1007/s00521-013-1367-1 10.1016/j.physa.2017.08.053 10.1007/s11063-020-10322-8 10.1016/j.aei.2019.101028 10.1109/TNNLS.2020.3044364 10.3389/fnbot.2022.817948 10.3389/fnins.2020.00808 10.1080/14737175.2021.1847646 10.1109/TBME.2019.2913914 10.1007/978-3-662-57715-8 10.1109/TBME.2009.2039997 10.1109/TBME.2018.2889705 10.1016/j.rser.2017.08.050 10.1088/1741-2552/ab9ada 10.1088/1741-2552/aafabc 10.1109/ACCESS.2019.2909058 10.3389/fnins.2021.638474  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2023 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.neucom.2023.01.087 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-8286 | 
    
| EndPage | 235 | 
    
| ExternalDocumentID | 10_1016_j_neucom_2023_01_087 S0925231223001194  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-8542207b76ce21e6b34a8522026f6029095db0425c57eeea344f986e5c5c0a5c3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0925-2312 | 
    
| IngestDate | Thu Oct 16 04:40:52 EDT 2025 Thu Apr 24 23:16:10 EDT 2025 Fri Feb 23 02:38:59 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | NeuCube Support vector machine Cuckoo search algorithm Transfer learning EEG Spiking neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-8542207b76ce21e6b34a8522026f6029095db0425c57eeea344f986e5c5c0a5c3 | 
    
| ORCID | 0000-0001-5984-9517 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2023_01_087 crossref_citationtrail_10_1016_j_neucom_2023_01_087 elsevier_sciencedirect_doi_10_1016_j_neucom_2023_01_087  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-04-07 | 
    
| PublicationDateYYYYMMDD | 2023-04-07 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-07 day: 07  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Neurocomputing (Amsterdam) | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Pierella, Pirondini, Kinany, Coscia, Giang, Miehlbradt, Magnin, Nicolo, Dalise, Sgherri, Chisari, Van de Ville, Guggisberg, Micera (b0030) 2020; 17 Michel, Brunet (b0090) 2019; 10 S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in Proceedings of the International Conference on Neural Information Processing Systems, December. 2018. Tian, Zhang, Feng, Wang, Peng, Jia (b0325) 2018; 81 Kasabov, Doborjeh, Doborjeh (b0200) 2017; 28 He, Wu (b0270) 2020; 67 Guo, Fouda, Eltawil, Salama (b0120) 2021; 15 Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (b0350) 2018; 99 Raza, Rathee, Zhou, Cecotti, Prasad (b0275) 2019; 343 Pan, Tsang, Kwok, Yang (b0245) 2011; 22 Wu, Niu, Li, Li, Fu, Shi, Dong (b0280) 2019; 13 Choi, Lee (b0330) 2003; 36 Sun, Jin, Xu, Cichocki (b0230) 2021; 31 Behrenbeck, Tayeb, Bhiri, Richter, Rhodes, Kasabov, Espinosa-Ramos, Furber, Cheng, Conradt (b0185) 2019; 16 Hossain, Khosravi, Hettiarachchi, Nahavandi (b0220) 2018; 2018 Huang, Li, Chen, Lin, Yao (b0335) 2020; 14 Azab, Mihaylova, Ang, Arvaneh (b0100) 2019; 27 Liu, Li, Yan, Wang, Ma, Shen, Xu (b0020) 2020; 208 Taherkhani, Belatreche, Li, Cosma, Maguire, McGinnity (b0115) 2020; 122 M. S. Long, H. Zhu, J. M. Wang and M. I. Jordan, “Deep transfer learning with joint adaption networks,” in Proceedings of Machine Learning Research, August. 2017. Hussain, Jamwal, Vliet, Brown (b0025) 2021; 21 W. Fang, Z. F. Yu, Y. Q. Chen, T. Masquelier, T. J. Huang and Y. H. Tian, “Incorporating learnable membrane time constant to enhance learning of spiking neural networks,” in Proceedings of the International Conference on Computer Vision, October. 2021, pp. 2641-2651. N. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence (Springer Series on Bio- and Neurosystems). Cham, Switzerland: Springer Int. Publ., 2018. Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b0205) 2018; 15 Auge, Hille, Mueller, Knoll (b0285) 2021; 53 Kasabov, Capecci (b0035) 2015; 294 Mandal, Mahajan, Dinov (b0295) 2012; 31 Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (b0300) 2000; 10 She, Cai, Du, Chen (b0105) 2022; 514 Samek, Meinecke, Muller (b0225) 2013; 60 J. D. Wang, Y. Q. Chen, L. S. Hu, X. H. Peng and P. S. Yu, “Stratified transfer learning for cross-domain activity recognition,” in IEEE International Conference on Pervasive Computing and Communications, March. 2018, pp. 115-124. Nowinski (b0045) 2021; 19 Kasabov, Dhoble, Nuntalid, Indiveri (b0190) 2013; 41 B. Schrauwen and J. Van Campenhout, “BSA, a fast and accurate spike train encoding scheme,” in Proceedings of the International Joint Conference on Neural Networks, July. 2003, pp. 2825-2830. Rodrigues, Jutten, Congedo (b0085) 2019; 66 Neftci, Mostafa, Zenke (b0145) 2019; 36 Li, Kambara, Koike, Sugiyama (b0215) 2010; 57 Zanini, Congedo, Jutten, Said, Berthoumieu (b0265) 2018; 65 Yang, Deb (b0305) 2014; 24 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0005) 2018; 15 Singh, Lal, Guesgen (b0240) 2019; 7 Jones (b0050) 2004; 5 S. A. Chang, S. Tillem, C. Benson-Williams and A. Baskin-Sommers, “Cognitive empathy in subtypes of antisocial individuals,” Front. Psychiatry, vol. 12, 2021, Art. no. 677975. Lou, Feng, Li, Zheng, Tan (b0040) 2020; 43 Fang, Shrestha, Zhao, Qiu (b0150) 2021 Pouget, Dayan, Zemel (b0055) 2000; 1 Rueckauer, Lungu, Hu, Pfeiffer, Liu (b0135) 2017; 11 P. T. Wang, J. Lu, B. Zhang and Z. Tang, “A review on transfer learning for brain-computer interface classification,” in International Conference on Information Science and Technology, April. 2015, pp. 315-322. Tan, Sarlija, Kasabov (b0075) 2020; 52 Zhang, Wu (b0235) 2020; 28 Kasabov (b0080) 2014; 52 Wang, He, Wang, Yang (b0310) 2012; 38 Wang, Lin, Dang (b0125) 2020; 125 Li, Wang, Xue, Song (b0175) 2018; 491 Rasmussen, Langerman (b0015) 2019; 9 Koessler, Maillard, Benhadid, Vignal, Felblinger, Vespignani, Braun (b0060) 2009; 46 P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu and M. Pfeiffer, “Fast-classifying, high accuracy spiking deep networks through weight and threshold balancing,” in Proceedings of the International Joint Conference on Neural Networks, July. 2015. Kheradpisheh, Ganjtabesh, Thorpe, Masquelier (b0170) 2018; 99 Xu, Cao, Hu, Principe (b0315) 2017; 63 Cramer, Stradmann, Schemmel, Zenke (b0165) 2020; 33 Herz, Gollisch, Machens, Jaeger (b0065) 2006; 314 Virgilio, Sossa, Antelis, Falcon (b0110) 2020; 122 Antonietti, Geminiani, Negri, D’Angelo, Casellato, Pedrocchi (b0355) 2022; 16 Gao, Wang (b0340) 2020; 12 Mohemmed, Schliebs, Matsuda, Kasabov (b0195) 2013; 107 Chang, Hsu, Pion-Tonachini, Jung (b0095) 2020; 67 Sengupta, Ye, Wang, Liu, Roy (b0140) 2019; 13 Kumar, Sharma, Tsunoda (b0345) 2019; 9 Wan, Yang, Huang, Zeng, Liu (b0010) 2021; 421 J. D. Wang, Y. Q. Chen, W. J. Feng, H. Yu, M. Y. Huang and Q. Yang, “Transfer learning with dynamic distribution adaption,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, 2020, Art. no. 6. Lobo, Del Ser, Bifet, Kasabov (b0070) 2019; 121 Mohemmed (10.1016/j.neucom.2023.01.087_b0195) 2013; 107 Pierella (10.1016/j.neucom.2023.01.087_b0030) 2020; 17 Samek (10.1016/j.neucom.2023.01.087_b0225) 2013; 60 Huang (10.1016/j.neucom.2023.01.087_b0335) 2020; 14 Mandal (10.1016/j.neucom.2023.01.087_b0295) 2012; 31 Yang (10.1016/j.neucom.2023.01.087_b0305) 2014; 24 Lotte (10.1016/j.neucom.2023.01.087_b0205) 2018; 15 10.1016/j.neucom.2023.01.087_b0180 Virgilio (10.1016/j.neucom.2023.01.087_b0110) 2020; 122 10.1016/j.neucom.2023.01.087_b0260 Sengupta (10.1016/j.neucom.2023.01.087_b0140) 2019; 13 Pan (10.1016/j.neucom.2023.01.087_b0245) 2011; 22 Michel (10.1016/j.neucom.2023.01.087_b0090) 2019; 10 Li (10.1016/j.neucom.2023.01.087_b0215) 2010; 57 Cramer (10.1016/j.neucom.2023.01.087_b0165) 2020; 33 Sun (10.1016/j.neucom.2023.01.087_b0230) 2021; 31 Auge (10.1016/j.neucom.2023.01.087_b0285) 2021; 53 He (10.1016/j.neucom.2023.01.087_b0270) 2020; 67 Lawhern (10.1016/j.neucom.2023.01.087_b0005) 2018; 15 Koessler (10.1016/j.neucom.2023.01.087_b0060) 2009; 46 Behrenbeck (10.1016/j.neucom.2023.01.087_b0185) 2019; 16 Wang (10.1016/j.neucom.2023.01.087_b0125) 2020; 125 Lancaster (10.1016/j.neucom.2023.01.087_b0300) 2000; 10 Liu (10.1016/j.neucom.2023.01.087_b0020) 2020; 208 10.1016/j.neucom.2023.01.087_b0155 Gao (10.1016/j.neucom.2023.01.087_b0340) 2020; 12 Kheradpisheh (10.1016/j.neucom.2023.01.087_b0170) 2018; 99 Nowinski (10.1016/j.neucom.2023.01.087_b0045) 2021; 19 Zanini (10.1016/j.neucom.2023.01.087_b0265) 2018; 65 Chang (10.1016/j.neucom.2023.01.087_b0095) 2020; 67 Taherkhani (10.1016/j.neucom.2023.01.087_b0115) 2020; 122 Rueckauer (10.1016/j.neucom.2023.01.087_b0135) 2017; 11 Hussain (10.1016/j.neucom.2023.01.087_b0025) 2021; 21 Neftci (10.1016/j.neucom.2023.01.087_b0145) 2019; 36 Zhang (10.1016/j.neucom.2023.01.087_b0235) 2020; 28 Hossain (10.1016/j.neucom.2023.01.087_b0220) 2018; 2018 Kasabov (10.1016/j.neucom.2023.01.087_b0080) 2014; 52 Wang (10.1016/j.neucom.2023.01.087_b0310) 2012; 38 Rodrigues (10.1016/j.neucom.2023.01.087_b0085) 2019; 66 10.1016/j.neucom.2023.01.087_b0320 Tan (10.1016/j.neucom.2023.01.087_b0075) 2020; 52 Singh (10.1016/j.neucom.2023.01.087_b0240) 2019; 7 Kasabov (10.1016/j.neucom.2023.01.087_b0035) 2015; 294 Lobo (10.1016/j.neucom.2023.01.087_b0070) 2019; 121 10.1016/j.neucom.2023.01.087_b0160 Fang (10.1016/j.neucom.2023.01.087_b0150) 2021 Choi (10.1016/j.neucom.2023.01.087_b0330) 2003; 36 Kasabov (10.1016/j.neucom.2023.01.087_b0190) 2013; 41 Jones (10.1016/j.neucom.2023.01.087_b0050) 2004; 5 Pouget (10.1016/j.neucom.2023.01.087_b0055) 2000; 1 Wu (10.1016/j.neucom.2023.01.087_b0280) 2019; 13 Lou (10.1016/j.neucom.2023.01.087_b0040) 2020; 43 10.1016/j.neucom.2023.01.087_b0255 Rasmussen (10.1016/j.neucom.2023.01.087_b0015) 2019; 9 10.1016/j.neucom.2023.01.087_b0210 Antonietti (10.1016/j.neucom.2023.01.087_b0355) 2022; 16 Tsiouris (10.1016/j.neucom.2023.01.087_b0350) 2018; 99 Kasabov (10.1016/j.neucom.2023.01.087_b0200) 2017; 28 Herz (10.1016/j.neucom.2023.01.087_b0065) 2006; 314 10.1016/j.neucom.2023.01.087_b0290 Xu (10.1016/j.neucom.2023.01.087_b0315) 2017; 63 10.1016/j.neucom.2023.01.087_b0130 10.1016/j.neucom.2023.01.087_b0250 Raza (10.1016/j.neucom.2023.01.087_b0275) 2019; 343 Tian (10.1016/j.neucom.2023.01.087_b0325) 2018; 81 Azab (10.1016/j.neucom.2023.01.087_b0100) 2019; 27 Li (10.1016/j.neucom.2023.01.087_b0175) 2018; 491 She (10.1016/j.neucom.2023.01.087_b0105) 2022; 514 Wan (10.1016/j.neucom.2023.01.087_b0010) 2021; 421 Guo (10.1016/j.neucom.2023.01.087_b0120) 2021; 15 Kumar (10.1016/j.neucom.2023.01.087_b0345) 2019; 9  | 
    
| References_xml | – volume: 63 start-page: 139 year: 2017 end-page: 148 ident: b0315 article-title: Robust support vector machines based on the rescaled hinge loss function publication-title: Pattern Recogn. – volume: 10 year: 2019 ident: b0090 article-title: EEG source imaging: a practical review of the analysis steps publication-title: Front. Neurol. – reference: N. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence (Springer Series on Bio- and Neurosystems). Cham, Switzerland: Springer Int. Publ., 2018. – volume: 208 year: 2020 ident: b0020 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage – reference: J. D. Wang, Y. Q. Chen, L. S. Hu, X. H. Peng and P. S. Yu, “Stratified transfer learning for cross-domain activity recognition,” in IEEE International Conference on Pervasive Computing and Communications, March. 2018, pp. 115-124. – reference: J. D. Wang, Y. Q. Chen, W. J. Feng, H. Yu, M. Y. Huang and Q. Yang, “Transfer learning with dynamic distribution adaption,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, 2020, Art. no. 6. – volume: 99 start-page: 56 year: 2018 end-page: 67 ident: b0170 article-title: STDP-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw. – volume: 43 year: 2020 ident: b0040 article-title: An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data publication-title: Adv. Eng. Informatics – volume: 15 year: 2021 ident: b0120 article-title: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems publication-title: Frontiers in Neuroscience – volume: 31 year: 2021 ident: b0230 article-title: Feature selection combining filter and wrapper methods for motor-imagery based brain-computer interfaces publication-title: Int. J. Neural Systems – volume: 491 start-page: 716 year: 2018 end-page: 728 ident: b0175 article-title: Computational modeling of spiking neural networks with learning rules from STDP and intrinsic plasticity publication-title: Physica A-Statistical Mechanics and Its Applications – volume: 21 start-page: 111 year: 2021 end-page: 121 ident: b0025 article-title: Robot assisted ankle neuro-rehabilitation: state of the art and future challenges publication-title: Expert Rev. Neurother. – volume: 15 year: 2018 ident: b0005 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – reference: W. Fang, Z. F. Yu, Y. Q. Chen, T. Masquelier, T. J. Huang and Y. H. Tian, “Incorporating learnable membrane time constant to enhance learning of spiking neural networks,” in Proceedings of the International Conference on Computer Vision, October. 2021, pp. 2641-2651. – volume: 81 start-page: 682 year: 2018 end-page: 692 ident: b0325 article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method publication-title: Renew. Sustain. Energy Rev. – volume: 19 start-page: 1 year: 2021 end-page: 22 ident: b0045 article-title: Evolution of human brain atlases in terms of content, applications, functionality, and availability publication-title: Neuroinformatics – volume: 53 start-page: 4693 year: 2021 end-page: 4710 ident: b0285 article-title: A survey of encoding techniques for signal processing in spiking neural networks publication-title: Neural Process. Lett. – volume: 27 start-page: 1352 year: 2019 end-page: 1359 ident: b0100 article-title: Weighted transfer learning for improving motor-imagery-based brain computer interface publication-title: IEEE Trans. Neural System Rehabilitation Eng. – reference: P. T. Wang, J. Lu, B. Zhang and Z. Tang, “A review on transfer learning for brain-computer interface classification,” in International Conference on Information Science and Technology, April. 2015, pp. 315-322. – volume: 10 start-page: 120 year: 2000 end-page: 131 ident: b0300 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. – volume: 52 start-page: 62 year: 2014 end-page: 76 ident: b0080 article-title: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Netw. – volume: 16 year: 2019 ident: b0185 article-title: Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware publication-title: J. Neural Eng. – volume: 11 year: 2017 ident: b0135 article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification publication-title: Front. Neurosci. – volume: 107 start-page: 3 year: 2013 end-page: 10 ident: b0195 article-title: Evolving spike pattern association neurons and neural networks publication-title: Neurocomputing – volume: 33 start-page: 2744 year: 2020 end-page: 2757 ident: b0165 article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 41 start-page: 188 year: 2013 end-page: 201 ident: b0190 article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition publication-title: Neural Netw. – volume: 36 start-page: 1703 year: 2003 end-page: 1709 ident: b0330 article-title: Feature extraction based on the Bhattacharyya distance publication-title: Pattern Recogn. – volume: 121 start-page: 88 year: 2019 end-page: 100 ident: b0070 article-title: Spiking neural networks and online learning: an overview and perspectives publication-title: Neural Netw. – volume: 125 start-page: 258 year: 2020 end-page: 280 ident: b0125 article-title: Supervised learning in spiking neural networks: a review of algorithms and evaluations publication-title: Neural Netw. – volume: 122 start-page: 253 year: 2020 end-page: 272 ident: b0115 article-title: A review of learning in biologically plausible spiking neural networks publication-title: Neural Netw. – volume: 46 start-page: 64 year: 2009 end-page: 72 ident: b0060 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system publication-title: Neuroimage – volume: 65 start-page: 1107 year: 2018 end-page: 1116 ident: b0265 article-title: Transfer learning: a Riemannian geometry framework with application to brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 294 start-page: 565 year: 2015 end-page: 575 ident: b0035 article-title: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes publication-title: Inf. Sci. – volume: 52 start-page: 1675 year: 2020 end-page: 1701 ident: b0075 article-title: Spiking neural networks: background, recent development and the NeuCube Architecture publication-title: Neural Process. Lett. – volume: 12 start-page: 17 year: 2020 end-page: 29 ident: b0340 article-title: Brain Signal Classification Based on Deep CNN publication-title: Int. J. Security Privacy Pervasive Comput. – volume: 421 start-page: 1 year: 2021 end-page: 14 ident: b0010 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing – volume: 60 start-page: 2289 year: 2013 end-page: 2298 ident: b0225 article-title: Transferring subspaces between subjects in brain-computer interfacing publication-title: IEEE Trans. Biomed. Eng. – reference: S. A. Chang, S. Tillem, C. Benson-Williams and A. Baskin-Sommers, “Cognitive empathy in subtypes of antisocial individuals,” Front. Psychiatry, vol. 12, 2021, Art. no. 677975. – volume: 7 start-page: 46858 year: 2019 end-page: 46869 ident: b0240 article-title: Small sample motor imagery classification using regularized Riemannian features publication-title: IEEE Access – volume: 9 start-page: 123 year: 2019 end-page: 130 ident: b0015 article-title: Alzheimer’s disease-why we need early diagnosis publication-title: Degenerative Neurol. Neuromuscular Disease – volume: 1 start-page: 125 year: 2000 end-page: 132 ident: b0055 article-title: Information processing with population codes publication-title: Nat. Rev. Neurosci. – volume: 13 year: 2019 ident: b0280 article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification publication-title: Front. Neurosci. – volume: 2018 year: 2018 ident: b0220 article-title: Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface publication-title: Comput. Intelligence Neurosci. – reference: B. Schrauwen and J. Van Campenhout, “BSA, a fast and accurate spike train encoding scheme,” in Proceedings of the International Joint Conference on Neural Networks, July. 2003, pp. 2825-2830. – reference: P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu and M. Pfeiffer, “Fast-classifying, high accuracy spiking deep networks through weight and threshold balancing,” in Proceedings of the International Joint Conference on Neural Networks, July. 2015. – reference: S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in Proceedings of the International Conference on Neural Information Processing Systems, December. 2018. – volume: 17 year: 2020 ident: b0030 article-title: A multimodal approach to capture post-stroke temporal dynamics of recovery publication-title: J. Neural Eng. – volume: 14 year: 2020 ident: b0335 article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks publication-title: Front. Neurosci. – volume: 28 start-page: 887 year: 2017 end-page: 899 ident: b0200 article-title: Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 38 start-page: 180 year: 2012 end-page: 185 ident: b0310 article-title: Markov model and convergence analysis based on cuckoo search algorithm publication-title: Comput. Eng. – volume: 66 start-page: 2390 year: 2019 end-page: 2401 ident: b0085 article-title: Riemannian Procrustes analysis: transfer learning for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 67 start-page: 399 year: 2020 end-page: 410 ident: b0270 article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. – volume: 99 start-page: 24 year: 2018 end-page: 37 ident: b0350 article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. – volume: 514 start-page: 313 year: 2022 end-page: 327 ident: b0105 article-title: Multi-source manifold feature transfer learning with domain selection for brain-computer interfaces q publication-title: Neurocomputing – volume: 31 start-page: 169 year: 2012 end-page: 188 ident: b0295 article-title: Structural brain atlases: design, rationale and applications in normal and pathological cohorts publication-title: J. Alzheimers Disease – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b0245 article-title: Domain adaption via transfer component analysis publication-title: IEEE Trans. Neural Netw. – volume: 9 year: 2019 ident: b0345 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Scientific Reports – volume: 16 year: 2022 ident: b0355 article-title: Brain-inspired spiking neural network controller for a neurorobotic whisker system publication-title: Front. Neurorobotics – volume: 67 start-page: 1114 year: 2020 end-page: 1121 ident: b0095 article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings publication-title: IEEE Trans. Biomed. Eng. – volume: 13 year: 2019 ident: b0140 article-title: Going deeper in spiking neural networks: VGG and residual architectures publication-title: Front. Neurosci. – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: b0305 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Applic. – volume: 36 start-page: 51 year: 2019 end-page: 63 ident: b0145 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Process Mag. – volume: 28 start-page: 1117 year: 2020 end-page: 1127 ident: b0235 article-title: Manifold embedded knowledge transfer for brain-computer interface publication-title: IEEE Trans. Neural System Rehabilitation Eng. – start-page: 2799 year: 2021 end-page: 2806 ident: b0150 article-title: Exploiting neuron and synapse dynamics in spatial temporal learning of deep spiking neural network publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – volume: 343 start-page: 154 year: 2019 end-page: 166 ident: b0275 article-title: Covariate shift estimation based on adaptive ensemble learning for handling non-stationary in motor imagery related EEG-based brain computer interface publication-title: Neurocomputing – volume: 15 year: 2018 ident: b0205 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng. – volume: 5 start-page: 516 year: 2004 end-page: 517 ident: b0050 article-title: Synaptic plasticity-the highs and lows of synaptic plasticity publication-title: Nat. Rev. Neurosci. – volume: 314 start-page: 80 year: 2006 end-page: 85 ident: b0065 article-title: Modeling single-neuron dynamics and computations: a balance of detail and abstraction publication-title: Science – reference: M. S. Long, H. Zhu, J. M. Wang and M. I. Jordan, “Deep transfer learning with joint adaption networks,” in Proceedings of Machine Learning Research, August. 2017. – volume: 122 start-page: 130 year: 2020 end-page: 143 ident: b0110 article-title: Spiking neural networks applied to the classification of motor tasks in EEG signals publication-title: Neural Netw. – volume: 57 start-page: 1318 year: 2010 end-page: 1324 ident: b0215 article-title: Application of covariate shift adaption techniques in brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 421 start-page: 1 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0010 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 10 start-page: 120 issue: 3 year: 2000 ident: 10.1016/j.neucom.2023.01.087_b0300 article-title: Automated Talairach Atlas labels for functional brain mapping publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 38 start-page: 180 issue: 11 year: 2012 ident: 10.1016/j.neucom.2023.01.087_b0310 article-title: Markov model and convergence analysis based on cuckoo search algorithm publication-title: Comput. Eng. – volume: 65 start-page: 1107 issue: 5 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0265 article-title: Transfer learning: a Riemannian geometry framework with application to brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2742541 – ident: 10.1016/j.neucom.2023.01.087_b0260 doi: 10.1145/3360309 – volume: 314 start-page: 80 issue: 5796 year: 2006 ident: 10.1016/j.neucom.2023.01.087_b0065 article-title: Modeling single-neuron dynamics and computations: a balance of detail and abstraction publication-title: Science doi: 10.1126/science.1127240 – ident: 10.1016/j.neucom.2023.01.087_b0320 doi: 10.3389/fpsyt.2021.677975 – volume: 514 start-page: 313 year: 2022 ident: 10.1016/j.neucom.2023.01.087_b0105 article-title: Multi-source manifold feature transfer learning with domain selection for brain-computer interfaces q publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.09.124 – volume: 5 start-page: 516 issue: 7 year: 2004 ident: 10.1016/j.neucom.2023.01.087_b0050 article-title: Synaptic plasticity-the highs and lows of synaptic plasticity publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1437 – volume: 31 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0230 article-title: Feature selection combining filter and wrapper methods for motor-imagery based brain-computer interfaces publication-title: Int. J. Neural Systems doi: 10.1142/S0129065721500404 – ident: 10.1016/j.neucom.2023.01.087_b0210 doi: 10.1109/ICIST.2015.7288989 – volume: 99 start-page: 56 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0170 article-title: STDP-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.12.005 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0005 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 208 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0020 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116459 – volume: 13 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0140 article-title: Going deeper in spiking neural networks: VGG and residual architectures publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00095 – volume: 53 start-page: 4693 issue: 6 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0285 article-title: A survey of encoding techniques for signal processing in spiking neural networks publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10562-2 – ident: 10.1016/j.neucom.2023.01.087_b0130 doi: 10.1109/IJCNN.2015.7280696 – ident: 10.1016/j.neucom.2023.01.087_b0160 doi: 10.1109/ICCV48922.2021.00266 – volume: 122 start-page: 253 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0115 article-title: A review of learning in biologically plausible spiking neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.09.036 – ident: 10.1016/j.neucom.2023.01.087_b0155 – volume: 28 start-page: 887 issue: 4 year: 2017 ident: 10.1016/j.neucom.2023.01.087_b0200 article-title: Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2612890 – volume: 9 start-page: 123 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0015 article-title: Alzheimer’s disease-why we need early diagnosis publication-title: Degenerative Neurol. Neuromuscular Disease doi: 10.2147/DNND.S228939 – volume: 52 start-page: 62 year: 2014 ident: 10.1016/j.neucom.2023.01.087_b0080 article-title: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.01.006 – volume: 41 start-page: 188 year: 2013 ident: 10.1016/j.neucom.2023.01.087_b0190 article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.11.014 – ident: 10.1016/j.neucom.2023.01.087_b0290 doi: 10.1109/IJCNN.2003.1224019 – volume: 22 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.neucom.2023.01.087_b0245 article-title: Domain adaption via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 60 start-page: 2289 issue: 8 year: 2013 ident: 10.1016/j.neucom.2023.01.087_b0225 article-title: Transferring subspaces between subjects in brain-computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2253608 – volume: 107 start-page: 3 year: 2013 ident: 10.1016/j.neucom.2023.01.087_b0195 article-title: Evolving spike pattern association neurons and neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.034 – volume: 99 start-page: 24 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0350 article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 36 start-page: 51 issue: 6 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0145 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Process Mag. doi: 10.1109/MSP.2019.2931595 – volume: 125 start-page: 258 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0125 article-title: Supervised learning in spiking neural networks: a review of algorithms and evaluations publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.02.011 – volume: 31 start-page: 169 issue: 3 year: 2012 ident: 10.1016/j.neucom.2023.01.087_b0295 article-title: Structural brain atlases: design, rationale and applications in normal and pathological cohorts publication-title: J. Alzheimers Disease doi: 10.3233/JAD-2012-120412 – start-page: 2799 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0150 article-title: Exploiting neuron and synapse dynamics in spatial temporal learning of deep spiking neural network – volume: 343 start-page: 154 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0275 article-title: Covariate shift estimation based on adaptive ensemble learning for handling non-stationary in motor imagery related EEG-based brain computer interface publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.087 – volume: 12 start-page: 17 issue: 2 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0340 article-title: Brain Signal Classification Based on Deep CNN publication-title: Int. J. Security Privacy Pervasive Comput. doi: 10.4018/IJSPPC.2020040102 – volume: 121 start-page: 88 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0070 article-title: Spiking neural networks and online learning: an overview and perspectives publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.09.004 – volume: 122 start-page: 130 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0110 article-title: Spiking neural networks applied to the classification of motor tasks in EEG signals publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.09.037 – volume: 9 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0345 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Scientific Reports – volume: 36 start-page: 1703 issue: 8 year: 2003 ident: 10.1016/j.neucom.2023.01.087_b0330 article-title: Feature extraction based on the Bhattacharyya distance publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(03)00035-9 – volume: 67 start-page: 1114 issue: 4 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0095 article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2930186 – volume: 11 year: 2017 ident: 10.1016/j.neucom.2023.01.087_b0135 article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00682 – volume: 63 start-page: 139 year: 2017 ident: 10.1016/j.neucom.2023.01.087_b0315 article-title: Robust support vector machines based on the rescaled hinge loss function publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.09.045 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0205 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – volume: 13 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0280 article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01275 – volume: 10 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0090 article-title: EEG source imaging: a practical review of the analysis steps publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00325 – volume: 294 start-page: 565 year: 2015 ident: 10.1016/j.neucom.2023.01.087_b0035 article-title: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.028 – ident: 10.1016/j.neucom.2023.01.087_b0250 doi: 10.1109/PERCOM.2018.8444572 – volume: 2018 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0220 article-title: Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface publication-title: Comput. Intelligence Neurosci. doi: 10.1155/2018/6323414 – volume: 27 start-page: 1352 issue: 7 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0100 article-title: Weighted transfer learning for improving motor-imagery-based brain computer interface publication-title: IEEE Trans. Neural System Rehabilitation Eng. doi: 10.1109/TNSRE.2019.2923315 – volume: 1 start-page: 125 issue: 2 year: 2000 ident: 10.1016/j.neucom.2023.01.087_b0055 article-title: Information processing with population codes publication-title: Nat. Rev. Neurosci. doi: 10.1038/35039062 – volume: 28 start-page: 1117 issue: 5 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0235 article-title: Manifold embedded knowledge transfer for brain-computer interface publication-title: IEEE Trans. Neural System Rehabilitation Eng. doi: 10.1109/TNSRE.2020.2985996 – volume: 19 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0045 article-title: Evolution of human brain atlases in terms of content, applications, functionality, and availability publication-title: Neuroinformatics doi: 10.1007/s12021-020-09481-9 – volume: 46 start-page: 64 issue: 1 year: 2009 ident: 10.1016/j.neucom.2023.01.087_b0060 article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.006 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.neucom.2023.01.087_b0305 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Applic. doi: 10.1007/s00521-013-1367-1 – volume: 491 start-page: 716 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0175 article-title: Computational modeling of spiking neural networks with learning rules from STDP and intrinsic plasticity publication-title: Physica A-Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2017.08.053 – volume: 52 start-page: 1675 issue: 2 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0075 article-title: Spiking neural networks: background, recent development and the NeuCube Architecture publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10322-8 – volume: 43 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0040 article-title: An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data publication-title: Adv. Eng. Informatics doi: 10.1016/j.aei.2019.101028 – volume: 33 start-page: 2744 issue: 7 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0165 article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2020.3044364 – volume: 16 year: 2022 ident: 10.1016/j.neucom.2023.01.087_b0355 article-title: Brain-inspired spiking neural network controller for a neurorobotic whisker system publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2022.817948 – volume: 14 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0335 article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00808 – volume: 21 start-page: 111 issue: 1 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0025 article-title: Robot assisted ankle neuro-rehabilitation: state of the art and future challenges publication-title: Expert Rev. Neurother. doi: 10.1080/14737175.2021.1847646 – volume: 67 start-page: 399 issue: 2 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0270 article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913914 – ident: 10.1016/j.neucom.2023.01.087_b0180 doi: 10.1007/978-3-662-57715-8 – volume: 57 start-page: 1318 issue: 6 year: 2010 ident: 10.1016/j.neucom.2023.01.087_b0215 article-title: Application of covariate shift adaption techniques in brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2039997 – volume: 66 start-page: 2390 issue: 8 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0085 article-title: Riemannian Procrustes analysis: transfer learning for brain-computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2889705 – volume: 81 start-page: 682 year: 2018 ident: 10.1016/j.neucom.2023.01.087_b0325 article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.050 – volume: 17 issue: 4 year: 2020 ident: 10.1016/j.neucom.2023.01.087_b0030 article-title: A multimodal approach to capture post-stroke temporal dynamics of recovery publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab9ada – volume: 16 issue: 2 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0185 article-title: Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aafabc – ident: 10.1016/j.neucom.2023.01.087_b0255 – volume: 7 start-page: 46858 year: 2019 ident: 10.1016/j.neucom.2023.01.087_b0240 article-title: Small sample motor imagery classification using regularized Riemannian features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909058 – volume: 15 year: 2021 ident: 10.1016/j.neucom.2023.01.087_b0120 article-title: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2021.638474  | 
    
| SSID | ssj0017129 | 
    
| Score | 2.4831142 | 
    
| Snippet | Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 222 | 
    
| SubjectTerms | Cuckoo search algorithm EEG NeuCube Spiking neural networks Support vector machine Transfer learning  | 
    
| Title | Improving NeuCube spiking neural network for EEG-based pattern recognition using transfer learning | 
    
| URI | https://dx.doi.org/10.1016/j.neucom.2023.01.087 | 
    
| Volume | 529 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLWqsrBwI8pReWA1dXzkGKuqpYDoApW6RfGRqgilESQrvx1_uQQSAonRkZ1En-3vsJ7fQ-iamUQa44eEAx-i8FNGlLYp8YIkTaiU1iZwDvm48OdLcb-Sqx6atHdhAFbZ-P7ap1feunkyaqw5yjeb0RONmKuiPBffKuIy4AQVIgAVg5uPDubhBR6r-faYJNC7vT5XYbwyWwJmBCTEK_JOANb9FJ6-hJzZAdprckU8rn_nEPVsdoT2Wx0G3GzLY6S6kwG8sOWkVBa_5xs4A8dAV-lekdVgb-wyVDyd3hKIXQbnFbdmhjsQ0TbDgINf46JKZ903GlGJ9QlazqbPkzlptBOIdkVAQUIpGKOBCkDxy7O-4iIJXa7lSq7UpyxymZVRsGG1DKybEC5EGoW-dW1NE6n5Kepn28yeIcx0wiJJhfaZccUcVUZFhhruc84TZdUA8dZksW6IxUHf4jVuEWQvcW3oGAwdUy92hh4g0o3Ka2KNP_oH7WzE3xZI7Hz_ryPP_z3yAu1CqwLqBJeoX7yV9srlIIUaVotsiHbGdw_zxSfyKd1V | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGWDhRpTTA6up4yNpRlS1FGi70ErdrDh2UBFKI0hWfjt-OSqQEEiMSfyS6Nl-lz5_D6FrZiJpjN8jHPgQhZ8womObEC-IkohKaW0EdcjJ1B_NxcNCLlqo35yFAVhlbfsrm15a6_pOt9ZmN1suu080ZC6L8px_K4nLxAbaFJIFkIHdfKxxHl7gsYpwj0kCw5vzcyXIK7UFgEagh3jJ3gnIup_80xefM9xDO3WwiG-r_9lHLZseoN2mEQOu9-Uh0uvSAJ7aol9oi9-zJRTBMfBVulekFdobuxAVDwZ3BJyXwVlJrpniNYpolWIAwj_jvIxn3TfqrhLPR2g-HMz6I1I3TyCxywJy0pOCMRroAFp-edbXXEQ9F2y5nCvxKQtdaGU07NhYBtbNCBciCXu-ddcxjWTMj1E7XaX2BGEWRyyUVMQ-My6bo9ro0FDDfc55pK3uIN6oTMU1szg0uHhVDYTsRVWKVqBoRT3lFN1BZC2VVcwaf4wPmtlQ31aIcsb_V8nTf0teoa3RbDJW4_vp4xnahiclaic4R-38rbAXLiDJ9WW54D4BLjje6g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+NeuCube+spiking+neural+network+for+EEG-based+pattern+recognition+using+transfer+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wu%2C+Xuanyu&rft.au=Feng%2C+Yixiong&rft.au=Lou%2C+Shanhe&rft.au=Zheng%2C+Hao&rft.date=2023-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=529&rft.spage=222&rft.epage=235&rft_id=info:doi/10.1016%2Fj.neucom.2023.01.087&rft.externalDocID=S0925231223001194 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |