Uniformly convergent scheme for steady MHD duct flow problems with high Hartmann numbers on structured and unstructured grids
The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered s...
Saved in:
Published in | Mathematics and computers in simulation Vol. 212; pp. 336 - 359 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 1872-7166 |
DOI | 10.1016/j.matcom.2023.05.007 |
Cover
Abstract | The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered scheme on structured and unstructured grids with tailored finite point method (TFPM) for solving the coupled system of convection–diffusion equations. The five-point scheme is an upwind difference scheme, where the coefficients of the difference operator are tailored to some particular properties of the convection–diffusion equation with constant coefficients on the local cell. The edge-centered scheme is constructed by the continuity of the normal fluxes for each edge. The normal flux is expressed in terms of the edge-centered unknowns defined at the local cell and the unknowns at the adjacent cells are not needed. Uniform second order convergence can be obtained by the edge-centered scheme on structured and unstructured grids over a wide range of Ha 10 to 106. Both of the two schemes can correctly reproduce the fast change of the solutions which contain sharp boundary layers at high Ha even without refining the mesh. Numerical examples are provided to show the accuracy and of the TFPM. |
---|---|
AbstractList | The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered scheme on structured and unstructured grids with tailored finite point method (TFPM) for solving the coupled system of convection–diffusion equations. The five-point scheme is an upwind difference scheme, where the coefficients of the difference operator are tailored to some particular properties of the convection–diffusion equation with constant coefficients on the local cell. The edge-centered scheme is constructed by the continuity of the normal fluxes for each edge. The normal flux is expressed in terms of the edge-centered unknowns defined at the local cell and the unknowns at the adjacent cells are not needed. Uniform second order convergence can be obtained by the edge-centered scheme on structured and unstructured grids over a wide range of Ha 10 to 106. Both of the two schemes can correctly reproduce the fast change of the solutions which contain sharp boundary layers at high Ha even without refining the mesh. Numerical examples are provided to show the accuracy and of the TFPM. |
Author | Sun, Tao Wang, Yihong |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-0913-581X surname: Sun fullname: Sun, Tao email: sunt@lixin.edu.cn – sequence: 2 givenname: Yihong orcidid: 0000-0003-1541-2035 surname: Wang fullname: Wang, Yihong email: wyh@lixin.edu.cn |
BookMark | eNqFkMtKxDAUhoMoOF7ewEVeoDVtmqZ1IYi3ERQ3ug65nMxkaBNJMsosfHc7jAtxoasD5_zfD-c7Qvs-eEDorCJlRar2fFWOMuswljWpaUlYSQjfQ7Oq43XBq7bdRzNCeVc0nDWH6CilFZkSrGEz9PnqnQ1xHDZYB_8OcQE-46SXMAKeDjhlkGaDn-Y32Kx1xnYIH_gtBjXAmPCHy0u8dIslnsuYR-k99utRQUw4-ImNE7KOYLD0Bq_9j8UiOpNO0IGVQ4LT73mMXu9uX67nxePz_cP11WOhKWlz0dW2ZlRx0xmrKtpb2zRGadJrzXUFfasVawzhba8oZcBq09uaKtLV0lhuFD1Gza5Xx5BSBCveohtl3IiKiK1CsRI7hWKrUBAmJkETdvEL0y7L7ILPUbrhP_hyB8P02LuDKJJ24DUYF0FnYYL7u-ALmjuVzA |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_132577 crossref_primary_10_1016_j_ijhydene_2024_06_389 crossref_primary_10_1002_pc_27632 crossref_primary_10_1007_s40435_025_01588_8 |
Cites_doi | 10.1016/j.cpc.2015.06.006 10.1137/17M1136249 10.1002/fld.1650040307 10.1016/j.apnum.2019.07.003 10.1016/j.apnum.2008.05.001 10.1007/s10915-016-0254-1 10.1002/fld.1650181004 10.1016/j.jcp.2010.08.034 10.1016/j.jcp.2012.05.010 10.1007/s10915-008-9187-7 10.1016/j.apm.2012.05.020 10.1007/s10915-017-0411-1 10.1016/j.apnum.2010.07.010 10.4208/cicp.070110.020710a 10.1002/nme.101 10.1016/j.cpc.2009.03.007 10.1016/j.jcp.2009.08.007 10.1090/S0025-5718-2012-02616-0 10.1016/j.cma.2004.06.035 10.1007/s00466-013-0886-z 10.1016/j.cam.2005.05.015 |
ContentType | Journal Article |
Copyright | 2023 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2023 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2023.05.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7166 |
EndPage | 359 |
ExternalDocumentID | 10_1016_j_matcom_2023_05_007 S0378475423002124 |
GrantInformation_xml | – fundername: NSFC grantid: 19ZR1436300 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Fund of Shanghai – fundername: NSFC grantid: 12171141 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c306t-82f253b7d8dfb139ff44dbc09cc7c1e96cb54d0769b335e52d9f23b082adf7db3 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Thu Apr 24 22:59:05 EDT 2025 Wed Oct 01 04:18:48 EDT 2025 Fri Feb 23 02:37:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unstructured grids Tailored finite point method Magnetohydrodynamic duct flow problems Convection-dominated diffusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-82f253b7d8dfb139ff44dbc09cc7c1e96cb54d0769b335e52d9f23b082adf7db3 |
ORCID | 0000-0003-0913-581X 0000-0003-1541-2035 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1016_j_matcom_2023_05_007 crossref_citationtrail_10_1016_j_matcom_2023_05_007 elsevier_sciencedirect_doi_10_1016_j_matcom_2023_05_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kong, Huang (b12) 2018; 40 Wu, Peng, Tian (b20) 2019; 146 Dehghan, Mirzaei (b3) 2009; 59 Han, Shih, Yin (b7) 2017; 73 Singh, Jia (b17) 1984; 4 Dehghan, Salehi (b4) 2013; 52 Shakeri, Dehghan (b15) 2011; 61 Hsieh, Shih, Yang (b9) 2011; 10 Singh, Jia (b16) 1978; 9 Han, Huang, Kellogg (b6) 2008; 36 Hsieh, Yang (b10) 2009; 228 Tang, Wang (b18) 2017; 70 Dehghan, Mirzaei (b2) 2009; 180 Tezer-Sezgin (b19) 2010; 18 Barrett (b1) 2001; 50 Hosseinzadeh, Dehghan, Mirzaei (b8) 2013; 37 Nesliturk, Tezer-Sezgin (b14) 2006; 192 Zhou, Ni, Tian (b22) 2015; 196 Han, Huang (b5) 2013; 82 Nesliturk, Tezer-Sezgin (b13) 2005; 194 Hsieh, Yang (b11) 2010; 229 Yan, Tian (b21) 2012; 231 Han (10.1016/j.matcom.2023.05.007_b5) 2013; 82 Hsieh (10.1016/j.matcom.2023.05.007_b11) 2010; 229 Nesliturk (10.1016/j.matcom.2023.05.007_b14) 2006; 192 Dehghan (10.1016/j.matcom.2023.05.007_b4) 2013; 52 Singh (10.1016/j.matcom.2023.05.007_b16) 1978; 9 Hsieh (10.1016/j.matcom.2023.05.007_b9) 2011; 10 Wu (10.1016/j.matcom.2023.05.007_b20) 2019; 146 Zhou (10.1016/j.matcom.2023.05.007_b22) 2015; 196 Dehghan (10.1016/j.matcom.2023.05.007_b2) 2009; 180 Kong (10.1016/j.matcom.2023.05.007_b12) 2018; 40 Nesliturk (10.1016/j.matcom.2023.05.007_b13) 2005; 194 Shakeri (10.1016/j.matcom.2023.05.007_b15) 2011; 61 Singh (10.1016/j.matcom.2023.05.007_b17) 1984; 4 Yan (10.1016/j.matcom.2023.05.007_b21) 2012; 231 Hsieh (10.1016/j.matcom.2023.05.007_b10) 2009; 228 Tezer-Sezgin (10.1016/j.matcom.2023.05.007_b19) 2010; 18 Hosseinzadeh (10.1016/j.matcom.2023.05.007_b8) 2013; 37 Han (10.1016/j.matcom.2023.05.007_b6) 2008; 36 Barrett (10.1016/j.matcom.2023.05.007_b1) 2001; 50 Tang (10.1016/j.matcom.2023.05.007_b18) 2017; 70 Dehghan (10.1016/j.matcom.2023.05.007_b3) 2009; 59 Han (10.1016/j.matcom.2023.05.007_b7) 2017; 73 |
References_xml | – volume: 192 start-page: 339 year: 2006 end-page: 352 ident: b14 article-title: Finite element method solution of electrically driven magnetohydrodynamic flow publication-title: J. Comput. Appl. Math. – volume: 70 start-page: 272 year: 2017 end-page: 300 ident: b18 article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity publication-title: J. Sci. Comput. – volume: 4 start-page: 291 year: 1984 end-page: 302 ident: b17 article-title: FEM for unsteady MHD flow through pipes with arbitrary wall conductivity publication-title: Internat. J. Numer. Methods Fluids – volume: 194 start-page: 1201 year: 2005 end-page: 1224 ident: b13 article-title: The finite element method for MHD flow at high Hartmann numbers publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 61 start-page: 1 year: 2011 end-page: 23 ident: b15 article-title: A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations publication-title: Appl. Numer. Math. – volume: 10 start-page: 161 year: 2011 end-page: 182 ident: b9 article-title: A tailored finite point method for solving steady MHD duct flow problems with boundary layers publication-title: Commun. Comput. Phys. – volume: 231 start-page: 5443 year: 2012 end-page: 5468 ident: b21 article-title: An exponential compact difference scheme for solving 2d steady magnetohydrodynamic (MHD) duct flow problems publication-title: J. Comput. Phys. – volume: 52 start-page: 1445 year: 2013 end-page: 1462 ident: b4 article-title: A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity publication-title: Comput. Mech. – volume: 229 start-page: 9216 year: 2010 end-page: 9234 ident: b11 article-title: Two new upwind difference schemes for a coupled system of convection–diffusion equations arising from the steady MHD duct flow problems publication-title: J. Comput. Phys. – volume: 146 start-page: 89 year: 2019 end-page: 122 ident: b20 article-title: Exponential compact adi method for a coupled system of convection–diffusion equations arising from the 2D unsteady magnetohydrodynamic (MHD) flows publication-title: Appl. Numer. Math. – volume: 59 start-page: 1043 year: 2009 end-page: 1058 ident: b3 article-title: Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity publication-title: Appl. Numer. Math. – volume: 180 start-page: 1458 year: 2009 end-page: 1466 ident: b2 article-title: Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes publication-title: Comput. Phys. Comm. – volume: 18 start-page: 937 year: 2010 end-page: 952 ident: b19 article-title: Boundary element method solution of MHD flow in rectangular duct publication-title: Internat. J. Numer. Methods Fluids – volume: 50 start-page: 1893 year: 2001 end-page: 1906 ident: b1 article-title: Duct flow with a transverse magnetic field at high Hartmann numbers publication-title: Internat. J. Numer. Methods Engrg. – volume: 36 start-page: 243 year: 2008 end-page: 261 ident: b6 article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain publication-title: J. Sci. Comput. – volume: 37 start-page: 2337 year: 2013 end-page: 2351 ident: b8 article-title: The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high hartmann number publication-title: Appl. Math. Model. – volume: 9 start-page: 101 year: 1978 end-page: 115 ident: b16 article-title: MHD axial flow in a triangular pipe under transverse magnetic field publication-title: Indian J. Pure Appl. Math. – volume: 196 start-page: 194 year: 2015 end-page: 211 ident: b22 article-title: Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers publication-title: Comput. Phys. Comm. – volume: 73 start-page: 1 year: 2017 end-page: 41 ident: b7 article-title: Tailored finite point methods for solving singularly perturbed eigenvalue problems with higher eigenvalues publication-title: J. Sci. Comput. – volume: 40 start-page: A3293 year: 2018 end-page: A3321 ident: b12 article-title: Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems publication-title: SIAM J. Sci. Comput. – volume: 82 start-page: 213 year: 2013 end-page: 226 ident: b5 article-title: Tailored finite point method based on exponential bases for convection–diffusion-reaction equation publication-title: Math. Comp. – volume: 228 start-page: 8301 year: 2009 end-page: 8320 ident: b10 article-title: A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers publication-title: J. Comput. Phys. – volume: 196 start-page: 194 year: 2015 ident: 10.1016/j.matcom.2023.05.007_b22 article-title: Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2015.06.006 – volume: 40 start-page: A3293 issue: 5 year: 2018 ident: 10.1016/j.matcom.2023.05.007_b12 article-title: Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1136249 – volume: 4 start-page: 291 issue: 3 year: 1984 ident: 10.1016/j.matcom.2023.05.007_b17 article-title: FEM for unsteady MHD flow through pipes with arbitrary wall conductivity publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1650040307 – volume: 146 start-page: 89 year: 2019 ident: 10.1016/j.matcom.2023.05.007_b20 article-title: Exponential compact adi method for a coupled system of convection–diffusion equations arising from the 2D unsteady magnetohydrodynamic (MHD) flows publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.07.003 – volume: 59 start-page: 1043 issue: 5 year: 2009 ident: 10.1016/j.matcom.2023.05.007_b3 article-title: Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.05.001 – volume: 70 start-page: 272 year: 2017 ident: 10.1016/j.matcom.2023.05.007_b18 article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0254-1 – volume: 18 start-page: 937 issue: 10 year: 2010 ident: 10.1016/j.matcom.2023.05.007_b19 article-title: Boundary element method solution of MHD flow in rectangular duct publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1650181004 – volume: 229 start-page: 9216 issue: 24 year: 2010 ident: 10.1016/j.matcom.2023.05.007_b11 article-title: Two new upwind difference schemes for a coupled system of convection–diffusion equations arising from the steady MHD duct flow problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.08.034 – volume: 231 start-page: 5443 issue: 16 year: 2012 ident: 10.1016/j.matcom.2023.05.007_b21 article-title: An exponential compact difference scheme for solving 2d steady magnetohydrodynamic (MHD) duct flow problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.010 – volume: 36 start-page: 243 year: 2008 ident: 10.1016/j.matcom.2023.05.007_b6 article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain publication-title: J. Sci. Comput. doi: 10.1007/s10915-008-9187-7 – volume: 37 start-page: 2337 issue: 4 year: 2013 ident: 10.1016/j.matcom.2023.05.007_b8 article-title: The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high hartmann number publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.05.020 – volume: 73 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.matcom.2023.05.007_b7 article-title: Tailored finite point methods for solving singularly perturbed eigenvalue problems with higher eigenvalues publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0411-1 – volume: 61 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.matcom.2023.05.007_b15 article-title: A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.07.010 – volume: 10 start-page: 161 issue: 1 year: 2011 ident: 10.1016/j.matcom.2023.05.007_b9 article-title: A tailored finite point method for solving steady MHD duct flow problems with boundary layers publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.070110.020710a – volume: 50 start-page: 1893 issue: 8 year: 2001 ident: 10.1016/j.matcom.2023.05.007_b1 article-title: Duct flow with a transverse magnetic field at high Hartmann numbers publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.101 – volume: 180 start-page: 1458 issue: 9 year: 2009 ident: 10.1016/j.matcom.2023.05.007_b2 article-title: Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2009.03.007 – volume: 228 start-page: 8301 issue: 22 year: 2009 ident: 10.1016/j.matcom.2023.05.007_b10 article-title: A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.007 – volume: 82 start-page: 213 year: 2013 ident: 10.1016/j.matcom.2023.05.007_b5 article-title: Tailored finite point method based on exponential bases for convection–diffusion-reaction equation publication-title: Math. Comp. doi: 10.1090/S0025-5718-2012-02616-0 – volume: 194 start-page: 1201 issue: 9 year: 2005 ident: 10.1016/j.matcom.2023.05.007_b13 article-title: The finite element method for MHD flow at high Hartmann numbers publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.06.035 – volume: 52 start-page: 1445 issue: 6 year: 2013 ident: 10.1016/j.matcom.2023.05.007_b4 article-title: A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity publication-title: Comput. Mech. doi: 10.1007/s00466-013-0886-z – volume: 192 start-page: 339 issue: 2 year: 2006 ident: 10.1016/j.matcom.2023.05.007_b14 article-title: Finite element method solution of electrically driven magnetohydrodynamic flow publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.05.015 – volume: 9 start-page: 101 issue: 2 year: 1978 ident: 10.1016/j.matcom.2023.05.007_b16 article-title: MHD axial flow in a triangular pipe under transverse magnetic field publication-title: Indian J. Pure Appl. Math. |
SSID | ssj0007545 |
Score | 2.379657 |
Snippet | The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 336 |
SubjectTerms | Convection-dominated diffusion Magnetohydrodynamic duct flow problems Tailored finite point method Unstructured grids |
Title | Uniformly convergent scheme for steady MHD duct flow problems with high Hartmann numbers on structured and unstructured grids |
URI | https://dx.doi.org/10.1016/j.matcom.2023.05.007 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_XFHLzGJtndPI6lKlHRiwq9hexLKm0qtiIe9Lc7k4dWEAWP2cxCsrOZ-SZ8-w1jR5jipEt06AUmsp7QWLAWNgg8FfiaaiDtFBWKV9dRdicuBnKwwPrtWRiiVTaxv47pVbRuRrrNanYfh8Pujc9jDK0S8UClU06aoKT-hXv6-P2L5oEGFY0RjT2ybo_PVRwvBIXEGaEW4pV-JzWV_Sk9zaWcszW20mBF6NWPs84WbLnBVts-DNB8lpvsDYEjYc_RK1QkcjpPOQMsW-3YAt6AypOvcJWdAMm7ghtNXqBpJTMF-hULJFsMGb75uChLqPuETGFSQi0w-_xkDRSlgedybuD-aWimW-zu7PS2n3lNWwVPY30w85LQhZKr2CQGHcFT54QwSvup1rEObBppJYXx4yhVnEsrQ5O6kCvECoVxsVF8my2Wk9LuMNChdFz4OlFhIKyvC2ENj-Ia1SUi6TDermauG81xan0xylty2UNe-yAnH-S-zNEHHeZ9znqsNTf-sI9bR-Xf9k6OaeHXmbv_nrnHlumqpvXts0VcenuA8GSmDqv9d8iWeueX2fUHYzTn5A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoBLaaEVjxbmwDXaJLbzOCIoCo_dS0HiZsWvaqsli9hdVXvgvzNOHESlqpW42h4p8efMfBN9ngE4oRAnXKHTKDGZjbimhLW2SRKpJNY-B9JO-URxNM6qO351L-7X4Ky_C-NllcH3dz699dZhZBh2c_g4mQx_xCwn1yqID7R1yvk6bHBBPnkAG6eX19X41SHTmlbJSOsjb9DfoGtlXsQLvWzEdxFvS3j6vrJ_i1Bvos7FR_gQ6CKedk_0CdZsswPbfSsGDF_mLjwTd_T0c7rCVkfur1QukDJX-2CRJrAFc4Wj6hx9hVd009lvDN1k5uj_xqKvXIwVvfxD3TTYtQqZ46zBrsbs8skarBuDy-bNwM-niZl_hruL77dnVRQ6K0SaUoRFVKQuFUzlpjCEBSud49woHZda5zqxZaaV4CbOs1IxJqxITelSpogu1MblRrEvMGhmjd0D1KlwjMe6UGnCbaxrbg3L8o7YFbzYB9bvptSh7LjvfjGVvb7sl-wwkB4DGQtJGOxD9Gr12JXd-M_6vAdK_nF8JEWGf1oevNvyGDar29GNvLkcXx_Clp_pVH5fYUAw2G_EVhbqKJzGF0QE6o8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformly+convergent+scheme+for+steady+MHD+duct+flow+problems+with+high+Hartmann+numbers+on+structured+and+unstructured+grids&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Sun%2C+Tao&rft.au=Wang%2C+Yihong&rft.date=2023-10-01&rft.issn=0378-4754&rft.volume=212&rft.spage=336&rft.epage=359&rft_id=info:doi/10.1016%2Fj.matcom.2023.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2023_05_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |