Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks

Examining choroid in Optical Coherence Tomography (OCT) plays a vital role in pathophysiologic factors of many ocular conditions. Among the existing approaches to detecting choroidal boundaries, graph-searching based techniques belong to the state-of-the-art. However, most of these techniques rely o...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 237; pp. 332 - 341
Main Authors Sui, Xiaodan, Zheng, Yuanjie, Wei, Benzheng, Bi, Hongsheng, Wu, Jianfeng, Pan, Xuemei, Yin, Yilong, Zhang, Shaoting
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.05.2017
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2017.01.023

Cover

Abstract Examining choroid in Optical Coherence Tomography (OCT) plays a vital role in pathophysiologic factors of many ocular conditions. Among the existing approaches to detecting choroidal boundaries, graph-searching based techniques belong to the state-of-the-art. However, most of these techniques rely on hand-crafted models on the graph-edge weight and their performances are limited mainly due to the weak choroidal boundaries, textural structure of the choroid, inhomogeneity of the textural structure of the choroid and great variation of the choroidal thickness. In order to circumvent this limitation, we present a multi-scale and end-to-end convolutional network architecture where an optimal graph-edge weight can be learned directly from raw pixels. Our method operates on multiple scales and combines local and global information from the 2D OCT image. Experimental results obtained based on 912 OCT B-scans show that our learned graph-edge weights outperform conventional hand-crafted ones and behave robustly and accurately no matter the OCT image is from normal subjects or patients for whom significant retinal structure variations can be observed.
AbstractList Examining choroid in Optical Coherence Tomography (OCT) plays a vital role in pathophysiologic factors of many ocular conditions. Among the existing approaches to detecting choroidal boundaries, graph-searching based techniques belong to the state-of-the-art. However, most of these techniques rely on hand-crafted models on the graph-edge weight and their performances are limited mainly due to the weak choroidal boundaries, textural structure of the choroid, inhomogeneity of the textural structure of the choroid and great variation of the choroidal thickness. In order to circumvent this limitation, we present a multi-scale and end-to-end convolutional network architecture where an optimal graph-edge weight can be learned directly from raw pixels. Our method operates on multiple scales and combines local and global information from the 2D OCT image. Experimental results obtained based on 912 OCT B-scans show that our learned graph-edge weights outperform conventional hand-crafted ones and behave robustly and accurately no matter the OCT image is from normal subjects or patients for whom significant retinal structure variations can be observed.
Author Yin, Yilong
Pan, Xuemei
Sui, Xiaodan
Zheng, Yuanjie
Bi, Hongsheng
Zhang, Shaoting
Wei, Benzheng
Wu, Jianfeng
Author_xml – sequence: 1
  givenname: Xiaodan
  surname: Sui
  fullname: Sui, Xiaodan
  organization: School of Information Science and Engineering, Shandong Normal University, Shandong, China
– sequence: 2
  givenname: Yuanjie
  surname: Zheng
  fullname: Zheng, Yuanjie
  email: yjzheng@sdnu.edu.cn
  organization: School of Information Science and Engineering, Shandong Normal University, Shandong, China
– sequence: 3
  givenname: Benzheng
  surname: Wei
  fullname: Wei, Benzheng
  organization: Shandong University of Traditional Chinese Medicine, Shandong, China
– sequence: 4
  givenname: Hongsheng
  surname: Bi
  fullname: Bi, Hongsheng
  organization: Eye Institute of Shandong University of TCM, Shandong, China
– sequence: 5
  givenname: Jianfeng
  surname: Wu
  fullname: Wu, Jianfeng
  organization: Shandong University of Traditional Chinese Medicine, Shandong, China
– sequence: 6
  givenname: Xuemei
  surname: Pan
  fullname: Pan, Xuemei
  organization: Affiliated Eye Hospital of Shandong University of TCM, Shandong, China
– sequence: 7
  givenname: Yilong
  orcidid: 0000-0002-5786-2491
  surname: Yin
  fullname: Yin, Yilong
  organization: School of Computer Science and Technology, Shandong University, Shandong, China
– sequence: 8
  givenname: Shaoting
  surname: Zhang
  fullname: Zhang, Shaoting
  organization: Department of Computer Science, University of North Carolina at Charlotte, NC, USA
BookMark eNqFkEtOwzAQhi0EEqVwAxa-QIIfiZOwQEIVL6kSm7K2XHvSuCRxZZtWXXEVzsLJSAkrFrD6ZzHfr5nvDB33rgeELilJKaHiap328KZdlzJCi5TQlDB-hCa0LFhSslIcowmpWJ4wTtkpOgthTYZFyqoJep81zjtrcIBVB31U0boe1951-HkTrVbt58fMNeCh14AXrnMrrzbNHu9sbPD3nIBZAd6BXTUx4BaU78GMFQZgg7Xrt659OxSrFg-X-u-IO-dfwzk6qVUb4OInp-jl_m4xe0zmzw9Ps9t5ojkRMSmzPK8LlnMqoOR5VeY1MAoZLzkpltQolVcFE0LUJc-WpBbLrCJ5ZmgtCm0KzacoG3u1dyF4qOXG2075vaREHiTKtRwlyoNESagcJA7Y9S9M29FR9Mq2_8E3IwzDY1sLXgZtDx6N9aCjNM7-XfAFJiCWBQ
CitedBy_id crossref_primary_10_1109_TMI_2023_3240757
crossref_primary_10_1109_ACCESS_2023_3289162
crossref_primary_10_3389_fcell_2022_1060241
crossref_primary_10_1080_09273948_2022_2028289
crossref_primary_10_1016_j_compbiomed_2024_108386
crossref_primary_10_3390_electronics9061023
crossref_primary_10_1109_JBHI_2017_2723678
crossref_primary_10_1109_TMI_2017_2772963
crossref_primary_10_1088_1361_6560_ac749b
crossref_primary_10_1364_BOE_398222
crossref_primary_10_1016_j_cmpb_2024_108368
crossref_primary_10_1186_s12859_023_05592_7
crossref_primary_10_1167_tvst_11_2_38
crossref_primary_10_1109_ACCESS_2021_3092886
crossref_primary_10_1016_j_apnum_2020_03_003
crossref_primary_10_3389_fcell_2025_1508358
crossref_primary_10_1364_BOE_10_005832
crossref_primary_10_1364_BOE_443343
crossref_primary_10_1109_ACCESS_2019_2947164
crossref_primary_10_1109_TIM_2021_3072109
crossref_primary_10_1155_2022_3041811
crossref_primary_10_1177_1729881420925310
crossref_primary_10_1007_s10910_020_01161_y
crossref_primary_10_1364_BOE_8_003292
crossref_primary_10_1088_1612_202X_ab3638
crossref_primary_10_1016_j_neucom_2021_01_082
crossref_primary_10_1007_s00371_023_02985_w
crossref_primary_10_1007_s10489_020_01655_x
crossref_primary_10_1016_j_neucom_2020_06_017
crossref_primary_10_1155_2021_8882801
crossref_primary_10_1007_s10489_018_1230_2
crossref_primary_10_1167_tvst_12_3_22
crossref_primary_10_1088_1361_6560_ac5ed7
crossref_primary_10_1371_journal_pone_0218776
crossref_primary_10_1016_j_eswa_2023_121659
crossref_primary_10_1007_s12539_021_00496_7
crossref_primary_10_3390_electronics9060909
crossref_primary_10_1364_BOE_395934
crossref_primary_10_1109_ACCESS_2020_2976751
crossref_primary_10_1016_j_neucom_2018_03_017
crossref_primary_10_1007_s10910_020_01142_1
crossref_primary_10_1109_ACCESS_2019_2955566
crossref_primary_10_1007_s10910_020_01116_3
crossref_primary_10_1007_s10910_020_01136_z
crossref_primary_10_1364_BOE_10_005291
crossref_primary_10_1167_tvst_13_9_7
crossref_primary_10_1364_BOE_9_005759
crossref_primary_10_1016_j_compag_2020_105900
crossref_primary_10_1109_JBHI_2020_3023144
crossref_primary_10_1142_S1793545821400022
crossref_primary_10_1007_s10910_020_01150_1
crossref_primary_10_1364_BOE_10_001601
crossref_primary_10_3390_jcm11113203
crossref_primary_10_1016_j_artmed_2024_102837
crossref_primary_10_1007_s10278_020_00383_5
crossref_primary_10_1016_j_neucom_2020_04_153
crossref_primary_10_1007_s10462_024_10736_z
crossref_primary_10_3390_s22052016
crossref_primary_10_1016_j_inffus_2020_08_016
crossref_primary_10_1109_ACCESS_2021_3124993
crossref_primary_10_1364_BOE_8_002732
crossref_primary_10_1007_s00371_024_03401_7
crossref_primary_10_1016_j_neucom_2021_03_075
crossref_primary_10_1088_1361_6560_ac3a23
crossref_primary_10_1117_1_JBO_24_5_056003
crossref_primary_10_1177_24741264241308495
crossref_primary_10_1109_ACCESS_2019_2919554
crossref_primary_10_1007_s11517_020_02275_w
crossref_primary_10_1364_OSAC_403102
crossref_primary_10_1109_TNSE_2020_2990984
crossref_primary_10_1016_j_neucom_2020_04_044
crossref_primary_10_3390_electronics9030459
crossref_primary_10_1007_s11042_017_5243_3
crossref_primary_10_1016_j_preteyeres_2021_100965
crossref_primary_10_1007_s00521_019_04685_w
crossref_primary_10_1155_2021_6904217
crossref_primary_10_1016_j_neucom_2022_08_021
crossref_primary_10_1016_j_patrec_2020_05_018
crossref_primary_10_1364_OSAC_2_001011
crossref_primary_10_1038_s41598_019_51062_7
crossref_primary_10_1109_RBME_2018_2798701
crossref_primary_10_1007_s10489_019_01605_2
crossref_primary_10_1364_BOE_9_003244
crossref_primary_10_1186_s12880_024_01459_2
crossref_primary_10_4103_jmss_jmss_144_21
crossref_primary_10_1109_ACCESS_2021_3092301
crossref_primary_10_1111_coin_12594
crossref_primary_10_1177_1729881419897473
crossref_primary_10_3390_photonics10030234
crossref_primary_10_1109_JSEN_2020_3047841
crossref_primary_10_1111_cxo_12854
crossref_primary_10_1038_s41598_019_49816_4
crossref_primary_10_1007_s00521_019_04505_1
crossref_primary_10_1002_jbio_202200370
crossref_primary_10_1016_j_compag_2020_105380
crossref_primary_10_1016_j_compmedimag_2022_102086
crossref_primary_10_1364_AO_415585
crossref_primary_10_1002_mp_15315
crossref_primary_10_1016_j_compag_2023_108072
crossref_primary_10_34133_hds_0170
crossref_primary_10_1167_tvst_12_11_27
crossref_primary_10_1155_2017_8625951
crossref_primary_10_1109_JBHI_2018_2795545
crossref_primary_10_1364_BOE_9_004509
crossref_primary_10_1364_BOE_392759
crossref_primary_10_1007_s11760_020_01812_2
Cites_doi 10.1109/CVPR.2015.7299067
10.1109/CVPR.2010.5540205
10.1162/neco.1989.1.4.541
10.1007/BF01386390
10.1364/BOE.4.000397
10.1016/j.neucom.2016.01.034
10.1016/j.ophtha.2013.01.066
10.1016/j.ajo.2008.12.010
10.1007/978-3-319-46726-9_43
10.1109/ICCV.2015.304
10.1364/BOE.3.000086
10.1145/2647868.2654889
10.1109/CVPR.2015.7298598
10.1016/j.ajo.2010.04.018
10.1126/science.1957169
10.1167/iovs.12-9619
10.1016/j.preteyeres.2009.12.002
10.1109/CVPR.2015.7298965
10.1109/ICCV.2011.6126474
10.1109/TMI.2015.2458702
10.1155/2014/479268
10.1109/CVPR.2015.7299024
10.1155/2000/421719
10.1007/978-3-319-24574-4_45
10.1364/OE.23.008974
10.1167/iovs.12-10578
10.1136/bjo.39.10.605
10.1109/ICCV.2015.316
10.1109/TPAMI.2006.19
10.1016/j.ajo.2011.03.008
10.1016/j.neuroimage.2014.12.061
10.1109/TIP.2005.852470
10.1109/TMM.2013.2293424
10.1016/j.ajo.2008.05.032
10.1109/TBME.2015.2496253
10.1364/OE.18.019413
10.1001/archopht.122.4.598
10.1016/j.media.2015.07.003
10.1109/ICCV.2015.164
10.1364/BOE.4.002795
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.01.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 341
ExternalDocumentID 10_1016_j_neucom_2017_01_023
S0925231217300541
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-8455f725316e835985fe21e438307b1daa5972666f834b0f6b49054d1f67cd7c3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:00:17 EDT 2025
Wed Oct 01 02:27:31 EDT 2025
Fri Feb 23 02:30:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Learning
Image segmentation
OCT
Choroid
CNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8455f725316e835985fe21e438307b1daa5972666f834b0f6b49054d1f67cd7c3
ORCID 0000-0002-5786-2491
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2017_01_023
crossref_citationtrail_10_1016_j_neucom_2017_01_023
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_01_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-10
PublicationDateYYYYMMDD 2017-05-10
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-10
  day: 10
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A.J. Bron, et al., Wolff's Anatomy of the Eye and Orbit, 1997.
Zhang, Gao, Xia, Lu, Shen, Ji (bib40) 2014; 16
Danesh, Kafieh, Rabbani, Hajizadeh (bib9) 2014
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 3431–3440.
Spaide (bib29) 2009; 147
Manjunath, Taha, Fujimoto, Duker (bib22) 2010; 150
J. Merkow, D. Kriegman, A. Marsden, Z. Tu, Dense volume-to-volume vascular boundary detection, 2016
Zarbin (bib38) 2004; 122
Chen, Fan, Niu, Shi, Shen, Yuan (bib6) 2015; 23
Spaide, Koizumi, Pozonni (bib30) 2008; 146
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the ACM International Conference on Multimedia, ACM, 2014, pp. 675–678.
Manjunath, Goren, Fujimoto, Duker (bib21) 2011; 152
Y. Zheng, J.C. Gee, Estimation of image bias field with sparsity constraints, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 255–262.
Xu, Luo, Wang, Gilmore, Madabhushi (bib36) 2016; 191
Rorden, Brett (bib26) 2000; 12
Dijkstra (bib10) 1959; 1
F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 37–45.
S. Xie, Z. Tu, Holistically-nested edge detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1395–1403.
G. Bertasius, J. Shi, L. Torresani, Deepedge: a multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4380–4389.
Hu, Wu, Ouyang, Ouyang, Sadda (bib13) 2013; 54
Bennett (bib2) 1955; 39
Kajić, Esmaeelpour, Považay, Marshall, Rosin, Drexler (bib17) 2012; 3
Nickla, Wallman (bib24) 2010; 29
Xu, Xiang, Liu, Gilmore, Wu, Tang, Madabhushi (bib37) 2016; 35
Alonso-Caneiro, Read, Collins (bib1) 2013; 4
Jirarattanasopa, Ooto, Nakata, Tsujikawa, Yamashiro, Oishi, Yoshimura (bib16) 2012; 53
Branchini, Adhi, Regatieri, Nandakumar, Liu, Laver, Fujimoto, Duker (bib4) 2013; 120
D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, in: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 2650–2658.
Wu, Masis, Hernandez-Bogantes (bib33) 2011; 114
G. Wu, M.-J. Kim, Q. Wang, B. Munsell, D. Shen, Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning, 2015.
.
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib18) 1989; 1
W. Shen, X. Wang, Y. Wang, X. Bai, Z. Zhang, Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3982–3991.
P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. van der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with convolutional networks, 2015
Ning, Delhomme, LeCun, Piano, Bottou, Barbano (bib25) 2005; 14
Chiu, Li, Nicholas, Toth, Izatt, Farsiu (bib7) 2010; 18
Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito (bib14) 1991; 254
M.D. Zeiler, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, 2011, pp. 2018–2025.
Y. Xie, X. Kong, F. Xing, F. Liu, H. Su, L. Yang, Deep voting: a robust approach toward nucleus localization in microscopy images, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015, pp. 374–382.
D. Ciresan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851.
Zhen, Wang, Islam, Bhaduri, Chan, Li (bib42) 2016; 30
Tian, Marziliano, Baskaran, Tun, Aung (bib31) 2013; 4
Li, Wu, Chen, Sonka (bib19) 2006; 28
Zhang, Li, Deng, Wang, Lin, Ji, Shen (bib41) 2015; 108
Dijkstra (10.1016/j.neucom.2017.01.023_bib10) 1959; 1
10.1016/j.neucom.2017.01.023_bib43
10.1016/j.neucom.2017.01.023_bib20
Chen (10.1016/j.neucom.2017.01.023_bib6) 2015; 23
Zarbin (10.1016/j.neucom.2017.01.023_bib38) 2004; 122
Spaide (10.1016/j.neucom.2017.01.023_bib30) 2008; 146
Tian (10.1016/j.neucom.2017.01.023_bib31) 2013; 4
Zhang (10.1016/j.neucom.2017.01.023_bib40) 2014; 16
Xu (10.1016/j.neucom.2017.01.023_bib36) 2016; 191
Spaide (10.1016/j.neucom.2017.01.023_bib29) 2009; 147
Hu (10.1016/j.neucom.2017.01.023_bib13) 2013; 54
Jirarattanasopa (10.1016/j.neucom.2017.01.023_bib16) 2012; 53
Xu (10.1016/j.neucom.2017.01.023_bib37) 2016; 35
LeCun (10.1016/j.neucom.2017.01.023_bib18) 1989; 1
10.1016/j.neucom.2017.01.023_bib39
Li (10.1016/j.neucom.2017.01.023_bib19) 2006; 28
Manjunath (10.1016/j.neucom.2017.01.023_bib22) 2010; 150
10.1016/j.neucom.2017.01.023_bib15
Bennett (10.1016/j.neucom.2017.01.023_bib2) 1955; 39
Manjunath (10.1016/j.neucom.2017.01.023_bib21) 2011; 152
10.1016/j.neucom.2017.01.023_bib35
10.1016/j.neucom.2017.01.023_bib12
10.1016/j.neucom.2017.01.023_bib34
Alonso-Caneiro (10.1016/j.neucom.2017.01.023_bib1) 2013; 4
Branchini (10.1016/j.neucom.2017.01.023_bib4) 2013; 120
10.1016/j.neucom.2017.01.023_bib11
10.1016/j.neucom.2017.01.023_bib32
10.1016/j.neucom.2017.01.023_bib5
10.1016/j.neucom.2017.01.023_bib3
Huang (10.1016/j.neucom.2017.01.023_bib14) 1991; 254
10.1016/j.neucom.2017.01.023_bib8
Chiu (10.1016/j.neucom.2017.01.023_bib7) 2010; 18
Ning (10.1016/j.neucom.2017.01.023_bib25) 2005; 14
Zhen (10.1016/j.neucom.2017.01.023_bib42) 2016; 30
Nickla (10.1016/j.neucom.2017.01.023_bib24) 2010; 29
Danesh (10.1016/j.neucom.2017.01.023_bib9) 2014
Wu (10.1016/j.neucom.2017.01.023_bib33) 2011; 114
Rorden (10.1016/j.neucom.2017.01.023_bib26) 2000; 12
10.1016/j.neucom.2017.01.023_bib28
10.1016/j.neucom.2017.01.023_bib27
Zhang (10.1016/j.neucom.2017.01.023_bib41) 2015; 108
Kajić (10.1016/j.neucom.2017.01.023_bib17) 2012; 3
10.1016/j.neucom.2017.01.023_bib23
References_xml – reference: A.J. Bron, et al., Wolff's Anatomy of the Eye and Orbit, 1997.
– reference: D. Ciresan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems, 2012, pp. 2843–2851.
– volume: 150
  start-page: 325
  year: 2010
  end-page: 329
  ident: bib22
  article-title: Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography
  publication-title: Am. J. Ophthalmol.
– reference: J. Merkow, D. Kriegman, A. Marsden, Z. Tu, Dense volume-to-volume vascular boundary detection, 2016,
– volume: 147
  start-page: 801
  year: 2009
  end-page: 810
  ident: bib29
  article-title: Age-related choroidal atrophy
  publication-title: Am. J. Ophthalmol.
– volume: 53
  start-page: 3663
  year: 2012
  end-page: 3672
  ident: bib16
  article-title: Choroidal thickness, vascular hyperpermeability, and complement factor
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 14
  start-page: 1360
  year: 2005
  end-page: 1371
  ident: bib25
  article-title: Toward automatic phenotyping of developing embryos from videos
  publication-title: IEEE Trans. Image Process.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bib18
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 191
  start-page: 214
  year: 2016
  end-page: 223
  ident: bib36
  article-title: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
  publication-title: Neurocomputing
– volume: 23
  start-page: 8974
  year: 2015
  end-page: 8994
  ident: bib6
  article-title: Automated choroid segmentation based on gradual intensity distance in hd-oct images
  publication-title: Opt. Express
– reference: G. Bertasius, J. Shi, L. Torresani, Deepedge: a multi-scale bifurcated deep network for top-down contour detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4380–4389.
– reference: F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 37–45.
– year: 2014
  ident: bib9
  article-title: Segmentation of choroidal boundary in enhanced depth imaging octs using a multiresolution texture based modeling in graph cuts
  publication-title: Comput. Math. Methods Med.
– reference: M.D. Zeiler, G.W. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, 2011, pp. 2018–2025.
– volume: 30
  start-page: 120
  year: 2016
  end-page: 129
  ident: bib42
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
– volume: 54
  start-page: 1722
  year: 2013
  end-page: 1729
  ident: bib13
  article-title: Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans semiautomated choroid segmentation in sd-oct
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 108
  start-page: 214
  year: 2015
  end-page: 224
  ident: bib41
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
– volume: 152
  start-page: 663
  year: 2011
  end-page: 668
  ident: bib21
  article-title: Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography
  publication-title: Am. J. Ophthalmol.
– volume: 29
  start-page: 144
  year: 2010
  end-page: 168
  ident: bib24
  article-title: The multifunctional choroid
  publication-title: Prog. Retinal Eye Res.
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: bib10
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– reference: P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. van der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with convolutional networks, 2015,
– volume: 35
  start-page: 119
  year: 2016
  end-page: 130
  ident: bib37
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
– reference: J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 3431–3440.
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  ident: bib26
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
– volume: 4
  start-page: 2795
  year: 2013
  end-page: 2812
  ident: bib1
  article-title: Automatic segmentation of choroidal thickness in optical coherence tomography
  publication-title: Biomed. Opt. Express
– volume: 39
  start-page: 605
  year: 1955
  ident: bib2
  article-title: Central serous retinopathy
  publication-title: Br. J. Ophthalmol.
– volume: 18
  start-page: 19413
  year: 2010
  end-page: 19428
  ident: bib7
  article-title: Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation
  publication-title: Opt. Express
– reference: Y. Xie, X. Kong, F. Xing, F. Liu, H. Su, L. Yang, Deep voting: a robust approach toward nucleus localization in microscopy images, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015, pp. 374–382.
– volume: 28
  start-page: 119
  year: 2006
  end-page: 134
  ident: bib19
  article-title: Optimal surface segmentation in volumetric images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: W. Shen, X. Wang, Y. Wang, X. Bai, Z. Zhang, Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3982–3991.
– volume: 146
  start-page: 496
  year: 2008
  end-page: 500
  ident: bib30
  article-title: Enhanced depth imaging spectral-domain optical coherence tomography
  publication-title: Am. J. Ophthalmol.
– reference: G. Wu, M.-J. Kim, Q. Wang, B. Munsell, D. Shen, Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning, 2015.
– volume: 114
  start-page: 39
  year: 2011
  end-page: 42
  ident: bib33
  article-title: Choroidal imaging with spectral-domain optical coherence tomography, enhanced depth imaging may lead to a broader understanding of the pathogenesis of several eye diseases
  publication-title: Retina Surg. Glob. Perspect.
– reference: Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the ACM International Conference on Multimedia, ACM, 2014, pp. 675–678.
– reference: Y. Zheng, J.C. Gee, Estimation of image bias field with sparsity constraints, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 255–262.
– volume: 3
  start-page: 86
  year: 2012
  end-page: 103
  ident: bib17
  article-title: Automated choroidal segmentation of 1060
  publication-title: Biomed. Opt. Express
– volume: 120
  start-page: 1901
  year: 2013
  end-page: 1908
  ident: bib4
  article-title: Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography
  publication-title: Ophthalmology
– volume: 16
  start-page: 470
  year: 2014
  end-page: 479
  ident: bib40
  article-title: Representative discovery of structure cues for weakly-supervised image segmentation
  publication-title: IEEE Trans. Multimed.
– reference: .
– reference: D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, in: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 2650–2658.
– volume: 254
  start-page: 1178
  year: 1991
  end-page: 1181
  ident: bib14
  article-title: Optical coherence tomography
  publication-title: Science
– reference: S. Xie, Z. Tu, Holistically-nested edge detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1395–1403.
– volume: 122
  start-page: 598
  year: 2004
  end-page: 614
  ident: bib38
  article-title: Current concepts in the pathogenesis of age-related macular degeneration
  publication-title: Arch. Ophthalmol.
– volume: 4
  start-page: 397
  year: 2013
  end-page: 411
  ident: bib31
  article-title: Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images
  publication-title: Biomed. Opt. Express
– ident: 10.1016/j.neucom.2017.01.023_bib3
  doi: 10.1109/CVPR.2015.7299067
– ident: 10.1016/j.neucom.2017.01.023_bib43
  doi: 10.1109/CVPR.2010.5540205
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.neucom.2017.01.023_bib18
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 10.1016/j.neucom.2017.01.023_bib10
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 4
  start-page: 397
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2017.01.023_bib31
  article-title: Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.000397
– volume: 191
  start-page: 214
  year: 2016
  ident: 10.1016/j.neucom.2017.01.023_bib36
  article-title: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.034
– volume: 120
  start-page: 1901
  issue: 9
  year: 2013
  ident: 10.1016/j.neucom.2017.01.023_bib4
  article-title: Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.01.066
– volume: 147
  start-page: 801
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2017.01.023_bib29
  article-title: Age-related choroidal atrophy
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2008.12.010
– ident: 10.1016/j.neucom.2017.01.023_bib5
– ident: 10.1016/j.neucom.2017.01.023_bib23
  doi: 10.1007/978-3-319-46726-9_43
– ident: 10.1016/j.neucom.2017.01.023_bib11
  doi: 10.1109/ICCV.2015.304
– volume: 3
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2017.01.023_bib17
  article-title: Automated choroidal segmentation of 1060nm oct in healthy and pathologic eyes using a statistical model
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000086
– ident: 10.1016/j.neucom.2017.01.023_bib15
  doi: 10.1145/2647868.2654889
– ident: 10.1016/j.neucom.2017.01.023_bib27
  doi: 10.1109/CVPR.2015.7298598
– volume: 150
  start-page: 325
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2017.01.023_bib22
  article-title: Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2010.04.018
– volume: 254
  start-page: 1178
  issue: 5035
  year: 1991
  ident: 10.1016/j.neucom.2017.01.023_bib14
  article-title: Optical coherence tomography
  publication-title: Science
  doi: 10.1126/science.1957169
– volume: 53
  start-page: 3663
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2017.01.023_bib16
  article-title: Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathychoroidal thickness in amd and pcv
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-9619
– volume: 29
  start-page: 144
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2017.01.023_bib24
  article-title: The multifunctional choroid
  publication-title: Prog. Retinal Eye Res.
  doi: 10.1016/j.preteyeres.2009.12.002
– ident: 10.1016/j.neucom.2017.01.023_bib20
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.neucom.2017.01.023_bib39
  doi: 10.1109/ICCV.2011.6126474
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2017.01.023_bib37
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2458702
– year: 2014
  ident: 10.1016/j.neucom.2017.01.023_bib9
  article-title: Segmentation of choroidal boundary in enhanced depth imaging octs using a multiresolution texture based modeling in graph cuts
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2014/479268
– ident: 10.1016/j.neucom.2017.01.023_bib28
  doi: 10.1109/CVPR.2015.7299024
– volume: 12
  start-page: 191
  issue: 4
  year: 2000
  ident: 10.1016/j.neucom.2017.01.023_bib26
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
  doi: 10.1155/2000/421719
– ident: 10.1016/j.neucom.2017.01.023_bib35
  doi: 10.1007/978-3-319-24574-4_45
– volume: 114
  start-page: 39
  year: 2011
  ident: 10.1016/j.neucom.2017.01.023_bib33
  article-title: Choroidal imaging with spectral-domain optical coherence tomography, enhanced depth imaging may lead to a broader understanding of the pathogenesis of several eye diseases
  publication-title: Retina Surg. Glob. Perspect.
– volume: 23
  start-page: 8974
  issue: 7
  year: 2015
  ident: 10.1016/j.neucom.2017.01.023_bib6
  article-title: Automated choroid segmentation based on gradual intensity distance in hd-oct images
  publication-title: Opt. Express
  doi: 10.1364/OE.23.008974
– volume: 54
  start-page: 1722
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2017.01.023_bib13
  article-title: Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans semiautomated choroid segmentation in sd-oct
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-10578
– ident: 10.1016/j.neucom.2017.01.023_bib8
– volume: 39
  start-page: 605
  issue: 10
  year: 1955
  ident: 10.1016/j.neucom.2017.01.023_bib2
  article-title: Central serous retinopathy
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.39.10.605
– ident: 10.1016/j.neucom.2017.01.023_bib12
  doi: 10.1109/ICCV.2015.316
– volume: 28
  start-page: 119
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2017.01.023_bib19
  article-title: Optimal surface segmentation in volumetric images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.19
– volume: 152
  start-page: 663
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2017.01.023_bib21
  article-title: Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2011.03.008
– volume: 108
  start-page: 214
  year: 2015
  ident: 10.1016/j.neucom.2017.01.023_bib41
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– volume: 14
  start-page: 1360
  issue: 9
  year: 2005
  ident: 10.1016/j.neucom.2017.01.023_bib25
  article-title: Toward automatic phenotyping of developing embryos from videos
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852470
– volume: 16
  start-page: 470
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2017.01.023_bib40
  article-title: Representative discovery of structure cues for weakly-supervised image segmentation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2293424
– volume: 146
  start-page: 496
  issue: 4
  year: 2008
  ident: 10.1016/j.neucom.2017.01.023_bib30
  article-title: Enhanced depth imaging spectral-domain optical coherence tomography
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2008.05.032
– ident: 10.1016/j.neucom.2017.01.023_bib32
  doi: 10.1109/TBME.2015.2496253
– volume: 18
  start-page: 19413
  issue: 18
  year: 2010
  ident: 10.1016/j.neucom.2017.01.023_bib7
  article-title: Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019413
– volume: 122
  start-page: 598
  issue: 4
  year: 2004
  ident: 10.1016/j.neucom.2017.01.023_bib38
  article-title: Current concepts in the pathogenesis of age-related macular degeneration
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.122.4.598
– volume: 30
  start-page: 120
  year: 2016
  ident: 10.1016/j.neucom.2017.01.023_bib42
  article-title: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.07.003
– ident: 10.1016/j.neucom.2017.01.023_bib34
  doi: 10.1109/ICCV.2015.164
– volume: 4
  start-page: 2795
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2017.01.023_bib1
  article-title: Automatic segmentation of choroidal thickness in optical coherence tomography
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.002795
SSID ssj0017129
Score 2.5299942
Snippet Examining choroid in Optical Coherence Tomography (OCT) plays a vital role in pathophysiologic factors of many ocular conditions. Among the existing approaches...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Choroid
CNN
Image segmentation
Learning
OCT
Title Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks
URI https://dx.doi.org/10.1016/j.neucom.2017.01.023
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNI6dOBmriqqAKAOt1C1KYgeKaBL1ITb4K_wWfhlnx6lAQiAxOYnsyLqz76W77xA6p04mPU8qElMnIRxMZJIkaUhcGoOrLdNAGoiN26E_GPPriTdpoF5dC6PTKq3sr2S6kdb2S8dSs1NOp517J3TBi6JgU2vIdVO8zrnQXQwuXtdpHlRQt8Lbcz2iZ9flcybHK1crnTMCSlBU4J3sZ_X0ReX0d9CWtRVxt9rOLmqofA9t130YsL2W--it91jMi6nEC_Uws7VEOdaFI_iuNLHqj3ddhmEK-_ComFmYaqyDsNg8Ex1Wwy8mTrrAppWEktUvpFIl1snp9pDCjjQIphlMCvniAI37l6PegNjGCiQFD2FJAu55mXDh-vkq0BB-XqZcqjRqqSMSKuMY3AzQ3H4WMJ44mZ_wECgsaeaLVIqUHaJmXuTqCGHlqiwO_ZhSJoDToNw4iPKMSQFDyFgLsZqeUWpRx3Xzi-eoTi97iiouRJoLkUMj4EILkfWqskLd-GO-qFkVfTs9ESiGX1ce_3vlCdrUb8QguZ6i5nK-UmdgoCyTtjmBbbTRvboZDD8Bc0rpBg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOMCFHVFWH7iaxtncHFFFVaAtB1qpNyuJHSiiadVF3OBX-Ba-jBnHqUBCIHFylNiRNWPPppk3hJxzJ1NBoDSLuZMwH0xkliRpxFweg6ut0royEBudbtjq-zeDYFAhjbIWBtMqrewvZLqR1vZNzVKzNhkOa_dO5IIXxcGmRsh1LF5f9QNXoAd28brM8-CCuwXgnhswnF7Wz5kkr1wvMGkEtKAo0Du9n_XTF53T3CIb1likl8V-tklF5ztks2zEQO293CVvjcfxdDxUdKYfRraYKKdYOULvJiZY_fGOdRimso_2xiOLU00xCkvNM8O4Gn0xgdIZNb0ktCp-obSeUMxOt6cUdoQomGYwOeSzPdJvXvUaLWY7K7AUXIQ5q_tBkAkX7l-o64jhF2Ta5RphSx2RcBXH4GeA6g6zuucnThYmfgQkVjwLRapE6u2TlXyc6wNCtauzOApjzj0BrAbt5oMszzwlYIg8r0q8kp4ytbDj2P3iWZb5ZU-y4IJELkiHS-BClbDlqkkBu_HHfFGySn47PhI0w68rD_-98oystXqdtmxfd2-PyDp-YQbW9ZiszKcLfQLWyjw5NafxE-Qp6ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Choroid+segmentation+from+Optical%C2%A0Coherence+Tomography+with+graph-edge+weights+learned+from+deep+convolutional+neural+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Sui%2C+Xiaodan&rft.au=Zheng%2C+Yuanjie&rft.au=Wei%2C+Benzheng&rft.au=Bi%2C+Hongsheng&rft.date=2017-05-10&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=237&rft.spage=332&rft.epage=341&rft_id=info:doi/10.1016%2Fj.neucom.2017.01.023&rft.externalDocID=S0925231217300541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon