MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare

Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction ca...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 100; p. 101939
Main Authors Wu, Jialun, He, Kai, Mao, Rui, Li, Chen, Cambria, Erik
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Subjects
Online AccessGet full text
ISSN1566-2535
1872-6305
DOI10.1016/j.inffus.2023.101939

Cover

Abstract Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.11Our code and data are released at https://github.com/senticnet/MEGACare. •A novel framework, MEGACare, for predicting clinical outcomes using EHRs is proposed.•Leveraging multi-faceted medical knowledge to enhance medical code embedding.•Utilizing multi-view EHR hypergraph framework to capture high-order correlations.•MEGACare outperforms existing methods in two clinical outcome prediction tasks.
AbstractList Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.11Our code and data are released at https://github.com/senticnet/MEGACare. •A novel framework, MEGACare, for predicting clinical outcomes using EHRs is proposed.•Leveraging multi-faceted medical knowledge to enhance medical code embedding.•Utilizing multi-view EHR hypergraph framework to capture high-order correlations.•MEGACare outperforms existing methods in two clinical outcome prediction tasks.
ArticleNumber 101939
Author Li, Chen
Cambria, Erik
Mao, Rui
Wu, Jialun
He, Kai
Author_xml – sequence: 1
  givenname: Jialun
  orcidid: 0000-0002-9015-7487
  surname: Wu
  fullname: Wu, Jialun
  organization: School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
– sequence: 2
  givenname: Kai
  surname: He
  fullname: He, Kai
  organization: Saw Swee Hock School of Public Health, National University of Singapore, 117549, Singapore
– sequence: 3
  givenname: Rui
  surname: Mao
  fullname: Mao, Rui
  organization: School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
– sequence: 4
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
– sequence: 5
  givenname: Erik
  orcidid: 0000-0002-3030-1280
  surname: Cambria
  fullname: Cambria, Erik
  email: cambria@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
BookMark eNqFkNFOwjAUhhuDiYC-gRd7gWG7rmXjwoQQRCPGG7xuuvaUFce2dAXC21Myr7zQq_PnJN9_cr4RGtRNDQg9EjwhmPCn3cTWxhy6SYITel3lNL9BQ5JNk5hTzAYhM87jhFF2h0Zdt8OYTDElQ7T5WK7mC-lgFr3XzakCvYV4e7AadLQ_VN7GRwunqDy34LZOtmXUOtBWeXuEyDi5h1PjviPTuKgEWflSha57dGtk1cHDzxyjr5flZvEarz9Xb4v5OlYUcx9PWSG5oVjJAvJcSaxSjhOSmHCcmZRpQgtGCoXTDKRURGaaKygo1YQVeZbTMUr7XuWarnNgROvsXrqzIFhczYid6M2IqxnRmwnY7BemrJfeNrV30lb_wc89DOGx4MaJTlmoVZDiQHmhG_t3wQX-8YXT
CitedBy_id crossref_primary_10_1093_bib_bbae464
crossref_primary_10_1016_j_inffus_2024_102795
crossref_primary_10_1016_j_inffus_2025_103027
crossref_primary_10_1016_j_knosys_2024_112119
crossref_primary_10_1109_TNSE_2024_3501378
crossref_primary_10_1016_j_future_2024_07_030
crossref_primary_10_1007_s11517_024_03126_8
crossref_primary_10_1109_ACCESS_2024_3384496
crossref_primary_10_1016_j_inffus_2023_101988
crossref_primary_10_1109_TKDE_2024_3471508
crossref_primary_10_1016_j_inffus_2024_102723
crossref_primary_10_1016_j_eswa_2025_127163
crossref_primary_10_1016_j_ipm_2024_103758
crossref_primary_10_1016_j_neucom_2024_129021
Cites_doi 10.1145/3269206.3271701
10.1016/j.inffus.2022.10.025
10.1016/j.disc.2021.112372
10.1161/01.CIR.101.23.e215
10.1002/cmdc.200800178
10.1145/3097983.3098109
10.1093/bib/bbab133
10.1109/TPAMI.2022.3182052
10.1016/j.yebeh.2019.02.002
10.1162/neco.1997.9.8.1735
10.1038/sdata.2016.35
10.1093/bioinformatics/btz682
10.1609/aaai.v37i11.26541
10.1145/3097983.3098126
10.1016/j.inffus.2022.09.020
10.1609/aaai.v33i01.33013558
10.1109/IJCNN54540.2023.10191719
10.1103/PhysRevE.82.036106
10.1016/j.ins.2016.08.084
10.1145/1143844.1143874
10.1089/big.2020.0070
10.1038/s41467-019-09692-y
10.1609/aaai.v35i15.17596
10.1186/s12859-022-05096-w
10.1016/j.bdr.2020.100174
10.1093/nar/gkx1037
10.1609/aaai.v34i01.5427
10.24963/ijcai.2019/366
10.1145/3485447.3511936
10.1016/j.artmed.2017.05.008
10.2196/25670
10.1609/aaai.v34i01.5400
10.1109/CVPR.2018.00889
10.1145/3065386
10.1145/3097983.3098088
10.1093/bioinformatics/btab153
10.1021/ci00057a005
10.1609/aaai.v33i01.33011126
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2023.101939
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2023_101939
S1566253523002555
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-75ba6f30cabe99ca0c460212fded5f45d13b51bc048eaac1a8d6ceb33d15b9893
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Wed Oct 29 21:47:24 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Fri Feb 23 02:37:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypergraph
Information bottleneck
Healthcare
Electronic health record
Multi-view learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-75ba6f30cabe99ca0c460212fded5f45d13b51bc048eaac1a8d6ceb33d15b9893
ORCID 0000-0002-9015-7487
0000-0002-3030-1280
ParticipantIDs crossref_primary_10_1016_j_inffus_2023_101939
crossref_citationtrail_10_1016_j_inffus_2023_101939
elsevier_sciencedirect_doi_10_1016_j_inffus_2023_101939
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Xiao, Ma, Glass, Sun (b18) 2021
Chien, Pan, Peng, Milenkovic (b41) 2021
Yang, Xiao, Glass, Sun (b63) 2021
Tishby, Zaslavsky (b20) 2015
Hochreiter, Schmidhuber (b23) 1997; 9
Gong, Wang, Wang, Wang, Liu (b67) 2021; 23
Mulas, Zhang (b35) 2021; 344
R. Mao, X. Li, Bridging Towers of Multi-task Learning with a Gating Mechanism for Aspect-based Sentiment Analysis and Sequential Metaphor Identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 15, 2021, pp. 13534–13542.
E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–795.
J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1126–1133.
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b45) 2017
S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1, No. 6, 2013, pp. 380–384.
J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic Hypergraph Neural Networks, in: IJCAI, 2019, pp. 2635–2641.
Lee, Yoon, Kim, Kim, Kim, So, Kang (b43) 2020; 36
Weininger (b47) 1988; 28
Shang, Ma, Xiao, Sun (b30) 2019
F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903–1911.
Choi, Bahadori, Schuetz, Stewart, Sun (b3) 2016
Bretto (b31) 2013
Choi, Bahadori, Sun, Kulas, Schuetz, Stewart (b11) 2016
R. Wu, Z. Qiu, J. Jiang, G. Qi, X. Wu, Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 935–945.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b24) 2017; 30
Jang, Gu, Poole (b50) 2016
Ma, Mao, Lin, Wu, Cambria (b32) 2023; 91
R. Liu, G. Chen, R. Mao, E. Cambria, A Multi-task Learning Model for Gold-two-mention Co-reference Resolution, in: 2023 International Joint Conference on Neural Networks, IJCNN, 2023, pp. 1–9.
He, Yao, Zhang, Li, Li (b7) 2021; 23
Li, Tarlow, Brockschmidt, Zemel (b53) 2015
L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao, X. Ma, AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 825–832.
Li, Ma, Zhou, Cheng, He, Li (b22) 2021; 37
F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, J. Gao, Kame: Knowledge-based attention model for diagnosis prediction in healthcare, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 743–752.
Zhang, Yu, Xin, Chen (b57) 2022
Krizhevsky, Sutskever, Hinton (b61) 2017; 60
W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang, A PID controller approach for stochastic optimization of deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8522–8531.
S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 1077–1082.
Degen, Wegscheid-Gerlach, Zaliani, Rarey (b48) 2008; 3
E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, A. Dai, Learning the graphical structure of electronic health records with graph convolutional transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 606–613.
S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, E. Cambria, MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp. 7184–7190.
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b59) 2000; 101
Nyamabo, Yu, Shi (b19) 2021
Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1315–1324.
Gao, Zhang, Lin, Zhao, Du, Zou (b38) 2020; 44
Cheng, Kovács, Barabási (b5) 2019; 10
Huang, Yang (b40) 2021
Indra, Wikarsa, Turang (b62) 2016
Gao, Feng, Ji, Ji (b52) 2023; 45
Wishart, Feunang, Guo, Lo, Marcu, Grant, Sajed, Johnson, Li, Sayeeda (b60) 2018; 46
He, Hong, Lapalme-Remis, Lan, Huang, Li, Yao (b6) 2019; 94
Krioukov, Papadopoulos, Kitsak, Vahdat, Boguná (b54) 2010; 82
Mao, Jia, Huang, He, Wu, Gong, Li (b8) 2022
Alemi, Fischer, Dillon, Murphy (b56) 2016
Li, Qian, Zhang, Liu (b13) 2020
Er, Zhang, Wang, Pratama (b44) 2016; 373
W. Li, L. Zhu, R. Mao, E. Cambria, SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 13121–13129.
Lin, Mao, Liu, Xu, Cambria (b33) 2023; 90
Yadati, Nimishakavi, Yadav, Nitin, Louis, Talukdar (b37) 2019; 32
Kingma, Ba (b68) 2014
He, Mao, Gong, Cambria, Li (b9) 2022; 23
Alsentzer, Murphy, Boag, Weng, Jin, Naumann, McDermott (b42) 2019
He, Mao, Zhou, Li, Gong, Li, Wu (b16) 2022
Johnson, Pollard, Shen, Li-Wei, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b21) 2016; 3
Arya, Gupta, Rudinac, Worring (b39) 2020
Li, Qian, Zhang, Liu (b12) 2020; 8
An, Jin, Wei (b46) 2022
J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233–240.
Li, Xu, Cui, Huang, Wang, Lian, Li, Qin, Chen, Xie (b4) 2017; 83
Han, Mao, Cambria (b25) 2022
Kipf, Welling (b28) 2016
Ma, Wang, Xiao, Yuan, Chitta, Zhou, Gao (b17) 2019; 19
Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 3558–3565.
Chen, Wu, Zaki (b51) 2019
Shang (10.1016/j.inffus.2023.101939_b30) 2019
Mulas (10.1016/j.inffus.2023.101939_b35) 2021; 344
Yadati (10.1016/j.inffus.2023.101939_b37) 2019; 32
Chien (10.1016/j.inffus.2023.101939_b41) 2021
Gao (10.1016/j.inffus.2023.101939_b38) 2020; 44
10.1016/j.inffus.2023.101939_b15
He (10.1016/j.inffus.2023.101939_b7) 2021; 23
Degen (10.1016/j.inffus.2023.101939_b48) 2008; 3
Choi (10.1016/j.inffus.2023.101939_b11) 2016
Yang (10.1016/j.inffus.2023.101939_b18) 2021
Li (10.1016/j.inffus.2023.101939_b53) 2015
10.1016/j.inffus.2023.101939_b10
Veličković (10.1016/j.inffus.2023.101939_b45) 2017
10.1016/j.inffus.2023.101939_b14
10.1016/j.inffus.2023.101939_b58
10.1016/j.inffus.2023.101939_b55
Li (10.1016/j.inffus.2023.101939_b12) 2020; 8
Ma (10.1016/j.inffus.2023.101939_b17) 2019; 19
Alsentzer (10.1016/j.inffus.2023.101939_b42) 2019
Jang (10.1016/j.inffus.2023.101939_b50) 2016
Krioukov (10.1016/j.inffus.2023.101939_b54) 2010; 82
Lin (10.1016/j.inffus.2023.101939_b33) 2023; 90
Li (10.1016/j.inffus.2023.101939_b13) 2020
Gong (10.1016/j.inffus.2023.101939_b67) 2021; 23
10.1016/j.inffus.2023.101939_b49
10.1016/j.inffus.2023.101939_b2
10.1016/j.inffus.2023.101939_b1
Nyamabo (10.1016/j.inffus.2023.101939_b19) 2021
Wishart (10.1016/j.inffus.2023.101939_b60) 2018; 46
Er (10.1016/j.inffus.2023.101939_b44) 2016; 373
He (10.1016/j.inffus.2023.101939_b6) 2019; 94
He (10.1016/j.inffus.2023.101939_b9) 2022; 23
Indra (10.1016/j.inffus.2023.101939_b62) 2016
Li (10.1016/j.inffus.2023.101939_b4) 2017; 83
Cheng (10.1016/j.inffus.2023.101939_b5) 2019; 10
10.1016/j.inffus.2023.101939_b70
Kipf (10.1016/j.inffus.2023.101939_b28) 2016
Johnson (10.1016/j.inffus.2023.101939_b21) 2016; 3
Huang (10.1016/j.inffus.2023.101939_b40) 2021
Choi (10.1016/j.inffus.2023.101939_b3) 2016
Tishby (10.1016/j.inffus.2023.101939_b20) 2015
Chen (10.1016/j.inffus.2023.101939_b51) 2019
He (10.1016/j.inffus.2023.101939_b16) 2022
Bretto (10.1016/j.inffus.2023.101939_b31) 2013
Mao (10.1016/j.inffus.2023.101939_b8) 2022
Krizhevsky (10.1016/j.inffus.2023.101939_b61) 2017; 60
Yang (10.1016/j.inffus.2023.101939_b63) 2021
10.1016/j.inffus.2023.101939_b36
Weininger (10.1016/j.inffus.2023.101939_b47) 1988; 28
10.1016/j.inffus.2023.101939_b34
An (10.1016/j.inffus.2023.101939_b46) 2022
Li (10.1016/j.inffus.2023.101939_b22) 2021; 37
Alemi (10.1016/j.inffus.2023.101939_b56) 2016
Hochreiter (10.1016/j.inffus.2023.101939_b23) 1997; 9
Ma (10.1016/j.inffus.2023.101939_b32) 2023; 91
Vaswani (10.1016/j.inffus.2023.101939_b24) 2017; 30
Han (10.1016/j.inffus.2023.101939_b25) 2022
Arya (10.1016/j.inffus.2023.101939_b39) 2020
Goldberger (10.1016/j.inffus.2023.101939_b59) 2000; 101
10.1016/j.inffus.2023.101939_b29
10.1016/j.inffus.2023.101939_b26
10.1016/j.inffus.2023.101939_b27
Zhang (10.1016/j.inffus.2023.101939_b57) 2022
Kingma (10.1016/j.inffus.2023.101939_b68) 2014
Lee (10.1016/j.inffus.2023.101939_b43) 2020; 36
10.1016/j.inffus.2023.101939_b64
10.1016/j.inffus.2023.101939_b65
10.1016/j.inffus.2023.101939_b69
Gao (10.1016/j.inffus.2023.101939_b52) 2023; 45
10.1016/j.inffus.2023.101939_b66
References_xml – volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b59
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
– year: 2016
  ident: b28
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2022
  ident: b46
  article-title: KnowAugNet: Multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning
– volume: 3
  start-page: 1503
  year: 2008
  ident: b48
  article-title: On the art of compiling and using ‘drug-like’ chemical fragment spaces
  publication-title: ChemMedChem
– reference: R. Wu, Z. Qiu, J. Jiang, G. Qi, X. Wu, Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 935–945.
– volume: 45
  start-page: 3181
  year: 2023
  end-page: 3199
  ident: b52
  article-title: HGNN+: General hypergraph neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 1234
  year: 2020
  end-page: 1240
  ident: b43
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
– reference: Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1315–1324.
– year: 2021
  ident: b19
  article-title: SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction
  publication-title: Brief. Bioinform.
– reference: W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang, A PID controller approach for stochastic optimization of deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8522–8531.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 13
  ident: b17
  article-title: Incorporating medical code descriptions for diagnosis prediction in healthcare
  publication-title: BMC Med. Inform. Decis. Mak.
– reference: W. Li, L. Zhu, R. Mao, E. Cambria, SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 13121–13129.
– reference: J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1126–1133.
– start-page: 301
  year: 2016
  end-page: 318
  ident: b3
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
  publication-title: Machine Learning for Healthcare Conference
– reference: R. Liu, G. Chen, R. Mao, E. Cambria, A Multi-task Learning Model for Gold-two-mention Co-reference Resolution, in: 2023 International Joint Conference on Neural Networks, IJCNN, 2023, pp. 1–9.
– reference: E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–795.
– volume: 373
  start-page: 388
  year: 2016
  end-page: 403
  ident: b44
  article-title: Attention pooling-based convolutional neural network for sentence modelling
  publication-title: Inform. Sci.
– start-page: 94
  year: 2022
  end-page: 104
  ident: b25
  article-title: Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings
  publication-title: Proceedings of the 29th International Conference on Computational Linguistics
– volume: 32
  year: 2019
  ident: b37
  article-title: Hypergcn: A new method for training graph convolutional networks on hypergraphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: b24
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, A. Dai, Learning the graphical structure of electronic health records with graph convolutional transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 606–613.
– year: 2016
  ident: b56
  article-title: Deep variational information bottleneck
– start-page: 2287
  year: 2022
  end-page: 2293
  ident: b16
  article-title: Knowledge enhanced coreference resolution via gated attention
  publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 44
  start-page: 2548
  year: 2020
  end-page: 2566
  ident: b38
  article-title: Hypergraph learning: Methods and practices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2019
  ident: b42
  article-title: Publicly available clinical BERT embeddings
– start-page: 4318
  year: 2022
  end-page: 4322
  ident: b57
  article-title: Multi-view information bottleneck without variational approximation
  publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 90
  start-page: 253
  year: 2023
  end-page: 264
  ident: b33
  article-title: Fusing topology contexts and logical rules in language models for knowledge graph completion
  publication-title: Inf. Fusion
– start-page: 385
  year: 2016
  end-page: 390
  ident: b62
  article-title: Using logistic regression method to classify tweets into the selected topics
  publication-title: 2016 International Conference on Advanced Computer Science and Information Systems
– volume: 94
  start-page: 65
  year: 2019
  end-page: 71
  ident: b6
  article-title: Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups
  publication-title: Epilepsy Behav.
– year: 2019
  ident: b51
  article-title: Deep iterative and adaptive learning for graph neural networks
– start-page: 2318
  year: 2022
  end-page: 2325
  ident: b8
  article-title: Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction
  publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 23
  year: 2021
  ident: b7
  article-title: Construction of genealogical knowledge graphs from obituaries: Multitask neural network extraction system
  publication-title: J. Med. Internet Res.
– year: 2015
  ident: b53
  article-title: Gated graph sequence neural networks
– year: 2021
  ident: b18
  article-title: SafeDrug: Dual molecular graph encoders for safe drug recommendations
– reference: F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903–1911.
– reference: S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, E. Cambria, MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp. 7184–7190.
– year: 2013
  ident: b31
  article-title: Hypergraph theory
  publication-title: An Introduction. Mathematical Engineering
– year: 2014
  ident: b68
  article-title: Adam: A method for stochastic optimization
– volume: 23
  year: 2021
  ident: b67
  article-title: SMR: Medical knowledge graph embedding for safe medicine recommendation
  publication-title: Big Data Res.
– reference: L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao, X. Ma, AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 825–832.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b23
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2020
  ident: b39
  article-title: Hypersage: Generalizing inductive representation learning on hypergraphs
– reference: Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 3558–3565.
– volume: 3
  start-page: 1
  year: 2016
  end-page: 9
  ident: b21
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
– volume: 23
  start-page: 1
  year: 2022
  end-page: 20
  ident: b9
  article-title: JCBIE: a joint continual learning neural network for biomedical information extraction
  publication-title: BMC Bioinformatics
– year: 2017
  ident: b45
  article-title: Graph attention networks
– year: 2016
  ident: b50
  article-title: Categorical reparameterization with gumbel-softmax
– year: 2021
  ident: b63
  article-title: Change matters: Medication change prediction with recurrent residual networks
– year: 2021
  ident: b40
  article-title: Unignn: a unified framework for graph and hypergraph neural networks
– reference: R. Mao, X. Li, Bridging Towers of Multi-task Learning with a Gating Mechanism for Aspect-based Sentiment Analysis and Sequential Metaphor Identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 15, 2021, pp. 13534–13542.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: b5
  article-title: Network-based prediction of drug combinations
  publication-title: Nature Commun.
– volume: 344
  year: 2021
  ident: b35
  article-title: Spectral theory of Laplace operators on oriented hypergraphs
  publication-title: Discrete Math.
– volume: 82
  year: 2010
  ident: b54
  article-title: Hyperbolic geometry of complex networks
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 379
  year: 2020
  end-page: 390
  ident: b12
  article-title: Graph neural network-based diagnosis prediction
  publication-title: Big Data
– year: 2021
  ident: b41
  article-title: You are allset: A multiset function framework for hypergraph neural networks
– volume: 91
  start-page: 515
  year: 2023
  end-page: 528
  ident: b32
  article-title: Multi-source aggregated classification for stock price movement prediction
  publication-title: Inf. Fusion
– volume: 46
  start-page: D1074
  year: 2018
  end-page: D1082
  ident: b60
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
– start-page: 19
  year: 2020
  end-page: 27
  ident: b13
  article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network
  publication-title: Proceedings of the 2020 SIAM International Conference on Data Mining
– reference: F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, J. Gao, Kame: Knowledge-based attention model for diagnosis prediction in healthcare, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 743–752.
– volume: 28
  start-page: 31
  year: 1988
  end-page: 36
  ident: b47
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 83
  start-page: 35
  year: 2017
  end-page: 43
  ident: b4
  article-title: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles
  publication-title: Artif. Intell. Med.
– reference: J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233–240.
– start-page: 1
  year: 2015
  end-page: 5
  ident: b20
  article-title: Deep learning and the information bottleneck principle
  publication-title: 2015 IEEE Information Theory Workshop
– reference: S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 1077–1082.
– year: 2019
  ident: b30
  article-title: Pre-training of graph augmented transformers for medication recommendation
– volume: 37
  start-page: 2699
  year: 2021
  end-page: 2705
  ident: b22
  article-title: Knowledge enhanced lstm for coreference resolution on biomedical texts
  publication-title: Bioinformatics
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b61
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– reference: J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic Hypergraph Neural Networks, in: IJCAI, 2019, pp. 2635–2641.
– start-page: 3512
  year: 2016
  end-page: 3520
  ident: b11
  article-title: RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism
  publication-title: Advances in Neural Information Processing Systems
– reference: S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1, No. 6, 2013, pp. 380–384.
– ident: 10.1016/j.inffus.2023.101939_b15
  doi: 10.1145/3269206.3271701
– volume: 91
  start-page: 515
  year: 2023
  ident: 10.1016/j.inffus.2023.101939_b32
  article-title: Multi-source aggregated classification for stock price movement prediction
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.10.025
– volume: 344
  issue: 6
  year: 2021
  ident: 10.1016/j.inffus.2023.101939_b35
  article-title: Spectral theory of Laplace operators on oriented hypergraphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2021.112372
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.inffus.2023.101939_b59
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 3
  start-page: 1503
  issue: 10
  year: 2008
  ident: 10.1016/j.inffus.2023.101939_b48
  article-title: On the art of compiling and using ‘drug-like’ chemical fragment spaces
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200800178
– ident: 10.1016/j.inffus.2023.101939_b26
  doi: 10.1145/3097983.3098109
– year: 2021
  ident: 10.1016/j.inffus.2023.101939_b19
  article-title: SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab133
– start-page: 94
  year: 2022
  ident: 10.1016/j.inffus.2023.101939_b25
  article-title: Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings
– volume: 45
  start-page: 3181
  issue: 3
  year: 2023
  ident: 10.1016/j.inffus.2023.101939_b52
  article-title: HGNN+: General hypergraph neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3182052
– year: 2017
  ident: 10.1016/j.inffus.2023.101939_b45
– volume: 94
  start-page: 65
  year: 2019
  ident: 10.1016/j.inffus.2023.101939_b6
  article-title: Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2019.02.002
– ident: 10.1016/j.inffus.2023.101939_b65
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.inffus.2023.101939_b23
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2016
  ident: 10.1016/j.inffus.2023.101939_b50
– start-page: 385
  year: 2016
  ident: 10.1016/j.inffus.2023.101939_b62
  article-title: Using logistic regression method to classify tweets into the selected topics
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.inffus.2023.101939_b21
  article-title: MIMIC-III, a freely accessible critical care database
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.35
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  ident: 10.1016/j.inffus.2023.101939_b43
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– year: 2016
  ident: 10.1016/j.inffus.2023.101939_b56
– volume: 32
  year: 2019
  ident: 10.1016/j.inffus.2023.101939_b37
  article-title: Hypergcn: A new method for training graph convolutional networks on hypergraphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4318
  year: 2022
  ident: 10.1016/j.inffus.2023.101939_b57
  article-title: Multi-view information bottleneck without variational approximation
– ident: 10.1016/j.inffus.2023.101939_b49
  doi: 10.1609/aaai.v37i11.26541
– ident: 10.1016/j.inffus.2023.101939_b55
– year: 2016
  ident: 10.1016/j.inffus.2023.101939_b28
– ident: 10.1016/j.inffus.2023.101939_b14
  doi: 10.1145/3097983.3098126
– volume: 44
  start-page: 2548
  issue: 5
  year: 2020
  ident: 10.1016/j.inffus.2023.101939_b38
  article-title: Hypergraph learning: Methods and practices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 90
  start-page: 253
  year: 2023
  ident: 10.1016/j.inffus.2023.101939_b33
  article-title: Fusing topology contexts and logical rules in language models for knowledge graph completion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.09.020
– year: 2019
  ident: 10.1016/j.inffus.2023.101939_b51
– year: 2021
  ident: 10.1016/j.inffus.2023.101939_b18
– ident: 10.1016/j.inffus.2023.101939_b36
  doi: 10.1609/aaai.v33i01.33013558
– ident: 10.1016/j.inffus.2023.101939_b69
  doi: 10.1109/IJCNN54540.2023.10191719
– volume: 82
  issue: 3
  year: 2010
  ident: 10.1016/j.inffus.2023.101939_b54
  article-title: Hyperbolic geometry of complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.036106
– volume: 373
  start-page: 388
  year: 2016
  ident: 10.1016/j.inffus.2023.101939_b44
  article-title: Attention pooling-based convolutional neural network for sentence modelling
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.08.084
– ident: 10.1016/j.inffus.2023.101939_b10
– year: 2019
  ident: 10.1016/j.inffus.2023.101939_b42
– volume: 30
  year: 2017
  ident: 10.1016/j.inffus.2023.101939_b24
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.inffus.2023.101939_b66
  doi: 10.1145/1143844.1143874
– start-page: 2287
  year: 2022
  ident: 10.1016/j.inffus.2023.101939_b16
  article-title: Knowledge enhanced coreference resolution via gated attention
– start-page: 19
  year: 2020
  ident: 10.1016/j.inffus.2023.101939_b13
  article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network
– year: 2014
  ident: 10.1016/j.inffus.2023.101939_b68
– volume: 8
  start-page: 379
  issue: 5
  year: 2020
  ident: 10.1016/j.inffus.2023.101939_b12
  article-title: Graph neural network-based diagnosis prediction
  publication-title: Big Data
  doi: 10.1089/big.2020.0070
– year: 2021
  ident: 10.1016/j.inffus.2023.101939_b63
– year: 2020
  ident: 10.1016/j.inffus.2023.101939_b39
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2023.101939_b5
  article-title: Network-based prediction of drug combinations
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-09692-y
– year: 2019
  ident: 10.1016/j.inffus.2023.101939_b30
– year: 2021
  ident: 10.1016/j.inffus.2023.101939_b40
– ident: 10.1016/j.inffus.2023.101939_b70
  doi: 10.1609/aaai.v35i15.17596
– volume: 23
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.inffus.2023.101939_b9
  article-title: JCBIE: a joint continual learning neural network for biomedical information extraction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-05096-w
– year: 2013
  ident: 10.1016/j.inffus.2023.101939_b31
  article-title: Hypergraph theory
– year: 2015
  ident: 10.1016/j.inffus.2023.101939_b53
– volume: 23
  year: 2021
  ident: 10.1016/j.inffus.2023.101939_b67
  article-title: SMR: Medical knowledge graph embedding for safe medicine recommendation
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2020.100174
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 10.1016/j.inffus.2023.101939_b60
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– start-page: 1
  year: 2015
  ident: 10.1016/j.inffus.2023.101939_b20
  article-title: Deep learning and the information bottleneck principle
– ident: 10.1016/j.inffus.2023.101939_b2
  doi: 10.1609/aaai.v34i01.5427
– ident: 10.1016/j.inffus.2023.101939_b34
  doi: 10.24963/ijcai.2019/366
– ident: 10.1016/j.inffus.2023.101939_b64
  doi: 10.1145/3485447.3511936
– volume: 83
  start-page: 35
  year: 2017
  ident: 10.1016/j.inffus.2023.101939_b4
  article-title: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.05.008
– volume: 23
  issue: 8
  year: 2021
  ident: 10.1016/j.inffus.2023.101939_b7
  article-title: Construction of genealogical knowledge graphs from obituaries: Multitask neural network extraction system
  publication-title: J. Med. Internet Res.
  doi: 10.2196/25670
– start-page: 3512
  year: 2016
  ident: 10.1016/j.inffus.2023.101939_b11
  article-title: RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism
– start-page: 2318
  year: 2022
  ident: 10.1016/j.inffus.2023.101939_b8
  article-title: Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction
– ident: 10.1016/j.inffus.2023.101939_b29
  doi: 10.1609/aaai.v34i01.5400
– start-page: 301
  year: 2016
  ident: 10.1016/j.inffus.2023.101939_b3
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
– ident: 10.1016/j.inffus.2023.101939_b58
  doi: 10.1109/CVPR.2018.00889
– year: 2021
  ident: 10.1016/j.inffus.2023.101939_b41
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.inffus.2023.101939_b61
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 10.1016/j.inffus.2023.101939_b1
  doi: 10.1145/3097983.3098088
– volume: 37
  start-page: 2699
  issue: 17
  year: 2021
  ident: 10.1016/j.inffus.2023.101939_b22
  article-title: Knowledge enhanced lstm for coreference resolution on biomedical texts
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab153
– volume: 19
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.inffus.2023.101939_b17
  article-title: Incorporating medical code descriptions for diagnosis prediction in healthcare
  publication-title: BMC Med. Inform. Decis. Mak.
– year: 2022
  ident: 10.1016/j.inffus.2023.101939_b46
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 10.1016/j.inffus.2023.101939_b47
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– ident: 10.1016/j.inffus.2023.101939_b27
  doi: 10.1609/aaai.v33i01.33011126
SSID ssj0017031
Score 2.5422916
Snippet Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101939
SubjectTerms Electronic health record
Healthcare
Hypergraph
Information bottleneck
Multi-view learning
Title MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare
URI https://dx.doi.org/10.1016/j.inffus.2023.101939
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: ACRLP
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIKHN
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: .~1
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AKRWK
  dateStart: 20000701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jWvaJG29jbE5nRuiG-xW0iR1E5ljblf_dvPSDxREwVNpyGvDa_LyXvp7v4fQZRjZTTb2M0J1xAkLOSV2FcWEAZWI0VFKXa3D4Uj0J-xuyqc11ClzYQBWWdj-3KY7a120tApttpbzeesJIg8fHhk4xxgSzRkLoYrB1UcF86DAz-44U4Ug0LtMn3MYL_sRsw2QdvsBNMVQMvyn7enLltPbQ7uFr4jb-XD2Uc0sDtDOsCJafT9E42H3pg05RNd4UJ6OkefNXBuNHVaQwNE_ntloc-W4qfFyBb9mwMjhrARmYeu54lmFBDtCk1533OmTolACUdbjX5OQp1JkgadkauJYSU8xAdTtmX0ZzxjXNEg5TZVdrUZKRWWkhbJRdKApT2PrsRyj-uJtYU4QNtoEIM_DVLDIiyNqIioFo8z4XibDBgpK_SSqYBGHYhavSQkXe0lyrSag1STXagORSmqZs2j80T8sVZ98mw2JNfS_Sp7-W_IMbcNdDlU5R_X1amMurMOxTptuRjXRVrvzeP8A19tBf_QJhrjXcA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVtE5sJ2GrqkKhTRdaqZtlJw4tQqUq7cpvx-c8BBICidXxJdHFvofz3XcIXQehdbKRlxGahpywgFNid1FEGFCJmDTU1PU6jIeiN2aPEz6poU5ZCwOwysL25zbdWetipFlos7mYzZpPkHl4cEvfBcZ8A20y7gWQgd18VDgPCgTtjjRVCALTy_o5B_KyXzFbA2u358NQBD3Df_JPX3zO3R7aLYJF3M7fZx_VzPwA7cQV0-r7IRrF3fs2FBHd4n55PEae17PUpNiBBQmc_eOpTTeXjpwaL5bwbwasHM5KZBa2oSueVlCwIzS-6446PVJ0SiCJDflXJOBaicxvJUqbKEpUK2ECuNsz-zCeMZ5SX3OqE7tdjVIJVWEqEptG-ynlOrIhyzGqz9_m5gRhkxof5HmgBQtbUUhNSJVglBmvlamggfxSPzIpaMShm8WrLPFiLzLXqgStylyrDUQqqUVOo_HH_KBUvfy2HKS19L9Knv5b8gpt9UbxQA4ehv0ztA1XctzKOaqvlmtzYaOPlb50q-sT6wbXcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEGACare%3A+Knowledge-guided+multi-view+hypergraph+predictive+framework+for+healthcare&rft.jtitle=Information+fusion&rft.au=Wu%2C+Jialun&rft.au=He%2C+Kai&rft.au=Mao%2C+Rui&rft.au=Li%2C+Chen&rft.date=2023-12-01&rft.issn=1566-2535&rft.volume=100&rft.spage=101939&rft_id=info:doi/10.1016%2Fj.inffus.2023.101939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2023_101939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon