A two-stage automated OMA framework for transmission towers based on clustering algorithms

Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularl...

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 61; p. 106023
Main Authors Feng, Yuhu, Su, Youhua, Zhao, Chao, Zhu, Yanming, Sun, Qing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2024.106023

Cover

Abstract Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularly in the following areas: i) Minimizing the number of parameters to achieve full automation; ii) Defining the optimal parameters to significantly reduce spurious modes; iii) Exploring an automated OMA framework for transmission towers. In this study, we propose an automated OMA method for transmission towers based on the clustering algorithms with the stochastic subspace identification (SSI) approach. The proposed method could be summarized in two stages: the “rough” and “enhanced” stages. In the “rough” stage, the modes identified by SSI are divided into possible physical modes and certain spurious modes by the k-means algorithm considering the physical meaning of the modal parameters. In the “enhanced” stage, similar physical modes are classified by data-driven hierarchical clustering, and the outliers of each cluster are eliminated. Then, the applicability and efficiency of the proposed method are verified by the numerical simulation. Finally, the method is applied to a ± 500 kV transmission tower to identify the modal parameters with the field ambient vibration test data. Identification results are compared with manual identification to demonstrate the improvement and contribution of the automated OMA. The results show that the proposed framework has the capacity to automatically eliminate spurious modes and discrimination in the case of the close modes. The proposed method could accurately and automatically identify modal parameters to avoid the dependence on the experience and the uncertainty of manual identification.
AbstractList Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective uses of automated OMA algorithms during the past decade. However, several unresolved issues still require further investigation, particularly in the following areas: i) Minimizing the number of parameters to achieve full automation; ii) Defining the optimal parameters to significantly reduce spurious modes; iii) Exploring an automated OMA framework for transmission towers. In this study, we propose an automated OMA method for transmission towers based on the clustering algorithms with the stochastic subspace identification (SSI) approach. The proposed method could be summarized in two stages: the “rough” and “enhanced” stages. In the “rough” stage, the modes identified by SSI are divided into possible physical modes and certain spurious modes by the k-means algorithm considering the physical meaning of the modal parameters. In the “enhanced” stage, similar physical modes are classified by data-driven hierarchical clustering, and the outliers of each cluster are eliminated. Then, the applicability and efficiency of the proposed method are verified by the numerical simulation. Finally, the method is applied to a ± 500 kV transmission tower to identify the modal parameters with the field ambient vibration test data. Identification results are compared with manual identification to demonstrate the improvement and contribution of the automated OMA. The results show that the proposed framework has the capacity to automatically eliminate spurious modes and discrimination in the case of the close modes. The proposed method could accurately and automatically identify modal parameters to avoid the dependence on the experience and the uncertainty of manual identification.
ArticleNumber 106023
Author Su, Youhua
Zhu, Yanming
Sun, Qing
Feng, Yuhu
Zhao, Chao
Author_xml – sequence: 1
  givenname: Yuhu
  surname: Feng
  fullname: Feng, Yuhu
– sequence: 2
  givenname: Youhua
  surname: Su
  fullname: Su, Youhua
– sequence: 3
  givenname: Chao
  surname: Zhao
  fullname: Zhao, Chao
– sequence: 4
  givenname: Yanming
  orcidid: 0000-0003-2635-3165
  surname: Zhu
  fullname: Zhu, Yanming
– sequence: 5
  givenname: Qing
  orcidid: 0000-0001-9020-6851
  surname: Sun
  fullname: Sun, Qing
  email: sunq@xjtu.edu.cn
BookMark eNqFkMtKAzEUhoNUsNa-gYu8wNQkk5lpXQileAOlG924CbnW1JmJ5KQW396UcSEudHUu_P_hP98pGvWhtwidUzKjhNYX25mHFHd6xgjjeVUTVh6hMSsrVhDK-OhHf4KmAFtCCKM8q5sxelnitA8FJLmxWO5S6GSyBq8fl9hF2dl9iG_YhYhTlD10HsCHHqewtxGwkpC1edbtDpKNvt9g2W5C9Om1gzN07GQLdvpdJ-j55vppdVc8rG_vV8uHQpekTkVjuKpqqZSZV4pxbZysF_Mcr3KuNKYp57VzLAuca4h1C6oYMZVWhDtaESfLCboc7uoYAKJ1QvskU86ZM_tWUCIOoMRWDKDEAZQYQGUz_2V-j76T8fM_29Vgs_mxD2-jAO1tr63x0eokTPB_H_gCMeWJBw
CitedBy_id crossref_primary_10_3390_app14188190
crossref_primary_10_3390_machines13010039
crossref_primary_10_1155_2024_3599911
crossref_primary_10_3390_buildings15020200
Cites_doi 10.1016/j.ymssp.2020.107388
10.1002/stc.3138
10.1016/j.ymssp.2020.106732
10.1016/j.jsv.2020.115741
10.1007/s11831-012-9069-x
10.1016/j.ymssp.2007.10.009
10.1016/j.engstruct.2020.111365
10.1006/mssp.1999.1249
10.1016/j.jweia.2020.104098
10.1016/j.ymssp.2022.109816
10.1016/j.jsv.2019.115101
10.1016/j.engstruct.2022.115216
10.1016/j.oceaneng.2019.106226
10.1177/14759217211036880
10.1016/j.engstruct.2022.113891
10.1016/j.engstruct.2016.09.060
10.1016/j.engstruct.2022.114773
10.1016/j.engstruct.2022.115477
10.1016/j.ymssp.2023.110784
10.1016/j.measurement.2018.07.006
10.1016/j.engstruct.2014.10.007
10.1016/j.engstruct.2023.116449
10.1016/j.ymssp.2007.07.004
10.1109/TPWRD.2021.3066157
10.1016/j.measurement.2018.07.051
10.1016/j.ymssp.2022.109658
10.1016/j.engstruct.2023.116336
10.1016/j.ymssp.2012.01.007
10.1002/stc.3028
10.1016/j.ymssp.2021.107818
10.1016/j.ijmachtools.2013.04.001
10.1016/j.engstruct.2022.115425
10.1109/81.948437
10.1016/j.ymssp.2023.110485
10.1016/j.conbuildmat.2018.08.089
10.1016/j.engstruct.2017.06.069
10.1016/j.engstruct.2005.10.012
10.1016/j.engstruct.2005.02.021
10.1002/stc.2369
10.1016/j.ymssp.2020.107261
10.1016/j.engstruct.2023.116243
10.1016/j.eng.2018.11.027
10.1002/stc.1854
10.3390/s23031665
10.1016/j.ymssp.2022.108813
10.1016/j.engstruct.2012.07.031
10.1016/j.engstruct.2022.115178
10.1016/j.ymssp.2007.09.004
10.1016/j.engstruct.2022.115120
10.1016/j.ymssp.2020.107077
ContentType Journal Article
Copyright 2024 Institution of Structural Engineers
Copyright_xml – notice: 2024 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2024.106023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
ExternalDocumentID 10_1016_j_istruc_2024_106023
S2352012424001759
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c306t-7d4b56abbd85b24cdfa6984025ff3dd7386ff26abff70ef91b20d5cb04f150fa3
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Wed Oct 01 03:29:38 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Tue Jun 18 08:51:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural health monitoring
Transmission towers
Clustering algorithms
Stochastic subspace identification
Operational modal analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7d4b56abbd85b24cdfa6984025ff3dd7386ff26abff70ef91b20d5cb04f150fa3
ORCID 0000-0003-2635-3165
0000-0001-9020-6851
ParticipantIDs crossref_citationtrail_10_1016_j_istruc_2024_106023
crossref_primary_10_1016_j_istruc_2024_106023
elsevier_sciencedirect_doi_10_1016_j_istruc_2024_106023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Zhou, Huang, Li (bib21) 2022; 29
Deraemaeker, Reynders, De Roeck, Kullaa (bib11) 2008; 22
Qu, Yi, Li, Chen (bib23) 2018; 128
Aggarwal (bib63) 2015
Mao, Su, Wang, Li (bib28) 2023; 289
Charbonnel (bib36) 2021; 152
He, Yang, Li (bib41) 2022; 255
Zhong, Chen, Sun, Tian (bib48) 2023; 274
Ubertini, Gentile, Materazzi (bib59) 2013; 46
Liu, Bao, Li (bib47) 2023; 274
Bendat, J.S., & Piersol, A.G. (1980). Engineering applications of correlation and spectral analysis. New York.
Mostafaei, Mostofinejad, Ghamami, Wu (bib32) 2023; Vol. 50
Zhou, Li (bib30) 2022; 52
Aranganayagi, Thangavel (bib62) 2007; Vol. 2
Bhowmik, Tripura, Hazra, Pakrashi (bib5) 2020; 468
Dreher, Storti, Machado (bib27) 2023; 23
Rainieri, Fabbrocino (bib12) 2014
Volkmar, Soal, Govers, Böswald (bib31) 2023; 183
Afshar, Khodaygan (bib25) 2019; 26
Sohn, Farrar, Hemez, Shunk, Stinemates, Nadler, Czarnecki (bib4) 2003; 1
Mugnaini, Fragonara, Civera (bib46) 2022; 170
Bertero, Tarazaga, Sarlo (bib15) 2022; 270
Sun, Li (bib50) 2023; Vol. 56
Cheynet, Jakobsen, Snæbjörnsson (bib16) 2016; 128
Malekjafarian, OBrien (bib22) 2014; 81
Tran, Ozer (bib19) 2021; 160
Wan, Ren, Todd (bib39) 2020; 142
Reynders, Houbrechts, De Roeck (bib58) 2012; 29
Hao, Bi, Chen, Pham, Li (bib34) 2023; 277
Bao, Wang, Zheng, Zhang, Huang, Sun, Li (bib53) 2021; 36
Bao, Chen, Wei, Xu, Tang, Li (bib7) 2019; 5
Sun, Rainieri, Ren, Yan, Fabbrocino (bib38) 2023; Vol. 54
Fu, Li, Li, Dong (bib51) 2020; 199
Cabboi, Magalhães, Gentile, Cunha (bib57) 2017; 24
Brownjohn (bib2) 2007; 365
Zhu, Au, Li, Xie (bib60) 2021; 150
Feng, Wu, Fu, Ng, He (bib40) 2023; 291
Kvåle, Øiseth, Rønnquist (bib13) 2017; 148
Zhou, Zhi, Wang, Hong, Xu, Shu (bib43) 2023; Vol. 51
Malekloo, Ozer, AlHamaydeh, Girolami (bib44) 2022; 21
Ko, Ni (bib3) 2005; 27
Chang, Lin, Chang (bib6) 2018; 129
Hou, Xia (bib9) 2021; 491
Reynders, Pintelon, De Roeck (bib29) 2008; 22
Mostafaei, Mostofinejad, Ghamami, Wu (bib24) 2023; Vol. 58
Xie, Zhang (bib52) 2021; 226
Castellanos-Toro, Marmolejo, Marulanda, Cruz, Thomson (bib17) 2018; 188
Barros, Conde, Cabaleiro, Riveiro (bib33) 2023; 289
Dederichs, Øiseth (bib35) 2023; 199
Zhu, Sun, Zhao, Wei, Yin, Su (bib54) 2023; 277
Van Overschee, De Moor (bib20) 2012
Avci, Abdeljaber, Kiranyaz, Hussein, Gabbouj, Inman (bib37) 2021; 147
Pereira, Pacheco, Pimenta, Moutinho, Cunha, Magalhães (bib49) 2023; 274
Dorn, Yang (bib26) 2023; 186
Peeters, De Roeck (bib55) 1999; 13
Reynders, De Roeck (bib56) 2008; 22
Bi, Beer, Cogan, Mottershead (bib42) 2023; 204
Li, Cai, Mao, Huang, Luo (bib10) 2013; 71
Civera, Mugnaini, Zanotti Fragonara (bib45) 2022; 29
Kim, Kim, Choe (bib14) 2019; 188
Reynders (bib1) 2012; 19
Živanović, Pavic, Reynolds (bib8) 2006; 28
Vaidyanathan (bib61) 2001; 48
Dederichs (10.1016/j.istruc.2024.106023_bib35) 2023; 199
Mostafaei (10.1016/j.istruc.2024.106023_bib32) 2023; Vol. 50
Bertero (10.1016/j.istruc.2024.106023_bib15) 2022; 270
Volkmar (10.1016/j.istruc.2024.106023_bib31) 2023; 183
Bi (10.1016/j.istruc.2024.106023_bib42) 2023; 204
Castellanos-Toro (10.1016/j.istruc.2024.106023_bib17) 2018; 188
Zhu (10.1016/j.istruc.2024.106023_bib60) 2021; 150
Živanović (10.1016/j.istruc.2024.106023_bib8) 2006; 28
He (10.1016/j.istruc.2024.106023_bib41) 2022; 255
Xie (10.1016/j.istruc.2024.106023_bib52) 2021; 226
Peeters (10.1016/j.istruc.2024.106023_bib55) 1999; 13
Aranganayagi (10.1016/j.istruc.2024.106023_bib62) 2007; Vol. 2
Zhu (10.1016/j.istruc.2024.106023_bib54) 2023; 277
Avci (10.1016/j.istruc.2024.106023_bib37) 2021; 147
Malekloo (10.1016/j.istruc.2024.106023_bib44) 2022; 21
Kim (10.1016/j.istruc.2024.106023_bib14) 2019; 188
Hao (10.1016/j.istruc.2024.106023_bib34) 2023; 277
Tran (10.1016/j.istruc.2024.106023_bib19) 2021; 160
Zhou (10.1016/j.istruc.2024.106023_bib43) 2023; Vol. 51
Ko (10.1016/j.istruc.2024.106023_bib3) 2005; 27
Li (10.1016/j.istruc.2024.106023_bib10) 2013; 71
Afshar (10.1016/j.istruc.2024.106023_bib25) 2019; 26
Deraemaeker (10.1016/j.istruc.2024.106023_bib11) 2008; 22
Zhong (10.1016/j.istruc.2024.106023_bib48) 2023; 274
Sun (10.1016/j.istruc.2024.106023_bib50) 2023; Vol. 56
Zhou (10.1016/j.istruc.2024.106023_bib30) 2022; 52
Bao (10.1016/j.istruc.2024.106023_bib53) 2021; 36
Bao (10.1016/j.istruc.2024.106023_bib7) 2019; 5
Mugnaini (10.1016/j.istruc.2024.106023_bib46) 2022; 170
Barros (10.1016/j.istruc.2024.106023_bib33) 2023; 289
Cabboi (10.1016/j.istruc.2024.106023_bib57) 2017; 24
Zhang (10.1016/j.istruc.2024.106023_bib21) 2022; 29
Reynders (10.1016/j.istruc.2024.106023_bib1) 2012; 19
Hou (10.1016/j.istruc.2024.106023_bib9) 2021; 491
Civera (10.1016/j.istruc.2024.106023_bib45) 2022; 29
Van Overschee (10.1016/j.istruc.2024.106023_bib20) 2012
Liu (10.1016/j.istruc.2024.106023_bib47) 2023; 274
Malekjafarian (10.1016/j.istruc.2024.106023_bib22) 2014; 81
Charbonnel (10.1016/j.istruc.2024.106023_bib36) 2021; 152
Aggarwal (10.1016/j.istruc.2024.106023_bib63) 2015
Chang (10.1016/j.istruc.2024.106023_bib6) 2018; 129
Kvåle (10.1016/j.istruc.2024.106023_bib13) 2017; 148
Mostafaei (10.1016/j.istruc.2024.106023_bib24) 2023; Vol. 58
Sohn (10.1016/j.istruc.2024.106023_bib4) 2003; 1
Reynders (10.1016/j.istruc.2024.106023_bib29) 2008; 22
Reynders (10.1016/j.istruc.2024.106023_bib56) 2008; 22
Qu (10.1016/j.istruc.2024.106023_bib23) 2018; 128
Vaidyanathan (10.1016/j.istruc.2024.106023_bib61) 2001; 48
Dreher (10.1016/j.istruc.2024.106023_bib27) 2023; 23
Reynders (10.1016/j.istruc.2024.106023_bib58) 2012; 29
Pereira (10.1016/j.istruc.2024.106023_bib49) 2023; 274
Sun (10.1016/j.istruc.2024.106023_bib38) 2023; Vol. 54
Ubertini (10.1016/j.istruc.2024.106023_bib59) 2013; 46
10.1016/j.istruc.2024.106023_bib18
Brownjohn (10.1016/j.istruc.2024.106023_bib2) 2007; 365
Wan (10.1016/j.istruc.2024.106023_bib39) 2020; 142
Cheynet (10.1016/j.istruc.2024.106023_bib16) 2016; 128
Rainieri (10.1016/j.istruc.2024.106023_bib12) 2014
Feng (10.1016/j.istruc.2024.106023_bib40) 2023; 291
Fu (10.1016/j.istruc.2024.106023_bib51) 2020; 199
Bhowmik (10.1016/j.istruc.2024.106023_bib5) 2020; 468
Dorn (10.1016/j.istruc.2024.106023_bib26) 2023; 186
Mao (10.1016/j.istruc.2024.106023_bib28) 2023; 289
References_xml – volume: 19
  start-page: 51
  year: 2012
  end-page: 124
  ident: bib1
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch Comput Methods Eng
– volume: 148
  start-page: 410
  year: 2017
  end-page: 423
  ident: bib13
  article-title: Operational modal analysis of an end-supported pontoon bridge
  publication-title: Eng Struct
– volume: 21
  start-page: 1906
  year: 2022
  end-page: 1955
  ident: bib44
  article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights
  publication-title: Struct Health Monit
– reference: Bendat, J.S., & Piersol, A.G. (1980). Engineering applications of correlation and spectral analysis. New York.
– volume: 277
  year: 2023
  ident: bib54
  article-title: Operational modal analysis of two typical UHV transmission towers: A comparative study by fast Bayesian FFT method
  publication-title: Eng Struct
– volume: 52
  year: 2022
  ident: bib30
  article-title: Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology
  publication-title: J Build Eng
– volume: 468
  year: 2020
  ident: bib5
  article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection
  publication-title: J Sound Vib
– volume: 186
  year: 2023
  ident: bib26
  article-title: Automated modal identification by quantification of high-spatial-resolution response measurements
  publication-title: Mech Syst Signal Process
– volume: 1
  start-page: 16
  year: 2003
  ident: bib4
  article-title: A review of structural health monitoring literature: 1996–2001
  publication-title: Los Alamos Natl Lab, USA
– volume: Vol. 58
  year: 2023
  ident: bib24
  article-title: Fully automated operational modal identification of regular and irregular buildings with ensemble learning
  publication-title: In Structures
– volume: 183
  year: 2023
  ident: bib31
  article-title: Experimental and operational modal analysis: Automated system identification for safety-critical applications
  publication-title: Mech Syst Signal Process
– volume: 274
  year: 2023
  ident: bib47
  article-title: Machine learning-based stochastic subspace identification method for structural modal parameters
  publication-title: Eng Struct
– volume: Vol. 51
  start-page: 1083
  year: 2023
  end-page: 1094
  ident: bib43
  article-title: An improved stochastic subspace modal identification method considering uncertainty quantification
  publication-title: In Structures
– volume: 128
  start-page: 474
  year: 2016
  end-page: 487
  ident: bib16
  article-title: Buffeting response of a suspension bridge in complex terrain
  publication-title: Eng Struct
– volume: 29
  year: 2022
  ident: bib21
  article-title: Automatic identification of structural modal parameters based on density peaks clustering algorithm
  publication-title: Struct Control Health Monit
– volume: 27
  start-page: 1715
  year: 2005
  end-page: 1725
  ident: bib3
  article-title: Technology developments in structural health monitoring of large-scale bridges
  publication-title: Eng Struct
– volume: 24
  year: 2017
  ident: bib57
  article-title: Automated modal identification and tracking: Application to an iron arch bridge
  publication-title: Struct Control Health Monit
– volume: 129
  start-page: 457
  year: 2018
  end-page: 470
  ident: bib6
  article-title: Applications of neural network models for structural health monitoring based on derived modal properties
  publication-title: Measurement
– volume: 13
  start-page: 855
  year: 1999
  end-page: 878
  ident: bib55
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mech Syst Signal Process
– volume: 365
  start-page: 589
  year: 2007
  end-page: 622
  ident: bib2
  article-title: Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical
  publication-title: Phys Eng Sci
– volume: Vol. 50
  start-page: 255
  year: 2023
  end-page: 271
  ident: bib32
  article-title: A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam
  publication-title: In Structures
– volume: 199
  year: 2020
  ident: bib51
  article-title: Fragility analysis of a transmission tower under combined wind and rain loads
  publication-title: J Wind Eng Ind Aerodyn
– volume: 274
  year: 2023
  ident: bib48
  article-title: Fully automatic operational modal analysis method based on statistical rule enhanced adaptive clustering method
  publication-title: Eng Struct
– volume: 491
  year: 2021
  ident: bib9
  article-title: Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019
  publication-title: J Sound Vib
– volume: 160
  year: 2021
  ident: bib19
  article-title: Synergistic bridge modal analysis using frequency domain decomposition, observer Kalman filter identification, stochastic subspace identification, system realization using information matrix, and autoregressive exogenous model
  publication-title: Mech Syst Signal Process
– volume: 150
  year: 2021
  ident: bib60
  article-title: Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes
  publication-title: Mech Syst Signal Process
– volume: 289
  year: 2023
  ident: bib33
  article-title: Design and testing of a decision tree algorithm for early failure detection in steel truss bridges
  publication-title: Eng Struct
– volume: 291
  year: 2023
  ident: bib40
  article-title: Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique
  publication-title: Eng Struct
– volume: 199
  year: 2023
  ident: bib35
  article-title: Experimental comparison of automatic operational modal analysis algorithms for application to long-span road bridges
  publication-title: Mech Syst Signal Process
– volume: 188
  start-page: 490
  year: 2018
  end-page: 504
  ident: bib17
  article-title: Frequencies and damping ratios of bridges through Operational Modal Analysis using smartphones
  publication-title: Constr Build Mater
– volume: 22
  start-page: 34
  year: 2008
  end-page: 56
  ident: bib11
  article-title: Vibration-based structural health monitoring using output-only measurements under changing environment
  publication-title: Mech Syst Signal Process
– year: 2012
  ident: bib20
  article-title: Subspace identification for linear systems: Theory—Implementation—Applications
– volume: 226
  year: 2021
  ident: bib52
  article-title: Experimental study on failure modes and retrofitting method of latticed transmission tower
  publication-title: Eng Struct
– volume: 22
  start-page: 617
  year: 2008
  end-page: 637
  ident: bib56
  article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis
  publication-title: Mech Syst Signal Process
– volume: 36
  start-page: 2363
  year: 2021
  end-page: 2373
  ident: bib53
  article-title: Resilience-oriented transmission line fragility modeling and real-time risk assessment of thunderstorms
  publication-title: IEEE Trans Power Deliv
– volume: 46
  start-page: 264
  year: 2013
  end-page: 278
  ident: bib59
  article-title: Automated modal identification in operational conditions and its application to bridges
  publication-title: Eng Struct
– volume: 128
  start-page: 388
  year: 2018
  end-page: 392
  ident: bib23
  article-title: Closely spaced modes identification through modified frequency domain decomposition
  publication-title: Measurement
– volume: 274
  year: 2023
  ident: bib49
  article-title: Contributions for enhanced tracking of (onshore) wind turbines modal parameters
  publication-title: Eng Struct
– start-page: 143
  year: 2014
  ident: bib12
  article-title: Operational Modal Analysis of Civil Engineering Structures
– volume: 204
  year: 2023
  ident: bib42
  article-title: Stochastic model updating with uncertainty quantification: an overview and tutorial
  publication-title: Mech Syst Signal Process
– volume: Vol. 56
  year: 2023
  ident: bib50
  article-title: Reliable modal estimation of high-rise structures via synergistic usage of multiple stabilization diagram-based operational modal analysis techniques
  publication-title: In Structures
– volume: 22
  start-page: 948
  year: 2008
  end-page: 969
  ident: bib29
  article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification
  publication-title: Mech Syst Signal Process
– volume: 142
  year: 2020
  ident: bib39
  article-title: Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics
  publication-title: Mech Syst Signal Process
– volume: 29
  start-page: 228
  year: 2012
  end-page: 250
  ident: bib58
  article-title: Fully automated (operational) modal analysis
  publication-title: Mech Syst Signal Process
– volume: 29
  year: 2022
  ident: bib45
  article-title: Machine learning‐based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges
  publication-title: Struct Control Health Monit
– volume: 289
  year: 2023
  ident: bib28
  article-title: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms
  publication-title: Eng Struct
– volume: 26
  year: 2019
  ident: bib25
  article-title: Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions
  publication-title: Struct Control Health Monit
– volume: 152
  year: 2021
  ident: bib36
  article-title: Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign
  publication-title: Mech Syst Signal Process
– volume: 71
  start-page: 26
  year: 2013
  end-page: 40
  ident: bib10
  article-title: Estimation of CNC machine–tool dynamic parameters based on random cutting excitation through operational modal analysis
  publication-title: Int J Mach Tools Manuf
– volume: 5
  start-page: 234
  year: 2019
  end-page: 242
  ident: bib7
  article-title: The state of the art of data science and engineering in structural health monitoring
  publication-title: Engineering
– volume: 170
  year: 2022
  ident: bib46
  article-title: A machine learning approach for automatic operational modal analysis
  publication-title: Mech Syst Signal Process
– volume: 188
  year: 2019
  ident: bib14
  article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals
  publication-title: Ocean Eng
– volume: 81
  start-page: 386
  year: 2014
  end-page: 397
  ident: bib22
  article-title: Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle
  publication-title: Eng Struct
– volume: 270
  year: 2022
  ident: bib15
  article-title: In situ seismic testing for experimental modal analysis of civil structures
  publication-title: Eng Struct
– volume: 147
  year: 2021
  ident: bib37
  article-title: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications
  publication-title: Mech Syst Signal Process
– volume: 277
  year: 2023
  ident: bib34
  article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures
  publication-title: Eng Struct
– volume: 28
  start-page: 857
  year: 2006
  end-page: 868
  ident: bib8
  article-title: Modal testing and FE model tuning of a lively footbridge structure
  publication-title: Eng Struct
– volume: Vol. 54
  start-page: 78
  year: 2023
  end-page: 88
  ident: bib38
  article-title: Automated operational modal analysis of bell towers subjected to narrowband input
  publication-title: In Structures
– volume: 48
  start-page: 1094
  year: 2001
  end-page: 1109
  ident: bib61
  article-title: Generalizations of the sampling theorem: Seven decades after Nyquist
  publication-title: IEEE Trans Circuits Syst I: Fundam Theory Appl
– volume: 255
  year: 2022
  ident: bib41
  article-title: A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering
  publication-title: Eng Struct
– volume: Vol. 2
  start-page: 13
  year: 2007
  end-page: 17
  ident: bib62
  article-title: Clustering categorical data using silhouette coefficient as a relocating measure
  publication-title: International conference on computational intelligence and multimedia applications (ICCIMA 2007)
– year: 2015
  ident: bib63
  article-title: Data Mining: The Textbook
– volume: 23
  start-page: 1665
  year: 2023
  ident: bib27
  article-title: Automated Operational Modal Analysis for Rotating Machinery Based on Clustering Techniques
  publication-title: Sensors
– volume: 152
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib36
  article-title: Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107388
– volume: Vol. 58
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib24
  article-title: Fully automated operational modal identification of regular and irregular buildings with ensemble learning
– volume: 29
  issue: 12
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib21
  article-title: Automatic identification of structural modal parameters based on density peaks clustering algorithm
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.3138
– volume: 142
  year: 2020
  ident: 10.1016/j.istruc.2024.106023_bib39
  article-title: Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.106732
– volume: 491
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib9
  article-title: Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115741
– volume: 19
  start-page: 51
  year: 2012
  ident: 10.1016/j.istruc.2024.106023_bib1
  article-title: System identification methods for (operational) modal analysis: review and comparison
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-012-9069-x
– volume: 22
  start-page: 948
  issue: 4
  year: 2008
  ident: 10.1016/j.istruc.2024.106023_bib29
  article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.10.009
– volume: 226
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib52
  article-title: Experimental study on failure modes and retrofitting method of latticed transmission tower
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111365
– volume: 13
  start-page: 855
  issue: 6
  year: 1999
  ident: 10.1016/j.istruc.2024.106023_bib55
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.1999.1249
– volume: 199
  year: 2020
  ident: 10.1016/j.istruc.2024.106023_bib51
  article-title: Fragility analysis of a transmission tower under combined wind and rain loads
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2020.104098
– volume: 186
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib26
  article-title: Automated modal identification by quantification of high-spatial-resolution response measurements
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109816
– volume: 468
  year: 2020
  ident: 10.1016/j.istruc.2024.106023_bib5
  article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115101
– volume: 274
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib48
  article-title: Fully automatic operational modal analysis method based on statistical rule enhanced adaptive clustering method
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115216
– volume: 188
  year: 2019
  ident: 10.1016/j.istruc.2024.106023_bib14
  article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106226
– volume: 21
  start-page: 1906
  issue: 4
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib44
  article-title: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights
  publication-title: Struct Health Monit
  doi: 10.1177/14759217211036880
– volume: 255
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib41
  article-title: A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.113891
– volume: 128
  start-page: 474
  year: 2016
  ident: 10.1016/j.istruc.2024.106023_bib16
  article-title: Buffeting response of a suspension bridge in complex terrain
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.09.060
– volume: 270
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib15
  article-title: In situ seismic testing for experimental modal analysis of civil structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114773
– volume: 277
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib34
  article-title: Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115477
– volume: 204
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib42
  article-title: Stochastic model updating with uncertainty quantification: an overview and tutorial
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110784
– volume: 128
  start-page: 388
  year: 2018
  ident: 10.1016/j.istruc.2024.106023_bib23
  article-title: Closely spaced modes identification through modified frequency domain decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.006
– volume: 81
  start-page: 386
  year: 2014
  ident: 10.1016/j.istruc.2024.106023_bib22
  article-title: Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.10.007
– volume: 291
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib40
  article-title: Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116449
– volume: 22
  start-page: 34
  issue: 1
  year: 2008
  ident: 10.1016/j.istruc.2024.106023_bib11
  article-title: Vibration-based structural health monitoring using output-only measurements under changing environment
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.07.004
– volume: 36
  start-page: 2363
  issue: 4
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib53
  article-title: Resilience-oriented transmission line fragility modeling and real-time risk assessment of thunderstorms
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2021.3066157
– volume: 129
  start-page: 457
  year: 2018
  ident: 10.1016/j.istruc.2024.106023_bib6
  article-title: Applications of neural network models for structural health monitoring based on derived modal properties
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.051
– volume: Vol. 51
  start-page: 1083
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib43
  article-title: An improved stochastic subspace modal identification method considering uncertainty quantification
– volume: 183
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib31
  article-title: Experimental and operational modal analysis: Automated system identification for safety-critical applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109658
– volume: 289
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib28
  article-title: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116336
– volume: 29
  start-page: 228
  year: 2012
  ident: 10.1016/j.istruc.2024.106023_bib58
  article-title: Fully automated (operational) modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.01.007
– volume: 29
  issue: 10
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib45
  article-title: Machine learning‐based automatic operational modal analysis: A structural health monitoring application to masonry arch bridges
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.3028
– volume: 160
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib19
  article-title: Synergistic bridge modal analysis using frequency domain decomposition, observer Kalman filter identification, stochastic subspace identification, system realization using information matrix, and autoregressive exogenous model
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107818
– volume: 1
  start-page: 16
  year: 2003
  ident: 10.1016/j.istruc.2024.106023_bib4
  article-title: A review of structural health monitoring literature: 1996–2001
  publication-title: Los Alamos Natl Lab, USA
– volume: Vol. 54
  start-page: 78
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib38
  article-title: Automated operational modal analysis of bell towers subjected to narrowband input
– volume: 71
  start-page: 26
  year: 2013
  ident: 10.1016/j.istruc.2024.106023_bib10
  article-title: Estimation of CNC machine–tool dynamic parameters based on random cutting excitation through operational modal analysis
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2013.04.001
– volume: Vol. 2
  start-page: 13
  year: 2007
  ident: 10.1016/j.istruc.2024.106023_bib62
  article-title: Clustering categorical data using silhouette coefficient as a relocating measure
– volume: 277
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib54
  article-title: Operational modal analysis of two typical UHV transmission towers: A comparative study by fast Bayesian FFT method
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115425
– volume: 48
  start-page: 1094
  issue: 9
  year: 2001
  ident: 10.1016/j.istruc.2024.106023_bib61
  article-title: Generalizations of the sampling theorem: Seven decades after Nyquist
  publication-title: IEEE Trans Circuits Syst I: Fundam Theory Appl
  doi: 10.1109/81.948437
– year: 2012
  ident: 10.1016/j.istruc.2024.106023_bib20
– volume: 199
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib35
  article-title: Experimental comparison of automatic operational modal analysis algorithms for application to long-span road bridges
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110485
– ident: 10.1016/j.istruc.2024.106023_bib18
– volume: 188
  start-page: 490
  year: 2018
  ident: 10.1016/j.istruc.2024.106023_bib17
  article-title: Frequencies and damping ratios of bridges through Operational Modal Analysis using smartphones
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.08.089
– volume: 365
  start-page: 589
  issue: 1851
  year: 2007
  ident: 10.1016/j.istruc.2024.106023_bib2
  article-title: Structural health monitoring of civil infrastructure. Philosophical Transactions of the Royal Society A: Mathematical
  publication-title: Phys Eng Sci
– volume: 148
  start-page: 410
  year: 2017
  ident: 10.1016/j.istruc.2024.106023_bib13
  article-title: Operational modal analysis of an end-supported pontoon bridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.06.069
– volume: 28
  start-page: 857
  issue: 6
  year: 2006
  ident: 10.1016/j.istruc.2024.106023_bib8
  article-title: Modal testing and FE model tuning of a lively footbridge structure
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.10.012
– volume: 27
  start-page: 1715
  issue: 12
  year: 2005
  ident: 10.1016/j.istruc.2024.106023_bib3
  article-title: Technology developments in structural health monitoring of large-scale bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.02.021
– year: 2015
  ident: 10.1016/j.istruc.2024.106023_bib63
– start-page: 143
  year: 2014
  ident: 10.1016/j.istruc.2024.106023_bib12
– volume: 26
  issue: 7
  year: 2019
  ident: 10.1016/j.istruc.2024.106023_bib25
  article-title: Enhanced stabilization diagram for automated modal parameter identification based on power spectral density transmissibility functions
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2369
– volume: 150
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib60
  article-title: Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107261
– volume: 289
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib33
  article-title: Design and testing of a decision tree algorithm for early failure detection in steel truss bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116243
– volume: 5
  start-page: 234
  issue: 2
  year: 2019
  ident: 10.1016/j.istruc.2024.106023_bib7
  article-title: The state of the art of data science and engineering in structural health monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.027
– volume: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.istruc.2024.106023_bib57
  article-title: Automated modal identification and tracking: Application to an iron arch bridge
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1854
– volume: 23
  start-page: 1665
  issue: 3
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib27
  article-title: Automated Operational Modal Analysis for Rotating Machinery Based on Clustering Techniques
  publication-title: Sensors
  doi: 10.3390/s23031665
– volume: 170
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib46
  article-title: A machine learning approach for automatic operational modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108813
– volume: 52
  year: 2022
  ident: 10.1016/j.istruc.2024.106023_bib30
  article-title: Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology
  publication-title: J Build Eng
– volume: Vol. 56
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib50
  article-title: Reliable modal estimation of high-rise structures via synergistic usage of multiple stabilization diagram-based operational modal analysis techniques
– volume: 46
  start-page: 264
  year: 2013
  ident: 10.1016/j.istruc.2024.106023_bib59
  article-title: Automated modal identification in operational conditions and its application to bridges
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2012.07.031
– volume: 274
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib47
  article-title: Machine learning-based stochastic subspace identification method for structural modal parameters
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115178
– volume: 22
  start-page: 617
  issue: 3
  year: 2008
  ident: 10.1016/j.istruc.2024.106023_bib56
  article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.09.004
– volume: 274
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib49
  article-title: Contributions for enhanced tracking of (onshore) wind turbines modal parameters
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115120
– volume: Vol. 50
  start-page: 255
  year: 2023
  ident: 10.1016/j.istruc.2024.106023_bib32
  article-title: A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam
– volume: 147
  year: 2021
  ident: 10.1016/j.istruc.2024.106023_bib37
  article-title: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107077
SSID ssj0002140247
Score 2.30556
Snippet Automated operational modal analysis (OMA) is a significant basis for structural health monitoring (SHM) of transmission towers. There have been many effective...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106023
SubjectTerms Clustering algorithms
Operational modal analysis
Stochastic subspace identification
Structural health monitoring
Transmission towers
Title A two-stage automated OMA framework for transmission towers based on clustering algorithms
URI https://dx.doi.org/10.1016/j.istruc.2024.106023
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AIKHN
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: ACRLP
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AKRWK
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9GD-MT6Igevodts9nVciqUqrQctFC_LZrPRldotusW_78w-SgVR8JhsJiyTMN-XZB4AV5ZSsRaeokd3j0vXVzxwE5cLO40RXTxhHApwHk_c0VTezpxZCwZNLAy5Vda2v7LppbWue3q1NnvLLOs9COQOaF4leUEiCAZb0EH88f02dMKbu9FkfdUi8BAhylJjJMJJpgmiKz29sjJVK54VhcQu1xL2zyC1ATzDPditGSMLq5_ah1a6OICdjTyCh_AUsuIz50j0nlMWr4ocaWiq2f04ZKZxvmLITllByIQrS1dkrCqQxgjHNMN2Ml9R1gSckcXz5_w9K17ePo5gOrx-HIx4XTSBJ8j-C-5pqRw3Vkr7jhIy0SZ2AzzFCccYW2uq8WmMwAHGeFZqgr4SlnYSZUmD3NDE9jG0F_kiPQEmbB0YqaTul897NK_tIuoJgnmcowt2o6UoqTOKU2GLedS4jr1GlW4j0m1U6bYLfC21rDJq_DHeaxYg-rYzIjT6v0qe_lvyDLapVfmanUMbv6cXSD4KdVlvri-mH9h0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze1AfxCvOax58DeuStF0fy3B07uKDGwxfQtM0szLXoR3-fU96GRNEwcemOaGcpOf7kpwLQneWlKGirjSX7i7hTkcSz4kcQlkcArq4VNsmwHk0doIpf5jZsxrqVrEwxq2ytP2FTc-tddnSKrXZWiVJ64kCdwDzyo0XJICgt4Ma3GYu_J0Nvz8IxpujFgqbCJqXGjMixMhUQXS5p1eSp2qFvSLl0ORYlP0MUlvA0ztEByVjxH7xUUeoFi-P0f5WHsET9Ozj7DMlQPTmMQ7XWQo0NFb4ceRjXTlfYWCnODPIBDNrjshwUSANGxxTGJ6jxdpkTYARcbiYp-9J9vL2cYqmvftJNyBl0QQSAfvPiKu4tJ1QStWxJeWR0qHjwS6O2lozpUyNT60pdNDatWLttSW1lB1Ji2vghjpkZ6i-TJfxOcKUKU9zyVU7v94z4zIHUI8amIcxmohVWhJRmVHcFLZYiMp17FUUuhVGt6LQbRORjdSqyKjxR3-3mgDxbWUIMPq_Sl78W_IW7QaT0VAM--PBJdozbwq_sytUh77xNRCRTN6UC-0L1jDbVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+automated+OMA+framework+for+transmission+towers+based+on+clustering+algorithms&rft.jtitle=Structures+%28Oxford%29&rft.au=Feng%2C+Yuhu&rft.au=Su%2C+Youhua&rft.au=Zhao%2C+Chao&rft.au=Zhu%2C+Yanming&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=61&rft_id=info:doi/10.1016%2Fj.istruc.2024.106023&rft.externalDocID=S2352012424001759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon