Space–frequency domain based joint dictionary learning and collaborative representation for face recognition
•A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the s...
        Saved in:
      
    
          | Published in | Signal processing Vol. 147; pp. 101 - 109 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.06.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0165-1684 1872-7557  | 
| DOI | 10.1016/j.sigpro.2018.01.013 | 
Cover
| Abstract | •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the spatial-domain dictionary and the frequency-domain dictionary.•The native spatial domain and the Fourier frequency domain can make data complementary.•The experimental results demonstrate the superior performance of our method over the original dictionary learning methods.
In this paper, we propose a novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition. Different from conventional learning methods, we consider both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning. Based on the Fourier spectrum of images, the proposed method provides new insights into two crucial complementations in dictionary learning: data domain complementation and classification algorithm complementation. On the one hand, we perform the dictionary learning on the original dataset and the Fourier transformed dataset respectively, which makes data complementary in both spatial and frequency domains. On the other hand, we integrate dictionary learning and collaborative representation (CRC) for classification. Specifically, CRC is conducted on frequency-domain dataset to obtain residual scores, and the residual scores are fused with the ones obtained by the previous DL algorithms as the ultimate fusion score to classify the test samples. The proposed method with two aspects of complementation promotes the discriminative ability of dictionary learning and obtains a better classification performance. The experimental results demonstrate the superior performance of our method over the original dictionary learning methods. | 
    
|---|---|
| AbstractList | •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the spatial-domain dictionary and the frequency-domain dictionary.•The native spatial domain and the Fourier frequency domain can make data complementary.•The experimental results demonstrate the superior performance of our method over the original dictionary learning methods.
In this paper, we propose a novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition. Different from conventional learning methods, we consider both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning. Based on the Fourier spectrum of images, the proposed method provides new insights into two crucial complementations in dictionary learning: data domain complementation and classification algorithm complementation. On the one hand, we perform the dictionary learning on the original dataset and the Fourier transformed dataset respectively, which makes data complementary in both spatial and frequency domains. On the other hand, we integrate dictionary learning and collaborative representation (CRC) for classification. Specifically, CRC is conducted on frequency-domain dataset to obtain residual scores, and the residual scores are fused with the ones obtained by the previous DL algorithms as the ultimate fusion score to classify the test samples. The proposed method with two aspects of complementation promotes the discriminative ability of dictionary learning and obtains a better classification performance. The experimental results demonstrate the superior performance of our method over the original dictionary learning methods. | 
    
| Author | Lei, Tao Liu, Shigang Li, Liping Peng, Yali  | 
    
| Author_xml | – sequence: 1 givenname: Yali surname: Peng fullname: Peng, Yali organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China – sequence: 2 givenname: Liping surname: Li fullname: Li, Liping organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China – sequence: 3 givenname: Shigang surname: Liu fullname: Liu, Shigang email: shgliu@snnu.edu.cn organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China – sequence: 4 givenname: Tao surname: Lei fullname: Lei, Tao organization: College of Electronics and Information Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China  | 
    
| BookMark | eNqFkM1KxDAUhYOM4MzoG7jIC3RMmjbpuBBk8A8EF-o6JOntkNJJalIHZuc7-IY-iSl15ULhwoXLOYd7vgWaOe8AoXNKVpRQftGuot32wa9yQqsVoWnYEZrTSuSZKEsxQ_MkKzPKq-IELWJsCUkSTubIPffKwNfHZxPg7R2cOeDa75R1WKsINW69dQOurRmsdyoccAcqOOu2WLkaG991SvugBrsHHKAPEMENahTjxgfcpPB0N37r7Hg8RceN6iKc_ewler29edncZ49Pdw-b68fMMMKHTKwLJUxZE8UYEUCVFoYJrY2BsiJNUXC25oZp0JzmhhciZ4yvjSZ1JTRvGFuiyynXBB9jgEYaO701BGU7SYkcyclWTuTkSE4SmmY0F7_MfbC7VP4_29Vkg1RsbyHIaGwiCrVNBAZZe_t3wDeBjZEG | 
    
| CitedBy_id | crossref_primary_10_1049_ipr2_12096 crossref_primary_10_1016_j_neucom_2019_05_103 crossref_primary_10_1109_ACCESS_2019_2960928 crossref_primary_10_1117_1_JRS_14_032610 crossref_primary_10_1007_s11042_020_08965_9 crossref_primary_10_1007_s11042_021_11849_1 crossref_primary_10_1007_s11760_020_01755_8 crossref_primary_10_1007_s13042_018_0862_1 crossref_primary_10_1016_j_neucom_2022_12_016 crossref_primary_10_1016_j_patrec_2018_09_008 crossref_primary_10_1049_iet_ipr_2019_1527 crossref_primary_10_1002_ima_22337 crossref_primary_10_1007_s00138_020_01067_4 crossref_primary_10_1007_s11063_023_11234_z crossref_primary_10_1016_j_jvcir_2020_102763 crossref_primary_10_1007_s11063_020_10219_6 crossref_primary_10_1007_s11760_024_03466_w crossref_primary_10_1016_j_sigpro_2018_07_018 crossref_primary_10_1016_j_patrec_2018_10_016 crossref_primary_10_1016_j_sigpro_2019_107263 crossref_primary_10_1049_iet_cvi_2018_5096 crossref_primary_10_1007_s11760_024_03189_y crossref_primary_10_1016_j_neucom_2018_07_052 crossref_primary_10_1007_s11042_020_09850_1  | 
    
| Cites_doi | 10.1109/TIP.2012.2192127 10.1016/j.neucom.2013.10.025 10.1109/TIP.2016.2524207 10.1109/TPAMI.2015.2456899 10.1109/TPAMI.2010.128 10.1109/TNNLS.2015.2508025 10.1109/ACCESS.2015.2430359 10.1162/jocn.1991.3.1.71 10.1109/TPAMI.2008.79 10.1109/TNNLS.2016.2514360 10.1109/JSTSP.2007.910971 10.1109/TMI.2013.2255883 10.1109/TPAMI.2016.2544314 10.1109/34.879790 10.1109/TIP.2016.2601268 10.1016/j.ins.2016.09.059 10.1109/TGRS.2014.2303895 10.1109/TNNLS.2014.2376936 10.1109/TCSVT.2011.2138790 10.1109/TPAMI.2013.88 10.1109/TCYB.2016.2536638 10.1109/TIP.2016.2563981 10.1109/TMM.2016.2608780 10.1016/j.patcog.2015.12.017 10.1109/TNNLS.2015.2458986 10.1109/TSP.2006.881199 10.1109/TCYB.2015.2496974 10.1109/TPAMI.2006.244 10.1109/TNNLS.2014.2376963 10.1016/j.patcog.2012.11.003 10.1016/j.patcog.2015.01.012 10.1145/954339.954342 10.1109/34.598228  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2018 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.sigpro.2018.01.013 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1872-7557 | 
    
| EndPage | 109 | 
    
| ExternalDocumentID | 10_1016_j_sigpro_2018_01_013 S0165168418300215  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-794a7c5d0a3307e1ab7c37bbcce580f446396c3beb612c64723369cb0d87b6f33 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0165-1684 | 
    
| IngestDate | Thu Apr 24 22:57:00 EDT 2025 Wed Oct 01 02:46:36 EDT 2025 Fri Feb 23 02:33:58 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Representation based classification Fourier transform Face recognition Dictionary learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-794a7c5d0a3307e1ab7c37bbcce580f446396c3beb612c64723369cb0d87b6f33 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2018_01_013 crossref_primary_10_1016_j_sigpro_2018_01_013 elsevier_sciencedirect_doi_10_1016_j_sigpro_2018_01_013  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2018 2018-06-00  | 
    
| PublicationDateYYYYMMDD | 2018-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Signal processing | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Xu, Li, Zhang, Yang, You (bib0027) 2017; 375 Wang, Nie, Cai, Huang (bib0023) 2013 Phillips, Moon, Rizvi, Rauss (bib0043) 2000; 22 Yang, Wang, Lin, Cohen, Huang (bib0017) 2012; 21 Yang, Zhang, Feng, Zhang (bib0030) 2011 Zhang, Yang, Feng (bib0039) 2011 Kim, Koh, Lustig, Boyd, Gorinevsky (bib0032) 2007; 1 Gong, Tao, Fu, Yang (bib0021) 2015; 26 Chen, Liu, Tao, Fu, Tu, Jie (bib0022) 2015; 26 Naseem, Togneri, Bennamoun (bib0042) 2010; 32 Xu, Liu, Tao, Xu (bib0014) 2016; 25 Xu, Li, Yang, Zhang (bib0026) 2014; 131 Zhang, Xu, Yang, Li, Zhang (bib0033) 2015; 3 Du, Zhang (bib0011) 2014; 52 Yang, Zhang, Yang, Zhang (bib0005) 2011 Wang, Lu, Yang (bib0006) 2015; 48 Du, Zhang, Zhang, Tao (bib0007) 2016; 25 Chen, Tao, Maybank, Wei, Kang, Jie (bib0020) 2016; 25 Xu, Zhang, Lu, Yang (bib0025) 2016; 54 Xu, Zhu, Li, Liu, Lu, Liu (bib0024) 2013; 46 Zhang, Li. (bib0029) 2010 Belhumeur, Hespanha, Kriegman (bib0003) 1997; 19 Gonzalez, Woods, Edding (bib0038) 2009 Gong, Tao, Liu, Liu, Yang (bib0008) 2017; 28 Liu, Tao (bib0015) 2016; 27 Cai, Zuo, Zhang, Feng, Wang (bib0035) 2014; vol. 8692 Du, Wang, Zhang, Zhang, Liu, Shen, Tao (bib0009) 2015; 47 Liu, Tao, Song, Maybank (bib0019) 2017; 39 Li, Lai, Xu, Yang, Zhang (bib0036) 2017; 28 Zhao, Chellappa, Phillips, Rosenfeld (bib0001) 2003; 35 Du, Xiong, Wu, Zhang, Zhang, Tao (bib0012) 2016; 47 Jiang, Lin, Davis (bib0034) 2013; 35 Wright, Yang, Ganesh, Sastry, Ma (bib0041) 2009; 31 Li, Lai, Xu, Yang, Zhang (bib0010) 2017; 28 Du, Zhang, Zhang, Hu, Tao (bib0018) 2017; 19 Aharon, Elad, Bruckstein (bib0028) 2006; 54 Ahonen, Hadid, Pietikainen (bib0004) 2006; 28 Liu, Tao (bib0013) 2016; 38 Ma, Moisan, Yu, Zeng (bib0016) 2013; 32 Xu, Zhang, Yang, Yang (bib0031) 2011; 21 Turk, Pentland (bib0002) 1991; 3 Pati, Rezaiifar, Krishnaprasad (bib0040) 1993 Khan (bib0037) 2011 Belhumeur (10.1016/j.sigpro.2018.01.013_bib0003) 1997; 19 Ahonen (10.1016/j.sigpro.2018.01.013_bib0004) 2006; 28 Chen (10.1016/j.sigpro.2018.01.013_bib0020) 2016; 25 Wang (10.1016/j.sigpro.2018.01.013_bib0006) 2015; 48 Du (10.1016/j.sigpro.2018.01.013_bib0007) 2016; 25 Xu (10.1016/j.sigpro.2018.01.013_bib0014) 2016; 25 Cai (10.1016/j.sigpro.2018.01.013_bib0035) 2014; vol. 8692 Kim (10.1016/j.sigpro.2018.01.013_bib0032) 2007; 1 Yang (10.1016/j.sigpro.2018.01.013_bib0017) 2012; 21 Yang (10.1016/j.sigpro.2018.01.013_bib0030) 2011 Du (10.1016/j.sigpro.2018.01.013_bib0009) 2015; 47 Yang (10.1016/j.sigpro.2018.01.013_bib0005) 2011 Liu (10.1016/j.sigpro.2018.01.013_bib0019) 2017; 39 Turk (10.1016/j.sigpro.2018.01.013_bib0002) 1991; 3 Liu (10.1016/j.sigpro.2018.01.013_bib0013) 2016; 38 Li (10.1016/j.sigpro.2018.01.013_bib0036) 2017; 28 Pati (10.1016/j.sigpro.2018.01.013_bib0040) 1993 Zhao (10.1016/j.sigpro.2018.01.013_bib0001) 2003; 35 Li (10.1016/j.sigpro.2018.01.013_bib0010) 2017; 28 Liu (10.1016/j.sigpro.2018.01.013_bib0015) 2016; 27 Jiang (10.1016/j.sigpro.2018.01.013_bib0034) 2013; 35 Chen (10.1016/j.sigpro.2018.01.013_bib0022) 2015; 26 Khan (10.1016/j.sigpro.2018.01.013_bib0037) 2011 Xu (10.1016/j.sigpro.2018.01.013_bib0024) 2013; 46 Xu (10.1016/j.sigpro.2018.01.013_bib0031) 2011; 21 Wright (10.1016/j.sigpro.2018.01.013_bib0041) 2009; 31 Du (10.1016/j.sigpro.2018.01.013_bib0011) 2014; 52 Du (10.1016/j.sigpro.2018.01.013_bib0018) 2017; 19 Gonzalez (10.1016/j.sigpro.2018.01.013_bib0038) 2009 Ma (10.1016/j.sigpro.2018.01.013_bib0016) 2013; 32 Du (10.1016/j.sigpro.2018.01.013_bib0012) 2016; 47 Phillips (10.1016/j.sigpro.2018.01.013_bib0043) 2000; 22 Xu (10.1016/j.sigpro.2018.01.013_bib0025) 2016; 54 Zhang (10.1016/j.sigpro.2018.01.013_bib0029) 2010 Gong (10.1016/j.sigpro.2018.01.013_bib0021) 2015; 26 Gong (10.1016/j.sigpro.2018.01.013_bib0008) 2017; 28 Wang (10.1016/j.sigpro.2018.01.013_bib0023) 2013 Xu (10.1016/j.sigpro.2018.01.013_bib0027) 2017; 375 Naseem (10.1016/j.sigpro.2018.01.013_bib0042) 2010; 32 Zhang (10.1016/j.sigpro.2018.01.013_bib0039) 2011 Zhang (10.1016/j.sigpro.2018.01.013_bib0033) 2015; 3 Xu (10.1016/j.sigpro.2018.01.013_bib0026) 2014; 131 Aharon (10.1016/j.sigpro.2018.01.013_bib0028) 2006; 54  | 
    
| References_xml | – volume: 21 start-page: 1255 year: 2011 end-page: 1262 ident: bib0031 article-title: A two-phase test sample sparse representation method for use with face recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2009 ident: bib0038 article-title: Digital Image Processing Using MATLAB – volume: 22 start-page: 1090 year: 2000 end-page: 1104 ident: bib0043 article-title: The FERET evaluation methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 2148 year: 2015 end-page: 2162 ident: bib0021 article-title: Fick's law assisted propagation for semisupervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 375 start-page: 171 year: 2017 end-page: 182 ident: bib0027 article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition publication-title: Inf. Sci. – volume: 46 start-page: 1151 year: 2013 end-page: 1158 ident: bib0024 article-title: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition publication-title: Pattern Recognit. – start-page: 40 year: 1993 end-page: 44 ident: bib0040 article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition publication-title: 27th Asilomar Conference on Signals, Systems and Computers, November – volume: 26 start-page: 2261 year: 2015 end-page: 2274 ident: bib0022 article-title: Deformed graph laplacian for semisupervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 54 start-page: 68 year: 2016 end-page: 82 ident: bib0025 article-title: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification publication-title: Pattern Recognit. – volume: 32 start-page: 1277 year: 2013 end-page: 1289 ident: bib0016 article-title: A dictionary learning approach for poisson image deblurring publication-title: IEEE Trans. Med. Imaging – volume: 27 start-page: 1851 year: 2016 end-page: 1863 ident: bib0015 article-title: On the performance of Manhattan nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 28 start-page: 278 year: 2017 end-page: 293 ident: bib0036 article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 47 start-page: 14 year: 2015 end-page: 26 ident: bib0009 article-title: Exploring representativeness and informativeness for active learning publication-title: IEEE Trans. Cybern. – start-page: 471 year: 2011 end-page: 478 ident: bib0039 article-title: Sparse representation or collaborative representation: which helps face recognition publication-title: IEEE International Conference on Computer Vision – volume: 25 start-page: 5345 year: 2016 end-page: 5357 ident: bib0007 article-title: Beyond the sparsity-based target detector: a hybrid sparsity and statistics based detector for hyperspectral images publication-title: IEEE Trans. Image Process. – volume: 35 start-page: 399 year: 2003 end-page: 458 ident: bib0001 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. – volume: 52 start-page: 6844 year: 2014 end-page: 6857 ident: bib0011 article-title: A discriminative metric learning based anomaly detection method publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 3 start-page: 90 year: 2015 end-page: 530 ident: bib0033 article-title: A Survey of sparse representation: algorithms and applications publication-title: IEEE Access – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bib0003 article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linearprojection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: vol. 8692 start-page: 624 year: 2014 end-page: 639 ident: bib0035 article-title: Support vector guided dictionary learning publication-title: Computer Vision - ECCV 2014 – volume: 28 start-page: 1452 year: 2017 end-page: 1465 ident: bib0008 article-title: Label propagation via teaching-to-learn and learning-to-teach publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 21 start-page: 3467 year: 2012 end-page: 3478 ident: bib0017 article-title: Coupled dictionary training for image super-resolution publication-title: IEEE Trans. Image Process. – year: 2011 ident: bib0037 article-title: Digital Design of Signal Processing System: A Practical Approach – volume: 39 start-page: 227 year: 2017 end-page: 241 ident: bib0019 article-title: Algorithm-dependent generalization bounds for multi-task learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: bib0028 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib0041 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 38 start-page: 447 year: 2016 end-page: 461 ident: bib0013 article-title: Classification with noisy labels by importance reweighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2691 year: 2010 end-page: 2698 ident: bib0029 article-title: Discriminative K-SVD for dictionary learning in face recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1145 year: 2013 end-page: 1152 ident: bib0023 article-title: Semi-supervised robust dictionary learning via efficient l-norms minimization publication-title: Proceedings of the IEEE International Conference on Computer Vision, December – volume: 3 start-page: 71 year: 1991 end-page: 86 ident: bib0002 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. – volume: 28 start-page: 278 year: 2017 end-page: 293 ident: bib0010 article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 start-page: 67 year: 2017 end-page: 79 ident: bib0018 article-title: PLTD: patch-based low-rank tensor decomposition for hyperspectral images publication-title: IEEE Trans. Multimedia – volume: 25 start-page: 3249 year: 2016 end-page: 3260 ident: bib0020 article-title: Multi-modal curriculum learning for semi-supervised image classification publication-title: IEEE Trans. Image Process. – volume: 131 start-page: 191 year: 2014 end-page: 199 ident: bib0026 article-title: Integrate the original face image and its mirror image for face recognition publication-title: Neurocomputing – volume: 25 start-page: 1495 year: 2016 end-page: 1507 ident: bib0014 article-title: Local rademacher complexity for multi-label learning publication-title: IEEE Trans. Image Process. – volume: 1 start-page: 606 year: 2007 end-page: 617 ident: bib0032 article-title: An interiorpoint method for large-scale L1-regularized least squares publication-title: IEEE J. Sel. Top. Signal Process. – volume: 35 start-page: 2651 year: 2013 end-page: 2664 ident: bib0034 article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 2106 year: 2010 end-page: 2112 ident: bib0042 article-title: Linear regression for face recognition publication-title: IEEE Tran. Pattern Anal. Mach. Intell. – volume: 48 start-page: 3025 year: 2015 end-page: 3037 ident: bib0006 article-title: Kernel collaborative face recognition publication-title: Pattern Recognit. – start-page: 625 year: 2011 end-page: 632 ident: bib0005 article-title: Robust sparse coding for face recognition publication-title: IEEE Conf. Comput. Vision Pattern Recognit. – volume: 47 start-page: 1017 year: 2016 end-page: 1027 ident: bib0012 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Trans. Cybern. – start-page: 543 year: 2011 end-page: 550 ident: bib0030 article-title: Fisher discrimination dictionary learning for sparse representation publication-title: 2011 International Conference on Computer Vision – volume: 28 start-page: 2037 year: 2006 end-page: 2041 ident: bib0004 article-title: Face description with local binary patterns: application to ace recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 3467 issue: 8 year: 2012 ident: 10.1016/j.sigpro.2018.01.013_bib0017 article-title: Coupled dictionary training for image super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2192127 – volume: 131 start-page: 191 year: 2014 ident: 10.1016/j.sigpro.2018.01.013_bib0026 article-title: Integrate the original face image and its mirror image for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.025 – volume: 25 start-page: 1495 issue: 3 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0014 article-title: Local rademacher complexity for multi-label learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2524207 – volume: 38 start-page: 447 issue: 3 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0013 article-title: Classification with noisy labels by importance reweighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2456899 – volume: 32 start-page: 2106 issue: 11 year: 2010 ident: 10.1016/j.sigpro.2018.01.013_bib0042 article-title: Linear regression for face recognition publication-title: IEEE Tran. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.128 – start-page: 2691 year: 2010 ident: 10.1016/j.sigpro.2018.01.013_bib0029 article-title: Discriminative K-SVD for dictionary learning in face recognition – volume: vol. 8692 start-page: 624 year: 2014 ident: 10.1016/j.sigpro.2018.01.013_bib0035 article-title: Support vector guided dictionary learning – volume: 28 start-page: 278 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0010 article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2508025 – volume: 3 start-page: 90 year: 2015 ident: 10.1016/j.sigpro.2018.01.013_bib0033 article-title: A Survey of sparse representation: algorithms and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2430359 – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 10.1016/j.sigpro.2018.01.013_bib0002 article-title: Eigenfaces for recognition publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1991.3.1.71 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2018.01.013_bib0041 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 28 start-page: 1452 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0008 article-title: Label propagation via teaching-to-learn and learning-to-teach publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2514360 – volume: 1 start-page: 606 issue: 4 year: 2007 ident: 10.1016/j.sigpro.2018.01.013_bib0032 article-title: An interiorpoint method for large-scale L1-regularized least squares publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910971 – volume: 32 start-page: 1277 issue: 7 year: 2013 ident: 10.1016/j.sigpro.2018.01.013_bib0016 article-title: A dictionary learning approach for poisson image deblurring publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2255883 – volume: 39 start-page: 227 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0019 article-title: Algorithm-dependent generalization bounds for multi-task learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2544314 – start-page: 40 year: 1993 ident: 10.1016/j.sigpro.2018.01.013_bib0040 article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition – volume: 22 start-page: 1090 issue: 10 year: 2000 ident: 10.1016/j.sigpro.2018.01.013_bib0043 article-title: The FERET evaluation methodology for face-recognition algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.879790 – volume: 25 start-page: 5345 issue: 11 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0007 article-title: Beyond the sparsity-based target detector: a hybrid sparsity and statistics based detector for hyperspectral images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2601268 – volume: 28 start-page: 278 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0036 article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2508025 – start-page: 625 year: 2011 ident: 10.1016/j.sigpro.2018.01.013_bib0005 article-title: Robust sparse coding for face recognition publication-title: IEEE Conf. Comput. Vision Pattern Recognit. – volume: 375 start-page: 171 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0027 article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.09.059 – volume: 52 start-page: 6844 issue: 11 year: 2014 ident: 10.1016/j.sigpro.2018.01.013_bib0011 article-title: A discriminative metric learning based anomaly detection method publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2303895 – volume: 26 start-page: 2261 issue: 10 year: 2015 ident: 10.1016/j.sigpro.2018.01.013_bib0022 article-title: Deformed graph laplacian for semisupervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2376936 – volume: 21 start-page: 1255 issue: 9 year: 2011 ident: 10.1016/j.sigpro.2018.01.013_bib0031 article-title: A two-phase test sample sparse representation method for use with face recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2011.2138790 – volume: 35 start-page: 2651 issue: 11 year: 2013 ident: 10.1016/j.sigpro.2018.01.013_bib0034 article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.88 – volume: 47 start-page: 1017 issue: 4 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0012 article-title: Stacked convolutional denoising auto-encoders for feature representation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2536638 – volume: 25 start-page: 3249 issue: 7 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0020 article-title: Multi-modal curriculum learning for semi-supervised image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2563981 – start-page: 543 year: 2011 ident: 10.1016/j.sigpro.2018.01.013_bib0030 article-title: Fisher discrimination dictionary learning for sparse representation – year: 2011 ident: 10.1016/j.sigpro.2018.01.013_bib0037 – start-page: 471 year: 2011 ident: 10.1016/j.sigpro.2018.01.013_bib0039 article-title: Sparse representation or collaborative representation: which helps face recognition – volume: 19 start-page: 67 issue: 1 year: 2017 ident: 10.1016/j.sigpro.2018.01.013_bib0018 article-title: PLTD: patch-based low-rank tensor decomposition for hyperspectral images publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2016.2608780 – volume: 54 start-page: 68 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0025 article-title: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.12.017 – volume: 27 start-page: 1851 issue: 9 year: 2016 ident: 10.1016/j.sigpro.2018.01.013_bib0015 article-title: On the performance of Manhattan nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2458986 – year: 2009 ident: 10.1016/j.sigpro.2018.01.013_bib0038 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 10.1016/j.sigpro.2018.01.013_bib0028 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process doi: 10.1109/TSP.2006.881199 – volume: 47 start-page: 14 issue: 1 year: 2015 ident: 10.1016/j.sigpro.2018.01.013_bib0009 article-title: Exploring representativeness and informativeness for active learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2496974 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 10.1016/j.sigpro.2018.01.013_bib0004 article-title: Face description with local binary patterns: application to ace recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 26 start-page: 2148 issue: 9 year: 2015 ident: 10.1016/j.sigpro.2018.01.013_bib0021 article-title: Fick's law assisted propagation for semisupervised learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2376963 – start-page: 1145 year: 2013 ident: 10.1016/j.sigpro.2018.01.013_bib0023 article-title: Semi-supervised robust dictionary learning via efficient l-norms minimization – volume: 46 start-page: 1151 issue: 4 year: 2013 ident: 10.1016/j.sigpro.2018.01.013_bib0024 article-title: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.11.003 – volume: 48 start-page: 3025 issue: 10 year: 2015 ident: 10.1016/j.sigpro.2018.01.013_bib0006 article-title: Kernel collaborative face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.01.012 – volume: 35 start-page: 399 issue: 4 year: 2003 ident: 10.1016/j.sigpro.2018.01.013_bib0001 article-title: Face recognition: a literature survey publication-title: ACM Comput. Surv. doi: 10.1145/954339.954342 – volume: 19 start-page: 711 issue: 7 year: 1997 ident: 10.1016/j.sigpro.2018.01.013_bib0003 article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linearprojection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228  | 
    
| SSID | ssj0001360 | 
    
| Score | 2.3778646 | 
    
| Snippet | •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 101 | 
    
| SubjectTerms | Dictionary learning Face recognition Fourier transform Representation based classification  | 
    
| Title | Space–frequency domain based joint dictionary learning and collaborative representation for face recognition | 
    
| URI | https://dx.doi.org/10.1016/j.sigpro.2018.01.013 | 
    
| Volume | 147 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3ehCfGJ9lFm4jZ0wSSZZlmKpCt3UQndhXikpOi01Ct2I_-Af-iXemSS1gigI2STMhHDn5j7gnHMRumScEaET7kU8gQbFD7mXyCTziBBaSF8Typ3a5zAajIPbSThpoF7NhbGwyir2lzHdRevqSaeyZmeR552RJeL4URyAU7rMZRnsAbNTDK5ev2AePnVMYbvYs6tr-pzDeD3lU4hTFuAVO_FOn_6cnjZSTn8P7Va1Iu6Wn7OPGtocoJ0NBcFDZEbQ8-qPt_dsWWKiV1jNH6HbxzY9KTyb56bAKnfsBb5c4WpKxBRzo_CGE7xo7PQtay6SwVDN4gxejtcYo7k5QuP-9X1v4FUjFDwJvUDhwd_GmQwV4RR-Zu1zwSRlQkipw5hk0AvSJJIUzgUqHWml5CmNEimIipmIMkqPUdPMjT5BmIdUBErwUCsZJELEhEuozRgUEYoIzluI1pZLZaUvbsdcPKQ1kGyWlvZOrb1T4sNFW8hb71qU-hp_rGf1oaTf_CSFFPDrztN_7zxD2_auBIido2axfNYXUIoUou18rY22ujd3g-EnJzfjPA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQevsRs3ySZHKZaqtZe20FvYV0qKpqVWoRfxP_gP_SXObpJaQRSEnDYzIczOzgO--Rahc8YZETriTsAjaFBcnzuRjBKHCKGFdDWh3LJ9doJW37sd-IMKapSzMAZWWcT-PKbbaF2s1Atr1idpWu-aQRw3CD1wSpu5VtCq518y04FdvH7hPFxqR4WNtGPEy_k5C_J6SocQqAzCK7TsnS79OT8t5ZzmFtosikV8lf_PNqrobAdtLFEI7qKsC02v_nh7T6Y5KHqO1fgR2n1s8pPCo3GazbBK7fgCn85xcU3EEPNM4SUveNHYElyWw0gZhnIWJ_BxvAAZjbM91G9e9xotp7hDwZHQDMwcOG6cSV8RTuE0a5cLJikTQkrthySBZpBGgaSwMVDqSMMlT2kQSUFUyESQULqPqtk40wcIc58KTwnuayW9SIiQcAnFGYMqQhHBeQ3R0nKxLAjGzT0XD3GJJBvFub1jY--YuPDQGnIWWpOcYOMPeVZuSvzNUWLIAb9qHv5b8wyttXr37bh907k7QuvmTY4WO0bV2fRZn0BdMhOn1u8-AXxm5NE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space%E2%80%93frequency+domain+based+joint+dictionary+learning+and+collaborative+representation+for+face+recognition&rft.jtitle=Signal+processing&rft.au=Peng%2C+Yali&rft.au=Li%2C+Liping&rft.au=Liu%2C+Shigang&rft.au=Lei%2C+Tao&rft.date=2018-06-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=147&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1016%2Fj.sigpro.2018.01.013&rft.externalDocID=S0165168418300215 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |