A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain
Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artific...
Saved in:
| Published in | Future generation computer systems Vol. 80; pp. 198 - 210 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-739X 1872-7115 |
| DOI | 10.1016/j.future.2017.09.077 |
Cover
| Abstract | Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artificial intelligence of blockchain mining algorithm like traceability chain algorithm runs faster than consensus algorithm because of inference mechanism. Our main goal is to reach traceability decision not consensus decision as fast as possible. Thus, this article proposes a novelty approach called Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm. The numerical example of the proposed algorithm in blockchain mining is evaluated and optimized decisions experiment is analyzed. Objective functions for optimized decision computation is described as participant nodes constraint method. Thus contribution succeeds in meeting the reduction mining efforts for the traceability chain being processed. Our findings also provide a preliminary indication of deep learning applied big blockchain transactions data.
•The main goal is to reach traceability decision not consensus decision as fast as possible.•A novelty approach is Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm.•Deep learning network by Takagi–Sugeno Fuzzy ANN is presented.•We provide optimized traceability in blockchain for hierarchical learning features representations on big transaction data. |
|---|---|
| AbstractList | Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artificial intelligence of blockchain mining algorithm like traceability chain algorithm runs faster than consensus algorithm because of inference mechanism. Our main goal is to reach traceability decision not consensus decision as fast as possible. Thus, this article proposes a novelty approach called Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm. The numerical example of the proposed algorithm in blockchain mining is evaluated and optimized decisions experiment is analyzed. Objective functions for optimized decision computation is described as participant nodes constraint method. Thus contribution succeeds in meeting the reduction mining efforts for the traceability chain being processed. Our findings also provide a preliminary indication of deep learning applied big blockchain transactions data.
•The main goal is to reach traceability decision not consensus decision as fast as possible.•A novelty approach is Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm.•Deep learning network by Takagi–Sugeno Fuzzy ANN is presented.•We provide optimized traceability in blockchain for hierarchical learning features representations on big transaction data. |
| Author | Chen, Rui-Yang |
| Author_xml | – sequence: 1 givenname: Rui-Yang surname: Chen fullname: Chen, Rui-Yang email: a168.cloudy@msa.hinet.net organization: Department of Business Administration, Aletheia University, New Taipei, 32 Chen-Li Street, Tamsui, 25103, Taiwan, ROC |
| BookMark | eNqFkL1OwzAURi1UJNrCGzD4BRLsOIkbBqSq4k-qxABIbJbj2O1t07iynaJ24h14Q56EtGVigOku3znSPQPUa2yjEbqkJKaE5leL2LShdTpOCOUxKWLC-Qnq0xFPIk5p1kP9bsYjzoq3MzTwfkFIt2S0j-oxDk4qLUuoIWyxmktosKxn1kGYr7CxDksXwIACWeNGt-5wwrt1S49bD80Mv3x9fD5j0-52ncDOGgiw0Xgl1x53srK2annwnqNTI2uvL37uEL3e3b5MHqLp0_3jZDyNFCN5iDiXhWRJymWmK5LKnJiCSqNJzot0NDI006milSlpUbFRkpqUVzxJS5aQjNGMsSFKj17lrPdOG7F2sJJuKygR-2JiIY7FxL6YIIXoinXY9S9MQZABbNMlgvo_-OYI6-6xDWgnvALdKF2B0yqIysLfgm-T8o8n |
| CitedBy_id | crossref_primary_10_1016_j_cie_2023_108995 crossref_primary_10_1016_j_future_2018_09_019 crossref_primary_10_1007_s10796_022_10288_z crossref_primary_10_1177_21582440231199320 crossref_primary_10_1016_j_vehcom_2020_100249 crossref_primary_10_1155_2022_4240244 crossref_primary_10_1016_j_ijinfomgt_2018_06_008 crossref_primary_10_1080_12507970_2019_1686437 crossref_primary_10_1080_00207543_2020_1803511 crossref_primary_10_1016_j_ijinfomgt_2019_09_010 crossref_primary_10_1016_j_techfore_2022_121881 crossref_primary_10_18603_sanatvetasarim_1515756 crossref_primary_10_1108_JSTPM_10_2023_0178 crossref_primary_10_1007_s42979_023_02331_w crossref_primary_10_1016_j_asoc_2020_106384 crossref_primary_10_1002_ett_4338 crossref_primary_10_1108_BIJ_12_2018_0445 crossref_primary_10_1007_s13762_024_05894_0 crossref_primary_10_1007_s40558_020_00180_4 crossref_primary_10_1145_3700641 crossref_primary_10_1109_ACCESS_2019_2961372 crossref_primary_10_1016_j_ijinfomgt_2019_08_005 crossref_primary_10_1007_s10479_021_04307_6 crossref_primary_10_12677_WER_2023_121001 crossref_primary_10_1080_09537287_2019_1631460 crossref_primary_10_1142_S0217595921400169 crossref_primary_10_1109_JIOT_2023_3268705 crossref_primary_10_1109_TSMC_2020_3040789 crossref_primary_10_1108_MSCRA_10_2020_0028 crossref_primary_10_1080_15567036_2020_1826011 crossref_primary_10_1155_2022_9986371 crossref_primary_10_1016_j_ijpe_2020_107791 crossref_primary_10_1007_s10479_021_04129_6 crossref_primary_10_1109_ACCESS_2019_2905298 crossref_primary_10_1002_ett_4133 crossref_primary_10_1038_s41598_024_75994_x crossref_primary_10_1080_09537287_2020_1810756 crossref_primary_10_1109_TCSS_2022_3197421 crossref_primary_10_7180_kmj_24_140 crossref_primary_10_1016_j_ijinfomgt_2018_11_021 crossref_primary_10_1109_TAI_2022_3225132 crossref_primary_10_1016_j_hitech_2021_100415 crossref_primary_10_1108_BFJ_12_2022_1086 crossref_primary_10_1016_j_ijinfomgt_2019_102064 crossref_primary_10_1016_j_rcim_2019_101909 crossref_primary_10_1108_MSCRA_01_2023_0005 crossref_primary_10_1016_j_compind_2019_04_002 crossref_primary_10_1007_s10479_023_05169_w crossref_primary_10_1016_j_future_2020_06_051 crossref_primary_10_4018_IRMJ_287907 |
| Cites_doi | 10.1016/j.future.2017.02.006 10.1371/journal.pone.0163477 10.1109/69.250074 10.1016/j.future.2017.03.001 10.1126/science.1127647 10.1016/j.dss.2016.12.001 10.1016/j.patrec.2016.03.015 10.1016/j.future.2017.06.028 10.1016/j.fss.2016.03.005 10.1016/j.neucom.2015.09.116 10.1016/j.patcog.2017.05.015 10.1016/j.patcog.2016.03.028 10.1145/42282.42283 10.1109/TSP.2007.908946 10.1016/j.dss.2017.04.003 10.1038/nature14539 10.1016/S0020-7373(86)80040-2 10.1016/j.techfore.2004.12.005 10.1109/91.919253 10.1145/98163.98167 10.1016/j.future.2016.11.006 10.1016/j.patcog.2014.09.025 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2017.09.077 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 210 |
| ExternalDocumentID | 10_1016_j_future_2017_09_077 S0167739X1730064X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-77a9a3247a5ed04a60f91afe0679488f15e4c1dfb19d3824f47d724b320531533 |
| IEDL.DBID | .~1 |
| ISSN | 0167-739X |
| IngestDate | Wed Oct 01 02:25:40 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 23 02:30:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Takagi–Sugeno fuzzy Traceability chain algorithm Fuzzy cognitive maps Blockchain |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-77a9a3247a5ed04a60f91afe0679488f15e4c1dfb19d3824f47d724b320531533 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2017_09_077 crossref_citationtrail_10_1016_j_future_2017_09_077 elsevier_sciencedirect_doi_10_1016_j_future_2017_09_077 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 2018-03-00 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yli-Huumo, Ko, Choi, Park, Smolander (b21) 2016; 11 Merkle (b2) 1980 Dwork, Lynch, Stockmeyer (b26) 1988; 35 Kim, Bogun, Bong, Seungjoon (b8) 2016; 77 Junqueira, Reed, Serafini (b6) 2011 Li, Li, Huang, Li, Gao, Yiu, Chen (b31) 2017; 74 Paul, Sarkar, Mukherjee (b24) 2014; vol. 8880 Evermann, Rehse, Fettke (b27) 2017; 100 2009. LeGun, Bengio, Hinton (b29) 2015; 521 Green, Foster (b12) 2005; 72 Merkle (b19) 1980 S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, accessible at Zhong, Cheriet (b28) 2015; 48 Tuan, Apkarian, Narikiyo, Yamamoto (b13) 2001; 9 2015. Agrawal, Imielinski, Swami (b14) 1993; 5 Schneider (b18) 1990; 22 Guo, Yu, Ard, Songyang, Song, Michael (b10) 2016; 187 Sarah, Sutharshan, Shanika, Christopher (b11) 2016; 58 Sasson, Chiesa, Garman, Green, Miers, Tromer, Virza (b25) 2014 Hinton (b9) 2006; 313 Xin, Wang (b22) 2017; 95 Dimakis, Sarwate, Wainwright (b4) 2008; 56 Schneider (b3) 1990; 22 Leslie (b5) 2011 Xingchen, Witold, Oscar, Patricia (b30) 2017; 307 Jayaraman, Yang, Yavari, Georgakopoulos, Yi (b20) 2017; 76 Kosko (b15) 1986; 24 Economist, The promise of the blockchain: The trust machine, in: The Economist Esposito, Castiglione, Palmieri, Ficco (b32) 2017; 71 Lee, Chan, Mayo, Remagnino (b7) 2017; 71 H. Wang, H. Debiao, J. Yimu, Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography, Future Gen. Comput. Syst., in press, corrected proof, Available online 14 July 2017. Merkle (10.1016/j.future.2017.09.077_b19) 1980 Agrawal (10.1016/j.future.2017.09.077_b14) 1993; 5 Sasson (10.1016/j.future.2017.09.077_b25) 2014 Li (10.1016/j.future.2017.09.077_b31) 2017; 74 10.1016/j.future.2017.09.077_b17 Dwork (10.1016/j.future.2017.09.077_b26) 1988; 35 Esposito (10.1016/j.future.2017.09.077_b32) 2017; 71 Merkle (10.1016/j.future.2017.09.077_b2) 1980 10.1016/j.future.2017.09.077_b16 Evermann (10.1016/j.future.2017.09.077_b27) 2017; 100 Green (10.1016/j.future.2017.09.077_b12) 2005; 72 Zhong (10.1016/j.future.2017.09.077_b28) 2015; 48 Dimakis (10.1016/j.future.2017.09.077_b4) 2008; 56 LeGun (10.1016/j.future.2017.09.077_b29) 2015; 521 Jayaraman (10.1016/j.future.2017.09.077_b20) 2017; 76 Hinton (10.1016/j.future.2017.09.077_b9) 2006; 313 Lee (10.1016/j.future.2017.09.077_b7) 2017; 71 Guo (10.1016/j.future.2017.09.077_b10) 2016; 187 Yli-Huumo (10.1016/j.future.2017.09.077_b21) 2016; 11 Tuan (10.1016/j.future.2017.09.077_b13) 2001; 9 10.1016/j.future.2017.09.077_b1 Schneider (10.1016/j.future.2017.09.077_b18) 1990; 22 Kim (10.1016/j.future.2017.09.077_b8) 2016; 77 Xin (10.1016/j.future.2017.09.077_b22) 2017; 95 Junqueira (10.1016/j.future.2017.09.077_b6) 2011 Paul (10.1016/j.future.2017.09.077_b24) 2014; vol. 8880 Schneider (10.1016/j.future.2017.09.077_b3) 1990; 22 Kosko (10.1016/j.future.2017.09.077_b15) 1986; 24 Sarah (10.1016/j.future.2017.09.077_b11) 2016; 58 10.1016/j.future.2017.09.077_b23 Xingchen (10.1016/j.future.2017.09.077_b30) 2017; 307 Leslie (10.1016/j.future.2017.09.077_b5) 2011 |
| References_xml | – volume: 22 start-page: 299 year: 1990 end-page: 319 ident: b3 article-title: Implementing fault-tolerant services using the state machine approach: A tutorial publication-title: ACM Comput. Surv. – start-page: 122 year: 1980 end-page: 133 ident: b2 article-title: Protocols for public key cryptosystems publication-title: Proc. 1980 Symposium on Security and Privacy – reference: S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, accessible at – volume: 9 start-page: 324 year: 2001 end-page: 332 ident: b13 article-title: Parameterized linear matrix inequality techniques in fuzzy control system design publication-title: IEEE Trans. Fuzzy Syst. – volume: 48 start-page: 1211 year: 2015 end-page: 1224 ident: b28 article-title: Tensor representation learning based image patch analysis for text identification and recognition publication-title: Pattern Recognit. – volume: 71 start-page: 221 year: 2017 end-page: 233 ident: b32 article-title: Improving the gossiping effectiveness with distributed strategic learning publication-title: Future Gener. Comput. Syst. – start-page: 459 year: 2014 end-page: 474 ident: b25 article-title: Zerocash: Decentralized anonymous payments from bitcoin publication-title: IEEE Secur. Priv. – volume: 77 start-page: 58 year: 2016 end-page: 65 ident: b8 article-title: Deep belief network based statistical feature learning for fingerprint liveness detection publication-title: Pattern Recognit. Lett. – volume: 72 start-page: 663 year: 2005 end-page: 679 ident: b12 article-title: Give peas a chance: Transformations in food consumption and production systems publication-title: Technol. Forecast. Soc. Change – volume: 35 year: 1988 ident: b26 article-title: Consensus in the presence of partial synchrony publication-title: J. ACM – start-page: 211 year: 2011 end-page: 224 ident: b5 article-title: Byzantizing paxos by renement publication-title: Distributed Computing – volume: 22 start-page: 299 year: 1990 end-page: 319 ident: b18 article-title: Implementing fault-tolerant services using the state machine approach: A tutorial publication-title: ACM Comput. Surv. – volume: 95 start-page: 49 year: 2017 end-page: 60 ident: b22 article-title: The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin publication-title: Decis. Support Syst. – volume: vol. 8880 start-page: 185 year: 2014 end-page: 203 ident: b24 article-title: Towards a more democratic mining in bitcoins publication-title: Information Systems Security – volume: 307 start-page: 1 year: 2017 end-page: 28 ident: b30 article-title: Fuzzy rule-based models with interactive rules and their granular generalization publication-title: Fuzzy Sets and Systems – volume: 11 start-page: 1 year: 2016 end-page: 27 ident: b21 article-title: Where is current research on blockchain technology –A systematic review publication-title: PLoS ONE – volume: 71 start-page: 1 year: 2017 end-page: 13 ident: b7 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognit. – reference: , 2015. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b9 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – reference: H. Wang, H. Debiao, J. Yimu, Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography, Future Gen. Comput. Syst., in press, corrected proof, Available online 14 July 2017. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b29 article-title: Deep learning publication-title: Nature – start-page: 122 year: 1980 end-page: 133 ident: b19 article-title: Protocols for public key cryptosystems publication-title: Proc. 1980 Symposium on Security and Privacy – volume: 56 start-page: 1205 year: 2008 end-page: 1216 ident: b4 article-title: Geographic gossip: Efficient averaging for sensor networks publication-title: IEEE Trans. Signal Process. – start-page: 245 year: 2011 end-page: 256 ident: b6 article-title: High-performance broadcast for primary-backup systems publication-title: Proc. DSN’11, IEEE/IFIP Int’l Conf. on Dependable Systems & Networks – reference: Economist, The promise of the blockchain: The trust machine, in: The Economist, – volume: 100 start-page: 129 year: 2017 end-page: 140 ident: b27 article-title: Predicting process behaviour using deep learning publication-title: Decis. Support Syst. – volume: 76 start-page: 540 year: 2017 end-page: 549 ident: b20 article-title: Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation publication-title: Future Gener. Comput. Syst. – volume: 187 start-page: 27 year: 2016 end-page: 48 ident: b10 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing – reference: , 2009. – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: b11 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognit. – volume: 24 start-page: 65 year: 1986 end-page: 75 ident: b15 article-title: Fuzzy cognitive maps publication-title: J. Man-Mach. Stud. – volume: 5 start-page: 914 year: 1993 end-page: 925 ident: b14 article-title: Database mining: A performance perspective publication-title: IEEE Trans. Knowl. Data Eng. – volume: 74 start-page: 76 year: 2017 end-page: 85 ident: b31 article-title: Multi-key privacy-preserving deep learning in cloud computing publication-title: Future Gener. Comput. Syst. – volume: 74 start-page: 76 year: 2017 ident: 10.1016/j.future.2017.09.077_b31 article-title: Multi-key privacy-preserving deep learning in cloud computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.006 – start-page: 459 year: 2014 ident: 10.1016/j.future.2017.09.077_b25 article-title: Zerocash: Decentralized anonymous payments from bitcoin publication-title: IEEE Secur. Priv. – volume: 11 start-page: 1 issue: 10 year: 2016 ident: 10.1016/j.future.2017.09.077_b21 article-title: Where is current research on blockchain technology –A systematic review publication-title: PLoS ONE doi: 10.1371/journal.pone.0163477 – volume: 5 start-page: 914 issue: 6 year: 1993 ident: 10.1016/j.future.2017.09.077_b14 article-title: Database mining: A performance perspective publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.250074 – volume: 76 start-page: 540 year: 2017 ident: 10.1016/j.future.2017.09.077_b20 article-title: Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.03.001 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.future.2017.09.077_b9 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – start-page: 122 year: 1980 ident: 10.1016/j.future.2017.09.077_b2 article-title: Protocols for public key cryptosystems – ident: 10.1016/j.future.2017.09.077_b16 – volume: 95 start-page: 49 year: 2017 ident: 10.1016/j.future.2017.09.077_b22 article-title: The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2016.12.001 – ident: 10.1016/j.future.2017.09.077_b1 – volume: 77 start-page: 58 year: 2016 ident: 10.1016/j.future.2017.09.077_b8 article-title: Deep belief network based statistical feature learning for fingerprint liveness detection publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.03.015 – start-page: 211 year: 2011 ident: 10.1016/j.future.2017.09.077_b5 article-title: Byzantizing paxos by renement – ident: 10.1016/j.future.2017.09.077_b23 doi: 10.1016/j.future.2017.06.028 – start-page: 122 year: 1980 ident: 10.1016/j.future.2017.09.077_b19 article-title: Protocols for public key cryptosystems – volume: vol. 8880 start-page: 185 year: 2014 ident: 10.1016/j.future.2017.09.077_b24 article-title: Towards a more democratic mining in bitcoins – volume: 307 start-page: 1 year: 2017 ident: 10.1016/j.future.2017.09.077_b30 article-title: Fuzzy rule-based models with interactive rules and their granular generalization publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2016.03.005 – volume: 187 start-page: 27 issue: 26 year: 2016 ident: 10.1016/j.future.2017.09.077_b10 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 71 start-page: 1 year: 2017 ident: 10.1016/j.future.2017.09.077_b7 article-title: How deep learning extracts and learns leaf features for plant classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.015 – start-page: 245 year: 2011 ident: 10.1016/j.future.2017.09.077_b6 article-title: High-performance broadcast for primary-backup systems – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.future.2017.09.077_b11 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.028 – volume: 35 issue: 2 year: 1988 ident: 10.1016/j.future.2017.09.077_b26 article-title: Consensus in the presence of partial synchrony publication-title: J. ACM doi: 10.1145/42282.42283 – volume: 56 start-page: 1205 issue: 3 year: 2008 ident: 10.1016/j.future.2017.09.077_b4 article-title: Geographic gossip: Efficient averaging for sensor networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.908946 – volume: 100 start-page: 129 year: 2017 ident: 10.1016/j.future.2017.09.077_b27 article-title: Predicting process behaviour using deep learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.04.003 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.future.2017.09.077_b29 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 24 start-page: 65 year: 1986 ident: 10.1016/j.future.2017.09.077_b15 article-title: Fuzzy cognitive maps publication-title: J. Man-Mach. Stud. doi: 10.1016/S0020-7373(86)80040-2 – volume: 72 start-page: 663 issue: 6 year: 2005 ident: 10.1016/j.future.2017.09.077_b12 article-title: Give peas a chance: Transformations in food consumption and production systems publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2004.12.005 – volume: 9 start-page: 324 issue: 2 year: 2001 ident: 10.1016/j.future.2017.09.077_b13 article-title: Parameterized linear matrix inequality techniques in fuzzy control system design publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.919253 – ident: 10.1016/j.future.2017.09.077_b17 – volume: 22 start-page: 299 issue: 4 year: 1990 ident: 10.1016/j.future.2017.09.077_b3 article-title: Implementing fault-tolerant services using the state machine approach: A tutorial publication-title: ACM Comput. Surv. doi: 10.1145/98163.98167 – volume: 71 start-page: 221 year: 2017 ident: 10.1016/j.future.2017.09.077_b32 article-title: Improving the gossiping effectiveness with distributed strategic learning publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.11.006 – volume: 48 start-page: 1211 year: 2015 ident: 10.1016/j.future.2017.09.077_b28 article-title: Tensor representation learning based image patch analysis for text identification and recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.09.025 – volume: 22 start-page: 299 issue: 4 year: 1990 ident: 10.1016/j.future.2017.09.077_b18 article-title: Implementing fault-tolerant services using the state machine approach: A tutorial publication-title: ACM Comput. Surv. doi: 10.1145/98163.98167 |
| SSID | ssj0001731 |
| Score | 2.41582 |
| Snippet | Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 198 |
| SubjectTerms | Blockchain Deep learning Fuzzy cognitive maps Takagi–Sugeno fuzzy Traceability chain algorithm |
| Title | A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain |
| URI | https://dx.doi.org/10.1016/j.future.2017.09.077 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquHBhR5Sl8oFraBY3To5VRVVA6qWtlFvkxE5b6KY2PdAD4h_4Q76EGSdmkRBInKIktuWMl3kTPb8h5IrDqGbSC63EFZ4F-FZZgVDInLIzpRoqFVITZLt-Z8DuokZUIS1zFgZpleXeX-zpercun9RLa9YX43G9hwR67oWRg5LrPovwBDvjmMXg-vmT5gFvHaPvjaXN8TnN8Sp0O5DgxbXaKec_u6cvLqe9T3ZLrEibRXcOSEXNDsmeycNAy2V5RCZNmi9FqgrJ7SeajiDcp2IynEPkP5pSwKUUv6kQi6AoYakvmgC-okh9H9L-28trj2brzQYaMJwiOhWLFYXGEvB5j7rdYzJo3_RbHavMomClEA7kAJ9FKAA2cdFQ0mbCt7PQEZnCP0iwejOnoVjqyCxxQukFLssYl9xliefi-gQ0eEK2ZvOZOiVUQUCboN6McCTjgRShL5UARMR4iELyVeIZ48VpKTGOmS4mseGSPcSFyWM0eWyHMZi8SqyPWotCYuOP8tyMS_xtqsTgBX6tefbvmudkB-6Cgnx2Qbby5VpdAhrJk5qebjWy3by973TfATV64j0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7iGZnHi5FhVVAVKL22l3CwndtpCN7XpgR4Q_8Af8iWMk5hFQiBxihR7rGS8zBvr-RmhSwq9mggnMCKbOwbgW2n4XCrmlJlI6cqYi4wg2_aaPXIbumEJ1fVZGEWrLNb-fE3PVuviTbXwZnU2HFY7ikBPnSC0lOS6R8I1tE5cm6oM7Or5k-cBxZYW-FbV9fm5jOSVC3cohhfN5E4p_Tk-fYk5jR20VYBFXMu_ZxeV5GQPbeuLGHAxL_fRqIbTOY9lrrn9hOMB5PuYj_pTSP0HYwzAFKufytUisNKwzB4ZA3yBFfe9j7tvL68dnCxXK2hAk4rwmM8WGBqLIOg9Zu0eoF7jultvGsU1CkYM-UAK-JkHHHAT5a4UJuGemQQWT6TaQoLpm1iuJLElksgKhOPbJCFUUJtEjq0mKMDBQ1SeTCfyCGEJGW2kBGe4JQj1BQ88ITlAIkIDpSRfQY52HosLjXF11cWIaTLZA8tdzpTLmRkwcHkFGR9Ws1xj44_6VPcL-zZWGISBXy2P_215gTaa3fsWa920707QJpT4ORPtFJXT-VKeATRJo_Ns6L0Dh63j0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+traceability+chain+algorithm+for+artificial+neural+networks+using+T%E2%80%93S+fuzzy+cognitive+maps+in+blockchain&rft.jtitle=Future+generation+computer+systems&rft.au=Chen%2C+Rui-Yang&rft.date=2018-03-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=80&rft.spage=198&rft.epage=210&rft_id=info:doi/10.1016%2Fj.future.2017.09.077&rft.externalDocID=S0167739X1730064X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |