GEPSO: A new generalized particle swarm optimization algorithm

Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 179; pp. 194 - 212
Main Authors Sedighizadeh, Davoud, Masehian, Ellips, Sedighizadeh, Mostafa, Akbaripour, Hossein
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2020.08.013

Cover

Abstract Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase variety in the swarm, and provide a better search in unexplored areas of the search space. Moreover, a novel procedure is utilized for dynamic updating of the particles’ inertia weights, which controls the convergence of the swarm towards a solution. Also, since parameters of heuristic and meta-heuristic algorithms have a significant influence on their performance, a comprehensive guideline for parameter tuning of the GEPSO is developed. The computational results of solving numerous well-known benchmark functions by the GEPSO, original PSO, Repulsive PSO (REPSO), PSO with Passive Congregation (PSOPC), Negative PSO (NPSO), Deterministic PSO (DPSO), and Line Search-Based Derivative-Free PSO (LS-DF-PSO) approaches showed that the GEPSO outperformed the compared methods in terms of mean and standard deviation of fitness function values and runtimes. •Presenting a more robust interrelation between particles in the proposed algorithm.•Introducing a more efficient exploration way in the search space.•Presenting a stronger mechanism to update velocity and position of the proposed algorithm compared to the original PSO algorithm.•Proposing a dynamic inertial weight adjustment mechanism.•Confirming efficacy of the performance of the proposed algorithm in comparison to other variants of the PSO.
AbstractList Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase variety in the swarm, and provide a better search in unexplored areas of the search space. Moreover, a novel procedure is utilized for dynamic updating of the particles’ inertia weights, which controls the convergence of the swarm towards a solution. Also, since parameters of heuristic and meta-heuristic algorithms have a significant influence on their performance, a comprehensive guideline for parameter tuning of the GEPSO is developed. The computational results of solving numerous well-known benchmark functions by the GEPSO, original PSO, Repulsive PSO (REPSO), PSO with Passive Congregation (PSOPC), Negative PSO (NPSO), Deterministic PSO (DPSO), and Line Search-Based Derivative-Free PSO (LS-DF-PSO) approaches showed that the GEPSO outperformed the compared methods in terms of mean and standard deviation of fitness function values and runtimes. •Presenting a more robust interrelation between particles in the proposed algorithm.•Introducing a more efficient exploration way in the search space.•Presenting a stronger mechanism to update velocity and position of the proposed algorithm compared to the original PSO algorithm.•Proposing a dynamic inertial weight adjustment mechanism.•Confirming efficacy of the performance of the proposed algorithm in comparison to other variants of the PSO.
Author Sedighizadeh, Mostafa
Sedighizadeh, Davoud
Akbaripour, Hossein
Masehian, Ellips
Author_xml – sequence: 1
  givenname: Davoud
  surname: Sedighizadeh
  fullname: Sedighizadeh, Davoud
  email: d.sedighizadeh@iau-saveh.ac.ir
  organization: Department of Industrial Engineering, College of Technical and Engineering, Saveh Branch, Islamic Azad University, (IAU), Saveh, Iran
– sequence: 2
  givenname: Ellips
  surname: Masehian
  fullname: Masehian, Ellips
  organization: Industrial and Manufacturing Engineering Department, California State Polytechnic University at Pomona, CA, USA
– sequence: 3
  givenname: Mostafa
  surname: Sedighizadeh
  fullname: Sedighizadeh, Mostafa
  organization: Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
– sequence: 4
  givenname: Hossein
  surname: Akbaripour
  fullname: Akbaripour, Hossein
  organization: Industrial Engineering Department, Sharif University of Technology, Tehran, Iran
BookMark eNqFkMFKAzEURYNUsK3-gYv8wIzJTCZJuyiUUqtQqKCuQ0ze1JSZSUmCxX69U-vKha7e3ZzLfWeEBp3vAKFbSnJKKL_b5a1Oxrd5QQqSE5kTWl6gIZWiyATlfICGpBQyY6JiV2gU444Q0udqiGar5dPzZornuIMD3kIHQTfuCBbvdUjONIDjQYcW-31yrTvq5HyHdbP1waX39hpd1rqJcPNzx-j1fvmyeMjWm9XjYr7OTEl4yoShkkqQpbVW1lCxUtsJUCLehKytEKCt5IxX3BSWST0xQlRAJ5QxU8jKinKMpudeE3yMAWplXPrekoJ2jaJEnUyonTqbUCcTikjVm-hh9gveB9fq8PkfNjtj0D_24SCoaBx0BqwLYJKy3v1d8AUB7Xx6
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3123628
crossref_primary_10_1155_2021_6625438
crossref_primary_10_2139_ssrn_4111805
crossref_primary_10_3390_en15228359
crossref_primary_10_1016_j_energy_2022_126153
crossref_primary_10_1007_s11227_023_05310_3
crossref_primary_10_1007_s11071_022_07921_6
crossref_primary_10_1016_j_jocs_2021_101368
crossref_primary_10_1007_s10586_023_03976_1
crossref_primary_10_1007_s42235_024_00578_4
crossref_primary_10_4236_jpee_2022_103001
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_1016_j_ijleo_2022_170361
crossref_primary_10_1016_j_asoc_2021_107395
crossref_primary_10_1109_ACCESS_2022_3220792
crossref_primary_10_1080_03772063_2024_2318354
crossref_primary_10_3390_ai3020024
crossref_primary_10_3390_app12031081
crossref_primary_10_1088_1742_6596_2338_1_012076
crossref_primary_10_1007_s10489_021_03074_y
crossref_primary_10_3390_math12193021
crossref_primary_10_1016_j_apm_2022_05_030
crossref_primary_10_1007_s12239_024_00119_2
crossref_primary_10_32604_cmc_2023_031867
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_1016_j_chaos_2024_114695
crossref_primary_10_3390_w16223168
crossref_primary_10_1007_s10043_023_00847_3
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_3390_math11204339
crossref_primary_10_3390_app11010136
crossref_primary_10_1515_mt_2022_0012
crossref_primary_10_21595_jve_2020_21566
crossref_primary_10_32604_cmc_2023_034960
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_3390_su15086814
crossref_primary_10_1002_cpe_7528
crossref_primary_10_1155_2022_8428964
crossref_primary_10_1016_j_matcom_2022_12_020
crossref_primary_10_1007_s40722_023_00282_1
crossref_primary_10_3390_app12168047
crossref_primary_10_1007_s00170_023_12538_z
crossref_primary_10_1080_13682199_2022_2161156
crossref_primary_10_1109_ACCESS_2022_3218691
crossref_primary_10_1016_j_ceramint_2022_04_109
crossref_primary_10_1088_1755_1315_1266_1_012021
crossref_primary_10_2478_jaiscr_2023_0020
crossref_primary_10_3390_app11062670
crossref_primary_10_1016_j_scitotenv_2024_173018
crossref_primary_10_1002_cpe_7239
crossref_primary_10_1007_s12555_021_0726_4
crossref_primary_10_3390_math11081816
crossref_primary_10_1007_s40747_022_00890_8
crossref_primary_10_1016_j_cma_2022_115499
crossref_primary_10_1007_s00500_021_05853_8
crossref_primary_10_1007_s12652_022_04422_7
crossref_primary_10_1109_ACCESS_2022_3142859
crossref_primary_10_1109_ACCESS_2020_3038381
crossref_primary_10_1109_ACCESS_2024_3522959
crossref_primary_10_3390_math11214439
crossref_primary_10_1002_er_6474
crossref_primary_10_1007_s00500_020_05567_3
crossref_primary_10_1080_10106049_2022_2102233
crossref_primary_10_1155_2023_2989533
crossref_primary_10_7717_peerj_cs_2253
crossref_primary_10_1109_TITS_2023_3308509
crossref_primary_10_1007_s10586_024_04879_5
crossref_primary_10_1007_s12065_023_00819_1
Cites_doi 10.1016/j.asoc.2015.10.004
10.1016/j.asoc.2015.05.029
10.1016/j.asoc.2014.11.018
10.1109/TGRS.2013.2260552
10.1016/j.asoc.2016.08.028
10.1016/j.asoc.2017.07.050
10.1016/j.ijheatmasstransfer.2007.09.037
10.1016/j.asoc.2017.04.025
10.1016/j.asoc.2014.01.035
10.1016/j.asoc.2014.10.026
10.1016/j.asoc.2017.10.018
10.7763/IJCTE.2009.V1.80
10.1016/j.asoc.2017.09.038
10.1016/j.matcom.2019.09.003
10.1016/j.est.2018.06.013
10.1007/s00366-015-0404-3
10.1016/j.matcom.2018.08.011
10.15837/ijccc.2012.2.1403
10.1016/j.asoc.2012.05.030
10.1007/s11047-007-9049-5
10.1109/4235.585893
10.1016/j.matcom.2004.10.003
10.1007/s00170-009-2438-4
10.3934/jimo.2010.6.895
10.1016/j.cherd.2015.05.036
10.1016/j.biosystems.2004.08.003
ContentType Journal Article
Copyright 2020 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2020 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2020.08.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 212
ExternalDocumentID 10_1016_j_matcom_2020_08_013
S0378475420302743
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-7c1818e83ddd8fe543ad9e107b78fd77ead864656c2d48a9c775e19144c285d73
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Oct 16 04:27:08 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
Fri Feb 23 02:50:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence
Heuristic algorithms
Parameter tuning
Particle Swarm Optimization (PSO)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-7c1818e83ddd8fe543ad9e107b78fd77ead864656c2d48a9c775e19144c285d73
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2020_08_013
crossref_primary_10_1016_j_matcom_2020_08_013
elsevier_sciencedirect_doi_10_1016_j_matcom_2020_08_013
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Faradonbeh, Monjezi, Armaghani (b9) 2016; 32
Ong, Lee, Low (b26) 2020; 170
El-Abd (b8) 2008
Jain, Jain, Jain (b14) 2018; 62
Talbi (b36) 2009
Babu, Rajasekar, Sangeetha (b4) 2015; 34
Taherkhani, Safabakhsh (b35) 2016; 38
Keedwell, Morley, Croft (b16) 2012
A. Serani, M. Diez, Are random coefficients needed in particle swarm optimization for simulation-based ship design, in: Proceedings of the 7th International Conference on Computational Methods in Marine Engineering (Marine 2017), 2017.
Serani, Diez, Campana, Fasano, Peri, Iemma (b32) 2015
Alfaro-Ayala, Ayala-Ramirez, Gallegos-Munoz, Uribe-Ramirez (b2) 2015; 100
Zhang, Gong, Geng, Sun (b41) 2014; 18
Tao, Chang, Yi, Gu, Yu (b37) 2009
Banks, Vincent, Anyakoha (b5) 2007; 6
Serani, Leotardi, Iemma, Campana, Fasano, Diez (b33) 2016; 49
Chuanwen, Bompard (b6) 2005; 68
Sedighizadeh, Masehian (b30) 2009; 1
Akbaripour, Masehian (b1) 2013
Kiran (b17) 2017; 60
Lin, Liu, Lee (b20) 2008; 4
Jordehi (b15) 2015; 26
Rozenberg, Bäck, Kok (b27) 2012
Altinoz, Yilmaz, Weber (b3) 2012; 7
Lee, Baek, Kim (b18) 2008; 51
Naik, Raju, Rao (b24) 2018; 10
Luan, Yao, Zhao, Song (b21) 2019; 156
Wolpert, Macready (b38) 1997; 1
Schoeman, Engelbrecht (b28) 2004
Neethling, Engelbrecht (b25) 2006
Yu, Teo, Zhang, Bai (b40) 2010; 6
Sedighizadeh, Esmaili, Parvaneh (b29) 2018; 18
Zheng, Yamashiro (b43) 2010; 49
GáLvez, Iglesias (b10) 2013; 13
Ghamisi, Couceiro, Martins, Benediktsson (b11) 2014; 52
Zhang, Tang, Hua, Guan (b42) 2015; 28
Mason, Duggan, Howley (b22) 2018; 62
Yang, Simon (b39) 2005
Gou, Lei, Guo, Wang, Cai, Luo (b12) 2017; 57
He, Wu, Wen, Saunders, Paton (b13) 2004; 78
Lee, Lee, Chang (b19) 2010; 37
Shi, Eberhart (b34) 2001
Eberhart, Kennedy (b7) 1995
Miranda, Fonseca (b23) 2002
Babu (10.1016/j.matcom.2020.08.013_b4) 2015; 34
Gou (10.1016/j.matcom.2020.08.013_b12) 2017; 57
Sedighizadeh (10.1016/j.matcom.2020.08.013_b29) 2018; 18
Yang (10.1016/j.matcom.2020.08.013_b39) 2005
Keedwell (10.1016/j.matcom.2020.08.013_b16) 2012
Lee (10.1016/j.matcom.2020.08.013_b18) 2008; 51
Miranda (10.1016/j.matcom.2020.08.013_b23) 2002
Schoeman (10.1016/j.matcom.2020.08.013_b28) 2004
Yu (10.1016/j.matcom.2020.08.013_b40) 2010; 6
Akbaripour (10.1016/j.matcom.2020.08.013_b1) 2013
Zheng (10.1016/j.matcom.2020.08.013_b43) 2010; 49
10.1016/j.matcom.2020.08.013_b31
Chuanwen (10.1016/j.matcom.2020.08.013_b6) 2005; 68
Luan (10.1016/j.matcom.2020.08.013_b21) 2019; 156
Sedighizadeh (10.1016/j.matcom.2020.08.013_b30) 2009; 1
Jain (10.1016/j.matcom.2020.08.013_b14) 2018; 62
Naik (10.1016/j.matcom.2020.08.013_b24) 2018; 10
Altinoz (10.1016/j.matcom.2020.08.013_b3) 2012; 7
El-Abd (10.1016/j.matcom.2020.08.013_b8) 2008
Faradonbeh (10.1016/j.matcom.2020.08.013_b9) 2016; 32
Kiran (10.1016/j.matcom.2020.08.013_b17) 2017; 60
Lee (10.1016/j.matcom.2020.08.013_b19) 2010; 37
Talbi (10.1016/j.matcom.2020.08.013_b36) 2009
Wolpert (10.1016/j.matcom.2020.08.013_b38) 1997; 1
Zhang (10.1016/j.matcom.2020.08.013_b41) 2014; 18
GáLvez (10.1016/j.matcom.2020.08.013_b10) 2013; 13
Jordehi (10.1016/j.matcom.2020.08.013_b15) 2015; 26
Taherkhani (10.1016/j.matcom.2020.08.013_b35) 2016; 38
Lin (10.1016/j.matcom.2020.08.013_b20) 2008; 4
Mason (10.1016/j.matcom.2020.08.013_b22) 2018; 62
Serani (10.1016/j.matcom.2020.08.013_b32) 2015
Rozenberg (10.1016/j.matcom.2020.08.013_b27) 2012
Serani (10.1016/j.matcom.2020.08.013_b33) 2016; 49
Tao (10.1016/j.matcom.2020.08.013_b37) 2009
Alfaro-Ayala (10.1016/j.matcom.2020.08.013_b2) 2015; 100
He (10.1016/j.matcom.2020.08.013_b13) 2004; 78
Neethling (10.1016/j.matcom.2020.08.013_b25) 2006
Zhang (10.1016/j.matcom.2020.08.013_b42) 2015; 28
Ong (10.1016/j.matcom.2020.08.013_b26) 2020; 170
Banks (10.1016/j.matcom.2020.08.013_b5) 2007; 6
Eberhart (10.1016/j.matcom.2020.08.013_b7) 1995
Shi (10.1016/j.matcom.2020.08.013_b34) 2001
Ghamisi (10.1016/j.matcom.2020.08.013_b11) 2014; 52
References_xml – volume: 57
  start-page: 468
  year: 2017
  end-page: 481
  ident: b12
  article-title: A novel improved particle swarm optimization algorithm based on individual difference evolution
  publication-title: Appl. Soft Comput.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b7
  article-title: A new optimizer using particle swarm theory
  publication-title: Micro Machine and Human Science, 1995. MHS’95. Proceedings of the Sixth International Symposium on
– volume: 32
  start-page: 123
  year: 2016
  end-page: 133
  ident: b9
  article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation
  publication-title: Eng. Comput.
– start-page: 1670
  year: 2006
  end-page: 1677
  ident: b25
  article-title: Determining RNA secondary structure using set-based particle swarm optimization
  publication-title: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
– volume: 68
  start-page: 57
  year: 2005
  end-page: 65
  ident: b6
  article-title: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation
  publication-title: Math. Comput. Simulation
– volume: 62
  start-page: 148
  year: 2018
  end-page: 161
  ident: b22
  article-title: A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 248
  year: 2014
  end-page: 260
  ident: b41
  article-title: Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects
  publication-title: Appl. Soft Comput.
– year: 2013
  ident: b1
  article-title: Efficient and robust parameter tuning for heuristic algorithms
– volume: 28
  start-page: 138
  year: 2015
  end-page: 149
  ident: b42
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 486
  year: 2009
  ident: b30
  article-title: Particle swarm optimization methods, taxonomy and applications
  publication-title: Int. J. Comput. Theory Eng.
– volume: 49
  start-page: 643
  year: 2010
  end-page: 662
  ident: b43
  article-title: Solving flow shop scheduling problems by quantum differential evolutionary algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2012
  ident: b27
  article-title: Handbook of Natural Computing
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b38
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 60
  start-page: 670
  year: 2017
  end-page: 678
  ident: b17
  article-title: Particle swarm optimization with a new update mechanism
  publication-title: Appl. Soft Comput.
– volume: 156
  start-page: 294
  year: 2019
  end-page: 309
  ident: b21
  article-title: A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization
  publication-title: Math. Comput. Simulation
– start-page: 101
  year: 2001
  end-page: 106
  ident: b34
  article-title: Fuzzy adaptive particle swarm optimization
  publication-title: Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, Vol. 1
– volume: 100
  start-page: 203
  year: 2015
  end-page: 211
  ident: b2
  article-title: Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD
  publication-title: Chem. Eng. Res. Des.
– volume: 10
  start-page: 232
  year: 2018
  end-page: 241
  ident: b24
  article-title: A Constriction Factor based Particle Swarm Optimization for Congestion Management in Transmission Systems
  publication-title: Int. J. Electr. Eng. Inform.
– volume: 13
  start-page: 1491
  year: 2013
  end-page: 1504
  ident: b10
  article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing
  publication-title: Appl. Soft Comput.
– volume: 78
  start-page: 135
  year: 2004
  end-page: 147
  ident: b13
  article-title: A particle swarm optimizer with passive congregation
  publication-title: Biosystems
– volume: 6
  start-page: 467
  year: 2007
  end-page: 484
  ident: b5
  article-title: A review of particle swarm optimization. Part I: background and development
  publication-title: Nat. Comput.
– year: 2008
  ident: b8
  article-title: Cooperative models of particle swarm optimizers
– volume: 6
  start-page: 895
  year: 2010
  end-page: 910
  ident: b40
  article-title: A new exact penalty function method for continuous inequality constrained optimization problems
  publication-title: J. Ind. Manag. Optim.
– year: 2009
  ident: b36
  article-title: Metaheuristics: From Design to Implementation
– volume: 38
  start-page: 281
  year: 2016
  end-page: 295
  ident: b35
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 1711
  year: 2008
  end-page: 1722
  ident: b20
  article-title: An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications
  publication-title: Int. J. Innovative Comput. Inf. Control
– start-page: 164
  year: 2005
  end-page: 169
  ident: b39
  article-title: A new particle swarm optimization technique
  publication-title: Null
– start-page: 342
  year: 2012
  end-page: 343
  ident: b16
  article-title: Continuous trait-based particle swarm optimisation (CTB-PSO)
  publication-title: International Conference on Swarm Intelligence
– volume: 18
  start-page: 498
  year: 2018
  end-page: 508
  ident: b29
  article-title: Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework
  publication-title: J. Energy Storage
– volume: 34
  start-page: 613
  year: 2015
  end-page: 624
  ident: b4
  article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition
  publication-title: Appl. Soft Comput.
– start-page: 361
  year: 2004
  end-page: 366
  ident: b28
  article-title: Using vector operations to identify niches for particle swarm optimization
  publication-title: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, Vol. 1
– start-page: 1080
  year: 2002
  end-page: 1085
  ident: b23
  article-title: EPSO-best-of-two-worlds meta-heuristic applied to power system problems
  publication-title: Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 2
– volume: 49
  start-page: 313
  year: 2016
  end-page: 334
  ident: b33
  article-title: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 2382
  year: 2014
  end-page: 2394
  ident: b11
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  start-page: 203
  year: 2018
  end-page: 215
  ident: b14
  article-title: Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
– volume: 170
  start-page: 98
  year: 2020
  end-page: 106
  ident: b26
  article-title: A general method of computing mixed Poisson probabilities by Monte Carlo sampling
  publication-title: Math. Comput. Simulation
– reference: A. Serani, M. Diez, Are random coefficients needed in particle swarm optimization for simulation-based ship design, in: Proceedings of the 7th International Conference on Computational Methods in Marine Engineering (Marine 2017), 2017.
– start-page: 153
  year: 2009
  end-page: 159
  ident: b37
  article-title: QoS constrained grid workflow scheduling optimization based on a novel PSO algorithm
  publication-title: Grid and Cooperative Computing, 2009. GCC’09. Eighth International Conference on
– volume: 7
  start-page: 204
  year: 2012
  end-page: 217
  ident: b3
  article-title: Application of chaos embedded PSO for PID parameter tuning
  publication-title: Int. J. Comput. Commun. Control
– volume: 51
  start-page: 2772
  year: 2008
  end-page: 2783
  ident: b18
  article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm
  publication-title: Int. J. Heat Mass Transfer
– volume: 26
  start-page: 401
  year: 2015
  end-page: 417
  ident: b15
  article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems
  publication-title: Appl. Soft Comput.
– start-page: 25
  year: 2015
  end-page: 47
  ident: b32
  article-title: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques
  publication-title: Recent Advances in Swarm Intelligence and Evolutionary Computation
– volume: 37
  start-page: 242
  year: 2010
  end-page: 251
  ident: b19
  article-title: A dynamic fuzzy neural system design via hybridization of EM and PSO algorithms
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 10
  start-page: 232
  issue: 2
  year: 2018
  ident: 10.1016/j.matcom.2020.08.013_b24
  article-title: A Constriction Factor based Particle Swarm Optimization for Congestion Management in Transmission Systems
  publication-title: Int. J. Electr. Eng. Inform.
– volume: 38
  start-page: 281
  year: 2016
  ident: 10.1016/j.matcom.2020.08.013_b35
  article-title: A novel stability-based adaptive inertia weight for particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.004
– start-page: 1670
  year: 2006
  ident: 10.1016/j.matcom.2020.08.013_b25
  article-title: Determining RNA secondary structure using set-based particle swarm optimization
– volume: 34
  start-page: 613
  year: 2015
  ident: 10.1016/j.matcom.2020.08.013_b4
  article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.029
– volume: 28
  start-page: 138
  year: 2015
  ident: 10.1016/j.matcom.2020.08.013_b42
  article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.018
– volume: 52
  start-page: 2382
  issue: 5
  year: 2014
  ident: 10.1016/j.matcom.2020.08.013_b11
  article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2260552
– start-page: 361
  year: 2004
  ident: 10.1016/j.matcom.2020.08.013_b28
  article-title: Using vector operations to identify niches for particle swarm optimization
– volume: 49
  start-page: 313
  year: 2016
  ident: 10.1016/j.matcom.2020.08.013_b33
  article-title: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.028
– volume: 60
  start-page: 670
  year: 2017
  ident: 10.1016/j.matcom.2020.08.013_b17
  article-title: Particle swarm optimization with a new update mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.07.050
– year: 2009
  ident: 10.1016/j.matcom.2020.08.013_b36
– year: 2008
  ident: 10.1016/j.matcom.2020.08.013_b8
– volume: 4
  start-page: 1711
  issue: 7
  year: 2008
  ident: 10.1016/j.matcom.2020.08.013_b20
  article-title: An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications
  publication-title: Int. J. Innovative Comput. Inf. Control
– volume: 51
  start-page: 2772
  issue: 11–12
  year: 2008
  ident: 10.1016/j.matcom.2020.08.013_b18
  article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.09.037
– volume: 57
  start-page: 468
  year: 2017
  ident: 10.1016/j.matcom.2020.08.013_b12
  article-title: A novel improved particle swarm optimization algorithm based on individual difference evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.025
– volume: 18
  start-page: 248
  year: 2014
  ident: 10.1016/j.matcom.2020.08.013_b41
  article-title: Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.035
– start-page: 1080
  year: 2002
  ident: 10.1016/j.matcom.2020.08.013_b23
  article-title: EPSO-best-of-two-worlds meta-heuristic applied to power system problems
– start-page: 101
  year: 2001
  ident: 10.1016/j.matcom.2020.08.013_b34
  article-title: Fuzzy adaptive particle swarm optimization
– volume: 26
  start-page: 401
  year: 2015
  ident: 10.1016/j.matcom.2020.08.013_b15
  article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.026
– year: 2012
  ident: 10.1016/j.matcom.2020.08.013_b27
– volume: 62
  start-page: 148
  year: 2018
  ident: 10.1016/j.matcom.2020.08.013_b22
  article-title: A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.018
– volume: 1
  start-page: 486
  issue: 5
  year: 2009
  ident: 10.1016/j.matcom.2020.08.013_b30
  article-title: Particle swarm optimization methods, taxonomy and applications
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2009.V1.80
– volume: 62
  start-page: 203
  year: 2018
  ident: 10.1016/j.matcom.2020.08.013_b14
  article-title: Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.038
– year: 2013
  ident: 10.1016/j.matcom.2020.08.013_b1
– volume: 170
  start-page: 98
  year: 2020
  ident: 10.1016/j.matcom.2020.08.013_b26
  article-title: A general method of computing mixed Poisson probabilities by Monte Carlo sampling
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2019.09.003
– volume: 18
  start-page: 498
  year: 2018
  ident: 10.1016/j.matcom.2020.08.013_b29
  article-title: Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.06.013
– start-page: 39
  year: 1995
  ident: 10.1016/j.matcom.2020.08.013_b7
  article-title: A new optimizer using particle swarm theory
– start-page: 153
  year: 2009
  ident: 10.1016/j.matcom.2020.08.013_b37
  article-title: QoS constrained grid workflow scheduling optimization based on a novel PSO algorithm
– start-page: 164
  year: 2005
  ident: 10.1016/j.matcom.2020.08.013_b39
  article-title: A new particle swarm optimization technique
– ident: 10.1016/j.matcom.2020.08.013_b31
– volume: 32
  start-page: 123
  issue: 1
  year: 2016
  ident: 10.1016/j.matcom.2020.08.013_b9
  article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0404-3
– volume: 156
  start-page: 294
  year: 2019
  ident: 10.1016/j.matcom.2020.08.013_b21
  article-title: A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2018.08.011
– volume: 7
  start-page: 204
  issue: 2
  year: 2012
  ident: 10.1016/j.matcom.2020.08.013_b3
  article-title: Application of chaos embedded PSO for PID parameter tuning
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2012.2.1403
– start-page: 25
  year: 2015
  ident: 10.1016/j.matcom.2020.08.013_b32
  article-title: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques
– volume: 13
  start-page: 1491
  issue: 3
  year: 2013
  ident: 10.1016/j.matcom.2020.08.013_b10
  article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.030
– volume: 6
  start-page: 467
  issue: 4
  year: 2007
  ident: 10.1016/j.matcom.2020.08.013_b5
  article-title: A review of particle swarm optimization. Part I: background and development
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-007-9049-5
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.matcom.2020.08.013_b38
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 68
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.matcom.2020.08.013_b6
  article-title: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2004.10.003
– volume: 37
  start-page: 242
  issue: 3
  year: 2010
  ident: 10.1016/j.matcom.2020.08.013_b19
  article-title: A dynamic fuzzy neural system design via hybridization of EM and PSO algorithms
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 49
  start-page: 643
  issue: 5–8
  year: 2010
  ident: 10.1016/j.matcom.2020.08.013_b43
  article-title: Solving flow shop scheduling problems by quantum differential evolutionary algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2438-4
– start-page: 342
  year: 2012
  ident: 10.1016/j.matcom.2020.08.013_b16
  article-title: Continuous trait-based particle swarm optimisation (CTB-PSO)
– volume: 6
  start-page: 895
  year: 2010
  ident: 10.1016/j.matcom.2020.08.013_b40
  article-title: A new exact penalty function method for continuous inequality constrained optimization problems
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2010.6.895
– volume: 100
  start-page: 203
  year: 2015
  ident: 10.1016/j.matcom.2020.08.013_b2
  article-title: Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.05.036
– volume: 78
  start-page: 135
  issue: 1–3
  year: 2004
  ident: 10.1016/j.matcom.2020.08.013_b13
  article-title: A particle swarm optimizer with passive congregation
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2004.08.003
SSID ssj0007545
Score 2.5289567
Snippet Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms Heuristic algorithms
Parameter tuning
Particle Swarm Optimization (PSO)
Swarm intelligence
Title GEPSO: A new generalized particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.matcom.2020.08.013
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX3zxLs7LyIOvcW2SNqkPwhibU3EKc7C30CbprOzGrAg--NtN2tQLiIKv5RxoT5Nzvjbf-Q4AJ5orHvlUIx9rjaimEsWeJoinOAls52Wo7InuTT_sDenVKBitgHbVC2NplS73lzm9yNbuStNFs7nIsubAI8yk1oBiz569Uav4SSmzUwxO3z5pHsagoDEaY2Stq_a5guNlQKHljGCDmQohT5_8XJ6-lJzuJlh3WBG2ytvZAit6tg02qjkM0G3LHXB-0bkb3J7BFjQYGY5LIensVSu4cI8Cn17i5RTOTX6YusZLGE_G82WWP0x3wbDbuW_3kJuLgKQB-Dli0pRlrjlRSvFUB5TEKtLmOy5hPFWMmcXBQ6uDJrGiPI4kY4G2Om5UYh4oRvZAbTaf6X0AQ1MiI5X4YawTimUakYApFXsG1SjP57wOSBUOIZ1ouJ1dMREVO-xRlEEUNojCjrT0SR2gD69FKZrxhz2rIi2-vXxh8vqvngf_9jwEa9jSU4q_KUegli-f9bHBF3nSKBZQA6y2Lq97_XeiZc-v
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46H_TFuzivefA1rm3SJvVBGGNz6jaFbbC30CbprOzGnAg--NtN2tQLiIKv5aS0J-k5X5rvfAeAM8UkC12ikOsphYgiAkWOwoglXuybystAmhPddido9snNwB8sgVpRC2NolTb25zE9i9b2SsV6szJL00rXwVSHVp94jjl7I3gZrBB9e7MDO3_75Hloi4zHqK2RMS_q5zKSl0aFhjTiadCUKXm6-Of89CXnNDbBugWLsJo_zxZYUpNtsFE0YoD2u9wBl1f1--7dBaxCDZLhMFeSTl-VhDP7LvDpJZqP4VQHiLGtvITRaDidp4uH8S7oN-q9WhPZxghIaIS_QFTovMwUw1JKliif4EiGSm_kYsoSSaleHSwwQmjCk4RFoaDUV0bIjQiP-ZLiPVCaTCdqH8BA58hQxm4QqZh4IgmxT6WMHA1rpOMyVga4cAcXVjXcNK8Y8YIe9shzJ3LjRG56Wrq4DNDHqFmumvGHPS08zb_NPteB_deRB_8eeQpWm712i7euO7eHYM0zXJXs18oRKC3mz-pYg41FfJItpnef6dFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GEPSO%3A+A+new+generalized+particle+swarm+optimization+algorithm&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Sedighizadeh%2C+Davoud&rft.au=Masehian%2C+Ellips&rft.au=Sedighizadeh%2C+Mostafa&rft.au=Akbaripour%2C+Hossein&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=179&rft.spage=194&rft.epage=212&rft_id=info:doi/10.1016%2Fj.matcom.2020.08.013&rft.externalDocID=S0378475420302743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon