Improving NeuCube spiking neural network for EEG-based pattern recognition using transfer learning

Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatia...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 529; pp. 222 - 235
Main Authors Wu, Xuanyu, Feng, Yixiong, Lou, Shanhe, Zheng, Hao, Hu, Bingtao, Hong, Zhaoxi, Tan, Jianrong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.04.2023
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2023.01.087

Cover

Abstract Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatially located synapses and neurons. As an original and unifying SNN architecture, NeuCube, is developed to model, recognize and understand EEG data. However, the NeuCube still faces some challenges for EEG-based pattern recognition, such as few labeled data and changes of data probability distribution. Hence, this paper proposes a novel method to improve the performance of the NeuCube for EEG-based pattern recognition by transfer learning. In the first place, the covariance matrix alignment of EEG data is implemented for every subject in the Euclidean space, which reduces the probability distribution discrepancy of EEG data between different subjects. Different estimation methods for reference covariance matrix are tested and the optimal one is selected for different subjects. Secondly, spatio-temporal features of EEG data are extracted based on the NeuCube reservoir. Since hyper-parameters of the NeuCube reservoir have a great impact on its spatio-temporal representation, an improved cuckoo search algorithm is proposed to discover the optimal hyper-parameters for obtaining the optimal spatio-temporal features. Last but not least, a weighted transfer support vector machine is proposed to improve the original output classifier of the NeuCube in order to make the model adaptive to the cross-domain variability of EEG data. The proposed method is tested on open dataset 2a from BCI competition IV 2008 and achieves good spatio-temporal pattern recognition results. Furthermore, the neuron connectivity and activation level associated with the process of mental tasks are illustrated.
AbstractList Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of brain-inspired intelligence, spiking neural network (SNN) possesses the potential to handle EEG data by using spiking activity transmitted among spatially located synapses and neurons. As an original and unifying SNN architecture, NeuCube, is developed to model, recognize and understand EEG data. However, the NeuCube still faces some challenges for EEG-based pattern recognition, such as few labeled data and changes of data probability distribution. Hence, this paper proposes a novel method to improve the performance of the NeuCube for EEG-based pattern recognition by transfer learning. In the first place, the covariance matrix alignment of EEG data is implemented for every subject in the Euclidean space, which reduces the probability distribution discrepancy of EEG data between different subjects. Different estimation methods for reference covariance matrix are tested and the optimal one is selected for different subjects. Secondly, spatio-temporal features of EEG data are extracted based on the NeuCube reservoir. Since hyper-parameters of the NeuCube reservoir have a great impact on its spatio-temporal representation, an improved cuckoo search algorithm is proposed to discover the optimal hyper-parameters for obtaining the optimal spatio-temporal features. Last but not least, a weighted transfer support vector machine is proposed to improve the original output classifier of the NeuCube in order to make the model adaptive to the cross-domain variability of EEG data. The proposed method is tested on open dataset 2a from BCI competition IV 2008 and achieves good spatio-temporal pattern recognition results. Furthermore, the neuron connectivity and activation level associated with the process of mental tasks are illustrated.
Author Zheng, Hao
Hu, Bingtao
Wu, Xuanyu
Tan, Jianrong
Feng, Yixiong
Hong, Zhaoxi
Lou, Shanhe
Author_xml – sequence: 1
  givenname: Xuanyu
  surname: Wu
  fullname: Wu, Xuanyu
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Yixiong
  surname: Feng
  fullname: Feng, Yixiong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 3
  givenname: Shanhe
  orcidid: 0000-0001-5984-9517
  surname: Lou
  fullname: Lou, Shanhe
  email: loushanhe@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 4
  givenname: Hao
  surname: Zheng
  fullname: Zheng, Hao
  email: haozheng@zju.edu.cn
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 5
  givenname: Bingtao
  surname: Hu
  fullname: Hu, Bingtao
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Zhaoxi
  surname: Hong
  fullname: Hong, Zhaoxi
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
– sequence: 7
  givenname: Jianrong
  surname: Tan
  fullname: Tan, Jianrong
  organization: State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
BookMark eNqFkEFLwzAYhoNMcE7_gYf8gdYkbdPWgyBjzsHQi55Dmn4d2bqkJOnEf2_KPHnQ08f7wfPC-1yjmbEGELqjJKWE8vt9amBU9pgywrKU0JRU5QWa06pkScUqPkNzUrMiYRllV-ja-z0htKSsnqNmcxycPWmzw68wLscGsB_0Ycqx08k-nvBp3QF31uHVap000kOLBxkCOIMdKLszOmhr8OgnLDhpfAcO9yCdiZ8bdNnJ3sPtz12gj-fV-_Il2b6tN8unbaIywkNSFTljpGxKroBR4E2Wy6qIL8Y7TlhN6qJtSM4KVZQAILM87-qKQ8yKyEJlC5Sfe5Wz3jvoxOD0UbovQYmYPIm9OHsSkydBqIieIvbwC1M6yGlQXKL7_-DHMwxx2EmDE15pMApaHc0E0Vr9d8E3fSSJ8Q
CitedBy_id crossref_primary_10_1007_s11071_025_11073_8
crossref_primary_10_1016_j_bspc_2024_107000
crossref_primary_10_1016_j_asoc_2023_110675
crossref_primary_10_1016_j_neucom_2024_129314
crossref_primary_10_4081_jae_2024_1593
crossref_primary_10_1007_s13534_024_00405_z
crossref_primary_10_1016_j_neucom_2025_130008
crossref_primary_10_3390_bioengineering10121341
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_1016_j_neucom_2024_128902
crossref_primary_10_1016_j_neucom_2023_126470
Cites_doi 10.1016/j.neucom.2020.09.017
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1109/TBME.2017.2742541
10.1145/3360309
10.1126/science.1127240
10.3389/fpsyt.2021.677975
10.1016/j.neucom.2022.09.124
10.1038/nrn1437
10.1142/S0129065721500404
10.1109/ICIST.2015.7288989
10.1016/j.neunet.2017.12.005
10.1088/1741-2552/aace8c
10.1016/j.neuroimage.2019.116459
10.3389/fnins.2019.00095
10.1007/s11063-021-10562-2
10.1109/IJCNN.2015.7280696
10.1109/ICCV48922.2021.00266
10.1016/j.neunet.2019.09.036
10.1109/TNNLS.2016.2612890
10.2147/DNND.S228939
10.1016/j.neunet.2014.01.006
10.1016/j.neunet.2012.11.014
10.1109/IJCNN.2003.1224019
10.1109/TNN.2010.2091281
10.1109/TBME.2013.2253608
10.1016/j.neucom.2012.08.034
10.1016/j.compbiomed.2018.05.019
10.1109/MSP.2019.2931595
10.1016/j.neunet.2020.02.011
10.3233/JAD-2012-120412
10.1016/j.neucom.2018.04.087
10.4018/IJSPPC.2020040102
10.1016/j.neunet.2019.09.004
10.1016/j.neunet.2019.09.037
10.1016/S0031-3203(03)00035-9
10.1109/TBME.2019.2930186
10.3389/fnins.2017.00682
10.1016/j.patcog.2016.09.045
10.1088/1741-2552/aab2f2
10.3389/fnins.2019.01275
10.3389/fneur.2019.00325
10.1016/j.ins.2014.06.028
10.1109/PERCOM.2018.8444572
10.1155/2018/6323414
10.1109/TNSRE.2019.2923315
10.1038/35039062
10.1109/TNSRE.2020.2985996
10.1007/s12021-020-09481-9
10.1016/j.neuroimage.2009.02.006
10.1007/s00521-013-1367-1
10.1016/j.physa.2017.08.053
10.1007/s11063-020-10322-8
10.1016/j.aei.2019.101028
10.1109/TNNLS.2020.3044364
10.3389/fnbot.2022.817948
10.3389/fnins.2020.00808
10.1080/14737175.2021.1847646
10.1109/TBME.2019.2913914
10.1007/978-3-662-57715-8
10.1109/TBME.2009.2039997
10.1109/TBME.2018.2889705
10.1016/j.rser.2017.08.050
10.1088/1741-2552/ab9ada
10.1088/1741-2552/aafabc
10.1109/ACCESS.2019.2909058
10.3389/fnins.2021.638474
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2023.01.087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 235
ExternalDocumentID 10_1016_j_neucom_2023_01_087
S0925231223001194
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-8542207b76ce21e6b34a8522026f6029095db0425c57eeea344f986e5c5c0a5c3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Oct 16 04:40:52 EDT 2025
Thu Apr 24 23:16:10 EDT 2025
Fri Feb 23 02:38:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NeuCube
Support vector machine
Cuckoo search algorithm
Transfer learning
EEG
Spiking neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8542207b76ce21e6b34a8522026f6029095db0425c57eeea344f986e5c5c0a5c3
ORCID 0000-0001-5984-9517
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_neucom_2023_01_087
crossref_citationtrail_10_1016_j_neucom_2023_01_087
elsevier_sciencedirect_doi_10_1016_j_neucom_2023_01_087
PublicationCentury 2000
PublicationDate 2023-04-07
PublicationDateYYYYMMDD 2023-04-07
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pierella, Pirondini, Kinany, Coscia, Giang, Miehlbradt, Magnin, Nicolo, Dalise, Sgherri, Chisari, Van de Ville, Guggisberg, Micera (b0030) 2020; 17
Michel, Brunet (b0090) 2019; 10
S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in Proceedings of the International Conference on Neural Information Processing Systems, December. 2018.
Tian, Zhang, Feng, Wang, Peng, Jia (b0325) 2018; 81
Kasabov, Doborjeh, Doborjeh (b0200) 2017; 28
He, Wu (b0270) 2020; 67
Guo, Fouda, Eltawil, Salama (b0120) 2021; 15
Tsiouris, Pezoulas, Zervakis, Konitsiotis, Koutsouris, Fotiadis (b0350) 2018; 99
Raza, Rathee, Zhou, Cecotti, Prasad (b0275) 2019; 343
Pan, Tsang, Kwok, Yang (b0245) 2011; 22
Wu, Niu, Li, Li, Fu, Shi, Dong (b0280) 2019; 13
Choi, Lee (b0330) 2003; 36
Sun, Jin, Xu, Cichocki (b0230) 2021; 31
Behrenbeck, Tayeb, Bhiri, Richter, Rhodes, Kasabov, Espinosa-Ramos, Furber, Cheng, Conradt (b0185) 2019; 16
Hossain, Khosravi, Hettiarachchi, Nahavandi (b0220) 2018; 2018
Huang, Li, Chen, Lin, Yao (b0335) 2020; 14
Azab, Mihaylova, Ang, Arvaneh (b0100) 2019; 27
Liu, Li, Yan, Wang, Ma, Shen, Xu (b0020) 2020; 208
Taherkhani, Belatreche, Li, Cosma, Maguire, McGinnity (b0115) 2020; 122
M. S. Long, H. Zhu, J. M. Wang and M. I. Jordan, “Deep transfer learning with joint adaption networks,” in Proceedings of Machine Learning Research, August. 2017.
Hussain, Jamwal, Vliet, Brown (b0025) 2021; 21
W. Fang, Z. F. Yu, Y. Q. Chen, T. Masquelier, T. J. Huang and Y. H. Tian, “Incorporating learnable membrane time constant to enhance learning of spiking neural networks,” in Proceedings of the International Conference on Computer Vision, October. 2021, pp. 2641-2651.
N. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence (Springer Series on Bio- and Neurosystems). Cham, Switzerland: Springer Int. Publ., 2018.
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b0205) 2018; 15
Auge, Hille, Mueller, Knoll (b0285) 2021; 53
Kasabov, Capecci (b0035) 2015; 294
Mandal, Mahajan, Dinov (b0295) 2012; 31
Lancaster, Woldorff, Parsons, Liotti, Freitas, Rainey, Kochunov, Nickerson, Mikiten, Fox (b0300) 2000; 10
She, Cai, Du, Chen (b0105) 2022; 514
Samek, Meinecke, Muller (b0225) 2013; 60
J. D. Wang, Y. Q. Chen, L. S. Hu, X. H. Peng and P. S. Yu, “Stratified transfer learning for cross-domain activity recognition,” in IEEE International Conference on Pervasive Computing and Communications, March. 2018, pp. 115-124.
Nowinski (b0045) 2021; 19
Kasabov, Dhoble, Nuntalid, Indiveri (b0190) 2013; 41
B. Schrauwen and J. Van Campenhout, “BSA, a fast and accurate spike train encoding scheme,” in Proceedings of the International Joint Conference on Neural Networks, July. 2003, pp. 2825-2830.
Rodrigues, Jutten, Congedo (b0085) 2019; 66
Neftci, Mostafa, Zenke (b0145) 2019; 36
Li, Kambara, Koike, Sugiyama (b0215) 2010; 57
Zanini, Congedo, Jutten, Said, Berthoumieu (b0265) 2018; 65
Yang, Deb (b0305) 2014; 24
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0005) 2018; 15
Singh, Lal, Guesgen (b0240) 2019; 7
Jones (b0050) 2004; 5
S. A. Chang, S. Tillem, C. Benson-Williams and A. Baskin-Sommers, “Cognitive empathy in subtypes of antisocial individuals,” Front. Psychiatry, vol. 12, 2021, Art. no. 677975.
Lou, Feng, Li, Zheng, Tan (b0040) 2020; 43
Fang, Shrestha, Zhao, Qiu (b0150) 2021
Pouget, Dayan, Zemel (b0055) 2000; 1
Rueckauer, Lungu, Hu, Pfeiffer, Liu (b0135) 2017; 11
P. T. Wang, J. Lu, B. Zhang and Z. Tang, “A review on transfer learning for brain-computer interface classification,” in International Conference on Information Science and Technology, April. 2015, pp. 315-322.
Tan, Sarlija, Kasabov (b0075) 2020; 52
Zhang, Wu (b0235) 2020; 28
Kasabov (b0080) 2014; 52
Wang, He, Wang, Yang (b0310) 2012; 38
Wang, Lin, Dang (b0125) 2020; 125
Li, Wang, Xue, Song (b0175) 2018; 491
Rasmussen, Langerman (b0015) 2019; 9
Koessler, Maillard, Benhadid, Vignal, Felblinger, Vespignani, Braun (b0060) 2009; 46
P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu and M. Pfeiffer, “Fast-classifying, high accuracy spiking deep networks through weight and threshold balancing,” in Proceedings of the International Joint Conference on Neural Networks, July. 2015.
Kheradpisheh, Ganjtabesh, Thorpe, Masquelier (b0170) 2018; 99
Xu, Cao, Hu, Principe (b0315) 2017; 63
Cramer, Stradmann, Schemmel, Zenke (b0165) 2020; 33
Herz, Gollisch, Machens, Jaeger (b0065) 2006; 314
Virgilio, Sossa, Antelis, Falcon (b0110) 2020; 122
Antonietti, Geminiani, Negri, D’Angelo, Casellato, Pedrocchi (b0355) 2022; 16
Gao, Wang (b0340) 2020; 12
Mohemmed, Schliebs, Matsuda, Kasabov (b0195) 2013; 107
Chang, Hsu, Pion-Tonachini, Jung (b0095) 2020; 67
Sengupta, Ye, Wang, Liu, Roy (b0140) 2019; 13
Kumar, Sharma, Tsunoda (b0345) 2019; 9
Wan, Yang, Huang, Zeng, Liu (b0010) 2021; 421
J. D. Wang, Y. Q. Chen, W. J. Feng, H. Yu, M. Y. Huang and Q. Yang, “Transfer learning with dynamic distribution adaption,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, 2020, Art. no. 6.
Lobo, Del Ser, Bifet, Kasabov (b0070) 2019; 121
Mohemmed (10.1016/j.neucom.2023.01.087_b0195) 2013; 107
Pierella (10.1016/j.neucom.2023.01.087_b0030) 2020; 17
Samek (10.1016/j.neucom.2023.01.087_b0225) 2013; 60
Huang (10.1016/j.neucom.2023.01.087_b0335) 2020; 14
Mandal (10.1016/j.neucom.2023.01.087_b0295) 2012; 31
Yang (10.1016/j.neucom.2023.01.087_b0305) 2014; 24
Lotte (10.1016/j.neucom.2023.01.087_b0205) 2018; 15
10.1016/j.neucom.2023.01.087_b0180
Virgilio (10.1016/j.neucom.2023.01.087_b0110) 2020; 122
10.1016/j.neucom.2023.01.087_b0260
Sengupta (10.1016/j.neucom.2023.01.087_b0140) 2019; 13
Pan (10.1016/j.neucom.2023.01.087_b0245) 2011; 22
Michel (10.1016/j.neucom.2023.01.087_b0090) 2019; 10
Li (10.1016/j.neucom.2023.01.087_b0215) 2010; 57
Cramer (10.1016/j.neucom.2023.01.087_b0165) 2020; 33
Sun (10.1016/j.neucom.2023.01.087_b0230) 2021; 31
Auge (10.1016/j.neucom.2023.01.087_b0285) 2021; 53
He (10.1016/j.neucom.2023.01.087_b0270) 2020; 67
Lawhern (10.1016/j.neucom.2023.01.087_b0005) 2018; 15
Koessler (10.1016/j.neucom.2023.01.087_b0060) 2009; 46
Behrenbeck (10.1016/j.neucom.2023.01.087_b0185) 2019; 16
Wang (10.1016/j.neucom.2023.01.087_b0125) 2020; 125
Lancaster (10.1016/j.neucom.2023.01.087_b0300) 2000; 10
Liu (10.1016/j.neucom.2023.01.087_b0020) 2020; 208
10.1016/j.neucom.2023.01.087_b0155
Gao (10.1016/j.neucom.2023.01.087_b0340) 2020; 12
Kheradpisheh (10.1016/j.neucom.2023.01.087_b0170) 2018; 99
Nowinski (10.1016/j.neucom.2023.01.087_b0045) 2021; 19
Zanini (10.1016/j.neucom.2023.01.087_b0265) 2018; 65
Chang (10.1016/j.neucom.2023.01.087_b0095) 2020; 67
Taherkhani (10.1016/j.neucom.2023.01.087_b0115) 2020; 122
Rueckauer (10.1016/j.neucom.2023.01.087_b0135) 2017; 11
Hussain (10.1016/j.neucom.2023.01.087_b0025) 2021; 21
Neftci (10.1016/j.neucom.2023.01.087_b0145) 2019; 36
Zhang (10.1016/j.neucom.2023.01.087_b0235) 2020; 28
Hossain (10.1016/j.neucom.2023.01.087_b0220) 2018; 2018
Kasabov (10.1016/j.neucom.2023.01.087_b0080) 2014; 52
Wang (10.1016/j.neucom.2023.01.087_b0310) 2012; 38
Rodrigues (10.1016/j.neucom.2023.01.087_b0085) 2019; 66
10.1016/j.neucom.2023.01.087_b0320
Tan (10.1016/j.neucom.2023.01.087_b0075) 2020; 52
Singh (10.1016/j.neucom.2023.01.087_b0240) 2019; 7
Kasabov (10.1016/j.neucom.2023.01.087_b0035) 2015; 294
Lobo (10.1016/j.neucom.2023.01.087_b0070) 2019; 121
10.1016/j.neucom.2023.01.087_b0160
Fang (10.1016/j.neucom.2023.01.087_b0150) 2021
Choi (10.1016/j.neucom.2023.01.087_b0330) 2003; 36
Kasabov (10.1016/j.neucom.2023.01.087_b0190) 2013; 41
Jones (10.1016/j.neucom.2023.01.087_b0050) 2004; 5
Pouget (10.1016/j.neucom.2023.01.087_b0055) 2000; 1
Wu (10.1016/j.neucom.2023.01.087_b0280) 2019; 13
Lou (10.1016/j.neucom.2023.01.087_b0040) 2020; 43
10.1016/j.neucom.2023.01.087_b0255
Rasmussen (10.1016/j.neucom.2023.01.087_b0015) 2019; 9
10.1016/j.neucom.2023.01.087_b0210
Antonietti (10.1016/j.neucom.2023.01.087_b0355) 2022; 16
Tsiouris (10.1016/j.neucom.2023.01.087_b0350) 2018; 99
Kasabov (10.1016/j.neucom.2023.01.087_b0200) 2017; 28
Herz (10.1016/j.neucom.2023.01.087_b0065) 2006; 314
10.1016/j.neucom.2023.01.087_b0290
Xu (10.1016/j.neucom.2023.01.087_b0315) 2017; 63
10.1016/j.neucom.2023.01.087_b0130
10.1016/j.neucom.2023.01.087_b0250
Raza (10.1016/j.neucom.2023.01.087_b0275) 2019; 343
Tian (10.1016/j.neucom.2023.01.087_b0325) 2018; 81
Azab (10.1016/j.neucom.2023.01.087_b0100) 2019; 27
Li (10.1016/j.neucom.2023.01.087_b0175) 2018; 491
She (10.1016/j.neucom.2023.01.087_b0105) 2022; 514
Wan (10.1016/j.neucom.2023.01.087_b0010) 2021; 421
Guo (10.1016/j.neucom.2023.01.087_b0120) 2021; 15
Kumar (10.1016/j.neucom.2023.01.087_b0345) 2019; 9
References_xml – volume: 63
  start-page: 139
  year: 2017
  end-page: 148
  ident: b0315
  article-title: Robust support vector machines based on the rescaled hinge loss function
  publication-title: Pattern Recogn.
– volume: 10
  year: 2019
  ident: b0090
  article-title: EEG source imaging: a practical review of the analysis steps
  publication-title: Front. Neurol.
– reference: N. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence (Springer Series on Bio- and Neurosystems). Cham, Switzerland: Springer Int. Publ., 2018.
– volume: 208
  year: 2020
  ident: b0020
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
– reference: J. D. Wang, Y. Q. Chen, L. S. Hu, X. H. Peng and P. S. Yu, “Stratified transfer learning for cross-domain activity recognition,” in IEEE International Conference on Pervasive Computing and Communications, March. 2018, pp. 115-124.
– reference: J. D. Wang, Y. Q. Chen, W. J. Feng, H. Yu, M. Y. Huang and Q. Yang, “Transfer learning with dynamic distribution adaption,” ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 1, 2020, Art. no. 6.
– volume: 99
  start-page: 56
  year: 2018
  end-page: 67
  ident: b0170
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Netw.
– volume: 43
  year: 2020
  ident: b0040
  article-title: An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data
  publication-title: Adv. Eng. Informatics
– volume: 15
  year: 2021
  ident: b0120
  article-title: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems
  publication-title: Frontiers in Neuroscience
– volume: 31
  year: 2021
  ident: b0230
  article-title: Feature selection combining filter and wrapper methods for motor-imagery based brain-computer interfaces
  publication-title: Int. J. Neural Systems
– volume: 491
  start-page: 716
  year: 2018
  end-page: 728
  ident: b0175
  article-title: Computational modeling of spiking neural networks with learning rules from STDP and intrinsic plasticity
  publication-title: Physica A-Statistical Mechanics and Its Applications
– volume: 21
  start-page: 111
  year: 2021
  end-page: 121
  ident: b0025
  article-title: Robot assisted ankle neuro-rehabilitation: state of the art and future challenges
  publication-title: Expert Rev. Neurother.
– volume: 15
  year: 2018
  ident: b0005
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
– reference: W. Fang, Z. F. Yu, Y. Q. Chen, T. Masquelier, T. J. Huang and Y. H. Tian, “Incorporating learnable membrane time constant to enhance learning of spiking neural networks,” in Proceedings of the International Conference on Computer Vision, October. 2021, pp. 2641-2651.
– volume: 81
  start-page: 682
  year: 2018
  end-page: 692
  ident: b0325
  article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method
  publication-title: Renew. Sustain. Energy Rev.
– volume: 19
  start-page: 1
  year: 2021
  end-page: 22
  ident: b0045
  article-title: Evolution of human brain atlases in terms of content, applications, functionality, and availability
  publication-title: Neuroinformatics
– volume: 53
  start-page: 4693
  year: 2021
  end-page: 4710
  ident: b0285
  article-title: A survey of encoding techniques for signal processing in spiking neural networks
  publication-title: Neural Process. Lett.
– volume: 27
  start-page: 1352
  year: 2019
  end-page: 1359
  ident: b0100
  article-title: Weighted transfer learning for improving motor-imagery-based brain computer interface
  publication-title: IEEE Trans. Neural System Rehabilitation Eng.
– reference: P. T. Wang, J. Lu, B. Zhang and Z. Tang, “A review on transfer learning for brain-computer interface classification,” in International Conference on Information Science and Technology, April. 2015, pp. 315-322.
– volume: 10
  start-page: 120
  year: 2000
  end-page: 131
  ident: b0300
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
– volume: 52
  start-page: 62
  year: 2014
  end-page: 76
  ident: b0080
  article-title: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
– volume: 16
  year: 2019
  ident: b0185
  article-title: Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
  publication-title: J. Neural Eng.
– volume: 11
  year: 2017
  ident: b0135
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci.
– volume: 107
  start-page: 3
  year: 2013
  end-page: 10
  ident: b0195
  article-title: Evolving spike pattern association neurons and neural networks
  publication-title: Neurocomputing
– volume: 33
  start-page: 2744
  year: 2020
  end-page: 2757
  ident: b0165
  article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 41
  start-page: 188
  year: 2013
  end-page: 201
  ident: b0190
  article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
  publication-title: Neural Netw.
– volume: 36
  start-page: 1703
  year: 2003
  end-page: 1709
  ident: b0330
  article-title: Feature extraction based on the Bhattacharyya distance
  publication-title: Pattern Recogn.
– volume: 121
  start-page: 88
  year: 2019
  end-page: 100
  ident: b0070
  article-title: Spiking neural networks and online learning: an overview and perspectives
  publication-title: Neural Netw.
– volume: 125
  start-page: 258
  year: 2020
  end-page: 280
  ident: b0125
  article-title: Supervised learning in spiking neural networks: a review of algorithms and evaluations
  publication-title: Neural Netw.
– volume: 122
  start-page: 253
  year: 2020
  end-page: 272
  ident: b0115
  article-title: A review of learning in biologically plausible spiking neural networks
  publication-title: Neural Netw.
– volume: 46
  start-page: 64
  year: 2009
  end-page: 72
  ident: b0060
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system
  publication-title: Neuroimage
– volume: 65
  start-page: 1107
  year: 2018
  end-page: 1116
  ident: b0265
  article-title: Transfer learning: a Riemannian geometry framework with application to brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 294
  start-page: 565
  year: 2015
  end-page: 575
  ident: b0035
  article-title: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
  publication-title: Inf. Sci.
– volume: 52
  start-page: 1675
  year: 2020
  end-page: 1701
  ident: b0075
  article-title: Spiking neural networks: background, recent development and the NeuCube Architecture
  publication-title: Neural Process. Lett.
– volume: 12
  start-page: 17
  year: 2020
  end-page: 29
  ident: b0340
  article-title: Brain Signal Classification Based on Deep CNN
  publication-title: Int. J. Security Privacy Pervasive Comput.
– volume: 421
  start-page: 1
  year: 2021
  end-page: 14
  ident: b0010
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
– volume: 60
  start-page: 2289
  year: 2013
  end-page: 2298
  ident: b0225
  article-title: Transferring subspaces between subjects in brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
– reference: S. A. Chang, S. Tillem, C. Benson-Williams and A. Baskin-Sommers, “Cognitive empathy in subtypes of antisocial individuals,” Front. Psychiatry, vol. 12, 2021, Art. no. 677975.
– volume: 7
  start-page: 46858
  year: 2019
  end-page: 46869
  ident: b0240
  article-title: Small sample motor imagery classification using regularized Riemannian features
  publication-title: IEEE Access
– volume: 9
  start-page: 123
  year: 2019
  end-page: 130
  ident: b0015
  article-title: Alzheimer’s disease-why we need early diagnosis
  publication-title: Degenerative Neurol. Neuromuscular Disease
– volume: 1
  start-page: 125
  year: 2000
  end-page: 132
  ident: b0055
  article-title: Information processing with population codes
  publication-title: Nat. Rev. Neurosci.
– volume: 13
  year: 2019
  ident: b0280
  article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification
  publication-title: Front. Neurosci.
– volume: 2018
  year: 2018
  ident: b0220
  article-title: Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface
  publication-title: Comput. Intelligence Neurosci.
– reference: B. Schrauwen and J. Van Campenhout, “BSA, a fast and accurate spike train encoding scheme,” in Proceedings of the International Joint Conference on Neural Networks, July. 2003, pp. 2825-2830.
– reference: P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu and M. Pfeiffer, “Fast-classifying, high accuracy spiking deep networks through weight and threshold balancing,” in Proceedings of the International Joint Conference on Neural Networks, July. 2015.
– reference: S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in Proceedings of the International Conference on Neural Information Processing Systems, December. 2018.
– volume: 17
  year: 2020
  ident: b0030
  article-title: A multimodal approach to capture post-stroke temporal dynamics of recovery
  publication-title: J. Neural Eng.
– volume: 14
  year: 2020
  ident: b0335
  article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks
  publication-title: Front. Neurosci.
– volume: 28
  start-page: 887
  year: 2017
  end-page: 899
  ident: b0200
  article-title: Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 38
  start-page: 180
  year: 2012
  end-page: 185
  ident: b0310
  article-title: Markov model and convergence analysis based on cuckoo search algorithm
  publication-title: Comput. Eng.
– volume: 66
  start-page: 2390
  year: 2019
  end-page: 2401
  ident: b0085
  article-title: Riemannian Procrustes analysis: transfer learning for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 67
  start-page: 399
  year: 2020
  end-page: 410
  ident: b0270
  article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 99
  start-page: 24
  year: 2018
  end-page: 37
  ident: b0350
  article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 514
  start-page: 313
  year: 2022
  end-page: 327
  ident: b0105
  article-title: Multi-source manifold feature transfer learning with domain selection for brain-computer interfaces q
  publication-title: Neurocomputing
– volume: 31
  start-page: 169
  year: 2012
  end-page: 188
  ident: b0295
  article-title: Structural brain atlases: design, rationale and applications in normal and pathological cohorts
  publication-title: J. Alzheimers Disease
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: b0245
  article-title: Domain adaption via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  year: 2019
  ident: b0345
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Scientific Reports
– volume: 16
  year: 2022
  ident: b0355
  article-title: Brain-inspired spiking neural network controller for a neurorobotic whisker system
  publication-title: Front. Neurorobotics
– volume: 67
  start-page: 1114
  year: 2020
  end-page: 1121
  ident: b0095
  article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 13
  year: 2019
  ident: b0140
  article-title: Going deeper in spiking neural networks: VGG and residual architectures
  publication-title: Front. Neurosci.
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: b0305
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput. Applic.
– volume: 36
  start-page: 51
  year: 2019
  end-page: 63
  ident: b0145
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process Mag.
– volume: 28
  start-page: 1117
  year: 2020
  end-page: 1127
  ident: b0235
  article-title: Manifold embedded knowledge transfer for brain-computer interface
  publication-title: IEEE Trans. Neural System Rehabilitation Eng.
– start-page: 2799
  year: 2021
  end-page: 2806
  ident: b0150
  article-title: Exploiting neuron and synapse dynamics in spatial temporal learning of deep spiking neural network
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 343
  start-page: 154
  year: 2019
  end-page: 166
  ident: b0275
  article-title: Covariate shift estimation based on adaptive ensemble learning for handling non-stationary in motor imagery related EEG-based brain computer interface
  publication-title: Neurocomputing
– volume: 15
  year: 2018
  ident: b0205
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
– volume: 5
  start-page: 516
  year: 2004
  end-page: 517
  ident: b0050
  article-title: Synaptic plasticity-the highs and lows of synaptic plasticity
  publication-title: Nat. Rev. Neurosci.
– volume: 314
  start-page: 80
  year: 2006
  end-page: 85
  ident: b0065
  article-title: Modeling single-neuron dynamics and computations: a balance of detail and abstraction
  publication-title: Science
– reference: M. S. Long, H. Zhu, J. M. Wang and M. I. Jordan, “Deep transfer learning with joint adaption networks,” in Proceedings of Machine Learning Research, August. 2017.
– volume: 122
  start-page: 130
  year: 2020
  end-page: 143
  ident: b0110
  article-title: Spiking neural networks applied to the classification of motor tasks in EEG signals
  publication-title: Neural Netw.
– volume: 57
  start-page: 1318
  year: 2010
  end-page: 1324
  ident: b0215
  article-title: Application of covariate shift adaption techniques in brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 421
  start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0010
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 10
  start-page: 120
  issue: 3
  year: 2000
  ident: 10.1016/j.neucom.2023.01.087_b0300
  article-title: Automated Talairach Atlas labels for functional brain mapping
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– volume: 38
  start-page: 180
  issue: 11
  year: 2012
  ident: 10.1016/j.neucom.2023.01.087_b0310
  article-title: Markov model and convergence analysis based on cuckoo search algorithm
  publication-title: Comput. Eng.
– volume: 65
  start-page: 1107
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0265
  article-title: Transfer learning: a Riemannian geometry framework with application to brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
– ident: 10.1016/j.neucom.2023.01.087_b0260
  doi: 10.1145/3360309
– volume: 314
  start-page: 80
  issue: 5796
  year: 2006
  ident: 10.1016/j.neucom.2023.01.087_b0065
  article-title: Modeling single-neuron dynamics and computations: a balance of detail and abstraction
  publication-title: Science
  doi: 10.1126/science.1127240
– ident: 10.1016/j.neucom.2023.01.087_b0320
  doi: 10.3389/fpsyt.2021.677975
– volume: 514
  start-page: 313
  year: 2022
  ident: 10.1016/j.neucom.2023.01.087_b0105
  article-title: Multi-source manifold feature transfer learning with domain selection for brain-computer interfaces q
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.09.124
– volume: 5
  start-page: 516
  issue: 7
  year: 2004
  ident: 10.1016/j.neucom.2023.01.087_b0050
  article-title: Synaptic plasticity-the highs and lows of synaptic plasticity
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1437
– volume: 31
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0230
  article-title: Feature selection combining filter and wrapper methods for motor-imagery based brain-computer interfaces
  publication-title: Int. J. Neural Systems
  doi: 10.1142/S0129065721500404
– ident: 10.1016/j.neucom.2023.01.087_b0210
  doi: 10.1109/ICIST.2015.7288989
– volume: 99
  start-page: 56
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0170
  article-title: STDP-based spiking deep convolutional neural networks for object recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.12.005
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0005
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 208
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0020
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 13
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0140
  article-title: Going deeper in spiking neural networks: VGG and residual architectures
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00095
– volume: 53
  start-page: 4693
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0285
  article-title: A survey of encoding techniques for signal processing in spiking neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10562-2
– ident: 10.1016/j.neucom.2023.01.087_b0130
  doi: 10.1109/IJCNN.2015.7280696
– ident: 10.1016/j.neucom.2023.01.087_b0160
  doi: 10.1109/ICCV48922.2021.00266
– volume: 122
  start-page: 253
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0115
  article-title: A review of learning in biologically plausible spiking neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.09.036
– ident: 10.1016/j.neucom.2023.01.087_b0155
– volume: 28
  start-page: 887
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2023.01.087_b0200
  article-title: Mapping, learning, visualization, classification, and understanding of fMRI data in the NeuCube evolving spatiotemporal data machine of spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2612890
– volume: 9
  start-page: 123
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0015
  article-title: Alzheimer’s disease-why we need early diagnosis
  publication-title: Degenerative Neurol. Neuromuscular Disease
  doi: 10.2147/DNND.S228939
– volume: 52
  start-page: 62
  year: 2014
  ident: 10.1016/j.neucom.2023.01.087_b0080
  article-title: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– volume: 41
  start-page: 188
  year: 2013
  ident: 10.1016/j.neucom.2023.01.087_b0190
  article-title: Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.11.014
– ident: 10.1016/j.neucom.2023.01.087_b0290
  doi: 10.1109/IJCNN.2003.1224019
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2023.01.087_b0245
  article-title: Domain adaption via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 60
  start-page: 2289
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2023.01.087_b0225
  article-title: Transferring subspaces between subjects in brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2253608
– volume: 107
  start-page: 3
  year: 2013
  ident: 10.1016/j.neucom.2023.01.087_b0195
  article-title: Evolving spike pattern association neurons and neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.034
– volume: 99
  start-page: 24
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0350
  article-title: A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.019
– volume: 36
  start-page: 51
  issue: 6
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0145
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process Mag.
  doi: 10.1109/MSP.2019.2931595
– volume: 125
  start-page: 258
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0125
  article-title: Supervised learning in spiking neural networks: a review of algorithms and evaluations
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.02.011
– volume: 31
  start-page: 169
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2023.01.087_b0295
  article-title: Structural brain atlases: design, rationale and applications in normal and pathological cohorts
  publication-title: J. Alzheimers Disease
  doi: 10.3233/JAD-2012-120412
– start-page: 2799
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0150
  article-title: Exploiting neuron and synapse dynamics in spatial temporal learning of deep spiking neural network
– volume: 343
  start-page: 154
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0275
  article-title: Covariate shift estimation based on adaptive ensemble learning for handling non-stationary in motor imagery related EEG-based brain computer interface
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.087
– volume: 12
  start-page: 17
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0340
  article-title: Brain Signal Classification Based on Deep CNN
  publication-title: Int. J. Security Privacy Pervasive Comput.
  doi: 10.4018/IJSPPC.2020040102
– volume: 121
  start-page: 88
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0070
  article-title: Spiking neural networks and online learning: an overview and perspectives
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.09.004
– volume: 122
  start-page: 130
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0110
  article-title: Spiking neural networks applied to the classification of motor tasks in EEG signals
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.09.037
– volume: 9
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0345
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Scientific Reports
– volume: 36
  start-page: 1703
  issue: 8
  year: 2003
  ident: 10.1016/j.neucom.2023.01.087_b0330
  article-title: Feature extraction based on the Bhattacharyya distance
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(03)00035-9
– volume: 67
  start-page: 1114
  issue: 4
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0095
  article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2930186
– volume: 11
  year: 2017
  ident: 10.1016/j.neucom.2023.01.087_b0135
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00682
– volume: 63
  start-page: 139
  year: 2017
  ident: 10.1016/j.neucom.2023.01.087_b0315
  article-title: Robust support vector machines based on the rescaled hinge loss function
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.09.045
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0205
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– volume: 13
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0280
  article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01275
– volume: 10
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0090
  article-title: EEG source imaging: a practical review of the analysis steps
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00325
– volume: 294
  start-page: 565
  year: 2015
  ident: 10.1016/j.neucom.2023.01.087_b0035
  article-title: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.06.028
– ident: 10.1016/j.neucom.2023.01.087_b0250
  doi: 10.1109/PERCOM.2018.8444572
– volume: 2018
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0220
  article-title: Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface
  publication-title: Comput. Intelligence Neurosci.
  doi: 10.1155/2018/6323414
– volume: 27
  start-page: 1352
  issue: 7
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0100
  article-title: Weighted transfer learning for improving motor-imagery-based brain computer interface
  publication-title: IEEE Trans. Neural System Rehabilitation Eng.
  doi: 10.1109/TNSRE.2019.2923315
– volume: 1
  start-page: 125
  issue: 2
  year: 2000
  ident: 10.1016/j.neucom.2023.01.087_b0055
  article-title: Information processing with population codes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35039062
– volume: 28
  start-page: 1117
  issue: 5
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0235
  article-title: Manifold embedded knowledge transfer for brain-computer interface
  publication-title: IEEE Trans. Neural System Rehabilitation Eng.
  doi: 10.1109/TNSRE.2020.2985996
– volume: 19
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0045
  article-title: Evolution of human brain atlases in terms of content, applications, functionality, and availability
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09481-9
– volume: 46
  start-page: 64
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2023.01.087_b0060
  article-title: Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.006
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2023.01.087_b0305
  article-title: Cuckoo search: recent advances and applications
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-013-1367-1
– volume: 491
  start-page: 716
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0175
  article-title: Computational modeling of spiking neural networks with learning rules from STDP and intrinsic plasticity
  publication-title: Physica A-Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2017.08.053
– volume: 52
  start-page: 1675
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0075
  article-title: Spiking neural networks: background, recent development and the NeuCube Architecture
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10322-8
– volume: 43
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0040
  article-title: An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data
  publication-title: Adv. Eng. Informatics
  doi: 10.1016/j.aei.2019.101028
– volume: 33
  start-page: 2744
  issue: 7
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0165
  article-title: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2020.3044364
– volume: 16
  year: 2022
  ident: 10.1016/j.neucom.2023.01.087_b0355
  article-title: Brain-inspired spiking neural network controller for a neurorobotic whisker system
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2022.817948
– volume: 14
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0335
  article-title: An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00808
– volume: 21
  start-page: 111
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0025
  article-title: Robot assisted ankle neuro-rehabilitation: state of the art and future challenges
  publication-title: Expert Rev. Neurother.
  doi: 10.1080/14737175.2021.1847646
– volume: 67
  start-page: 399
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0270
  article-title: Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– ident: 10.1016/j.neucom.2023.01.087_b0180
  doi: 10.1007/978-3-662-57715-8
– volume: 57
  start-page: 1318
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2023.01.087_b0215
  article-title: Application of covariate shift adaption techniques in brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2039997
– volume: 66
  start-page: 2390
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0085
  article-title: Riemannian Procrustes analysis: transfer learning for brain-computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– volume: 81
  start-page: 682
  year: 2018
  ident: 10.1016/j.neucom.2023.01.087_b0325
  article-title: Green decoration materials selection under interior environment characteristics: a grey-correlation based hybrid MCDM method
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.050
– volume: 17
  issue: 4
  year: 2020
  ident: 10.1016/j.neucom.2023.01.087_b0030
  article-title: A multimodal approach to capture post-stroke temporal dynamics of recovery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab9ada
– volume: 16
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0185
  article-title: Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aafabc
– ident: 10.1016/j.neucom.2023.01.087_b0255
– volume: 7
  start-page: 46858
  year: 2019
  ident: 10.1016/j.neucom.2023.01.087_b0240
  article-title: Small sample motor imagery classification using regularized Riemannian features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909058
– volume: 15
  year: 2021
  ident: 10.1016/j.neucom.2023.01.087_b0120
  article-title: Neural coding in spiking neural networks: a comparative study for robust neuromorphic systems
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.638474
SSID ssj0017129
Score 2.4831142
Snippet Electroencephalogram (EEG) data are produced in quantity for measuring brain activity in response to external stimuli. With the rapid development of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 222
SubjectTerms Cuckoo search algorithm
EEG
NeuCube
Spiking neural networks
Support vector machine
Transfer learning
Title Improving NeuCube spiking neural network for EEG-based pattern recognition using transfer learning
URI https://dx.doi.org/10.1016/j.neucom.2023.01.087
Volume 529
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLWqsrBwI8pReWA1dXzkGKuqpYDoApW6RfGRqgilESQrvx1_uQQSAonRkZ1En-3vsJ7fQ-iamUQa44eEAx-i8FNGlLYp8YIkTaiU1iZwDvm48OdLcb-Sqx6atHdhAFbZ-P7ap1feunkyaqw5yjeb0RONmKuiPBffKuIy4AQVIgAVg5uPDubhBR6r-faYJNC7vT5XYbwyWwJmBCTEK_JOANb9FJ6-hJzZAdprckU8rn_nEPVsdoT2Wx0G3GzLY6S6kwG8sOWkVBa_5xs4A8dAV-lekdVgb-wyVDyd3hKIXQbnFbdmhjsQ0TbDgINf46JKZ903GlGJ9QlazqbPkzlptBOIdkVAQUIpGKOBCkDxy7O-4iIJXa7lSq7UpyxymZVRsGG1DKybEC5EGoW-dW1NE6n5Kepn28yeIcx0wiJJhfaZccUcVUZFhhruc84TZdUA8dZksW6IxUHf4jVuEWQvcW3oGAwdUy92hh4g0o3Ka2KNP_oH7WzE3xZI7Hz_ryPP_z3yAu1CqwLqBJeoX7yV9srlIIUaVotsiHbGdw_zxSfyKd1V
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZKGWDhRpTTA6up4yNpRlS1FGi70ErdrDh2UBFKI0hWfjt-OSqQEEiMSfyS6Nl-lz5_D6FrZiJpjN8jHPgQhZ8womObEC-IkohKaW0EdcjJ1B_NxcNCLlqo35yFAVhlbfsrm15a6_pOt9ZmN1suu080ZC6L8px_K4nLxAbaFJIFkIHdfKxxHl7gsYpwj0kCw5vzcyXIK7UFgEagh3jJ3gnIup_80xefM9xDO3WwiG-r_9lHLZseoN2mEQOu9-Uh0uvSAJ7aol9oi9-zJRTBMfBVulekFdobuxAVDwZ3BJyXwVlJrpniNYpolWIAwj_jvIxn3TfqrhLPR2g-HMz6I1I3TyCxywJy0pOCMRroAFp-edbXXEQ9F2y5nCvxKQtdaGU07NhYBtbNCBciCXu-ddcxjWTMj1E7XaX2BGEWRyyUVMQ-My6bo9ro0FDDfc55pK3uIN6oTMU1szg0uHhVDYTsRVWKVqBoRT3lFN1BZC2VVcwaf4wPmtlQ31aIcsb_V8nTf0teoa3RbDJW4_vp4xnahiclaic4R-38rbAXLiDJ9WW54D4BLjje6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+NeuCube+spiking+neural+network+for+EEG-based+pattern+recognition+using+transfer+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wu%2C+Xuanyu&rft.au=Feng%2C+Yixiong&rft.au=Lou%2C+Shanhe&rft.au=Zheng%2C+Hao&rft.date=2023-04-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=529&rft.spage=222&rft.epage=235&rft_id=info:doi/10.1016%2Fj.neucom.2023.01.087&rft.externalDocID=S0925231223001194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon