A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain

Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artific...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 80; pp. 198 - 210
Main Author Chen, Rui-Yang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2018
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2017.09.077

Cover

Abstract Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artificial intelligence of blockchain mining algorithm like traceability chain algorithm runs faster than consensus algorithm because of inference mechanism. Our main goal is to reach traceability decision not consensus decision as fast as possible. Thus, this article proposes a novelty approach called Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm. The numerical example of the proposed algorithm in blockchain mining is evaluated and optimized decisions experiment is analyzed. Objective functions for optimized decision computation is described as participant nodes constraint method. Thus contribution succeeds in meeting the reduction mining efforts for the traceability chain being processed. Our findings also provide a preliminary indication of deep learning applied big blockchain transactions data. •The main goal is to reach traceability decision not consensus decision as fast as possible.•A novelty approach is Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm.•Deep learning network by Takagi–Sugeno Fuzzy ANN is presented.•We provide optimized traceability in blockchain for hierarchical learning features representations on big transaction data.
AbstractList Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network. Accordingly, such operation produces irrelevant data problem and further poorly optimized traceability in blockchain. So, we claim that the artificial intelligence of blockchain mining algorithm like traceability chain algorithm runs faster than consensus algorithm because of inference mechanism. Our main goal is to reach traceability decision not consensus decision as fast as possible. Thus, this article proposes a novelty approach called Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm. The numerical example of the proposed algorithm in blockchain mining is evaluated and optimized decisions experiment is analyzed. Objective functions for optimized decision computation is described as participant nodes constraint method. Thus contribution succeeds in meeting the reduction mining efforts for the traceability chain being processed. Our findings also provide a preliminary indication of deep learning applied big blockchain transactions data. •The main goal is to reach traceability decision not consensus decision as fast as possible.•A novelty approach is Takagi–Sugeno Fuzzy cognitive maps ANN as traceability chain algorithm.•Deep learning network by Takagi–Sugeno Fuzzy ANN is presented.•We provide optimized traceability in blockchain for hierarchical learning features representations on big transaction data.
Author Chen, Rui-Yang
Author_xml – sequence: 1
  givenname: Rui-Yang
  surname: Chen
  fullname: Chen, Rui-Yang
  email: a168.cloudy@msa.hinet.net
  organization: Department of Business Administration, Aletheia University, New Taipei, 32 Chen-Li Street, Tamsui, 25103, Taiwan, ROC
BookMark eNqFkL1OwzAURi1UJNrCGzD4BRLsOIkbBqSq4k-qxABIbJbj2O1t07iynaJ24h14Q56EtGVigOku3znSPQPUa2yjEbqkJKaE5leL2LShdTpOCOUxKWLC-Qnq0xFPIk5p1kP9bsYjzoq3MzTwfkFIt2S0j-oxDk4qLUuoIWyxmktosKxn1kGYr7CxDksXwIACWeNGt-5wwrt1S49bD80Mv3x9fD5j0-52ncDOGgiw0Xgl1x53srK2annwnqNTI2uvL37uEL3e3b5MHqLp0_3jZDyNFCN5iDiXhWRJymWmK5LKnJiCSqNJzot0NDI006milSlpUbFRkpqUVzxJS5aQjNGMsSFKj17lrPdOG7F2sJJuKygR-2JiIY7FxL6YIIXoinXY9S9MQZABbNMlgvo_-OYI6-6xDWgnvALdKF2B0yqIysLfgm-T8o8n
CitedBy_id crossref_primary_10_1016_j_cie_2023_108995
crossref_primary_10_1016_j_future_2018_09_019
crossref_primary_10_1007_s10796_022_10288_z
crossref_primary_10_1177_21582440231199320
crossref_primary_10_1016_j_vehcom_2020_100249
crossref_primary_10_1155_2022_4240244
crossref_primary_10_1016_j_ijinfomgt_2018_06_008
crossref_primary_10_1080_12507970_2019_1686437
crossref_primary_10_1080_00207543_2020_1803511
crossref_primary_10_1016_j_ijinfomgt_2019_09_010
crossref_primary_10_1016_j_techfore_2022_121881
crossref_primary_10_18603_sanatvetasarim_1515756
crossref_primary_10_1108_JSTPM_10_2023_0178
crossref_primary_10_1007_s42979_023_02331_w
crossref_primary_10_1016_j_asoc_2020_106384
crossref_primary_10_1002_ett_4338
crossref_primary_10_1108_BIJ_12_2018_0445
crossref_primary_10_1007_s13762_024_05894_0
crossref_primary_10_1007_s40558_020_00180_4
crossref_primary_10_1145_3700641
crossref_primary_10_1109_ACCESS_2019_2961372
crossref_primary_10_1016_j_ijinfomgt_2019_08_005
crossref_primary_10_1007_s10479_021_04307_6
crossref_primary_10_12677_WER_2023_121001
crossref_primary_10_1080_09537287_2019_1631460
crossref_primary_10_1142_S0217595921400169
crossref_primary_10_1109_JIOT_2023_3268705
crossref_primary_10_1109_TSMC_2020_3040789
crossref_primary_10_1108_MSCRA_10_2020_0028
crossref_primary_10_1080_15567036_2020_1826011
crossref_primary_10_1155_2022_9986371
crossref_primary_10_1016_j_ijpe_2020_107791
crossref_primary_10_1007_s10479_021_04129_6
crossref_primary_10_1109_ACCESS_2019_2905298
crossref_primary_10_1002_ett_4133
crossref_primary_10_1038_s41598_024_75994_x
crossref_primary_10_1080_09537287_2020_1810756
crossref_primary_10_1109_TCSS_2022_3197421
crossref_primary_10_7180_kmj_24_140
crossref_primary_10_1016_j_ijinfomgt_2018_11_021
crossref_primary_10_1109_TAI_2022_3225132
crossref_primary_10_1016_j_hitech_2021_100415
crossref_primary_10_1108_BFJ_12_2022_1086
crossref_primary_10_1016_j_ijinfomgt_2019_102064
crossref_primary_10_1016_j_rcim_2019_101909
crossref_primary_10_1108_MSCRA_01_2023_0005
crossref_primary_10_1016_j_compind_2019_04_002
crossref_primary_10_1007_s10479_023_05169_w
crossref_primary_10_1016_j_future_2020_06_051
crossref_primary_10_4018_IRMJ_287907
Cites_doi 10.1016/j.future.2017.02.006
10.1371/journal.pone.0163477
10.1109/69.250074
10.1016/j.future.2017.03.001
10.1126/science.1127647
10.1016/j.dss.2016.12.001
10.1016/j.patrec.2016.03.015
10.1016/j.future.2017.06.028
10.1016/j.fss.2016.03.005
10.1016/j.neucom.2015.09.116
10.1016/j.patcog.2017.05.015
10.1016/j.patcog.2016.03.028
10.1145/42282.42283
10.1109/TSP.2007.908946
10.1016/j.dss.2017.04.003
10.1038/nature14539
10.1016/S0020-7373(86)80040-2
10.1016/j.techfore.2004.12.005
10.1109/91.919253
10.1145/98163.98167
10.1016/j.future.2016.11.006
10.1016/j.patcog.2014.09.025
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2017.09.077
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 210
ExternalDocumentID 10_1016_j_future_2017_09_077
S0167739X1730064X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-77a9a3247a5ed04a60f91afe0679488f15e4c1dfb19d3824f47d724b320531533
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Wed Oct 01 02:25:40 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 23 02:30:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Takagi–Sugeno fuzzy
Traceability chain algorithm
Fuzzy cognitive maps
Blockchain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-77a9a3247a5ed04a60f91afe0679488f15e4c1dfb19d3824f47d724b320531533
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_future_2017_09_077
crossref_citationtrail_10_1016_j_future_2017_09_077
elsevier_sciencedirect_doi_10_1016_j_future_2017_09_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yli-Huumo, Ko, Choi, Park, Smolander (b21) 2016; 11
Merkle (b2) 1980
Dwork, Lynch, Stockmeyer (b26) 1988; 35
Kim, Bogun, Bong, Seungjoon (b8) 2016; 77
Junqueira, Reed, Serafini (b6) 2011
Li, Li, Huang, Li, Gao, Yiu, Chen (b31) 2017; 74
Paul, Sarkar, Mukherjee (b24) 2014; vol. 8880
Evermann, Rehse, Fettke (b27) 2017; 100
2009.
LeGun, Bengio, Hinton (b29) 2015; 521
Green, Foster (b12) 2005; 72
Merkle (b19) 1980
S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, accessible at
Zhong, Cheriet (b28) 2015; 48
Tuan, Apkarian, Narikiyo, Yamamoto (b13) 2001; 9
2015.
Agrawal, Imielinski, Swami (b14) 1993; 5
Schneider (b18) 1990; 22
Guo, Yu, Ard, Songyang, Song, Michael (b10) 2016; 187
Sarah, Sutharshan, Shanika, Christopher (b11) 2016; 58
Sasson, Chiesa, Garman, Green, Miers, Tromer, Virza (b25) 2014
Hinton (b9) 2006; 313
Xin, Wang (b22) 2017; 95
Dimakis, Sarwate, Wainwright (b4) 2008; 56
Schneider (b3) 1990; 22
Leslie (b5) 2011
Xingchen, Witold, Oscar, Patricia (b30) 2017; 307
Jayaraman, Yang, Yavari, Georgakopoulos, Yi (b20) 2017; 76
Kosko (b15) 1986; 24
Economist, The promise of the blockchain: The trust machine, in: The Economist
Esposito, Castiglione, Palmieri, Ficco (b32) 2017; 71
Lee, Chan, Mayo, Remagnino (b7) 2017; 71
H. Wang, H. Debiao, J. Yimu, Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography, Future Gen. Comput. Syst., in press, corrected proof, Available online 14 July 2017.
Merkle (10.1016/j.future.2017.09.077_b19) 1980
Agrawal (10.1016/j.future.2017.09.077_b14) 1993; 5
Sasson (10.1016/j.future.2017.09.077_b25) 2014
Li (10.1016/j.future.2017.09.077_b31) 2017; 74
10.1016/j.future.2017.09.077_b17
Dwork (10.1016/j.future.2017.09.077_b26) 1988; 35
Esposito (10.1016/j.future.2017.09.077_b32) 2017; 71
Merkle (10.1016/j.future.2017.09.077_b2) 1980
10.1016/j.future.2017.09.077_b16
Evermann (10.1016/j.future.2017.09.077_b27) 2017; 100
Green (10.1016/j.future.2017.09.077_b12) 2005; 72
Zhong (10.1016/j.future.2017.09.077_b28) 2015; 48
Dimakis (10.1016/j.future.2017.09.077_b4) 2008; 56
LeGun (10.1016/j.future.2017.09.077_b29) 2015; 521
Jayaraman (10.1016/j.future.2017.09.077_b20) 2017; 76
Hinton (10.1016/j.future.2017.09.077_b9) 2006; 313
Lee (10.1016/j.future.2017.09.077_b7) 2017; 71
Guo (10.1016/j.future.2017.09.077_b10) 2016; 187
Yli-Huumo (10.1016/j.future.2017.09.077_b21) 2016; 11
Tuan (10.1016/j.future.2017.09.077_b13) 2001; 9
10.1016/j.future.2017.09.077_b1
Schneider (10.1016/j.future.2017.09.077_b18) 1990; 22
Kim (10.1016/j.future.2017.09.077_b8) 2016; 77
Xin (10.1016/j.future.2017.09.077_b22) 2017; 95
Junqueira (10.1016/j.future.2017.09.077_b6) 2011
Paul (10.1016/j.future.2017.09.077_b24) 2014; vol. 8880
Schneider (10.1016/j.future.2017.09.077_b3) 1990; 22
Kosko (10.1016/j.future.2017.09.077_b15) 1986; 24
Sarah (10.1016/j.future.2017.09.077_b11) 2016; 58
10.1016/j.future.2017.09.077_b23
Xingchen (10.1016/j.future.2017.09.077_b30) 2017; 307
Leslie (10.1016/j.future.2017.09.077_b5) 2011
References_xml – volume: 22
  start-page: 299
  year: 1990
  end-page: 319
  ident: b3
  article-title: Implementing fault-tolerant services using the state machine approach: A tutorial
  publication-title: ACM Comput. Surv.
– start-page: 122
  year: 1980
  end-page: 133
  ident: b2
  article-title: Protocols for public key cryptosystems
  publication-title: Proc. 1980 Symposium on Security and Privacy
– reference: S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, accessible at
– volume: 9
  start-page: 324
  year: 2001
  end-page: 332
  ident: b13
  article-title: Parameterized linear matrix inequality techniques in fuzzy control system design
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 48
  start-page: 1211
  year: 2015
  end-page: 1224
  ident: b28
  article-title: Tensor representation learning based image patch analysis for text identification and recognition
  publication-title: Pattern Recognit.
– volume: 71
  start-page: 221
  year: 2017
  end-page: 233
  ident: b32
  article-title: Improving the gossiping effectiveness with distributed strategic learning
  publication-title: Future Gener. Comput. Syst.
– start-page: 459
  year: 2014
  end-page: 474
  ident: b25
  article-title: Zerocash: Decentralized anonymous payments from bitcoin
  publication-title: IEEE Secur. Priv.
– volume: 77
  start-page: 58
  year: 2016
  end-page: 65
  ident: b8
  article-title: Deep belief network based statistical feature learning for fingerprint liveness detection
  publication-title: Pattern Recognit. Lett.
– volume: 72
  start-page: 663
  year: 2005
  end-page: 679
  ident: b12
  article-title: Give peas a chance: Transformations in food consumption and production systems
  publication-title: Technol. Forecast. Soc. Change
– volume: 35
  year: 1988
  ident: b26
  article-title: Consensus in the presence of partial synchrony
  publication-title: J. ACM
– start-page: 211
  year: 2011
  end-page: 224
  ident: b5
  article-title: Byzantizing paxos by renement
  publication-title: Distributed Computing
– volume: 22
  start-page: 299
  year: 1990
  end-page: 319
  ident: b18
  article-title: Implementing fault-tolerant services using the state machine approach: A tutorial
  publication-title: ACM Comput. Surv.
– volume: 95
  start-page: 49
  year: 2017
  end-page: 60
  ident: b22
  article-title: The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin
  publication-title: Decis. Support Syst.
– volume: vol. 8880
  start-page: 185
  year: 2014
  end-page: 203
  ident: b24
  article-title: Towards a more democratic mining in bitcoins
  publication-title: Information Systems Security
– volume: 307
  start-page: 1
  year: 2017
  end-page: 28
  ident: b30
  article-title: Fuzzy rule-based models with interactive rules and their granular generalization
  publication-title: Fuzzy Sets and Systems
– volume: 11
  start-page: 1
  year: 2016
  end-page: 27
  ident: b21
  article-title: Where is current research on blockchain technology –A systematic review
  publication-title: PLoS ONE
– volume: 71
  start-page: 1
  year: 2017
  end-page: 13
  ident: b7
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recognit.
– reference: , 2015.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b9
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– reference: H. Wang, H. Debiao, J. Yimu, Designated-verifier proof of assets for bitcoin exchange using elliptic curve cryptography, Future Gen. Comput. Syst., in press, corrected proof, Available online 14 July 2017.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b29
  article-title: Deep learning
  publication-title: Nature
– start-page: 122
  year: 1980
  end-page: 133
  ident: b19
  article-title: Protocols for public key cryptosystems
  publication-title: Proc. 1980 Symposium on Security and Privacy
– volume: 56
  start-page: 1205
  year: 2008
  end-page: 1216
  ident: b4
  article-title: Geographic gossip: Efficient averaging for sensor networks
  publication-title: IEEE Trans. Signal Process.
– start-page: 245
  year: 2011
  end-page: 256
  ident: b6
  article-title: High-performance broadcast for primary-backup systems
  publication-title: Proc. DSN’11, IEEE/IFIP Int’l Conf. on Dependable Systems & Networks
– reference: Economist, The promise of the blockchain: The trust machine, in: The Economist,
– volume: 100
  start-page: 129
  year: 2017
  end-page: 140
  ident: b27
  article-title: Predicting process behaviour using deep learning
  publication-title: Decis. Support Syst.
– volume: 76
  start-page: 540
  year: 2017
  end-page: 549
  ident: b20
  article-title: Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation
  publication-title: Future Gener. Comput. Syst.
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: b10
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– reference: , 2009.
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  ident: b11
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 65
  year: 1986
  end-page: 75
  ident: b15
  article-title: Fuzzy cognitive maps
  publication-title: J. Man-Mach. Stud.
– volume: 5
  start-page: 914
  year: 1993
  end-page: 925
  ident: b14
  article-title: Database mining: A performance perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 74
  start-page: 76
  year: 2017
  end-page: 85
  ident: b31
  article-title: Multi-key privacy-preserving deep learning in cloud computing
  publication-title: Future Gener. Comput. Syst.
– volume: 74
  start-page: 76
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b31
  article-title: Multi-key privacy-preserving deep learning in cloud computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.02.006
– start-page: 459
  year: 2014
  ident: 10.1016/j.future.2017.09.077_b25
  article-title: Zerocash: Decentralized anonymous payments from bitcoin
  publication-title: IEEE Secur. Priv.
– volume: 11
  start-page: 1
  issue: 10
  year: 2016
  ident: 10.1016/j.future.2017.09.077_b21
  article-title: Where is current research on blockchain technology –A systematic review
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163477
– volume: 5
  start-page: 914
  issue: 6
  year: 1993
  ident: 10.1016/j.future.2017.09.077_b14
  article-title: Database mining: A performance perspective
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.250074
– volume: 76
  start-page: 540
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b20
  article-title: Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.03.001
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.future.2017.09.077_b9
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– start-page: 122
  year: 1980
  ident: 10.1016/j.future.2017.09.077_b2
  article-title: Protocols for public key cryptosystems
– ident: 10.1016/j.future.2017.09.077_b16
– volume: 95
  start-page: 49
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b22
  article-title: The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2016.12.001
– ident: 10.1016/j.future.2017.09.077_b1
– volume: 77
  start-page: 58
  year: 2016
  ident: 10.1016/j.future.2017.09.077_b8
  article-title: Deep belief network based statistical feature learning for fingerprint liveness detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.03.015
– start-page: 211
  year: 2011
  ident: 10.1016/j.future.2017.09.077_b5
  article-title: Byzantizing paxos by renement
– ident: 10.1016/j.future.2017.09.077_b23
  doi: 10.1016/j.future.2017.06.028
– start-page: 122
  year: 1980
  ident: 10.1016/j.future.2017.09.077_b19
  article-title: Protocols for public key cryptosystems
– volume: vol. 8880
  start-page: 185
  year: 2014
  ident: 10.1016/j.future.2017.09.077_b24
  article-title: Towards a more democratic mining in bitcoins
– volume: 307
  start-page: 1
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b30
  article-title: Fuzzy rule-based models with interactive rules and their granular generalization
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2016.03.005
– volume: 187
  start-page: 27
  issue: 26
  year: 2016
  ident: 10.1016/j.future.2017.09.077_b10
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 71
  start-page: 1
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b7
  article-title: How deep learning extracts and learns leaf features for plant classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.015
– start-page: 245
  year: 2011
  ident: 10.1016/j.future.2017.09.077_b6
  article-title: High-performance broadcast for primary-backup systems
– volume: 58
  start-page: 121
  year: 2016
  ident: 10.1016/j.future.2017.09.077_b11
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.028
– volume: 35
  issue: 2
  year: 1988
  ident: 10.1016/j.future.2017.09.077_b26
  article-title: Consensus in the presence of partial synchrony
  publication-title: J. ACM
  doi: 10.1145/42282.42283
– volume: 56
  start-page: 1205
  issue: 3
  year: 2008
  ident: 10.1016/j.future.2017.09.077_b4
  article-title: Geographic gossip: Efficient averaging for sensor networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.908946
– volume: 100
  start-page: 129
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b27
  article-title: Predicting process behaviour using deep learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.04.003
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.future.2017.09.077_b29
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 24
  start-page: 65
  year: 1986
  ident: 10.1016/j.future.2017.09.077_b15
  article-title: Fuzzy cognitive maps
  publication-title: J. Man-Mach. Stud.
  doi: 10.1016/S0020-7373(86)80040-2
– volume: 72
  start-page: 663
  issue: 6
  year: 2005
  ident: 10.1016/j.future.2017.09.077_b12
  article-title: Give peas a chance: Transformations in food consumption and production systems
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2004.12.005
– volume: 9
  start-page: 324
  issue: 2
  year: 2001
  ident: 10.1016/j.future.2017.09.077_b13
  article-title: Parameterized linear matrix inequality techniques in fuzzy control system design
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.919253
– ident: 10.1016/j.future.2017.09.077_b17
– volume: 22
  start-page: 299
  issue: 4
  year: 1990
  ident: 10.1016/j.future.2017.09.077_b3
  article-title: Implementing fault-tolerant services using the state machine approach: A tutorial
  publication-title: ACM Comput. Surv.
  doi: 10.1145/98163.98167
– volume: 71
  start-page: 221
  year: 2017
  ident: 10.1016/j.future.2017.09.077_b32
  article-title: Improving the gossiping effectiveness with distributed strategic learning
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.11.006
– volume: 48
  start-page: 1211
  year: 2015
  ident: 10.1016/j.future.2017.09.077_b28
  article-title: Tensor representation learning based image patch analysis for text identification and recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.09.025
– volume: 22
  start-page: 299
  issue: 4
  year: 1990
  ident: 10.1016/j.future.2017.09.077_b18
  article-title: Implementing fault-tolerant services using the state machine approach: A tutorial
  publication-title: ACM Comput. Surv.
  doi: 10.1145/98163.98167
SSID ssj0001731
Score 2.41582
Snippet Blockchain acts on a big data analytics because transaction data belongs to streaming data and high-dimensional data from distributed computing network....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms Blockchain
Deep learning
Fuzzy cognitive maps
Takagi–Sugeno fuzzy
Traceability chain algorithm
Title A traceability chain algorithm for artificial neural networks using T–S fuzzy cognitive maps in blockchain
URI https://dx.doi.org/10.1016/j.future.2017.09.077
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquHBhR5Sl8oFraBY3To5VRVVA6qWtlFvkxE5b6KY2PdAD4h_4Q76EGSdmkRBInKIktuWMl3kTPb8h5IrDqGbSC63EFZ4F-FZZgVDInLIzpRoqFVITZLt-Z8DuokZUIS1zFgZpleXeX-zpercun9RLa9YX43G9hwR67oWRg5LrPovwBDvjmMXg-vmT5gFvHaPvjaXN8TnN8Sp0O5DgxbXaKec_u6cvLqe9T3ZLrEibRXcOSEXNDsmeycNAy2V5RCZNmi9FqgrJ7SeajiDcp2IynEPkP5pSwKUUv6kQi6AoYakvmgC-okh9H9L-28trj2brzQYaMJwiOhWLFYXGEvB5j7rdYzJo3_RbHavMomClEA7kAJ9FKAA2cdFQ0mbCt7PQEZnCP0iwejOnoVjqyCxxQukFLssYl9xliefi-gQ0eEK2ZvOZOiVUQUCboN6McCTjgRShL5UARMR4iELyVeIZ48VpKTGOmS4mseGSPcSFyWM0eWyHMZi8SqyPWotCYuOP8tyMS_xtqsTgBX6tefbvmudkB-6Cgnx2Qbby5VpdAhrJk5qebjWy3by973TfATV64j0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWH7iGZnHi5FhVVAVKL22l3CwndtpCN7XpgR4Q_8Af8iWMk5hFQiBxihR7rGS8zBvr-RmhSwq9mggnMCKbOwbgW2n4XCrmlJlI6cqYi4wg2_aaPXIbumEJ1fVZGEWrLNb-fE3PVuviTbXwZnU2HFY7ikBPnSC0lOS6R8I1tE5cm6oM7Or5k-cBxZYW-FbV9fm5jOSVC3cohhfN5E4p_Tk-fYk5jR20VYBFXMu_ZxeV5GQPbeuLGHAxL_fRqIbTOY9lrrn9hOMB5PuYj_pTSP0HYwzAFKufytUisNKwzB4ZA3yBFfe9j7tvL68dnCxXK2hAk4rwmM8WGBqLIOg9Zu0eoF7jultvGsU1CkYM-UAK-JkHHHAT5a4UJuGemQQWT6TaQoLpm1iuJLElksgKhOPbJCFUUJtEjq0mKMDBQ1SeTCfyCGEJGW2kBGe4JQj1BQ88ITlAIkIDpSRfQY52HosLjXF11cWIaTLZA8tdzpTLmRkwcHkFGR9Ws1xj44_6VPcL-zZWGISBXy2P_215gTaa3fsWa920707QJpT4ORPtFJXT-VKeATRJo_Ns6L0Dh63j0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+traceability+chain+algorithm+for+artificial+neural+networks+using+T%E2%80%93S+fuzzy+cognitive+maps+in+blockchain&rft.jtitle=Future+generation+computer+systems&rft.au=Chen%2C+Rui-Yang&rft.date=2018-03-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=80&rft.spage=198&rft.epage=210&rft_id=info:doi/10.1016%2Fj.future.2017.09.077&rft.externalDocID=S0167739X1730064X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon