Uniformly convergent scheme for steady MHD duct flow problems with high Hartmann numbers on structured and unstructured grids

The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered s...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 212; pp. 336 - 359
Main Authors Sun, Tao, Wang, Yihong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2023.05.007

Cover

Abstract The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered scheme on structured and unstructured grids with tailored finite point method (TFPM) for solving the coupled system of convection–diffusion equations. The five-point scheme is an upwind difference scheme, where the coefficients of the difference operator are tailored to some particular properties of the convection–diffusion equation with constant coefficients on the local cell. The edge-centered scheme is constructed by the continuity of the normal fluxes for each edge. The normal flux is expressed in terms of the edge-centered unknowns defined at the local cell and the unknowns at the adjacent cells are not needed. Uniform second order convergence can be obtained by the edge-centered scheme on structured and unstructured grids over a wide range of Ha 10 to 106. Both of the two schemes can correctly reproduce the fast change of the solutions which contain sharp boundary layers at high Ha even without refining the mesh. Numerical examples are provided to show the accuracy and of the TFPM.
AbstractList The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of convection-dominated diffusion equations and the solutions contain sharp boundary layers. We develop a five-point scheme and an edge-centered scheme on structured and unstructured grids with tailored finite point method (TFPM) for solving the coupled system of convection–diffusion equations. The five-point scheme is an upwind difference scheme, where the coefficients of the difference operator are tailored to some particular properties of the convection–diffusion equation with constant coefficients on the local cell. The edge-centered scheme is constructed by the continuity of the normal fluxes for each edge. The normal flux is expressed in terms of the edge-centered unknowns defined at the local cell and the unknowns at the adjacent cells are not needed. Uniform second order convergence can be obtained by the edge-centered scheme on structured and unstructured grids over a wide range of Ha 10 to 106. Both of the two schemes can correctly reproduce the fast change of the solutions which contain sharp boundary layers at high Ha even without refining the mesh. Numerical examples are provided to show the accuracy and of the TFPM.
Author Sun, Tao
Wang, Yihong
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-0913-581X
  surname: Sun
  fullname: Sun, Tao
  email: sunt@lixin.edu.cn
– sequence: 2
  givenname: Yihong
  orcidid: 0000-0003-1541-2035
  surname: Wang
  fullname: Wang, Yihong
  email: wyh@lixin.edu.cn
BookMark eNqFkMtKxDAUhoMoOF7ewEVeoDVtmqZ1IYi3ERQ3ug65nMxkaBNJMsosfHc7jAtxoasD5_zfD-c7Qvs-eEDorCJlRar2fFWOMuswljWpaUlYSQjfQ7Oq43XBq7bdRzNCeVc0nDWH6CilFZkSrGEz9PnqnQ1xHDZYB_8OcQE-46SXMAKeDjhlkGaDn-Y32Kx1xnYIH_gtBjXAmPCHy0u8dIslnsuYR-k99utRQUw4-ImNE7KOYLD0Bq_9j8UiOpNO0IGVQ4LT73mMXu9uX67nxePz_cP11WOhKWlz0dW2ZlRx0xmrKtpb2zRGadJrzXUFfasVawzhba8oZcBq09uaKtLV0lhuFD1Gza5Xx5BSBCveohtl3IiKiK1CsRI7hWKrUBAmJkETdvEL0y7L7ILPUbrhP_hyB8P02LuDKJJ24DUYF0FnYYL7u-ALmjuVzA
CitedBy_id crossref_primary_10_1016_j_fuel_2024_132577
crossref_primary_10_1016_j_ijhydene_2024_06_389
crossref_primary_10_1002_pc_27632
crossref_primary_10_1007_s40435_025_01588_8
Cites_doi 10.1016/j.cpc.2015.06.006
10.1137/17M1136249
10.1002/fld.1650040307
10.1016/j.apnum.2019.07.003
10.1016/j.apnum.2008.05.001
10.1007/s10915-016-0254-1
10.1002/fld.1650181004
10.1016/j.jcp.2010.08.034
10.1016/j.jcp.2012.05.010
10.1007/s10915-008-9187-7
10.1016/j.apm.2012.05.020
10.1007/s10915-017-0411-1
10.1016/j.apnum.2010.07.010
10.4208/cicp.070110.020710a
10.1002/nme.101
10.1016/j.cpc.2009.03.007
10.1016/j.jcp.2009.08.007
10.1090/S0025-5718-2012-02616-0
10.1016/j.cma.2004.06.035
10.1007/s00466-013-0886-z
10.1016/j.cam.2005.05.015
ContentType Journal Article
Copyright 2023 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2023 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2023.05.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 359
ExternalDocumentID 10_1016_j_matcom_2023_05_007
S0378475423002124
GrantInformation_xml – fundername: NSFC
  grantid: 19ZR1436300
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Fund of Shanghai
– fundername: NSFC
  grantid: 12171141
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-82f253b7d8dfb139ff44dbc09cc7c1e96cb54d0769b335e52d9f23b082adf7db3
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Apr 24 22:59:05 EDT 2025
Wed Oct 01 04:18:48 EDT 2025
Fri Feb 23 02:37:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unstructured grids
Tailored finite point method
Magnetohydrodynamic duct flow problems
Convection-dominated diffusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-82f253b7d8dfb139ff44dbc09cc7c1e96cb54d0769b335e52d9f23b082adf7db3
ORCID 0000-0003-0913-581X
0000-0003-1541-2035
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_matcom_2023_05_007
crossref_citationtrail_10_1016_j_matcom_2023_05_007
elsevier_sciencedirect_doi_10_1016_j_matcom_2023_05_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kong, Huang (b12) 2018; 40
Wu, Peng, Tian (b20) 2019; 146
Dehghan, Mirzaei (b3) 2009; 59
Han, Shih, Yin (b7) 2017; 73
Singh, Jia (b17) 1984; 4
Dehghan, Salehi (b4) 2013; 52
Shakeri, Dehghan (b15) 2011; 61
Hsieh, Shih, Yang (b9) 2011; 10
Singh, Jia (b16) 1978; 9
Han, Huang, Kellogg (b6) 2008; 36
Hsieh, Yang (b10) 2009; 228
Tang, Wang (b18) 2017; 70
Dehghan, Mirzaei (b2) 2009; 180
Tezer-Sezgin (b19) 2010; 18
Barrett (b1) 2001; 50
Hosseinzadeh, Dehghan, Mirzaei (b8) 2013; 37
Nesliturk, Tezer-Sezgin (b14) 2006; 192
Zhou, Ni, Tian (b22) 2015; 196
Han, Huang (b5) 2013; 82
Nesliturk, Tezer-Sezgin (b13) 2005; 194
Hsieh, Yang (b11) 2010; 229
Yan, Tian (b21) 2012; 231
Han (10.1016/j.matcom.2023.05.007_b5) 2013; 82
Hsieh (10.1016/j.matcom.2023.05.007_b11) 2010; 229
Nesliturk (10.1016/j.matcom.2023.05.007_b14) 2006; 192
Dehghan (10.1016/j.matcom.2023.05.007_b4) 2013; 52
Singh (10.1016/j.matcom.2023.05.007_b16) 1978; 9
Hsieh (10.1016/j.matcom.2023.05.007_b9) 2011; 10
Wu (10.1016/j.matcom.2023.05.007_b20) 2019; 146
Zhou (10.1016/j.matcom.2023.05.007_b22) 2015; 196
Dehghan (10.1016/j.matcom.2023.05.007_b2) 2009; 180
Kong (10.1016/j.matcom.2023.05.007_b12) 2018; 40
Nesliturk (10.1016/j.matcom.2023.05.007_b13) 2005; 194
Shakeri (10.1016/j.matcom.2023.05.007_b15) 2011; 61
Singh (10.1016/j.matcom.2023.05.007_b17) 1984; 4
Yan (10.1016/j.matcom.2023.05.007_b21) 2012; 231
Hsieh (10.1016/j.matcom.2023.05.007_b10) 2009; 228
Tezer-Sezgin (10.1016/j.matcom.2023.05.007_b19) 2010; 18
Hosseinzadeh (10.1016/j.matcom.2023.05.007_b8) 2013; 37
Han (10.1016/j.matcom.2023.05.007_b6) 2008; 36
Barrett (10.1016/j.matcom.2023.05.007_b1) 2001; 50
Tang (10.1016/j.matcom.2023.05.007_b18) 2017; 70
Dehghan (10.1016/j.matcom.2023.05.007_b3) 2009; 59
Han (10.1016/j.matcom.2023.05.007_b7) 2017; 73
References_xml – volume: 192
  start-page: 339
  year: 2006
  end-page: 352
  ident: b14
  article-title: Finite element method solution of electrically driven magnetohydrodynamic flow
  publication-title: J. Comput. Appl. Math.
– volume: 70
  start-page: 272
  year: 2017
  end-page: 300
  ident: b18
  article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity
  publication-title: J. Sci. Comput.
– volume: 4
  start-page: 291
  year: 1984
  end-page: 302
  ident: b17
  article-title: FEM for unsteady MHD flow through pipes with arbitrary wall conductivity
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 194
  start-page: 1201
  year: 2005
  end-page: 1224
  ident: b13
  article-title: The finite element method for MHD flow at high Hartmann numbers
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 61
  start-page: 1
  year: 2011
  end-page: 23
  ident: b15
  article-title: A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations
  publication-title: Appl. Numer. Math.
– volume: 10
  start-page: 161
  year: 2011
  end-page: 182
  ident: b9
  article-title: A tailored finite point method for solving steady MHD duct flow problems with boundary layers
  publication-title: Commun. Comput. Phys.
– volume: 231
  start-page: 5443
  year: 2012
  end-page: 5468
  ident: b21
  article-title: An exponential compact difference scheme for solving 2d steady magnetohydrodynamic (MHD) duct flow problems
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 1445
  year: 2013
  end-page: 1462
  ident: b4
  article-title: A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity
  publication-title: Comput. Mech.
– volume: 229
  start-page: 9216
  year: 2010
  end-page: 9234
  ident: b11
  article-title: Two new upwind difference schemes for a coupled system of convection–diffusion equations arising from the steady MHD duct flow problems
  publication-title: J. Comput. Phys.
– volume: 146
  start-page: 89
  year: 2019
  end-page: 122
  ident: b20
  article-title: Exponential compact adi method for a coupled system of convection–diffusion equations arising from the 2D unsteady magnetohydrodynamic (MHD) flows
  publication-title: Appl. Numer. Math.
– volume: 59
  start-page: 1043
  year: 2009
  end-page: 1058
  ident: b3
  article-title: Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity
  publication-title: Appl. Numer. Math.
– volume: 180
  start-page: 1458
  year: 2009
  end-page: 1466
  ident: b2
  article-title: Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes
  publication-title: Comput. Phys. Comm.
– volume: 18
  start-page: 937
  year: 2010
  end-page: 952
  ident: b19
  article-title: Boundary element method solution of MHD flow in rectangular duct
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 50
  start-page: 1893
  year: 2001
  end-page: 1906
  ident: b1
  article-title: Duct flow with a transverse magnetic field at high Hartmann numbers
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 36
  start-page: 243
  year: 2008
  end-page: 261
  ident: b6
  article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain
  publication-title: J. Sci. Comput.
– volume: 37
  start-page: 2337
  year: 2013
  end-page: 2351
  ident: b8
  article-title: The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high hartmann number
  publication-title: Appl. Math. Model.
– volume: 9
  start-page: 101
  year: 1978
  end-page: 115
  ident: b16
  article-title: MHD axial flow in a triangular pipe under transverse magnetic field
  publication-title: Indian J. Pure Appl. Math.
– volume: 196
  start-page: 194
  year: 2015
  end-page: 211
  ident: b22
  article-title: Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers
  publication-title: Comput. Phys. Comm.
– volume: 73
  start-page: 1
  year: 2017
  end-page: 41
  ident: b7
  article-title: Tailored finite point methods for solving singularly perturbed eigenvalue problems with higher eigenvalues
  publication-title: J. Sci. Comput.
– volume: 40
  start-page: A3293
  year: 2018
  end-page: A3321
  ident: b12
  article-title: Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
– volume: 82
  start-page: 213
  year: 2013
  end-page: 226
  ident: b5
  article-title: Tailored finite point method based on exponential bases for convection–diffusion-reaction equation
  publication-title: Math. Comp.
– volume: 228
  start-page: 8301
  year: 2009
  end-page: 8320
  ident: b10
  article-title: A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers
  publication-title: J. Comput. Phys.
– volume: 196
  start-page: 194
  year: 2015
  ident: 10.1016/j.matcom.2023.05.007_b22
  article-title: Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2015.06.006
– volume: 40
  start-page: A3293
  issue: 5
  year: 2018
  ident: 10.1016/j.matcom.2023.05.007_b12
  article-title: Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1136249
– volume: 4
  start-page: 291
  issue: 3
  year: 1984
  ident: 10.1016/j.matcom.2023.05.007_b17
  article-title: FEM for unsteady MHD flow through pipes with arbitrary wall conductivity
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650040307
– volume: 146
  start-page: 89
  year: 2019
  ident: 10.1016/j.matcom.2023.05.007_b20
  article-title: Exponential compact adi method for a coupled system of convection–diffusion equations arising from the 2D unsteady magnetohydrodynamic (MHD) flows
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2019.07.003
– volume: 59
  start-page: 1043
  issue: 5
  year: 2009
  ident: 10.1016/j.matcom.2023.05.007_b3
  article-title: Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.05.001
– volume: 70
  start-page: 272
  year: 2017
  ident: 10.1016/j.matcom.2023.05.007_b18
  article-title: Uniform convergent tailored finite point method for advection-diffusion equation with discontinuous, anisotropic and vanishing diffusivity
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0254-1
– volume: 18
  start-page: 937
  issue: 10
  year: 2010
  ident: 10.1016/j.matcom.2023.05.007_b19
  article-title: Boundary element method solution of MHD flow in rectangular duct
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650181004
– volume: 229
  start-page: 9216
  issue: 24
  year: 2010
  ident: 10.1016/j.matcom.2023.05.007_b11
  article-title: Two new upwind difference schemes for a coupled system of convection–diffusion equations arising from the steady MHD duct flow problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.08.034
– volume: 231
  start-page: 5443
  issue: 16
  year: 2012
  ident: 10.1016/j.matcom.2023.05.007_b21
  article-title: An exponential compact difference scheme for solving 2d steady magnetohydrodynamic (MHD) duct flow problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.010
– volume: 36
  start-page: 243
  year: 2008
  ident: 10.1016/j.matcom.2023.05.007_b6
  article-title: A tailored finite point method for a singular perturbation problem on an unbounded domain
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9187-7
– volume: 37
  start-page: 2337
  issue: 4
  year: 2013
  ident: 10.1016/j.matcom.2023.05.007_b8
  article-title: The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high hartmann number
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.05.020
– volume: 73
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.matcom.2023.05.007_b7
  article-title: Tailored finite point methods for solving singularly perturbed eigenvalue problems with higher eigenvalues
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0411-1
– volume: 61
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.matcom.2023.05.007_b15
  article-title: A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.07.010
– volume: 10
  start-page: 161
  issue: 1
  year: 2011
  ident: 10.1016/j.matcom.2023.05.007_b9
  article-title: A tailored finite point method for solving steady MHD duct flow problems with boundary layers
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.070110.020710a
– volume: 50
  start-page: 1893
  issue: 8
  year: 2001
  ident: 10.1016/j.matcom.2023.05.007_b1
  article-title: Duct flow with a transverse magnetic field at high Hartmann numbers
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.101
– volume: 180
  start-page: 1458
  issue: 9
  year: 2009
  ident: 10.1016/j.matcom.2023.05.007_b2
  article-title: Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2009.03.007
– volume: 228
  start-page: 8301
  issue: 22
  year: 2009
  ident: 10.1016/j.matcom.2023.05.007_b10
  article-title: A bubble-stabilized least-squares finite element method for steady MHD duct flow problems at high Hartmann numbers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.007
– volume: 82
  start-page: 213
  year: 2013
  ident: 10.1016/j.matcom.2023.05.007_b5
  article-title: Tailored finite point method based on exponential bases for convection–diffusion-reaction equation
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2012-02616-0
– volume: 194
  start-page: 1201
  issue: 9
  year: 2005
  ident: 10.1016/j.matcom.2023.05.007_b13
  article-title: The finite element method for MHD flow at high Hartmann numbers
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.06.035
– volume: 52
  start-page: 1445
  issue: 6
  year: 2013
  ident: 10.1016/j.matcom.2023.05.007_b4
  article-title: A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0886-z
– volume: 192
  start-page: 339
  issue: 2
  year: 2006
  ident: 10.1016/j.matcom.2023.05.007_b14
  article-title: Finite element method solution of electrically driven magnetohydrodynamic flow
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.05.015
– volume: 9
  start-page: 101
  issue: 2
  year: 1978
  ident: 10.1016/j.matcom.2023.05.007_b16
  article-title: MHD axial flow in a triangular pipe under transverse magnetic field
  publication-title: Indian J. Pure Appl. Math.
SSID ssj0007545
Score 2.379657
Snippet The steady incompressible Magnetohydrodynamic (MHD) duct flow problems with a transverse magnetic field at high Hartmann numbers (Ha) is a coupled system of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 336
SubjectTerms Convection-dominated diffusion
Magnetohydrodynamic duct flow problems
Tailored finite point method
Unstructured grids
Title Uniformly convergent scheme for steady MHD duct flow problems with high Hartmann numbers on structured and unstructured grids
URI https://dx.doi.org/10.1016/j.matcom.2023.05.007
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_XFHLzGJtndPI6lKlHRiwq9hexLKm0qtiIe9Lc7k4dWEAWP2cxCsrOZ-SZ8-w1jR5jipEt06AUmsp7QWLAWNgg8FfiaaiDtFBWKV9dRdicuBnKwwPrtWRiiVTaxv47pVbRuRrrNanYfh8Pujc9jDK0S8UClU06aoKT-hXv6-P2L5oEGFY0RjT2ybo_PVRwvBIXEGaEW4pV-JzWV_Sk9zaWcszW20mBF6NWPs84WbLnBVts-DNB8lpvsDYEjYc_RK1QkcjpPOQMsW-3YAt6AypOvcJWdAMm7ghtNXqBpJTMF-hULJFsMGb75uChLqPuETGFSQi0w-_xkDRSlgedybuD-aWimW-zu7PS2n3lNWwVPY30w85LQhZKr2CQGHcFT54QwSvup1rEObBppJYXx4yhVnEsrQ5O6kCvECoVxsVF8my2Wk9LuMNChdFz4OlFhIKyvC2ENj-Ia1SUi6TDermauG81xan0xylty2UNe-yAnH-S-zNEHHeZ9znqsNTf-sI9bR-Xf9k6OaeHXmbv_nrnHlumqpvXts0VcenuA8GSmDqv9d8iWeueX2fUHYzTn5A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoBLaaEVjxbmwDXaJLbzOCIoCo_dS0HiZsWvaqsli9hdVXvgvzNOHESlqpW42h4p8efMfBN9ngE4oRAnXKHTKDGZjbimhLW2SRKpJNY-B9JO-URxNM6qO351L-7X4Ky_C-NllcH3dz699dZhZBh2c_g4mQx_xCwn1yqID7R1yvk6bHBBPnkAG6eX19X41SHTmlbJSOsjb9DfoGtlXsQLvWzEdxFvS3j6vrJ_i1Bvos7FR_gQ6CKedk_0CdZsswPbfSsGDF_mLjwTd_T0c7rCVkfur1QukDJX-2CRJrAFc4Wj6hx9hVd009lvDN1k5uj_xqKvXIwVvfxD3TTYtQqZ46zBrsbs8skarBuDy-bNwM-niZl_hruL77dnVRQ6K0SaUoRFVKQuFUzlpjCEBSud49woHZda5zqxZaaV4CbOs1IxJqxITelSpogu1MblRrEvMGhmjd0D1KlwjMe6UGnCbaxrbg3L8o7YFbzYB9bvptSh7LjvfjGVvb7sl-wwkB4DGQtJGOxD9Gr12JXd-M_6vAdK_nF8JEWGf1oevNvyGDar29GNvLkcXx_Clp_pVH5fYUAw2G_EVhbqKJzGF0QE6o8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformly+convergent+scheme+for+steady+MHD+duct+flow+problems+with+high+Hartmann+numbers+on+structured+and+unstructured+grids&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Sun%2C+Tao&rft.au=Wang%2C+Yihong&rft.date=2023-10-01&rft.issn=0378-4754&rft.volume=212&rft.spage=336&rft.epage=359&rft_id=info:doi/10.1016%2Fj.matcom.2023.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2023_05_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon