GEPSO: A new generalized particle swarm optimization algorithm
Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more...
        Saved in:
      
    
          | Published in | Mathematics and computers in simulation Vol. 179; pp. 194 - 212 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-4754 1872-7166  | 
| DOI | 10.1016/j.matcom.2020.08.013 | 
Cover
| Abstract | Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase variety in the swarm, and provide a better search in unexplored areas of the search space. Moreover, a novel procedure is utilized for dynamic updating of the particles’ inertia weights, which controls the convergence of the swarm towards a solution. Also, since parameters of heuristic and meta-heuristic algorithms have a significant influence on their performance, a comprehensive guideline for parameter tuning of the GEPSO is developed. The computational results of solving numerous well-known benchmark functions by the GEPSO, original PSO, Repulsive PSO (REPSO), PSO with Passive Congregation (PSOPC), Negative PSO (NPSO), Deterministic PSO (DPSO), and Line Search-Based Derivative-Free PSO (LS-DF-PSO) approaches showed that the GEPSO outperformed the compared methods in terms of mean and standard deviation of fitness function values and runtimes.
•Presenting a more robust interrelation between particles in the proposed algorithm.•Introducing a more efficient exploration way in the search space.•Presenting a stronger mechanism to update velocity and position of the proposed algorithm compared to the original PSO algorithm.•Proposing a dynamic inertial weight adjustment mechanism.•Confirming efficacy of the performance of the proposed algorithm in comparison to other variants of the PSO. | 
    
|---|---|
| AbstractList | Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of applications since its inception in 1995. Due to the flexibility of its parameters and concepts, PSO has appeared in many variants, probably more than any other meta-heuristic algorithm. This paper introduces the Generalized Particle Swarm Optimization (GEPSO) algorithm as a new version of the PSO algorithm for continuous space optimization, which enriches the original PSO by incorporating two new terms into the velocity updating equation. These terms aim to deepen the interrelations of particles and their knowledge sharing, increase variety in the swarm, and provide a better search in unexplored areas of the search space. Moreover, a novel procedure is utilized for dynamic updating of the particles’ inertia weights, which controls the convergence of the swarm towards a solution. Also, since parameters of heuristic and meta-heuristic algorithms have a significant influence on their performance, a comprehensive guideline for parameter tuning of the GEPSO is developed. The computational results of solving numerous well-known benchmark functions by the GEPSO, original PSO, Repulsive PSO (REPSO), PSO with Passive Congregation (PSOPC), Negative PSO (NPSO), Deterministic PSO (DPSO), and Line Search-Based Derivative-Free PSO (LS-DF-PSO) approaches showed that the GEPSO outperformed the compared methods in terms of mean and standard deviation of fitness function values and runtimes.
•Presenting a more robust interrelation between particles in the proposed algorithm.•Introducing a more efficient exploration way in the search space.•Presenting a stronger mechanism to update velocity and position of the proposed algorithm compared to the original PSO algorithm.•Proposing a dynamic inertial weight adjustment mechanism.•Confirming efficacy of the performance of the proposed algorithm in comparison to other variants of the PSO. | 
    
| Author | Sedighizadeh, Mostafa Sedighizadeh, Davoud Akbaripour, Hossein Masehian, Ellips  | 
    
| Author_xml | – sequence: 1 givenname: Davoud surname: Sedighizadeh fullname: Sedighizadeh, Davoud email: d.sedighizadeh@iau-saveh.ac.ir organization: Department of Industrial Engineering, College of Technical and Engineering, Saveh Branch, Islamic Azad University, (IAU), Saveh, Iran – sequence: 2 givenname: Ellips surname: Masehian fullname: Masehian, Ellips organization: Industrial and Manufacturing Engineering Department, California State Polytechnic University at Pomona, CA, USA – sequence: 3 givenname: Mostafa surname: Sedighizadeh fullname: Sedighizadeh, Mostafa organization: Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran – sequence: 4 givenname: Hossein surname: Akbaripour fullname: Akbaripour, Hossein organization: Industrial Engineering Department, Sharif University of Technology, Tehran, Iran  | 
    
| BookMark | eNqFkMFKAzEURYNUsK3-gYv8wIzJTCZJuyiUUqtQqKCuQ0ze1JSZSUmCxX69U-vKha7e3ZzLfWeEBp3vAKFbSnJKKL_b5a1Oxrd5QQqSE5kTWl6gIZWiyATlfICGpBQyY6JiV2gU444Q0udqiGar5dPzZornuIMD3kIHQTfuCBbvdUjONIDjQYcW-31yrTvq5HyHdbP1waX39hpd1rqJcPNzx-j1fvmyeMjWm9XjYr7OTEl4yoShkkqQpbVW1lCxUtsJUCLehKytEKCt5IxX3BSWST0xQlRAJ5QxU8jKinKMpudeE3yMAWplXPrekoJ2jaJEnUyonTqbUCcTikjVm-hh9gveB9fq8PkfNjtj0D_24SCoaBx0BqwLYJKy3v1d8AUB7Xx6 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3123628 crossref_primary_10_1155_2021_6625438 crossref_primary_10_2139_ssrn_4111805 crossref_primary_10_3390_en15228359 crossref_primary_10_1016_j_energy_2022_126153 crossref_primary_10_1007_s11227_023_05310_3 crossref_primary_10_1007_s11071_022_07921_6 crossref_primary_10_1016_j_jocs_2021_101368 crossref_primary_10_1007_s10586_023_03976_1 crossref_primary_10_1007_s42235_024_00578_4 crossref_primary_10_4236_jpee_2022_103001 crossref_primary_10_1007_s11042_022_12539_2 crossref_primary_10_1016_j_ijleo_2022_170361 crossref_primary_10_1016_j_asoc_2021_107395 crossref_primary_10_1109_ACCESS_2022_3220792 crossref_primary_10_1080_03772063_2024_2318354 crossref_primary_10_3390_ai3020024 crossref_primary_10_3390_app12031081 crossref_primary_10_1088_1742_6596_2338_1_012076 crossref_primary_10_1007_s10489_021_03074_y crossref_primary_10_3390_math12193021 crossref_primary_10_1016_j_apm_2022_05_030 crossref_primary_10_1007_s12239_024_00119_2 crossref_primary_10_32604_cmc_2023_031867 crossref_primary_10_1109_ACCESS_2023_3287859 crossref_primary_10_1016_j_chaos_2024_114695 crossref_primary_10_3390_w16223168 crossref_primary_10_1007_s10043_023_00847_3 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_3390_math11204339 crossref_primary_10_3390_app11010136 crossref_primary_10_1515_mt_2022_0012 crossref_primary_10_21595_jve_2020_21566 crossref_primary_10_32604_cmc_2023_034960 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_3390_su15086814 crossref_primary_10_1002_cpe_7528 crossref_primary_10_1155_2022_8428964 crossref_primary_10_1016_j_matcom_2022_12_020 crossref_primary_10_1007_s40722_023_00282_1 crossref_primary_10_3390_app12168047 crossref_primary_10_1007_s00170_023_12538_z crossref_primary_10_1080_13682199_2022_2161156 crossref_primary_10_1109_ACCESS_2022_3218691 crossref_primary_10_1016_j_ceramint_2022_04_109 crossref_primary_10_1088_1755_1315_1266_1_012021 crossref_primary_10_2478_jaiscr_2023_0020 crossref_primary_10_3390_app11062670 crossref_primary_10_1016_j_scitotenv_2024_173018 crossref_primary_10_1002_cpe_7239 crossref_primary_10_1007_s12555_021_0726_4 crossref_primary_10_3390_math11081816 crossref_primary_10_1007_s40747_022_00890_8 crossref_primary_10_1016_j_cma_2022_115499 crossref_primary_10_1007_s00500_021_05853_8 crossref_primary_10_1007_s12652_022_04422_7 crossref_primary_10_1109_ACCESS_2022_3142859 crossref_primary_10_1109_ACCESS_2020_3038381 crossref_primary_10_1109_ACCESS_2024_3522959 crossref_primary_10_3390_math11214439 crossref_primary_10_1002_er_6474 crossref_primary_10_1007_s00500_020_05567_3 crossref_primary_10_1080_10106049_2022_2102233 crossref_primary_10_1155_2023_2989533 crossref_primary_10_7717_peerj_cs_2253 crossref_primary_10_1109_TITS_2023_3308509 crossref_primary_10_1007_s10586_024_04879_5 crossref_primary_10_1007_s12065_023_00819_1  | 
    
| Cites_doi | 10.1016/j.asoc.2015.10.004 10.1016/j.asoc.2015.05.029 10.1016/j.asoc.2014.11.018 10.1109/TGRS.2013.2260552 10.1016/j.asoc.2016.08.028 10.1016/j.asoc.2017.07.050 10.1016/j.ijheatmasstransfer.2007.09.037 10.1016/j.asoc.2017.04.025 10.1016/j.asoc.2014.01.035 10.1016/j.asoc.2014.10.026 10.1016/j.asoc.2017.10.018 10.7763/IJCTE.2009.V1.80 10.1016/j.asoc.2017.09.038 10.1016/j.matcom.2019.09.003 10.1016/j.est.2018.06.013 10.1007/s00366-015-0404-3 10.1016/j.matcom.2018.08.011 10.15837/ijccc.2012.2.1403 10.1016/j.asoc.2012.05.030 10.1007/s11047-007-9049-5 10.1109/4235.585893 10.1016/j.matcom.2004.10.003 10.1007/s00170-009-2438-4 10.3934/jimo.2010.6.895 10.1016/j.cherd.2015.05.036 10.1016/j.biosystems.2004.08.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| Copyright_xml | – notice: 2020 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matcom.2020.08.013 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7166 | 
    
| EndPage | 212 | 
    
| ExternalDocumentID | 10_1016_j_matcom_2020_08_013 S0378475420302743  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-7c1818e83ddd8fe543ad9e107b78fd77ead864656c2d48a9c775e19144c285d73 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-4754 | 
    
| IngestDate | Thu Oct 16 04:27:08 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 Fri Feb 23 02:50:14 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Swarm intelligence Heuristic algorithms Parameter tuning Particle Swarm Optimization (PSO)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-7c1818e83ddd8fe543ad9e107b78fd77ead864656c2d48a9c775e19144c285d73 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2020_08_013 crossref_primary_10_1016_j_matcom_2020_08_013 elsevier_sciencedirect_doi_10_1016_j_matcom_2020_08_013  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2021 2021-01-00  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Mathematics and computers in simulation | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Faradonbeh, Monjezi, Armaghani (b9) 2016; 32 Ong, Lee, Low (b26) 2020; 170 El-Abd (b8) 2008 Jain, Jain, Jain (b14) 2018; 62 Talbi (b36) 2009 Babu, Rajasekar, Sangeetha (b4) 2015; 34 Taherkhani, Safabakhsh (b35) 2016; 38 Keedwell, Morley, Croft (b16) 2012 A. Serani, M. Diez, Are random coefficients needed in particle swarm optimization for simulation-based ship design, in: Proceedings of the 7th International Conference on Computational Methods in Marine Engineering (Marine 2017), 2017. Serani, Diez, Campana, Fasano, Peri, Iemma (b32) 2015 Alfaro-Ayala, Ayala-Ramirez, Gallegos-Munoz, Uribe-Ramirez (b2) 2015; 100 Zhang, Gong, Geng, Sun (b41) 2014; 18 Tao, Chang, Yi, Gu, Yu (b37) 2009 Banks, Vincent, Anyakoha (b5) 2007; 6 Serani, Leotardi, Iemma, Campana, Fasano, Diez (b33) 2016; 49 Chuanwen, Bompard (b6) 2005; 68 Sedighizadeh, Masehian (b30) 2009; 1 Akbaripour, Masehian (b1) 2013 Kiran (b17) 2017; 60 Lin, Liu, Lee (b20) 2008; 4 Jordehi (b15) 2015; 26 Rozenberg, Bäck, Kok (b27) 2012 Altinoz, Yilmaz, Weber (b3) 2012; 7 Lee, Baek, Kim (b18) 2008; 51 Naik, Raju, Rao (b24) 2018; 10 Luan, Yao, Zhao, Song (b21) 2019; 156 Wolpert, Macready (b38) 1997; 1 Schoeman, Engelbrecht (b28) 2004 Neethling, Engelbrecht (b25) 2006 Yu, Teo, Zhang, Bai (b40) 2010; 6 Sedighizadeh, Esmaili, Parvaneh (b29) 2018; 18 Zheng, Yamashiro (b43) 2010; 49 GáLvez, Iglesias (b10) 2013; 13 Ghamisi, Couceiro, Martins, Benediktsson (b11) 2014; 52 Zhang, Tang, Hua, Guan (b42) 2015; 28 Mason, Duggan, Howley (b22) 2018; 62 Yang, Simon (b39) 2005 Gou, Lei, Guo, Wang, Cai, Luo (b12) 2017; 57 He, Wu, Wen, Saunders, Paton (b13) 2004; 78 Lee, Lee, Chang (b19) 2010; 37 Shi, Eberhart (b34) 2001 Eberhart, Kennedy (b7) 1995 Miranda, Fonseca (b23) 2002 Babu (10.1016/j.matcom.2020.08.013_b4) 2015; 34 Gou (10.1016/j.matcom.2020.08.013_b12) 2017; 57 Sedighizadeh (10.1016/j.matcom.2020.08.013_b29) 2018; 18 Yang (10.1016/j.matcom.2020.08.013_b39) 2005 Keedwell (10.1016/j.matcom.2020.08.013_b16) 2012 Lee (10.1016/j.matcom.2020.08.013_b18) 2008; 51 Miranda (10.1016/j.matcom.2020.08.013_b23) 2002 Schoeman (10.1016/j.matcom.2020.08.013_b28) 2004 Yu (10.1016/j.matcom.2020.08.013_b40) 2010; 6 Akbaripour (10.1016/j.matcom.2020.08.013_b1) 2013 Zheng (10.1016/j.matcom.2020.08.013_b43) 2010; 49 10.1016/j.matcom.2020.08.013_b31 Chuanwen (10.1016/j.matcom.2020.08.013_b6) 2005; 68 Luan (10.1016/j.matcom.2020.08.013_b21) 2019; 156 Sedighizadeh (10.1016/j.matcom.2020.08.013_b30) 2009; 1 Jain (10.1016/j.matcom.2020.08.013_b14) 2018; 62 Naik (10.1016/j.matcom.2020.08.013_b24) 2018; 10 Altinoz (10.1016/j.matcom.2020.08.013_b3) 2012; 7 El-Abd (10.1016/j.matcom.2020.08.013_b8) 2008 Faradonbeh (10.1016/j.matcom.2020.08.013_b9) 2016; 32 Kiran (10.1016/j.matcom.2020.08.013_b17) 2017; 60 Lee (10.1016/j.matcom.2020.08.013_b19) 2010; 37 Talbi (10.1016/j.matcom.2020.08.013_b36) 2009 Wolpert (10.1016/j.matcom.2020.08.013_b38) 1997; 1 Zhang (10.1016/j.matcom.2020.08.013_b41) 2014; 18 GáLvez (10.1016/j.matcom.2020.08.013_b10) 2013; 13 Jordehi (10.1016/j.matcom.2020.08.013_b15) 2015; 26 Taherkhani (10.1016/j.matcom.2020.08.013_b35) 2016; 38 Lin (10.1016/j.matcom.2020.08.013_b20) 2008; 4 Mason (10.1016/j.matcom.2020.08.013_b22) 2018; 62 Serani (10.1016/j.matcom.2020.08.013_b32) 2015 Rozenberg (10.1016/j.matcom.2020.08.013_b27) 2012 Serani (10.1016/j.matcom.2020.08.013_b33) 2016; 49 Tao (10.1016/j.matcom.2020.08.013_b37) 2009 Alfaro-Ayala (10.1016/j.matcom.2020.08.013_b2) 2015; 100 He (10.1016/j.matcom.2020.08.013_b13) 2004; 78 Neethling (10.1016/j.matcom.2020.08.013_b25) 2006 Zhang (10.1016/j.matcom.2020.08.013_b42) 2015; 28 Ong (10.1016/j.matcom.2020.08.013_b26) 2020; 170 Banks (10.1016/j.matcom.2020.08.013_b5) 2007; 6 Eberhart (10.1016/j.matcom.2020.08.013_b7) 1995 Shi (10.1016/j.matcom.2020.08.013_b34) 2001 Ghamisi (10.1016/j.matcom.2020.08.013_b11) 2014; 52  | 
    
| References_xml | – volume: 57 start-page: 468 year: 2017 end-page: 481 ident: b12 article-title: A novel improved particle swarm optimization algorithm based on individual difference evolution publication-title: Appl. Soft Comput. – start-page: 39 year: 1995 end-page: 43 ident: b7 article-title: A new optimizer using particle swarm theory publication-title: Micro Machine and Human Science, 1995. MHS’95. Proceedings of the Sixth International Symposium on – volume: 32 start-page: 123 year: 2016 end-page: 133 ident: b9 article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation publication-title: Eng. Comput. – start-page: 1670 year: 2006 end-page: 1677 ident: b25 article-title: Determining RNA secondary structure using set-based particle swarm optimization publication-title: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on – volume: 68 start-page: 57 year: 2005 end-page: 65 ident: b6 article-title: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation publication-title: Math. Comput. Simulation – volume: 62 start-page: 148 year: 2018 end-page: 161 ident: b22 article-title: A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning publication-title: Appl. Soft Comput. – volume: 18 start-page: 248 year: 2014 end-page: 260 ident: b41 article-title: Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects publication-title: Appl. Soft Comput. – year: 2013 ident: b1 article-title: Efficient and robust parameter tuning for heuristic algorithms – volume: 28 start-page: 138 year: 2015 end-page: 149 ident: b42 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. – volume: 1 start-page: 486 year: 2009 ident: b30 article-title: Particle swarm optimization methods, taxonomy and applications publication-title: Int. J. Comput. Theory Eng. – volume: 49 start-page: 643 year: 2010 end-page: 662 ident: b43 article-title: Solving flow shop scheduling problems by quantum differential evolutionary algorithm publication-title: Int. J. Adv. Manuf. Technol. – year: 2012 ident: b27 article-title: Handbook of Natural Computing – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b38 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 60 start-page: 670 year: 2017 end-page: 678 ident: b17 article-title: Particle swarm optimization with a new update mechanism publication-title: Appl. Soft Comput. – volume: 156 start-page: 294 year: 2019 end-page: 309 ident: b21 article-title: A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization publication-title: Math. Comput. Simulation – start-page: 101 year: 2001 end-page: 106 ident: b34 article-title: Fuzzy adaptive particle swarm optimization publication-title: Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, Vol. 1 – volume: 100 start-page: 203 year: 2015 end-page: 211 ident: b2 article-title: Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD publication-title: Chem. Eng. Res. Des. – volume: 10 start-page: 232 year: 2018 end-page: 241 ident: b24 article-title: A Constriction Factor based Particle Swarm Optimization for Congestion Management in Transmission Systems publication-title: Int. J. Electr. Eng. Inform. – volume: 13 start-page: 1491 year: 2013 end-page: 1504 ident: b10 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl. Soft Comput. – volume: 78 start-page: 135 year: 2004 end-page: 147 ident: b13 article-title: A particle swarm optimizer with passive congregation publication-title: Biosystems – volume: 6 start-page: 467 year: 2007 end-page: 484 ident: b5 article-title: A review of particle swarm optimization. Part I: background and development publication-title: Nat. Comput. – year: 2008 ident: b8 article-title: Cooperative models of particle swarm optimizers – volume: 6 start-page: 895 year: 2010 end-page: 910 ident: b40 article-title: A new exact penalty function method for continuous inequality constrained optimization problems publication-title: J. Ind. Manag. Optim. – year: 2009 ident: b36 article-title: Metaheuristics: From Design to Implementation – volume: 38 start-page: 281 year: 2016 end-page: 295 ident: b35 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Appl. Soft Comput. – volume: 4 start-page: 1711 year: 2008 end-page: 1722 ident: b20 article-title: An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications publication-title: Int. J. Innovative Comput. Inf. Control – start-page: 164 year: 2005 end-page: 169 ident: b39 article-title: A new particle swarm optimization technique publication-title: Null – start-page: 342 year: 2012 end-page: 343 ident: b16 article-title: Continuous trait-based particle swarm optimisation (CTB-PSO) publication-title: International Conference on Swarm Intelligence – volume: 18 start-page: 498 year: 2018 end-page: 508 ident: b29 article-title: Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework publication-title: J. Energy Storage – volume: 34 start-page: 613 year: 2015 end-page: 624 ident: b4 article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition publication-title: Appl. Soft Comput. – start-page: 361 year: 2004 end-page: 366 ident: b28 article-title: Using vector operations to identify niches for particle swarm optimization publication-title: Cybernetics and Intelligent Systems, 2004 IEEE Conference on, Vol. 1 – start-page: 1080 year: 2002 end-page: 1085 ident: b23 article-title: EPSO-best-of-two-worlds meta-heuristic applied to power system problems publication-title: Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, Vol. 2 – volume: 49 start-page: 313 year: 2016 end-page: 334 ident: b33 article-title: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems publication-title: Appl. Soft Comput. – volume: 52 start-page: 2382 year: 2014 end-page: 2394 ident: b11 article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 62 start-page: 203 year: 2018 end-page: 215 ident: b14 article-title: Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification publication-title: Appl. Soft Comput. – volume: 170 start-page: 98 year: 2020 end-page: 106 ident: b26 article-title: A general method of computing mixed Poisson probabilities by Monte Carlo sampling publication-title: Math. Comput. Simulation – reference: A. Serani, M. Diez, Are random coefficients needed in particle swarm optimization for simulation-based ship design, in: Proceedings of the 7th International Conference on Computational Methods in Marine Engineering (Marine 2017), 2017. – start-page: 153 year: 2009 end-page: 159 ident: b37 article-title: QoS constrained grid workflow scheduling optimization based on a novel PSO algorithm publication-title: Grid and Cooperative Computing, 2009. GCC’09. Eighth International Conference on – volume: 7 start-page: 204 year: 2012 end-page: 217 ident: b3 article-title: Application of chaos embedded PSO for PID parameter tuning publication-title: Int. J. Comput. Commun. Control – volume: 51 start-page: 2772 year: 2008 end-page: 2783 ident: b18 article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm publication-title: Int. J. Heat Mass Transfer – volume: 26 start-page: 401 year: 2015 end-page: 417 ident: b15 article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems publication-title: Appl. Soft Comput. – start-page: 25 year: 2015 end-page: 47 ident: b32 article-title: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques publication-title: Recent Advances in Swarm Intelligence and Evolutionary Computation – volume: 37 start-page: 242 year: 2010 end-page: 251 ident: b19 article-title: A dynamic fuzzy neural system design via hybridization of EM and PSO algorithms publication-title: IAENG Int. J. Comput. Sci. – volume: 10 start-page: 232 issue: 2 year: 2018 ident: 10.1016/j.matcom.2020.08.013_b24 article-title: A Constriction Factor based Particle Swarm Optimization for Congestion Management in Transmission Systems publication-title: Int. J. Electr. Eng. Inform. – volume: 38 start-page: 281 year: 2016 ident: 10.1016/j.matcom.2020.08.013_b35 article-title: A novel stability-based adaptive inertia weight for particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.004 – start-page: 1670 year: 2006 ident: 10.1016/j.matcom.2020.08.013_b25 article-title: Determining RNA secondary structure using set-based particle swarm optimization – volume: 34 start-page: 613 year: 2015 ident: 10.1016/j.matcom.2020.08.013_b4 article-title: Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.05.029 – volume: 28 start-page: 138 year: 2015 ident: 10.1016/j.matcom.2020.08.013_b42 article-title: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.11.018 – volume: 52 start-page: 2382 issue: 5 year: 2014 ident: 10.1016/j.matcom.2020.08.013_b11 article-title: Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2260552 – start-page: 361 year: 2004 ident: 10.1016/j.matcom.2020.08.013_b28 article-title: Using vector operations to identify niches for particle swarm optimization – volume: 49 start-page: 313 year: 2016 ident: 10.1016/j.matcom.2020.08.013_b33 article-title: Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.08.028 – volume: 60 start-page: 670 year: 2017 ident: 10.1016/j.matcom.2020.08.013_b17 article-title: Particle swarm optimization with a new update mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.07.050 – year: 2009 ident: 10.1016/j.matcom.2020.08.013_b36 – year: 2008 ident: 10.1016/j.matcom.2020.08.013_b8 – volume: 4 start-page: 1711 issue: 7 year: 2008 ident: 10.1016/j.matcom.2020.08.013_b20 article-title: An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications publication-title: Int. J. Innovative Comput. Inf. Control – volume: 51 start-page: 2772 issue: 11–12 year: 2008 ident: 10.1016/j.matcom.2020.08.013_b18 article-title: Inverse radiation analysis using repulsive particle swarm optimization algorithm publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.09.037 – volume: 57 start-page: 468 year: 2017 ident: 10.1016/j.matcom.2020.08.013_b12 article-title: A novel improved particle swarm optimization algorithm based on individual difference evolution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.025 – volume: 18 start-page: 248 year: 2014 ident: 10.1016/j.matcom.2020.08.013_b41 article-title: Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.035 – start-page: 1080 year: 2002 ident: 10.1016/j.matcom.2020.08.013_b23 article-title: EPSO-best-of-two-worlds meta-heuristic applied to power system problems – start-page: 101 year: 2001 ident: 10.1016/j.matcom.2020.08.013_b34 article-title: Fuzzy adaptive particle swarm optimization – volume: 26 start-page: 401 year: 2015 ident: 10.1016/j.matcom.2020.08.013_b15 article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.026 – year: 2012 ident: 10.1016/j.matcom.2020.08.013_b27 – volume: 62 start-page: 148 year: 2018 ident: 10.1016/j.matcom.2020.08.013_b22 article-title: A meta optimisation analysis of particle swarm optimisation velocity update equations for watershed management learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.018 – volume: 1 start-page: 486 issue: 5 year: 2009 ident: 10.1016/j.matcom.2020.08.013_b30 article-title: Particle swarm optimization methods, taxonomy and applications publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2009.V1.80 – volume: 62 start-page: 203 year: 2018 ident: 10.1016/j.matcom.2020.08.013_b14 article-title: Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.038 – year: 2013 ident: 10.1016/j.matcom.2020.08.013_b1 – volume: 170 start-page: 98 year: 2020 ident: 10.1016/j.matcom.2020.08.013_b26 article-title: A general method of computing mixed Poisson probabilities by Monte Carlo sampling publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2019.09.003 – volume: 18 start-page: 498 year: 2018 ident: 10.1016/j.matcom.2020.08.013_b29 article-title: Coordinated optimization and control of SFCL and SMES for mitigation of SSR using HBB-BC algorithm in a fuzzy framework publication-title: J. Energy Storage doi: 10.1016/j.est.2018.06.013 – start-page: 39 year: 1995 ident: 10.1016/j.matcom.2020.08.013_b7 article-title: A new optimizer using particle swarm theory – start-page: 153 year: 2009 ident: 10.1016/j.matcom.2020.08.013_b37 article-title: QoS constrained grid workflow scheduling optimization based on a novel PSO algorithm – start-page: 164 year: 2005 ident: 10.1016/j.matcom.2020.08.013_b39 article-title: A new particle swarm optimization technique – ident: 10.1016/j.matcom.2020.08.013_b31 – volume: 32 start-page: 123 issue: 1 year: 2016 ident: 10.1016/j.matcom.2020.08.013_b9 article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation publication-title: Eng. Comput. doi: 10.1007/s00366-015-0404-3 – volume: 156 start-page: 294 year: 2019 ident: 10.1016/j.matcom.2020.08.013_b21 article-title: A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2018.08.011 – volume: 7 start-page: 204 issue: 2 year: 2012 ident: 10.1016/j.matcom.2020.08.013_b3 article-title: Application of chaos embedded PSO for PID parameter tuning publication-title: Int. J. Comput. Commun. Control doi: 10.15837/ijccc.2012.2.1403 – start-page: 25 year: 2015 ident: 10.1016/j.matcom.2020.08.013_b32 article-title: Globally convergent hybridization of particle swarm optimization using line search-based derivative-free techniques – volume: 13 start-page: 1491 issue: 3 year: 2013 ident: 10.1016/j.matcom.2020.08.013_b10 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.030 – volume: 6 start-page: 467 issue: 4 year: 2007 ident: 10.1016/j.matcom.2020.08.013_b5 article-title: A review of particle swarm optimization. Part I: background and development publication-title: Nat. Comput. doi: 10.1007/s11047-007-9049-5 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.matcom.2020.08.013_b38 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 68 start-page: 57 issue: 1 year: 2005 ident: 10.1016/j.matcom.2020.08.013_b6 article-title: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2004.10.003 – volume: 37 start-page: 242 issue: 3 year: 2010 ident: 10.1016/j.matcom.2020.08.013_b19 article-title: A dynamic fuzzy neural system design via hybridization of EM and PSO algorithms publication-title: IAENG Int. J. Comput. Sci. – volume: 49 start-page: 643 issue: 5–8 year: 2010 ident: 10.1016/j.matcom.2020.08.013_b43 article-title: Solving flow shop scheduling problems by quantum differential evolutionary algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2438-4 – start-page: 342 year: 2012 ident: 10.1016/j.matcom.2020.08.013_b16 article-title: Continuous trait-based particle swarm optimisation (CTB-PSO) – volume: 6 start-page: 895 year: 2010 ident: 10.1016/j.matcom.2020.08.013_b40 article-title: A new exact penalty function method for continuous inequality constrained optimization problems publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2010.6.895 – volume: 100 start-page: 203 year: 2015 ident: 10.1016/j.matcom.2020.08.013_b2 article-title: Optimal location of axial impellers in a stirred tank applying evolutionary programing and CFD publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.05.036 – volume: 78 start-page: 135 issue: 1–3 year: 2004 ident: 10.1016/j.matcom.2020.08.013_b13 article-title: A particle swarm optimizer with passive congregation publication-title: Biosystems doi: 10.1016/j.biosystems.2004.08.003  | 
    
| SSID | ssj0007545 | 
    
| Score | 2.5289567 | 
    
| Snippet | Particle Swarm Optimization (PSO) algorithm is a nature-inspired meta-heuristic that has been utilized as a powerful optimization tool in a wide range of... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 194 | 
    
| SubjectTerms | Heuristic algorithms Parameter tuning Particle Swarm Optimization (PSO) Swarm intelligence  | 
    
| Title | GEPSO: A new generalized particle swarm optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.matcom.2020.08.013 | 
    
| Volume | 179 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX3zxLs7LyIOvcW2SNqkPwhibU3EKc7C30CbprOzGrAg--NtN2tQLiIKv5RxoT5Nzvjbf-Q4AJ5orHvlUIx9rjaimEsWeJoinOAls52Wo7InuTT_sDenVKBitgHbVC2NplS73lzm9yNbuStNFs7nIsubAI8yk1oBiz569Uav4SSmzUwxO3z5pHsagoDEaY2Stq_a5guNlQKHljGCDmQohT5_8XJ6-lJzuJlh3WBG2ytvZAit6tg02qjkM0G3LHXB-0bkb3J7BFjQYGY5LIensVSu4cI8Cn17i5RTOTX6YusZLGE_G82WWP0x3wbDbuW_3kJuLgKQB-Dli0pRlrjlRSvFUB5TEKtLmOy5hPFWMmcXBQ6uDJrGiPI4kY4G2Om5UYh4oRvZAbTaf6X0AQ1MiI5X4YawTimUakYApFXsG1SjP57wOSBUOIZ1ouJ1dMREVO-xRlEEUNojCjrT0SR2gD69FKZrxhz2rIi2-vXxh8vqvngf_9jwEa9jSU4q_KUegli-f9bHBF3nSKBZQA6y2Lq97_XeiZc-v | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46H_TFuzivefA1rm3SJvVBGGNz6jaFbbC30CbprOzGnAg--NtN2tQLiIKv5aS0J-k5X5rvfAeAM8UkC12ikOsphYgiAkWOwoglXuybystAmhPddido9snNwB8sgVpRC2NolTb25zE9i9b2SsV6szJL00rXwVSHVp94jjl7I3gZrBB9e7MDO3_75Hloi4zHqK2RMS_q5zKSl0aFhjTiadCUKXm6-Of89CXnNDbBugWLsJo_zxZYUpNtsFE0YoD2u9wBl1f1--7dBaxCDZLhMFeSTl-VhDP7LvDpJZqP4VQHiLGtvITRaDidp4uH8S7oN-q9WhPZxghIaIS_QFTovMwUw1JKliif4EiGSm_kYsoSSaleHSwwQmjCk4RFoaDUV0bIjQiP-ZLiPVCaTCdqH8BA58hQxm4QqZh4IgmxT6WMHA1rpOMyVga4cAcXVjXcNK8Y8YIe9shzJ3LjRG56Wrq4DNDHqFmumvGHPS08zb_NPteB_deRB_8eeQpWm712i7euO7eHYM0zXJXs18oRKC3mz-pYg41FfJItpnef6dFE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GEPSO%3A+A+new+generalized+particle+swarm+optimization+algorithm&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Sedighizadeh%2C+Davoud&rft.au=Masehian%2C+Ellips&rft.au=Sedighizadeh%2C+Mostafa&rft.au=Akbaripour%2C+Hossein&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=179&rft.spage=194&rft.epage=212&rft_id=info:doi/10.1016%2Fj.matcom.2020.08.013&rft.externalDocID=S0378475420302743 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |