A two-stage automated OMA framework for transmission towers based on clustering algorithms
Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularl...
        Saved in:
      
    
          | Published in | Structures (Oxford) Vol. 61; p. 106023 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.03.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-0124 2352-0124  | 
| DOI | 10.1016/j.istruc.2024.106023 | 
Cover
| Abstract | Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularly in the following areas: i) Minimizing the number of parameters to achieve full automation; ii) Defining the optimal parameters to significantly reduce spurious modes; iii) Exploring an automated OMA framework for transmission towers. In this study, we propose an automated OMA method for transmission towers based on the clustering algorithms with the stochastic subspace identification (SSI) approach. The proposed method could be summarized in two stages: the “rough” and “enhanced” stages. In the “rough” stage, the modes identified by SSI are divided into possible physical modes and certain spurious modes by the k-means algorithm considering the physical meaning of the modal parameters. In the “enhanced” stage, similar physical modes are classified by data-driven hierarchical clustering, and the outliers of each cluster are eliminated. Then, the applicability and efficiency of the proposed method are verified by the numerical simulation. Finally, the method is applied to a ± 500 kV transmission tower to identify the modal parameters with the field ambient vibration test data. Identification results are compared with manual identification to demonstrate the improvement and contribution of the automated OMA. The results show that the proposed framework has the capacity to automatically eliminate spurious modes and discrimination in the case of the close modes. The proposed method could accurately and automatically identify modal parameters to avoid the dependence on the experience and the uncertainty of manual identification. | 
    
|---|---|
| AbstractList | Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularly in the following areas: i) Minimizing the number of parameters to achieve full automation; ii) Defining the optimal parameters to significantly reduce spurious modes; iii) Exploring an automated OMA framework for transmission towers. In this study, we propose an automated OMA method for transmission towers based on the clustering algorithms with the stochastic subspace identification (SSI) approach. The proposed method could be summarized in two stages: the “rough” and “enhanced” stages. In the “rough” stage, the modes identified by SSI are divided into possible physical modes and certain spurious modes by the k-means algorithm considering the physical meaning of the modal parameters. In the “enhanced” stage, similar physical modes are classified by data-driven hierarchical clustering, and the outliers of each cluster are eliminated. Then, the applicability and efficiency of the proposed method are verified by the numerical simulation. Finally, the method is applied to a ± 500 kV transmission tower to identify the modal parameters with the field ambient vibration test data. Identification results are compared with manual identification to demonstrate the improvement and contribution of the automated OMA. The results show that the proposed framework has the capacity to automatically eliminate spurious modes and discrimination in the case of the close modes. The proposed method could accurately and automatically identify modal parameters to avoid the dependence on the experience and the uncertainty of manual identification. | 
    
| ArticleNumber | 106023 | 
    
| Author | Su, Youhua Zhu, Yanming Sun, Qing Feng, Yuhu Zhao, Chao  | 
    
| Author_xml | – sequence: 1 givenname: Yuhu surname: Feng fullname: Feng, Yuhu – sequence: 2 givenname: Youhua surname: Su fullname: Su, Youhua – sequence: 3 givenname: Chao surname: Zhao fullname: Zhao, Chao – sequence: 4 givenname: Yanming orcidid: 0000-0003-2635-3165 surname: Zhu fullname: Zhu, Yanming – sequence: 5 givenname: Qing orcidid: 0000-0001-9020-6851 surname: Sun fullname: Sun, Qing email: sunq@xjtu.edu.cn  | 
    
| BookMark | eNqFkMtKAzEUhoNUsNa-gYu8wNQkk5lpXQileAOlG924CbnW1JmJ5KQW396UcSEudHUu_P_hP98pGvWhtwidUzKjhNYX25mHFHd6xgjjeVUTVh6hMSsrVhDK-OhHf4KmAFtCCKM8q5sxelnitA8FJLmxWO5S6GSyBq8fl9hF2dl9iG_YhYhTlD10HsCHHqewtxGwkpC1edbtDpKNvt9g2W5C9Om1gzN07GQLdvpdJ-j55vppdVc8rG_vV8uHQpekTkVjuKpqqZSZV4pxbZysF_Mcr3KuNKYp57VzLAuca4h1C6oYMZVWhDtaESfLCboc7uoYAKJ1QvskU86ZM_tWUCIOoMRWDKDEAZQYQGUz_2V-j76T8fM_29Vgs_mxD2-jAO1tr63x0eokTPB_H_gCMeWJBw | 
    
| CitedBy_id | crossref_primary_10_3390_app14188190 crossref_primary_10_3390_machines13010039 crossref_primary_10_1155_2024_3599911 crossref_primary_10_3390_buildings15020200  | 
    
| Cites_doi | 10.1016/j.ymssp.2020.107388 10.1002/stc.3138 10.1016/j.ymssp.2020.106732 10.1016/j.jsv.2020.115741 10.1007/s11831-012-9069-x 10.1016/j.ymssp.2007.10.009 10.1016/j.engstruct.2020.111365 10.1006/mssp.1999.1249 10.1016/j.jweia.2020.104098 10.1016/j.ymssp.2022.109816 10.1016/j.jsv.2019.115101 10.1016/j.engstruct.2022.115216 10.1016/j.oceaneng.2019.106226 10.1177/14759217211036880 10.1016/j.engstruct.2022.113891 10.1016/j.engstruct.2016.09.060 10.1016/j.engstruct.2022.114773 10.1016/j.engstruct.2022.115477 10.1016/j.ymssp.2023.110784 10.1016/j.measurement.2018.07.006 10.1016/j.engstruct.2014.10.007 10.1016/j.engstruct.2023.116449 10.1016/j.ymssp.2007.07.004 10.1109/TPWRD.2021.3066157 10.1016/j.measurement.2018.07.051 10.1016/j.ymssp.2022.109658 10.1016/j.engstruct.2023.116336 10.1016/j.ymssp.2012.01.007 10.1002/stc.3028 10.1016/j.ymssp.2021.107818 10.1016/j.ijmachtools.2013.04.001 10.1016/j.engstruct.2022.115425 10.1109/81.948437 10.1016/j.ymssp.2023.110485 10.1016/j.conbuildmat.2018.08.089 10.1016/j.engstruct.2017.06.069 10.1016/j.engstruct.2005.10.012 10.1016/j.engstruct.2005.02.021 10.1002/stc.2369 10.1016/j.ymssp.2020.107261 10.1016/j.engstruct.2023.116243 10.1016/j.eng.2018.11.027 10.1002/stc.1854 10.3390/s23031665 10.1016/j.ymssp.2022.108813 10.1016/j.engstruct.2012.07.031 10.1016/j.engstruct.2022.115178 10.1016/j.ymssp.2007.09.004 10.1016/j.engstruct.2022.115120 10.1016/j.ymssp.2020.107077  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Institution of Structural Engineers | 
    
| Copyright_xml | – notice: 2024 Institution of Structural Engineers | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.istruc.2024.106023 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2352-0124 | 
    
| ExternalDocumentID | 10_1016_j_istruc_2024_106023 S2352012424001759  | 
    
| GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ACDAQ ACGFS ACRLP ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG  | 
    
| ID | FETCH-LOGICAL-c306t-7d4b56abbd85b24cdfa6984025ff3dd7386ff26abff70ef91b20d5cb04f150fa3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2352-0124 | 
    
| IngestDate | Wed Oct 01 03:29:38 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Tue Jun 18 08:51:35 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Structural health monitoring Transmission towers Clustering algorithms Stochastic subspace identification Operational modal analysis  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-7d4b56abbd85b24cdfa6984025ff3dd7386ff26abff70ef91b20d5cb04f150fa3 | 
    
| ORCID | 0000-0003-2635-3165 0000-0001-9020-6851  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_istruc_2024_106023 crossref_primary_10_1016_j_istruc_2024_106023 elsevier_sciencedirect_doi_10_1016_j_istruc_2024_106023  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2024 2024-03-00  | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Structures (Oxford) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zhang, Zhou, Huang, Li (bib21) 2022; 29 Deraemaeker, Reynders, De Roeck, Kullaa (bib11) 2008; 22 Qu, Yi, Li, Chen (bib23) 2018; 128 Aggarwal (bib63) 2015 Mao, Su, Wang, Li (bib28) 2023; 289 Charbonnel (bib36) 2021; 152 He, Yang, Li (bib41) 2022; 255 Zhong, Chen, Sun, Tian (bib48) 2023; 274 Ubertini, Gentile, Materazzi (bib59) 2013; 46 Liu, Bao, Li (bib47) 2023; 274 Bendat, J.S., & Piersol, A.G. (1980). Engineering applications of correlation and spectral analysis. New York. Mostafaei, Mostofinejad, Ghamami, Wu (bib32) 2023; Vol. 50 Zhou, Li (bib30) 2022; 52 Aranganayagi, Thangavel (bib62) 2007; Vol. 2 Bhowmik, Tripura, Hazra, Pakrashi (bib5) 2020; 468 Dreher, Storti, Machado (bib27) 2023; 23 Rainieri, Fabbrocino (bib12) 2014 Volkmar, Soal, Govers, Böswald (bib31) 2023; 183 Afshar, Khodaygan (bib25) 2019; 26 Sohn, Farrar, Hemez, Shunk, Stinemates, Nadler, Czarnecki (bib4) 2003; 1 Mugnaini, Fragonara, Civera (bib46) 2022; 170 Bertero, Tarazaga, Sarlo (bib15) 2022; 270 Sun, Li (bib50) 2023; Vol. 56 Cheynet, Jakobsen, Snæbjörnsson (bib16) 2016; 128 Malekjafarian, OBrien (bib22) 2014; 81 Tran, Ozer (bib19) 2021; 160 Wan, Ren, Todd (bib39) 2020; 142 Reynders, Houbrechts, De Roeck (bib58) 2012; 29 Hao, Bi, Chen, Pham, Li (bib34) 2023; 277 Bao, Wang, Zheng, Zhang, Huang, Sun, Li (bib53) 2021; 36 Bao, Chen, Wei, Xu, Tang, Li (bib7) 2019; 5 Sun, Rainieri, Ren, Yan, Fabbrocino (bib38) 2023; Vol. 54 Fu, Li, Li, Dong (bib51) 2020; 199 Cabboi, Magalhães, Gentile, Cunha (bib57) 2017; 24 Brownjohn (bib2) 2007; 365 Zhu, Au, Li, Xie (bib60) 2021; 150 Feng, Wu, Fu, Ng, He (bib40) 2023; 291 Kvåle, Øiseth, Rønnquist (bib13) 2017; 148 Zhou, Zhi, Wang, Hong, Xu, Shu (bib43) 2023; Vol. 51 Malekloo, Ozer, AlHamaydeh, Girolami (bib44) 2022; 21 Ko, Ni (bib3) 2005; 27 Chang, Lin, Chang (bib6) 2018; 129 Hou, Xia (bib9) 2021; 491 Reynders, Pintelon, De Roeck (bib29) 2008; 22 Mostafaei, Mostofinejad, Ghamami, Wu (bib24) 2023; Vol. 58 Xie, Zhang (bib52) 2021; 226 Castellanos-Toro, Marmolejo, Marulanda, Cruz, Thomson (bib17) 2018; 188 Barros, Conde, Cabaleiro, Riveiro (bib33) 2023; 289 Dederichs, Øiseth (bib35) 2023; 199 Zhu, Sun, Zhao, Wei, Yin, Su (bib54) 2023; 277 Van Overschee, De Moor (bib20) 2012 Avci, Abdeljaber, Kiranyaz, Hussein, Gabbouj, Inman (bib37) 2021; 147 Pereira, Pacheco, Pimenta, Moutinho, Cunha, Magalhães (bib49) 2023; 274 Dorn, Yang (bib26) 2023; 186 Peeters, De Roeck (bib55) 1999; 13 Reynders, De Roeck (bib56) 2008; 22 Bi, Beer, Cogan, Mottershead (bib42) 2023; 204 Li, Cai, Mao, Huang, Luo (bib10) 2013; 71 Civera, Mugnaini, Zanotti Fragonara (bib45) 2022; 29 Kim, Kim, Choe (bib14) 2019; 188 Reynders (bib1) 2012; 19 Živanović, Pavic, Reynolds (bib8) 2006; 28 Vaidyanathan (bib61) 2001; 48 Dederichs (10.1016/j.istruc.2024.106023_bib35) 2023; 199 Mostafaei (10.1016/j.istruc.2024.106023_bib32) 2023; Vol. 50 Bertero (10.1016/j.istruc.2024.106023_bib15) 2022; 270 Volkmar (10.1016/j.istruc.2024.106023_bib31) 2023; 183 Bi (10.1016/j.istruc.2024.106023_bib42) 2023; 204 Castellanos-Toro (10.1016/j.istruc.2024.106023_bib17) 2018; 188 Zhu (10.1016/j.istruc.2024.106023_bib60) 2021; 150 Živanović (10.1016/j.istruc.2024.106023_bib8) 2006; 28 He (10.1016/j.istruc.2024.106023_bib41) 2022; 255 Xie (10.1016/j.istruc.2024.106023_bib52) 2021; 226 Peeters (10.1016/j.istruc.2024.106023_bib55) 1999; 13 Aranganayagi (10.1016/j.istruc.2024.106023_bib62) 2007; Vol. 2 Zhu (10.1016/j.istruc.2024.106023_bib54) 2023; 277 Avci (10.1016/j.istruc.2024.106023_bib37) 2021; 147 Malekloo (10.1016/j.istruc.2024.106023_bib44) 2022; 21 Kim (10.1016/j.istruc.2024.106023_bib14) 2019; 188 Hao (10.1016/j.istruc.2024.106023_bib34) 2023; 277 Tran (10.1016/j.istruc.2024.106023_bib19) 2021; 160 Zhou (10.1016/j.istruc.2024.106023_bib43) 2023; Vol. 51 Ko (10.1016/j.istruc.2024.106023_bib3) 2005; 27 Li (10.1016/j.istruc.2024.106023_bib10) 2013; 71 Afshar (10.1016/j.istruc.2024.106023_bib25) 2019; 26 Deraemaeker (10.1016/j.istruc.2024.106023_bib11) 2008; 22 Zhong (10.1016/j.istruc.2024.106023_bib48) 2023; 274 Sun (10.1016/j.istruc.2024.106023_bib50) 2023; Vol. 56 Zhou (10.1016/j.istruc.2024.106023_bib30) 2022; 52 Bao (10.1016/j.istruc.2024.106023_bib53) 2021; 36 Bao (10.1016/j.istruc.2024.106023_bib7) 2019; 5 Mugnaini (10.1016/j.istruc.2024.106023_bib46) 2022; 170 Barros (10.1016/j.istruc.2024.106023_bib33) 2023; 289 Cabboi (10.1016/j.istruc.2024.106023_bib57) 2017; 24 Zhang (10.1016/j.istruc.2024.106023_bib21) 2022; 29 Reynders (10.1016/j.istruc.2024.106023_bib1) 2012; 19 Hou (10.1016/j.istruc.2024.106023_bib9) 2021; 491 Civera (10.1016/j.istruc.2024.106023_bib45) 2022; 29 Van Overschee (10.1016/j.istruc.2024.106023_bib20) 2012 Liu (10.1016/j.istruc.2024.106023_bib47) 2023; 274 Malekjafarian (10.1016/j.istruc.2024.106023_bib22) 2014; 81 Charbonnel (10.1016/j.istruc.2024.106023_bib36) 2021; 152 Aggarwal (10.1016/j.istruc.2024.106023_bib63) 2015 Chang (10.1016/j.istruc.2024.106023_bib6) 2018; 129 Kvåle (10.1016/j.istruc.2024.106023_bib13) 2017; 148 Mostafaei (10.1016/j.istruc.2024.106023_bib24) 2023; Vol. 58 Sohn (10.1016/j.istruc.2024.106023_bib4) 2003; 1 Reynders (10.1016/j.istruc.2024.106023_bib29) 2008; 22 Reynders (10.1016/j.istruc.2024.106023_bib56) 2008; 22 Qu (10.1016/j.istruc.2024.106023_bib23) 2018; 128 Vaidyanathan (10.1016/j.istruc.2024.106023_bib61) 2001; 48 Dreher (10.1016/j.istruc.2024.106023_bib27) 2023; 23 Reynders (10.1016/j.istruc.2024.106023_bib58) 2012; 29 Pereira (10.1016/j.istruc.2024.106023_bib49) 2023; 274 Sun (10.1016/j.istruc.2024.106023_bib38) 2023; Vol. 54 Ubertini (10.1016/j.istruc.2024.106023_bib59) 2013; 46 10.1016/j.istruc.2024.106023_bib18 Brownjohn (10.1016/j.istruc.2024.106023_bib2) 2007; 365 Wan (10.1016/j.istruc.2024.106023_bib39) 2020; 142 Cheynet (10.1016/j.istruc.2024.106023_bib16) 2016; 128 Rainieri (10.1016/j.istruc.2024.106023_bib12) 2014 Feng (10.1016/j.istruc.2024.106023_bib40) 2023; 291 Fu (10.1016/j.istruc.2024.106023_bib51) 2020; 199 Bhowmik (10.1016/j.istruc.2024.106023_bib5) 2020; 468 Dorn (10.1016/j.istruc.2024.106023_bib26) 2023; 186 Mao (10.1016/j.istruc.2024.106023_bib28) 2023; 289  | 
    
| References_xml | – volume: 19 start-page: 51 year: 2012 end-page: 124 ident: bib1 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch Comput Methods Eng – volume: 148 start-page: 410 year: 2017 end-page: 423 ident: bib13 article-title: Operational modal analysis of an end-supported pontoon bridge publication-title: Eng Struct – volume: 21 start-page: 1906 year: 2022 end-page: 1955 ident: bib44 article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights publication-title: Struct Health Monit – reference: Bendat, J.S., & Piersol, A.G. (1980). Engineering applications of correlation and spectral analysis. New York. – volume: 277 year: 2023 ident: bib54 article-title: Operational modal analysis of two typical UHV transmission towers: A comparative study by fast Bayesian FFT method publication-title: Eng Struct – volume: 52 year: 2022 ident: bib30 article-title: Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology publication-title: J Build Eng – volume: 468 year: 2020 ident: bib5 article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection publication-title: J Sound Vib – volume: 186 year: 2023 ident: bib26 article-title: Automated modal identification by quantification of high-spatial-resolution response measurements publication-title: Mech Syst Signal Process – volume: 1 start-page: 16 year: 2003 ident: bib4 article-title: A review of structural health monitoring literature: 1996–2001 publication-title: Los Alamos Natl Lab, USA – volume: Vol. 58 year: 2023 ident: bib24 article-title: Fully automated operational modal identification of regular and irregular buildings with ensemble learning publication-title: In Structures – volume: 183 year: 2023 ident: bib31 article-title: Experimental and operational modal analysis: Automated system identification for safety-critical applications publication-title: Mech Syst Signal Process – volume: 274 year: 2023 ident: bib47 article-title: Machine learning-based stochastic subspace identification method for structural modal parameters publication-title: Eng Struct – volume: Vol. 51 start-page: 1083 year: 2023 end-page: 1094 ident: bib43 article-title: An improved stochastic subspace modal identification method considering uncertainty quantification publication-title: In Structures – volume: 128 start-page: 474 year: 2016 end-page: 487 ident: bib16 article-title: Buffeting response of a suspension bridge in complex terrain publication-title: Eng Struct – volume: 29 year: 2022 ident: bib21 article-title: Automatic identification of structural modal parameters based on density peaks clustering algorithm publication-title: Struct Control Health Monit – volume: 27 start-page: 1715 year: 2005 end-page: 1725 ident: bib3 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng Struct – volume: 24 year: 2017 ident: bib57 article-title: Automated modal identification and tracking: Application to an iron arch bridge publication-title: Struct Control Health Monit – volume: 129 start-page: 457 year: 2018 end-page: 470 ident: bib6 article-title: Applications of neural network models for structural health monitoring based on derived modal properties publication-title: Measurement – volume: 13 start-page: 855 year: 1999 end-page: 878 ident: bib55 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mech Syst Signal Process – volume: 365 start-page: 589 year: 2007 end-page: 622 ident: bib2 article-title: Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical publication-title: Phys Eng Sci – volume: Vol. 50 start-page: 255 year: 2023 end-page: 271 ident: bib32 article-title: A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam publication-title: In Structures – volume: 199 year: 2020 ident: bib51 article-title: Fragility analysis of a transmission tower under combined wind and rain loads publication-title: J Wind Eng Ind Aerodyn – volume: 274 year: 2023 ident: bib48 article-title: Fully automatic operational modal analysis method based on statistical rule enhanced adaptive clustering method publication-title: Eng Struct – volume: 491 year: 2021 ident: bib9 article-title: Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 publication-title: J Sound Vib – volume: 160 year: 2021 ident: bib19 article-title: Synergistic bridge modal analysis using frequency domain decomposition, observer Kalman filter identification, stochastic subspace identification, system realization using information matrix, and autoregressive exogenous model publication-title: Mech Syst Signal Process – volume: 150 year: 2021 ident: bib60 article-title: Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes publication-title: Mech Syst Signal Process – volume: 289 year: 2023 ident: bib33 article-title: Design and testing of a decision tree algorithm for early failure detection in steel truss bridges publication-title: Eng Struct – volume: 291 year: 2023 ident: bib40 article-title: Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique publication-title: Eng Struct – volume: 199 year: 2023 ident: bib35 article-title: Experimental comparison of automatic operational modal analysis algorithms for application to long-span road bridges publication-title: Mech Syst Signal Process – volume: 188 start-page: 490 year: 2018 end-page: 504 ident: bib17 article-title: Frequencies and damping ratios of bridges through Operational Modal Analysis using smartphones publication-title: Constr Build Mater – volume: 22 start-page: 34 year: 2008 end-page: 56 ident: bib11 article-title: Vibration-based structural health monitoring using output-only measurements under changing environment publication-title: Mech Syst Signal Process – year: 2012 ident: bib20 article-title: Subspace identification for linear systems: Theory—Implementation—Applications – volume: 226 year: 2021 ident: bib52 article-title: Experimental study on failure modes and retrofitting method of latticed transmission tower publication-title: Eng Struct – volume: 22 start-page: 617 year: 2008 end-page: 637 ident: bib56 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mech Syst Signal Process – volume: 36 start-page: 2363 year: 2021 end-page: 2373 ident: bib53 article-title: Resilience-oriented transmission line fragility modeling and real-time risk assessment of thunderstorms publication-title: IEEE Trans Power Deliv – volume: 46 start-page: 264 year: 2013 end-page: 278 ident: bib59 article-title: Automated modal identification in operational conditions and its application to bridges publication-title: Eng Struct – volume: 128 start-page: 388 year: 2018 end-page: 392 ident: bib23 article-title: Closely spaced modes identification through modified frequency domain decomposition publication-title: Measurement – volume: 274 year: 2023 ident: bib49 article-title: Contributions for enhanced tracking of (onshore) wind turbines modal parameters publication-title: Eng Struct – start-page: 143 year: 2014 ident: bib12 article-title: Operational Modal Analysis of Civil Engineering Structures – volume: 204 year: 2023 ident: bib42 article-title: Stochastic model updating with uncertainty quantification: an overview and tutorial publication-title: Mech Syst Signal Process – volume: Vol. 56 year: 2023 ident: bib50 article-title: Reliable modal estimation of high-rise structures via synergistic usage of multiple stabilization diagram-based operational modal analysis techniques publication-title: In Structures – volume: 22 start-page: 948 year: 2008 end-page: 969 ident: bib29 article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification publication-title: Mech Syst Signal Process – volume: 142 year: 2020 ident: bib39 article-title: Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics publication-title: Mech Syst Signal Process – volume: 29 start-page: 228 year: 2012 end-page: 250 ident: bib58 article-title: Fully automated (operational) modal analysis publication-title: Mech Syst Signal Process – volume: 29 year: 2022 ident: bib45 article-title: Machine learning‐based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges publication-title: Struct Control Health Monit – volume: 289 year: 2023 ident: bib28 article-title: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms publication-title: Eng Struct – volume: 26 year: 2019 ident: bib25 article-title: Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions publication-title: Struct Control Health Monit – volume: 152 year: 2021 ident: bib36 article-title: Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign publication-title: Mech Syst Signal Process – volume: 71 start-page: 26 year: 2013 end-page: 40 ident: bib10 article-title: Estimation of CNC machine–tool dynamic parameters based on random cutting excitation through operational modal analysis publication-title: Int J Mach Tools Manuf – volume: 5 start-page: 234 year: 2019 end-page: 242 ident: bib7 article-title: The state of the art of data science and engineering in structural health monitoring publication-title: Engineering – volume: 170 year: 2022 ident: bib46 article-title: A machine learning approach for automatic operational modal analysis publication-title: Mech Syst Signal Process – volume: 188 year: 2019 ident: bib14 article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals publication-title: Ocean Eng – volume: 81 start-page: 386 year: 2014 end-page: 397 ident: bib22 article-title: Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle publication-title: Eng Struct – volume: 270 year: 2022 ident: bib15 article-title: In situ seismic testing for experimental modal analysis of civil structures publication-title: Eng Struct – volume: 147 year: 2021 ident: bib37 article-title: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications publication-title: Mech Syst Signal Process – volume: 277 year: 2023 ident: bib34 article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures publication-title: Eng Struct – volume: 28 start-page: 857 year: 2006 end-page: 868 ident: bib8 article-title: Modal testing and FE model tuning of a lively footbridge structure publication-title: Eng Struct – volume: Vol. 54 start-page: 78 year: 2023 end-page: 88 ident: bib38 article-title: Automated operational modal analysis of bell towers subjected to narrowband input publication-title: In Structures – volume: 48 start-page: 1094 year: 2001 end-page: 1109 ident: bib61 article-title: Generalizations of the sampling theorem: Seven decades after Nyquist publication-title: IEEE Trans Circuits Syst I: Fundam Theory Appl – volume: 255 year: 2022 ident: bib41 article-title: A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering publication-title: Eng Struct – volume: Vol. 2 start-page: 13 year: 2007 end-page: 17 ident: bib62 article-title: Clustering categorical data using silhouette coefficient as a relocating measure publication-title: International conference on computational intelligence and multimedia applications (ICCIMA 2007) – year: 2015 ident: bib63 article-title: Data Mining: The Textbook – volume: 23 start-page: 1665 year: 2023 ident: bib27 article-title: Automated Operational Modal Analysis for Rotating Machinery Based on Clustering Techniques publication-title: Sensors – volume: 152 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib36 article-title: Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107388 – volume: Vol. 58 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib24 article-title: Fully automated operational modal identification of regular and irregular buildings with ensemble learning – volume: 29 issue: 12 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib21 article-title: Automatic identification of structural modal parameters based on density peaks clustering algorithm publication-title: Struct Control Health Monit doi: 10.1002/stc.3138 – volume: 142 year: 2020 ident: 10.1016/j.istruc.2024.106023_bib39 article-title: Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.106732 – volume: 491 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib9 article-title: Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115741 – volume: 19 start-page: 51 year: 2012 ident: 10.1016/j.istruc.2024.106023_bib1 article-title: System identification methods for (operational) modal analysis: review and comparison publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-012-9069-x – volume: 22 start-page: 948 issue: 4 year: 2008 ident: 10.1016/j.istruc.2024.106023_bib29 article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.10.009 – volume: 226 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib52 article-title: Experimental study on failure modes and retrofitting method of latticed transmission tower publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111365 – volume: 13 start-page: 855 issue: 6 year: 1999 ident: 10.1016/j.istruc.2024.106023_bib55 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mech Syst Signal Process doi: 10.1006/mssp.1999.1249 – volume: 199 year: 2020 ident: 10.1016/j.istruc.2024.106023_bib51 article-title: Fragility analysis of a transmission tower under combined wind and rain loads publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2020.104098 – volume: 186 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib26 article-title: Automated modal identification by quantification of high-spatial-resolution response measurements publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109816 – volume: 468 year: 2020 ident: 10.1016/j.istruc.2024.106023_bib5 article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115101 – volume: 274 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib48 article-title: Fully automatic operational modal analysis method based on statistical rule enhanced adaptive clustering method publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115216 – volume: 188 year: 2019 ident: 10.1016/j.istruc.2024.106023_bib14 article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106226 – volume: 21 start-page: 1906 issue: 4 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib44 article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights publication-title: Struct Health Monit doi: 10.1177/14759217211036880 – volume: 255 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib41 article-title: A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.113891 – volume: 128 start-page: 474 year: 2016 ident: 10.1016/j.istruc.2024.106023_bib16 article-title: Buffeting response of a suspension bridge in complex terrain publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.09.060 – volume: 270 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib15 article-title: In situ seismic testing for experimental modal analysis of civil structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114773 – volume: 277 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib34 article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115477 – volume: 204 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib42 article-title: Stochastic model updating with uncertainty quantification: an overview and tutorial publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110784 – volume: 128 start-page: 388 year: 2018 ident: 10.1016/j.istruc.2024.106023_bib23 article-title: Closely spaced modes identification through modified frequency domain decomposition publication-title: Measurement doi: 10.1016/j.measurement.2018.07.006 – volume: 81 start-page: 386 year: 2014 ident: 10.1016/j.istruc.2024.106023_bib22 article-title: Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.10.007 – volume: 291 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib40 article-title: Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116449 – volume: 22 start-page: 34 issue: 1 year: 2008 ident: 10.1016/j.istruc.2024.106023_bib11 article-title: Vibration-based structural health monitoring using output-only measurements under changing environment publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.07.004 – volume: 36 start-page: 2363 issue: 4 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib53 article-title: Resilience-oriented transmission line fragility modeling and real-time risk assessment of thunderstorms publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2021.3066157 – volume: 129 start-page: 457 year: 2018 ident: 10.1016/j.istruc.2024.106023_bib6 article-title: Applications of neural network models for structural health monitoring based on derived modal properties publication-title: Measurement doi: 10.1016/j.measurement.2018.07.051 – volume: Vol. 51 start-page: 1083 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib43 article-title: An improved stochastic subspace modal identification method considering uncertainty quantification – volume: 183 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib31 article-title: Experimental and operational modal analysis: Automated system identification for safety-critical applications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109658 – volume: 289 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib28 article-title: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116336 – volume: 29 start-page: 228 year: 2012 ident: 10.1016/j.istruc.2024.106023_bib58 article-title: Fully automated (operational) modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.01.007 – volume: 29 issue: 10 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib45 article-title: Machine learning‐based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges publication-title: Struct Control Health Monit doi: 10.1002/stc.3028 – volume: 160 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib19 article-title: Synergistic bridge modal analysis using frequency domain decomposition, observer Kalman filter identification, stochastic subspace identification, system realization using information matrix, and autoregressive exogenous model publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107818 – volume: 1 start-page: 16 year: 2003 ident: 10.1016/j.istruc.2024.106023_bib4 article-title: A review of structural health monitoring literature: 1996–2001 publication-title: Los Alamos Natl Lab, USA – volume: Vol. 54 start-page: 78 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib38 article-title: Automated operational modal analysis of bell towers subjected to narrowband input – volume: 71 start-page: 26 year: 2013 ident: 10.1016/j.istruc.2024.106023_bib10 article-title: Estimation of CNC machine–tool dynamic parameters based on random cutting excitation through operational modal analysis publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2013.04.001 – volume: Vol. 2 start-page: 13 year: 2007 ident: 10.1016/j.istruc.2024.106023_bib62 article-title: Clustering categorical data using silhouette coefficient as a relocating measure – volume: 277 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib54 article-title: Operational modal analysis of two typical UHV transmission towers: A comparative study by fast Bayesian FFT method publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115425 – volume: 48 start-page: 1094 issue: 9 year: 2001 ident: 10.1016/j.istruc.2024.106023_bib61 article-title: Generalizations of the sampling theorem: Seven decades after Nyquist publication-title: IEEE Trans Circuits Syst I: Fundam Theory Appl doi: 10.1109/81.948437 – year: 2012 ident: 10.1016/j.istruc.2024.106023_bib20 – volume: 199 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib35 article-title: Experimental comparison of automatic operational modal analysis algorithms for application to long-span road bridges publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110485 – ident: 10.1016/j.istruc.2024.106023_bib18 – volume: 188 start-page: 490 year: 2018 ident: 10.1016/j.istruc.2024.106023_bib17 article-title: Frequencies and damping ratios of bridges through Operational Modal Analysis using smartphones publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.08.089 – volume: 365 start-page: 589 issue: 1851 year: 2007 ident: 10.1016/j.istruc.2024.106023_bib2 article-title: Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical publication-title: Phys Eng Sci – volume: 148 start-page: 410 year: 2017 ident: 10.1016/j.istruc.2024.106023_bib13 article-title: Operational modal analysis of an end-supported pontoon bridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.06.069 – volume: 28 start-page: 857 issue: 6 year: 2006 ident: 10.1016/j.istruc.2024.106023_bib8 article-title: Modal testing and FE model tuning of a lively footbridge structure publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.10.012 – volume: 27 start-page: 1715 issue: 12 year: 2005 ident: 10.1016/j.istruc.2024.106023_bib3 article-title: Technology developments in structural health monitoring of large-scale bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2005.02.021 – year: 2015 ident: 10.1016/j.istruc.2024.106023_bib63 – start-page: 143 year: 2014 ident: 10.1016/j.istruc.2024.106023_bib12 – volume: 26 issue: 7 year: 2019 ident: 10.1016/j.istruc.2024.106023_bib25 article-title: Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions publication-title: Struct Control Health Monit doi: 10.1002/stc.2369 – volume: 150 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib60 article-title: Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107261 – volume: 289 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib33 article-title: Design and testing of a decision tree algorithm for early failure detection in steel truss bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116243 – volume: 5 start-page: 234 issue: 2 year: 2019 ident: 10.1016/j.istruc.2024.106023_bib7 article-title: The state of the art of data science and engineering in structural health monitoring publication-title: Engineering doi: 10.1016/j.eng.2018.11.027 – volume: 24 issue: 1 year: 2017 ident: 10.1016/j.istruc.2024.106023_bib57 article-title: Automated modal identification and tracking: Application to an iron arch bridge publication-title: Struct Control Health Monit doi: 10.1002/stc.1854 – volume: 23 start-page: 1665 issue: 3 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib27 article-title: Automated Operational Modal Analysis for Rotating Machinery Based on Clustering Techniques publication-title: Sensors doi: 10.3390/s23031665 – volume: 170 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib46 article-title: A machine learning approach for automatic operational modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.108813 – volume: 52 year: 2022 ident: 10.1016/j.istruc.2024.106023_bib30 article-title: Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology publication-title: J Build Eng – volume: Vol. 56 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib50 article-title: Reliable modal estimation of high-rise structures via synergistic usage of multiple stabilization diagram-based operational modal analysis techniques – volume: 46 start-page: 264 year: 2013 ident: 10.1016/j.istruc.2024.106023_bib59 article-title: Automated modal identification in operational conditions and its application to bridges publication-title: Eng Struct doi: 10.1016/j.engstruct.2012.07.031 – volume: 274 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib47 article-title: Machine learning-based stochastic subspace identification method for structural modal parameters publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115178 – volume: 22 start-page: 617 issue: 3 year: 2008 ident: 10.1016/j.istruc.2024.106023_bib56 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.09.004 – volume: 274 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib49 article-title: Contributions for enhanced tracking of (onshore) wind turbines modal parameters publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115120 – volume: Vol. 50 start-page: 255 year: 2023 ident: 10.1016/j.istruc.2024.106023_bib32 article-title: A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam – volume: 147 year: 2021 ident: 10.1016/j.istruc.2024.106023_bib37 article-title: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107077  | 
    
| SSID | ssj0002140247 | 
    
| Score | 2.30556 | 
    
| Snippet | Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 106023 | 
    
| SubjectTerms | Clustering algorithms Operational modal analysis Stochastic subspace identification Structural health monitoring Transmission towers  | 
    
| Title | A two-stage automated OMA framework for transmission towers based on clustering algorithms | 
    
| URI | https://dx.doi.org/10.1016/j.istruc.2024.106023 | 
    
| Volume | 61 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AIKHN dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: ACRLP dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AKRWK dateStart: 20150201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9GD-MT6Igevodts9nVciqUqrQctFC_LZrPRldotusW_78w-SgVR8JhsJiyTMN-XZB4AV5ZSsRaeokd3j0vXVzxwE5cLO40RXTxhHApwHk_c0VTezpxZCwZNLAy5Vda2v7LppbWue3q1NnvLLOs9COQOaF4leUEiCAZb0EH88f02dMKbu9FkfdUi8BAhylJjJMJJpgmiKz29sjJVK54VhcQu1xL2zyC1ATzDPditGSMLq5_ah1a6OICdjTyCh_AUsuIz50j0nlMWr4ocaWiq2f04ZKZxvmLITllByIQrS1dkrCqQxgjHNMN2Ml9R1gSckcXz5_w9K17ePo5gOrx-HIx4XTSBJ8j-C-5pqRw3Vkr7jhIy0SZ2AzzFCccYW2uq8WmMwAHGeFZqgr4SlnYSZUmD3NDE9jG0F_kiPQEmbB0YqaTul897NK_tIuoJgnmcowt2o6UoqTOKU2GLedS4jr1GlW4j0m1U6bYLfC21rDJq_DHeaxYg-rYzIjT6v0qe_lvyDLapVfmanUMbv6cXSD4KdVlvri-mH9h0 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOax58DeuStF0fy3B07uKDGwxfQtM0szLXoR3-fU96GRNEwcemOaGcpOf7kpwLQneWlKGirjSX7i7hTkcSz4kcQlkcArq4VNsmwHk0doIpf5jZsxrqVrEwxq2ytP2FTc-tddnSKrXZWiVJ64kCdwDzyo0XJICgt4Ma3GYu_J0Nvz8IxpujFgqbCJqXGjMixMhUQXS5p1eSp2qFvSLl0ORYlP0MUlvA0ztEByVjxH7xUUeoFi-P0f5WHsET9Ozj7DMlQPTmMQ7XWQo0NFb4ceRjXTlfYWCnODPIBDNrjshwUSANGxxTGJ6jxdpkTYARcbiYp-9J9vL2cYqmvftJNyBl0QQSAfvPiKu4tJ1QStWxJeWR0qHjwS6O2lozpUyNT60pdNDatWLttSW1lB1Ji2vghjpkZ6i-TJfxOcKUKU9zyVU7v94z4zIHUI8amIcxmohVWhJRmVHcFLZYiMp17FUUuhVGt6LQbRORjdSqyKjxR3-3mgDxbWUIMPq_Sl78W_IW7QaT0VAM--PBJdozbwq_sytUh77xNRCRTN6UC-0L1jDbVQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+automated+OMA+framework+for+transmission+towers+based+on+clustering+algorithms&rft.jtitle=Structures+%28Oxford%29&rft.au=Feng%2C+Yuhu&rft.au=Su%2C+Youhua&rft.au=Zhao%2C+Chao&rft.au=Zhu%2C+Yanming&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=61&rft_id=info:doi/10.1016%2Fj.istruc.2024.106023&rft.externalDocID=S2352012424001759 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |