Space–frequency domain based joint dictionary learning and collaborative representation for face recognition

•A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the s...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 147; pp. 101 - 109
Main Authors Peng, Yali, Li, Liping, Liu, Shigang, Lei, Tao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2018
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2018.01.013

Cover

Abstract •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the spatial-domain dictionary and the frequency-domain dictionary.•The native spatial domain and the Fourier frequency domain can make data complementary.•The experimental results demonstrate the superior performance of our method over the original dictionary learning methods. In this paper, we propose a novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition. Different from conventional learning methods, we consider both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning. Based on the Fourier spectrum of images, the proposed method provides new insights into two crucial complementations in dictionary learning: data domain complementation and classification algorithm complementation. On the one hand, we perform the dictionary learning on the original dataset and the Fourier transformed dataset respectively, which makes data complementary in both spatial and frequency domains. On the other hand, we integrate dictionary learning and collaborative representation (CRC) for classification. Specifically, CRC is conducted on frequency-domain dataset to obtain residual scores, and the residual scores are fused with the ones obtained by the previous DL algorithms as the ultimate fusion score to classify the test samples. The proposed method with two aspects of complementation promotes the discriminative ability of dictionary learning and obtains a better classification performance. The experimental results demonstrate the superior performance of our method over the original dictionary learning methods.
AbstractList •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning are considered.•The residual scores of each class are obtained by integrating the spatial-domain dictionary and the frequency-domain dictionary.•The native spatial domain and the Fourier frequency domain can make data complementary.•The experimental results demonstrate the superior performance of our method over the original dictionary learning methods. In this paper, we propose a novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition. Different from conventional learning methods, we consider both the native spatial domain and the Fourier frequency domain of datasets for dictionary learning. Based on the Fourier spectrum of images, the proposed method provides new insights into two crucial complementations in dictionary learning: data domain complementation and classification algorithm complementation. On the one hand, we perform the dictionary learning on the original dataset and the Fourier transformed dataset respectively, which makes data complementary in both spatial and frequency domains. On the other hand, we integrate dictionary learning and collaborative representation (CRC) for classification. Specifically, CRC is conducted on frequency-domain dataset to obtain residual scores, and the residual scores are fused with the ones obtained by the previous DL algorithms as the ultimate fusion score to classify the test samples. The proposed method with two aspects of complementation promotes the discriminative ability of dictionary learning and obtains a better classification performance. The experimental results demonstrate the superior performance of our method over the original dictionary learning methods.
Author Lei, Tao
Liu, Shigang
Li, Liping
Peng, Yali
Author_xml – sequence: 1
  givenname: Yali
  surname: Peng
  fullname: Peng, Yali
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China
– sequence: 2
  givenname: Liping
  surname: Li
  fullname: Li, Liping
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China
– sequence: 3
  givenname: Shigang
  surname: Liu
  fullname: Liu, Shigang
  email: shgliu@snnu.edu.cn
  organization: Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi'an 710062, China
– sequence: 4
  givenname: Tao
  surname: Lei
  fullname: Lei, Tao
  organization: College of Electronics and Information Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
BookMark eNqFkM1KxDAUhYOM4MzoG7jIC3RMmjbpuBBk8A8EF-o6JOntkNJJalIHZuc7-IY-iSl15ULhwoXLOYd7vgWaOe8AoXNKVpRQftGuot32wa9yQqsVoWnYEZrTSuSZKEsxQ_MkKzPKq-IELWJsCUkSTubIPffKwNfHZxPg7R2cOeDa75R1WKsINW69dQOurRmsdyoccAcqOOu2WLkaG991SvugBrsHHKAPEMENahTjxgfcpPB0N37r7Hg8RceN6iKc_ewler29edncZ49Pdw-b68fMMMKHTKwLJUxZE8UYEUCVFoYJrY2BsiJNUXC25oZp0JzmhhciZ4yvjSZ1JTRvGFuiyynXBB9jgEYaO701BGU7SYkcyclWTuTkSE4SmmY0F7_MfbC7VP4_29Vkg1RsbyHIaGwiCrVNBAZZe_t3wDeBjZEG
CitedBy_id crossref_primary_10_1049_ipr2_12096
crossref_primary_10_1016_j_neucom_2019_05_103
crossref_primary_10_1109_ACCESS_2019_2960928
crossref_primary_10_1117_1_JRS_14_032610
crossref_primary_10_1007_s11042_020_08965_9
crossref_primary_10_1007_s11042_021_11849_1
crossref_primary_10_1007_s11760_020_01755_8
crossref_primary_10_1007_s13042_018_0862_1
crossref_primary_10_1016_j_neucom_2022_12_016
crossref_primary_10_1016_j_patrec_2018_09_008
crossref_primary_10_1049_iet_ipr_2019_1527
crossref_primary_10_1002_ima_22337
crossref_primary_10_1007_s00138_020_01067_4
crossref_primary_10_1007_s11063_023_11234_z
crossref_primary_10_1016_j_jvcir_2020_102763
crossref_primary_10_1007_s11063_020_10219_6
crossref_primary_10_1007_s11760_024_03466_w
crossref_primary_10_1016_j_sigpro_2018_07_018
crossref_primary_10_1016_j_patrec_2018_10_016
crossref_primary_10_1016_j_sigpro_2019_107263
crossref_primary_10_1049_iet_cvi_2018_5096
crossref_primary_10_1007_s11760_024_03189_y
crossref_primary_10_1016_j_neucom_2018_07_052
crossref_primary_10_1007_s11042_020_09850_1
Cites_doi 10.1109/TIP.2012.2192127
10.1016/j.neucom.2013.10.025
10.1109/TIP.2016.2524207
10.1109/TPAMI.2015.2456899
10.1109/TPAMI.2010.128
10.1109/TNNLS.2015.2508025
10.1109/ACCESS.2015.2430359
10.1162/jocn.1991.3.1.71
10.1109/TPAMI.2008.79
10.1109/TNNLS.2016.2514360
10.1109/JSTSP.2007.910971
10.1109/TMI.2013.2255883
10.1109/TPAMI.2016.2544314
10.1109/34.879790
10.1109/TIP.2016.2601268
10.1016/j.ins.2016.09.059
10.1109/TGRS.2014.2303895
10.1109/TNNLS.2014.2376936
10.1109/TCSVT.2011.2138790
10.1109/TPAMI.2013.88
10.1109/TCYB.2016.2536638
10.1109/TIP.2016.2563981
10.1109/TMM.2016.2608780
10.1016/j.patcog.2015.12.017
10.1109/TNNLS.2015.2458986
10.1109/TSP.2006.881199
10.1109/TCYB.2015.2496974
10.1109/TPAMI.2006.244
10.1109/TNNLS.2014.2376963
10.1016/j.patcog.2012.11.003
10.1016/j.patcog.2015.01.012
10.1145/954339.954342
10.1109/34.598228
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2018.01.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 109
ExternalDocumentID 10_1016_j_sigpro_2018_01_013
S0165168418300215
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-794a7c5d0a3307e1ab7c37bbcce580f446396c3beb612c64723369cb0d87b6f33
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Thu Apr 24 22:57:00 EDT 2025
Wed Oct 01 02:46:36 EDT 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Representation based classification
Fourier transform
Face recognition
Dictionary learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-794a7c5d0a3307e1ab7c37bbcce580f446396c3beb612c64723369cb0d87b6f33
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2018_01_013
crossref_primary_10_1016_j_sigpro_2018_01_013
elsevier_sciencedirect_doi_10_1016_j_sigpro_2018_01_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Li, Zhang, Yang, You (bib0027) 2017; 375
Wang, Nie, Cai, Huang (bib0023) 2013
Phillips, Moon, Rizvi, Rauss (bib0043) 2000; 22
Yang, Wang, Lin, Cohen, Huang (bib0017) 2012; 21
Yang, Zhang, Feng, Zhang (bib0030) 2011
Zhang, Yang, Feng (bib0039) 2011
Kim, Koh, Lustig, Boyd, Gorinevsky (bib0032) 2007; 1
Gong, Tao, Fu, Yang (bib0021) 2015; 26
Chen, Liu, Tao, Fu, Tu, Jie (bib0022) 2015; 26
Naseem, Togneri, Bennamoun (bib0042) 2010; 32
Xu, Liu, Tao, Xu (bib0014) 2016; 25
Xu, Li, Yang, Zhang (bib0026) 2014; 131
Zhang, Xu, Yang, Li, Zhang (bib0033) 2015; 3
Du, Zhang (bib0011) 2014; 52
Yang, Zhang, Yang, Zhang (bib0005) 2011
Wang, Lu, Yang (bib0006) 2015; 48
Du, Zhang, Zhang, Tao (bib0007) 2016; 25
Chen, Tao, Maybank, Wei, Kang, Jie (bib0020) 2016; 25
Xu, Zhang, Lu, Yang (bib0025) 2016; 54
Xu, Zhu, Li, Liu, Lu, Liu (bib0024) 2013; 46
Zhang, Li. (bib0029) 2010
Belhumeur, Hespanha, Kriegman (bib0003) 1997; 19
Gonzalez, Woods, Edding (bib0038) 2009
Gong, Tao, Liu, Liu, Yang (bib0008) 2017; 28
Liu, Tao (bib0015) 2016; 27
Cai, Zuo, Zhang, Feng, Wang (bib0035) 2014; vol. 8692
Du, Wang, Zhang, Zhang, Liu, Shen, Tao (bib0009) 2015; 47
Liu, Tao, Song, Maybank (bib0019) 2017; 39
Li, Lai, Xu, Yang, Zhang (bib0036) 2017; 28
Zhao, Chellappa, Phillips, Rosenfeld (bib0001) 2003; 35
Du, Xiong, Wu, Zhang, Zhang, Tao (bib0012) 2016; 47
Jiang, Lin, Davis (bib0034) 2013; 35
Wright, Yang, Ganesh, Sastry, Ma (bib0041) 2009; 31
Li, Lai, Xu, Yang, Zhang (bib0010) 2017; 28
Du, Zhang, Zhang, Hu, Tao (bib0018) 2017; 19
Aharon, Elad, Bruckstein (bib0028) 2006; 54
Ahonen, Hadid, Pietikainen (bib0004) 2006; 28
Liu, Tao (bib0013) 2016; 38
Ma, Moisan, Yu, Zeng (bib0016) 2013; 32
Xu, Zhang, Yang, Yang (bib0031) 2011; 21
Turk, Pentland (bib0002) 1991; 3
Pati, Rezaiifar, Krishnaprasad (bib0040) 1993
Khan (bib0037) 2011
Belhumeur (10.1016/j.sigpro.2018.01.013_bib0003) 1997; 19
Ahonen (10.1016/j.sigpro.2018.01.013_bib0004) 2006; 28
Chen (10.1016/j.sigpro.2018.01.013_bib0020) 2016; 25
Wang (10.1016/j.sigpro.2018.01.013_bib0006) 2015; 48
Du (10.1016/j.sigpro.2018.01.013_bib0007) 2016; 25
Xu (10.1016/j.sigpro.2018.01.013_bib0014) 2016; 25
Cai (10.1016/j.sigpro.2018.01.013_bib0035) 2014; vol. 8692
Kim (10.1016/j.sigpro.2018.01.013_bib0032) 2007; 1
Yang (10.1016/j.sigpro.2018.01.013_bib0017) 2012; 21
Yang (10.1016/j.sigpro.2018.01.013_bib0030) 2011
Du (10.1016/j.sigpro.2018.01.013_bib0009) 2015; 47
Yang (10.1016/j.sigpro.2018.01.013_bib0005) 2011
Liu (10.1016/j.sigpro.2018.01.013_bib0019) 2017; 39
Turk (10.1016/j.sigpro.2018.01.013_bib0002) 1991; 3
Liu (10.1016/j.sigpro.2018.01.013_bib0013) 2016; 38
Li (10.1016/j.sigpro.2018.01.013_bib0036) 2017; 28
Pati (10.1016/j.sigpro.2018.01.013_bib0040) 1993
Zhao (10.1016/j.sigpro.2018.01.013_bib0001) 2003; 35
Li (10.1016/j.sigpro.2018.01.013_bib0010) 2017; 28
Liu (10.1016/j.sigpro.2018.01.013_bib0015) 2016; 27
Jiang (10.1016/j.sigpro.2018.01.013_bib0034) 2013; 35
Chen (10.1016/j.sigpro.2018.01.013_bib0022) 2015; 26
Khan (10.1016/j.sigpro.2018.01.013_bib0037) 2011
Xu (10.1016/j.sigpro.2018.01.013_bib0024) 2013; 46
Xu (10.1016/j.sigpro.2018.01.013_bib0031) 2011; 21
Wright (10.1016/j.sigpro.2018.01.013_bib0041) 2009; 31
Du (10.1016/j.sigpro.2018.01.013_bib0011) 2014; 52
Du (10.1016/j.sigpro.2018.01.013_bib0018) 2017; 19
Gonzalez (10.1016/j.sigpro.2018.01.013_bib0038) 2009
Ma (10.1016/j.sigpro.2018.01.013_bib0016) 2013; 32
Du (10.1016/j.sigpro.2018.01.013_bib0012) 2016; 47
Phillips (10.1016/j.sigpro.2018.01.013_bib0043) 2000; 22
Xu (10.1016/j.sigpro.2018.01.013_bib0025) 2016; 54
Zhang (10.1016/j.sigpro.2018.01.013_bib0029) 2010
Gong (10.1016/j.sigpro.2018.01.013_bib0021) 2015; 26
Gong (10.1016/j.sigpro.2018.01.013_bib0008) 2017; 28
Wang (10.1016/j.sigpro.2018.01.013_bib0023) 2013
Xu (10.1016/j.sigpro.2018.01.013_bib0027) 2017; 375
Naseem (10.1016/j.sigpro.2018.01.013_bib0042) 2010; 32
Zhang (10.1016/j.sigpro.2018.01.013_bib0039) 2011
Zhang (10.1016/j.sigpro.2018.01.013_bib0033) 2015; 3
Xu (10.1016/j.sigpro.2018.01.013_bib0026) 2014; 131
Aharon (10.1016/j.sigpro.2018.01.013_bib0028) 2006; 54
References_xml – volume: 21
  start-page: 1255
  year: 2011
  end-page: 1262
  ident: bib0031
  article-title: A two-phase test sample sparse representation method for use with face recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2009
  ident: bib0038
  article-title: Digital Image Processing Using MATLAB
– volume: 22
  start-page: 1090
  year: 2000
  end-page: 1104
  ident: bib0043
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 2148
  year: 2015
  end-page: 2162
  ident: bib0021
  article-title: Fick's law assisted propagation for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 375
  start-page: 171
  year: 2017
  end-page: 182
  ident: bib0027
  article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition
  publication-title: Inf. Sci.
– volume: 46
  start-page: 1151
  year: 2013
  end-page: 1158
  ident: bib0024
  article-title: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition
  publication-title: Pattern Recognit.
– start-page: 40
  year: 1993
  end-page: 44
  ident: bib0040
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
  publication-title: 27th Asilomar Conference on Signals, Systems and Computers, November
– volume: 26
  start-page: 2261
  year: 2015
  end-page: 2274
  ident: bib0022
  article-title: Deformed graph laplacian for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 54
  start-page: 68
  year: 2016
  end-page: 82
  ident: bib0025
  article-title: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: bib0016
  article-title: A dictionary learning approach for poisson image deblurring
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 1851
  year: 2016
  end-page: 1863
  ident: bib0015
  article-title: On the performance of Manhattan nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 278
  year: 2017
  end-page: 293
  ident: bib0036
  article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 47
  start-page: 14
  year: 2015
  end-page: 26
  ident: bib0009
  article-title: Exploring representativeness and informativeness for active learning
  publication-title: IEEE Trans. Cybern.
– start-page: 471
  year: 2011
  end-page: 478
  ident: bib0039
  article-title: Sparse representation or collaborative representation: which helps face recognition
  publication-title: IEEE International Conference on Computer Vision
– volume: 25
  start-page: 5345
  year: 2016
  end-page: 5357
  ident: bib0007
  article-title: Beyond the sparsity-based target detector: a hybrid sparsity and statistics based detector for hyperspectral images
  publication-title: IEEE Trans. Image Process.
– volume: 35
  start-page: 399
  year: 2003
  end-page: 458
  ident: bib0001
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
– volume: 52
  start-page: 6844
  year: 2014
  end-page: 6857
  ident: bib0011
  article-title: A discriminative metric learning based anomaly detection method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 3
  start-page: 90
  year: 2015
  end-page: 530
  ident: bib0033
  article-title: A Survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bib0003
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linearprojection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: vol. 8692
  start-page: 624
  year: 2014
  end-page: 639
  ident: bib0035
  article-title: Support vector guided dictionary learning
  publication-title: Computer Vision - ECCV 2014
– volume: 28
  start-page: 1452
  year: 2017
  end-page: 1465
  ident: bib0008
  article-title: Label propagation via teaching-to-learn and learning-to-teach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 21
  start-page: 3467
  year: 2012
  end-page: 3478
  ident: bib0017
  article-title: Coupled dictionary training for image super-resolution
  publication-title: IEEE Trans. Image Process.
– year: 2011
  ident: bib0037
  article-title: Digital Design of Signal Processing System: A Practical Approach
– volume: 39
  start-page: 227
  year: 2017
  end-page: 241
  ident: bib0019
  article-title: Algorithm-dependent generalization bounds for multi-task learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0028
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib0041
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 447
  year: 2016
  end-page: 461
  ident: bib0013
  article-title: Classification with noisy labels by importance reweighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2691
  year: 2010
  end-page: 2698
  ident: bib0029
  article-title: Discriminative K-SVD for dictionary learning in face recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1145
  year: 2013
  end-page: 1152
  ident: bib0023
  article-title: Semi-supervised robust dictionary learning via efficient l-norms minimization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, December
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: bib0002
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
– volume: 28
  start-page: 278
  year: 2017
  end-page: 293
  ident: bib0010
  article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 19
  start-page: 67
  year: 2017
  end-page: 79
  ident: bib0018
  article-title: PLTD: patch-based low-rank tensor decomposition for hyperspectral images
  publication-title: IEEE Trans. Multimedia
– volume: 25
  start-page: 3249
  year: 2016
  end-page: 3260
  ident: bib0020
  article-title: Multi-modal curriculum learning for semi-supervised image classification
  publication-title: IEEE Trans. Image Process.
– volume: 131
  start-page: 191
  year: 2014
  end-page: 199
  ident: bib0026
  article-title: Integrate the original face image and its mirror image for face recognition
  publication-title: Neurocomputing
– volume: 25
  start-page: 1495
  year: 2016
  end-page: 1507
  ident: bib0014
  article-title: Local rademacher complexity for multi-label learning
  publication-title: IEEE Trans. Image Process.
– volume: 1
  start-page: 606
  year: 2007
  end-page: 617
  ident: bib0032
  article-title: An interiorpoint method for large-scale L1-regularized least squares
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 35
  start-page: 2651
  year: 2013
  end-page: 2664
  ident: bib0034
  article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 2106
  year: 2010
  end-page: 2112
  ident: bib0042
  article-title: Linear regression for face recognition
  publication-title: IEEE Tran. Pattern Anal. Mach. Intell.
– volume: 48
  start-page: 3025
  year: 2015
  end-page: 3037
  ident: bib0006
  article-title: Kernel collaborative face recognition
  publication-title: Pattern Recognit.
– start-page: 625
  year: 2011
  end-page: 632
  ident: bib0005
  article-title: Robust sparse coding for face recognition
  publication-title: IEEE Conf. Comput. Vision Pattern Recognit.
– volume: 47
  start-page: 1017
  year: 2016
  end-page: 1027
  ident: bib0012
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
– start-page: 543
  year: 2011
  end-page: 550
  ident: bib0030
  article-title: Fisher discrimination dictionary learning for sparse representation
  publication-title: 2011 International Conference on Computer Vision
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: bib0004
  article-title: Face description with local binary patterns: application to ace recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 3467
  issue: 8
  year: 2012
  ident: 10.1016/j.sigpro.2018.01.013_bib0017
  article-title: Coupled dictionary training for image super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2192127
– volume: 131
  start-page: 191
  year: 2014
  ident: 10.1016/j.sigpro.2018.01.013_bib0026
  article-title: Integrate the original face image and its mirror image for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.10.025
– volume: 25
  start-page: 1495
  issue: 3
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0014
  article-title: Local rademacher complexity for multi-label learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2524207
– volume: 38
  start-page: 447
  issue: 3
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0013
  article-title: Classification with noisy labels by importance reweighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2456899
– volume: 32
  start-page: 2106
  issue: 11
  year: 2010
  ident: 10.1016/j.sigpro.2018.01.013_bib0042
  article-title: Linear regression for face recognition
  publication-title: IEEE Tran. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.128
– start-page: 2691
  year: 2010
  ident: 10.1016/j.sigpro.2018.01.013_bib0029
  article-title: Discriminative K-SVD for dictionary learning in face recognition
– volume: vol. 8692
  start-page: 624
  year: 2014
  ident: 10.1016/j.sigpro.2018.01.013_bib0035
  article-title: Support vector guided dictionary learning
– volume: 28
  start-page: 278
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0010
  article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2508025
– volume: 3
  start-page: 90
  year: 2015
  ident: 10.1016/j.sigpro.2018.01.013_bib0033
  article-title: A Survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 10.1016/j.sigpro.2018.01.013_bib0002
  article-title: Eigenfaces for recognition
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1991.3.1.71
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.sigpro.2018.01.013_bib0041
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 28
  start-page: 1452
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0008
  article-title: Label propagation via teaching-to-learn and learning-to-teach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2514360
– volume: 1
  start-page: 606
  issue: 4
  year: 2007
  ident: 10.1016/j.sigpro.2018.01.013_bib0032
  article-title: An interiorpoint method for large-scale L1-regularized least squares
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910971
– volume: 32
  start-page: 1277
  issue: 7
  year: 2013
  ident: 10.1016/j.sigpro.2018.01.013_bib0016
  article-title: A dictionary learning approach for poisson image deblurring
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2255883
– volume: 39
  start-page: 227
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0019
  article-title: Algorithm-dependent generalization bounds for multi-task learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2544314
– start-page: 40
  year: 1993
  ident: 10.1016/j.sigpro.2018.01.013_bib0040
  article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 10.1016/j.sigpro.2018.01.013_bib0043
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– volume: 25
  start-page: 5345
  issue: 11
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0007
  article-title: Beyond the sparsity-based target detector: a hybrid sparsity and statistics based detector for hyperspectral images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2601268
– volume: 28
  start-page: 278
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0036
  article-title: A locality-constrained and label embedding dictionary learning algorithm for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2508025
– start-page: 625
  year: 2011
  ident: 10.1016/j.sigpro.2018.01.013_bib0005
  article-title: Robust sparse coding for face recognition
  publication-title: IEEE Conf. Comput. Vision Pattern Recognit.
– volume: 375
  start-page: 171
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0027
  article-title: Sample diversity, representation effectiveness and robust dictionary learning for face recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.09.059
– volume: 52
  start-page: 6844
  issue: 11
  year: 2014
  ident: 10.1016/j.sigpro.2018.01.013_bib0011
  article-title: A discriminative metric learning based anomaly detection method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2303895
– volume: 26
  start-page: 2261
  issue: 10
  year: 2015
  ident: 10.1016/j.sigpro.2018.01.013_bib0022
  article-title: Deformed graph laplacian for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2376936
– volume: 21
  start-page: 1255
  issue: 9
  year: 2011
  ident: 10.1016/j.sigpro.2018.01.013_bib0031
  article-title: A two-phase test sample sparse representation method for use with face recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2138790
– volume: 35
  start-page: 2651
  issue: 11
  year: 2013
  ident: 10.1016/j.sigpro.2018.01.013_bib0034
  article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.88
– volume: 47
  start-page: 1017
  issue: 4
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0012
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2536638
– volume: 25
  start-page: 3249
  issue: 7
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0020
  article-title: Multi-modal curriculum learning for semi-supervised image classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2563981
– start-page: 543
  year: 2011
  ident: 10.1016/j.sigpro.2018.01.013_bib0030
  article-title: Fisher discrimination dictionary learning for sparse representation
– year: 2011
  ident: 10.1016/j.sigpro.2018.01.013_bib0037
– start-page: 471
  year: 2011
  ident: 10.1016/j.sigpro.2018.01.013_bib0039
  article-title: Sparse representation or collaborative representation: which helps face recognition
– volume: 19
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2018.01.013_bib0018
  article-title: PLTD: patch-based low-rank tensor decomposition for hyperspectral images
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2016.2608780
– volume: 54
  start-page: 68
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0025
  article-title: Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.12.017
– volume: 27
  start-page: 1851
  issue: 9
  year: 2016
  ident: 10.1016/j.sigpro.2018.01.013_bib0015
  article-title: On the performance of Manhattan nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2458986
– year: 2009
  ident: 10.1016/j.sigpro.2018.01.013_bib0038
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.sigpro.2018.01.013_bib0028
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2006.881199
– volume: 47
  start-page: 14
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2018.01.013_bib0009
  article-title: Exploring representativeness and informativeness for active learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2496974
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.sigpro.2018.01.013_bib0004
  article-title: Face description with local binary patterns: application to ace recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 26
  start-page: 2148
  issue: 9
  year: 2015
  ident: 10.1016/j.sigpro.2018.01.013_bib0021
  article-title: Fick's law assisted propagation for semisupervised learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2376963
– start-page: 1145
  year: 2013
  ident: 10.1016/j.sigpro.2018.01.013_bib0023
  article-title: Semi-supervised robust dictionary learning via efficient l-norms minimization
– volume: 46
  start-page: 1151
  issue: 4
  year: 2013
  ident: 10.1016/j.sigpro.2018.01.013_bib0024
  article-title: Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.11.003
– volume: 48
  start-page: 3025
  issue: 10
  year: 2015
  ident: 10.1016/j.sigpro.2018.01.013_bib0006
  article-title: Kernel collaborative face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.01.012
– volume: 35
  start-page: 399
  issue: 4
  year: 2003
  ident: 10.1016/j.sigpro.2018.01.013_bib0001
  article-title: Face recognition: a literature survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/954339.954342
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.sigpro.2018.01.013_bib0003
  article-title: Eigenfaces vs. Fisherfaces: recognition using class specific linearprojection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
SSID ssj0001360
Score 2.3778646
Snippet •A novel viewpoint about dictionary learning (DL) and collaborative representation for face recognition is proposed.•Both the native spatial domain and the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Dictionary learning
Face recognition
Fourier transform
Representation based classification
Title Space–frequency domain based joint dictionary learning and collaborative representation for face recognition
URI https://dx.doi.org/10.1016/j.sigpro.2018.01.013
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1K3ehCfGJ9lFm4jZ0wSSZZlmKpCt3UQndhXikpOi01Ct2I_-Af-iXemSS1gigI2STMhHDn5j7gnHMRumScEaET7kU8gQbFD7mXyCTziBBaSF8Typ3a5zAajIPbSThpoF7NhbGwyir2lzHdRevqSaeyZmeR552RJeL4URyAU7rMZRnsAbNTDK5ev2AePnVMYbvYs6tr-pzDeD3lU4hTFuAVO_FOn_6cnjZSTn8P7Va1Iu6Wn7OPGtocoJ0NBcFDZEbQ8-qPt_dsWWKiV1jNH6HbxzY9KTyb56bAKnfsBb5c4WpKxBRzo_CGE7xo7PQtay6SwVDN4gxejtcYo7k5QuP-9X1v4FUjFDwJvUDhwd_GmQwV4RR-Zu1zwSRlQkipw5hk0AvSJJIUzgUqHWml5CmNEimIipmIMkqPUdPMjT5BmIdUBErwUCsZJELEhEuozRgUEYoIzluI1pZLZaUvbsdcPKQ1kGyWlvZOrb1T4sNFW8hb71qU-hp_rGf1oaTf_CSFFPDrztN_7zxD2_auBIido2axfNYXUIoUou18rY22ujd3g-EnJzfjPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQevsRs3ySZHKZaqtZe20FvYV0qKpqVWoRfxP_gP_SXObpJaQRSEnDYzIczOzgO--Rahc8YZETriTsAjaFBcnzuRjBKHCKGFdDWh3LJ9doJW37sd-IMKapSzMAZWWcT-PKbbaF2s1Atr1idpWu-aQRw3CD1wSpu5VtCq518y04FdvH7hPFxqR4WNtGPEy_k5C_J6SocQqAzCK7TsnS79OT8t5ZzmFtosikV8lf_PNqrobAdtLFEI7qKsC02v_nh7T6Y5KHqO1fgR2n1s8pPCo3GazbBK7fgCn85xcU3EEPNM4SUveNHYElyWw0gZhnIWJ_BxvAAZjbM91G9e9xotp7hDwZHQDMwcOG6cSV8RTuE0a5cLJikTQkrthySBZpBGgaSwMVDqSMMlT2kQSUFUyESQULqPqtk40wcIc58KTwnuayW9SIiQcAnFGYMqQhHBeQ3R0nKxLAjGzT0XD3GJJBvFub1jY--YuPDQGnIWWpOcYOMPeVZuSvzNUWLIAb9qHv5b8wyttXr37bh907k7QuvmTY4WO0bV2fRZn0BdMhOn1u8-AXxm5NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space%E2%80%93frequency+domain+based+joint+dictionary+learning+and+collaborative+representation+for+face+recognition&rft.jtitle=Signal+processing&rft.au=Peng%2C+Yali&rft.au=Li%2C+Liping&rft.au=Liu%2C+Shigang&rft.au=Lei%2C+Tao&rft.date=2018-06-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=147&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1016%2Fj.sigpro.2018.01.013&rft.externalDocID=S0165168418300215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon