MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare
Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction ca...
Saved in:
| Published in | Information fusion Vol. 100; p. 101939 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1566-2535 1872-6305 |
| DOI | 10.1016/j.inffus.2023.101939 |
Cover
| Abstract | Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.11Our code and data are released at https://github.com/senticnet/MEGACare.
•A novel framework, MEGACare, for predicting clinical outcomes using EHRs is proposed.•Leveraging multi-faceted medical knowledge to enhance medical code embedding.•Utilizing multi-view EHR hypergraph framework to capture high-order correlations.•MEGACare outperforms existing methods in two clinical outcome prediction tasks. |
|---|---|
| AbstractList | Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field, which can help clinicians prescribe safely and effectively, and also make more accurate diagnoses. Benefiting from powerful feature extraction capabilities, graph representation learning can capture complex relationships and achieve promising performance in many clinical prediction tasks. However, existing works either exclusively consider single domain knowledge with an independent task or do not fully capitalize on domain knowledge that can provide more predictive signals in the code encoding stage. Moreover, the heterogeneous and high-dimensional nature of EHR data leads to a deficiency of hardly encoding implicit high-order correlations. To address these limitations, we proposed a knowledge-guided Multi-viEw hyperGrAph predictive framework (MEGACare) for diagnosis prediction and medication recommendation. Our MEGACare leveraged multi-faceted medical knowledge, including ontology structure, code description, and molecular information to enhance medical code presentations. Furthermore, we constructed an EHR hypergraph and a multi-view learning framework to capture the high-order correlation between patient visits and medical codes. Specifically, we propose three perspectives around the pairwise relationship between patient visits and medical codes to comprehensively learn patient representation and enhance the robustness of our framework. We evaluated our MEGACare framework against a set of state-of-the-art methods for two clinical outcome prediction tasks in the public MIMIC-III dataset, and the results showed that our proposed framework was superior to the baseline methods.11Our code and data are released at https://github.com/senticnet/MEGACare.
•A novel framework, MEGACare, for predicting clinical outcomes using EHRs is proposed.•Leveraging multi-faceted medical knowledge to enhance medical code embedding.•Utilizing multi-view EHR hypergraph framework to capture high-order correlations.•MEGACare outperforms existing methods in two clinical outcome prediction tasks. |
| ArticleNumber | 101939 |
| Author | Li, Chen Cambria, Erik Mao, Rui Wu, Jialun He, Kai |
| Author_xml | – sequence: 1 givenname: Jialun orcidid: 0000-0002-9015-7487 surname: Wu fullname: Wu, Jialun organization: School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China – sequence: 2 givenname: Kai surname: He fullname: He, Kai organization: Saw Swee Hock School of Public Health, National University of Singapore, 117549, Singapore – sequence: 3 givenname: Rui surname: Mao fullname: Mao, Rui organization: School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore – sequence: 4 givenname: Chen surname: Li fullname: Li, Chen organization: Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China – sequence: 5 givenname: Erik orcidid: 0000-0002-3030-1280 surname: Cambria fullname: Cambria, Erik email: cambria@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore |
| BookMark | eNqFkNFOwjAUhhuDiYC-gRd7gWG7rmXjwoQQRCPGG7xuuvaUFce2dAXC21Myr7zQq_PnJN9_cr4RGtRNDQg9EjwhmPCn3cTWxhy6SYITel3lNL9BQ5JNk5hTzAYhM87jhFF2h0Zdt8OYTDElQ7T5WK7mC-lgFr3XzakCvYV4e7AadLQ_VN7GRwunqDy34LZOtmXUOtBWeXuEyDi5h1PjviPTuKgEWflSha57dGtk1cHDzxyjr5flZvEarz9Xb4v5OlYUcx9PWSG5oVjJAvJcSaxSjhOSmHCcmZRpQgtGCoXTDKRURGaaKygo1YQVeZbTMUr7XuWarnNgROvsXrqzIFhczYid6M2IqxnRmwnY7BemrJfeNrV30lb_wc89DOGx4MaJTlmoVZDiQHmhG_t3wQX-8YXT |
| CitedBy_id | crossref_primary_10_1093_bib_bbae464 crossref_primary_10_1016_j_inffus_2024_102795 crossref_primary_10_1016_j_inffus_2025_103027 crossref_primary_10_1016_j_knosys_2024_112119 crossref_primary_10_1109_TNSE_2024_3501378 crossref_primary_10_1016_j_future_2024_07_030 crossref_primary_10_1007_s11517_024_03126_8 crossref_primary_10_1109_ACCESS_2024_3384496 crossref_primary_10_1016_j_inffus_2023_101988 crossref_primary_10_1109_TKDE_2024_3471508 crossref_primary_10_1016_j_inffus_2024_102723 crossref_primary_10_1016_j_eswa_2025_127163 crossref_primary_10_1016_j_ipm_2024_103758 crossref_primary_10_1016_j_neucom_2024_129021 |
| Cites_doi | 10.1145/3269206.3271701 10.1016/j.inffus.2022.10.025 10.1016/j.disc.2021.112372 10.1161/01.CIR.101.23.e215 10.1002/cmdc.200800178 10.1145/3097983.3098109 10.1093/bib/bbab133 10.1109/TPAMI.2022.3182052 10.1016/j.yebeh.2019.02.002 10.1162/neco.1997.9.8.1735 10.1038/sdata.2016.35 10.1093/bioinformatics/btz682 10.1609/aaai.v37i11.26541 10.1145/3097983.3098126 10.1016/j.inffus.2022.09.020 10.1609/aaai.v33i01.33013558 10.1109/IJCNN54540.2023.10191719 10.1103/PhysRevE.82.036106 10.1016/j.ins.2016.08.084 10.1145/1143844.1143874 10.1089/big.2020.0070 10.1038/s41467-019-09692-y 10.1609/aaai.v35i15.17596 10.1186/s12859-022-05096-w 10.1016/j.bdr.2020.100174 10.1093/nar/gkx1037 10.1609/aaai.v34i01.5427 10.24963/ijcai.2019/366 10.1145/3485447.3511936 10.1016/j.artmed.2017.05.008 10.2196/25670 10.1609/aaai.v34i01.5400 10.1109/CVPR.2018.00889 10.1145/3065386 10.1145/3097983.3098088 10.1093/bioinformatics/btab153 10.1021/ci00057a005 10.1609/aaai.v33i01.33011126 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.inffus.2023.101939 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6305 |
| ExternalDocumentID | 10_1016_j_inffus_2023_101939 S1566253523002555 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-75ba6f30cabe99ca0c460212fded5f45d13b51bc048eaac1a8d6ceb33d15b9893 |
| IEDL.DBID | .~1 |
| ISSN | 1566-2535 |
| IngestDate | Wed Oct 29 21:47:24 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Fri Feb 23 02:37:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hypergraph Information bottleneck Healthcare Electronic health record Multi-view learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-75ba6f30cabe99ca0c460212fded5f45d13b51bc048eaac1a8d6ceb33d15b9893 |
| ORCID | 0000-0002-9015-7487 0000-0002-3030-1280 |
| ParticipantIDs | crossref_primary_10_1016_j_inffus_2023_101939 crossref_citationtrail_10_1016_j_inffus_2023_101939 elsevier_sciencedirect_doi_10_1016_j_inffus_2023_101939 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information fusion |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yang, Xiao, Ma, Glass, Sun (b18) 2021 Chien, Pan, Peng, Milenkovic (b41) 2021 Yang, Xiao, Glass, Sun (b63) 2021 Tishby, Zaslavsky (b20) 2015 Hochreiter, Schmidhuber (b23) 1997; 9 Gong, Wang, Wang, Wang, Liu (b67) 2021; 23 Mulas, Zhang (b35) 2021; 344 R. Mao, X. Li, Bridging Towers of Multi-task Learning with a Gating Mechanism for Aspect-based Sentiment Analysis and Sequential Metaphor Identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 15, 2021, pp. 13534–13542. E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–795. J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1126–1133. Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b45) 2017 S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1, No. 6, 2013, pp. 380–384. J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic Hypergraph Neural Networks, in: IJCAI, 2019, pp. 2635–2641. Lee, Yoon, Kim, Kim, Kim, So, Kang (b43) 2020; 36 Weininger (b47) 1988; 28 Shang, Ma, Xiao, Sun (b30) 2019 F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903–1911. Choi, Bahadori, Schuetz, Stewart, Sun (b3) 2016 Bretto (b31) 2013 Choi, Bahadori, Sun, Kulas, Schuetz, Stewart (b11) 2016 R. Wu, Z. Qiu, J. Jiang, G. Qi, X. Wu, Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 935–945. Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b24) 2017; 30 Jang, Gu, Poole (b50) 2016 Ma, Mao, Lin, Wu, Cambria (b32) 2023; 91 R. Liu, G. Chen, R. Mao, E. Cambria, A Multi-task Learning Model for Gold-two-mention Co-reference Resolution, in: 2023 International Joint Conference on Neural Networks, IJCNN, 2023, pp. 1–9. He, Yao, Zhang, Li, Li (b7) 2021; 23 Li, Tarlow, Brockschmidt, Zemel (b53) 2015 L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao, X. Ma, AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 825–832. Li, Ma, Zhou, Cheng, He, Li (b22) 2021; 37 F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, J. Gao, Kame: Knowledge-based attention model for diagnosis prediction in healthcare, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 743–752. Zhang, Yu, Xin, Chen (b57) 2022 Krizhevsky, Sutskever, Hinton (b61) 2017; 60 W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang, A PID controller approach for stochastic optimization of deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8522–8531. S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 1077–1082. Degen, Wegscheid-Gerlach, Zaliani, Rarey (b48) 2008; 3 E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, A. Dai, Learning the graphical structure of electronic health records with graph convolutional transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 606–613. S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, E. Cambria, MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp. 7184–7190. Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b59) 2000; 101 Nyamabo, Yu, Shi (b19) 2021 Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1315–1324. Gao, Zhang, Lin, Zhao, Du, Zou (b38) 2020; 44 Cheng, Kovács, Barabási (b5) 2019; 10 Huang, Yang (b40) 2021 Indra, Wikarsa, Turang (b62) 2016 Gao, Feng, Ji, Ji (b52) 2023; 45 Wishart, Feunang, Guo, Lo, Marcu, Grant, Sajed, Johnson, Li, Sayeeda (b60) 2018; 46 He, Hong, Lapalme-Remis, Lan, Huang, Li, Yao (b6) 2019; 94 Krioukov, Papadopoulos, Kitsak, Vahdat, Boguná (b54) 2010; 82 Mao, Jia, Huang, He, Wu, Gong, Li (b8) 2022 Alemi, Fischer, Dillon, Murphy (b56) 2016 Li, Qian, Zhang, Liu (b13) 2020 Er, Zhang, Wang, Pratama (b44) 2016; 373 W. Li, L. Zhu, R. Mao, E. Cambria, SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 13121–13129. Lin, Mao, Liu, Xu, Cambria (b33) 2023; 90 Yadati, Nimishakavi, Yadav, Nitin, Louis, Talukdar (b37) 2019; 32 Kingma, Ba (b68) 2014 He, Mao, Gong, Cambria, Li (b9) 2022; 23 Alsentzer, Murphy, Boag, Weng, Jin, Naumann, McDermott (b42) 2019 He, Mao, Zhou, Li, Gong, Li, Wu (b16) 2022 Johnson, Pollard, Shen, Li-Wei, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b21) 2016; 3 Arya, Gupta, Rudinac, Worring (b39) 2020 Li, Qian, Zhang, Liu (b12) 2020; 8 An, Jin, Wei (b46) 2022 J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233–240. Li, Xu, Cui, Huang, Wang, Lian, Li, Qin, Chen, Xie (b4) 2017; 83 Han, Mao, Cambria (b25) 2022 Kipf, Welling (b28) 2016 Ma, Wang, Xiao, Yuan, Chitta, Zhou, Gao (b17) 2019; 19 Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 3558–3565. Chen, Wu, Zaki (b51) 2019 Shang (10.1016/j.inffus.2023.101939_b30) 2019 Mulas (10.1016/j.inffus.2023.101939_b35) 2021; 344 Yadati (10.1016/j.inffus.2023.101939_b37) 2019; 32 Chien (10.1016/j.inffus.2023.101939_b41) 2021 Gao (10.1016/j.inffus.2023.101939_b38) 2020; 44 10.1016/j.inffus.2023.101939_b15 He (10.1016/j.inffus.2023.101939_b7) 2021; 23 Degen (10.1016/j.inffus.2023.101939_b48) 2008; 3 Choi (10.1016/j.inffus.2023.101939_b11) 2016 Yang (10.1016/j.inffus.2023.101939_b18) 2021 Li (10.1016/j.inffus.2023.101939_b53) 2015 10.1016/j.inffus.2023.101939_b10 Veličković (10.1016/j.inffus.2023.101939_b45) 2017 10.1016/j.inffus.2023.101939_b14 10.1016/j.inffus.2023.101939_b58 10.1016/j.inffus.2023.101939_b55 Li (10.1016/j.inffus.2023.101939_b12) 2020; 8 Ma (10.1016/j.inffus.2023.101939_b17) 2019; 19 Alsentzer (10.1016/j.inffus.2023.101939_b42) 2019 Jang (10.1016/j.inffus.2023.101939_b50) 2016 Krioukov (10.1016/j.inffus.2023.101939_b54) 2010; 82 Lin (10.1016/j.inffus.2023.101939_b33) 2023; 90 Li (10.1016/j.inffus.2023.101939_b13) 2020 Gong (10.1016/j.inffus.2023.101939_b67) 2021; 23 10.1016/j.inffus.2023.101939_b49 10.1016/j.inffus.2023.101939_b2 10.1016/j.inffus.2023.101939_b1 Nyamabo (10.1016/j.inffus.2023.101939_b19) 2021 Wishart (10.1016/j.inffus.2023.101939_b60) 2018; 46 Er (10.1016/j.inffus.2023.101939_b44) 2016; 373 He (10.1016/j.inffus.2023.101939_b6) 2019; 94 He (10.1016/j.inffus.2023.101939_b9) 2022; 23 Indra (10.1016/j.inffus.2023.101939_b62) 2016 Li (10.1016/j.inffus.2023.101939_b4) 2017; 83 Cheng (10.1016/j.inffus.2023.101939_b5) 2019; 10 10.1016/j.inffus.2023.101939_b70 Kipf (10.1016/j.inffus.2023.101939_b28) 2016 Johnson (10.1016/j.inffus.2023.101939_b21) 2016; 3 Huang (10.1016/j.inffus.2023.101939_b40) 2021 Choi (10.1016/j.inffus.2023.101939_b3) 2016 Tishby (10.1016/j.inffus.2023.101939_b20) 2015 Chen (10.1016/j.inffus.2023.101939_b51) 2019 He (10.1016/j.inffus.2023.101939_b16) 2022 Bretto (10.1016/j.inffus.2023.101939_b31) 2013 Mao (10.1016/j.inffus.2023.101939_b8) 2022 Krizhevsky (10.1016/j.inffus.2023.101939_b61) 2017; 60 Yang (10.1016/j.inffus.2023.101939_b63) 2021 10.1016/j.inffus.2023.101939_b36 Weininger (10.1016/j.inffus.2023.101939_b47) 1988; 28 10.1016/j.inffus.2023.101939_b34 An (10.1016/j.inffus.2023.101939_b46) 2022 Li (10.1016/j.inffus.2023.101939_b22) 2021; 37 Alemi (10.1016/j.inffus.2023.101939_b56) 2016 Hochreiter (10.1016/j.inffus.2023.101939_b23) 1997; 9 Ma (10.1016/j.inffus.2023.101939_b32) 2023; 91 Vaswani (10.1016/j.inffus.2023.101939_b24) 2017; 30 Han (10.1016/j.inffus.2023.101939_b25) 2022 Arya (10.1016/j.inffus.2023.101939_b39) 2020 Goldberger (10.1016/j.inffus.2023.101939_b59) 2000; 101 10.1016/j.inffus.2023.101939_b29 10.1016/j.inffus.2023.101939_b26 10.1016/j.inffus.2023.101939_b27 Zhang (10.1016/j.inffus.2023.101939_b57) 2022 Kingma (10.1016/j.inffus.2023.101939_b68) 2014 Lee (10.1016/j.inffus.2023.101939_b43) 2020; 36 10.1016/j.inffus.2023.101939_b64 10.1016/j.inffus.2023.101939_b65 10.1016/j.inffus.2023.101939_b69 Gao (10.1016/j.inffus.2023.101939_b52) 2023; 45 10.1016/j.inffus.2023.101939_b66 |
| References_xml | – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b59 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation – year: 2016 ident: b28 article-title: Semi-supervised classification with graph convolutional networks – year: 2022 ident: b46 article-title: KnowAugNet: Multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning – volume: 3 start-page: 1503 year: 2008 ident: b48 article-title: On the art of compiling and using ‘drug-like’ chemical fragment spaces publication-title: ChemMedChem – reference: R. Wu, Z. Qiu, J. Jiang, G. Qi, X. Wu, Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 935–945. – volume: 45 start-page: 3181 year: 2023 end-page: 3199 ident: b52 article-title: HGNN+: General hypergraph neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 1234 year: 2020 end-page: 1240 ident: b43 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics – reference: Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1315–1324. – year: 2021 ident: b19 article-title: SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction publication-title: Brief. Bioinform. – reference: W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang, A PID controller approach for stochastic optimization of deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8522–8531. – volume: 19 start-page: 1 year: 2019 end-page: 13 ident: b17 article-title: Incorporating medical code descriptions for diagnosis prediction in healthcare publication-title: BMC Med. Inform. Decis. Mak. – reference: W. Li, L. Zhu, R. Mao, E. Cambria, SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 13121–13129. – reference: J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1126–1133. – start-page: 301 year: 2016 end-page: 318 ident: b3 article-title: Doctor AI: Predicting clinical events via recurrent neural networks publication-title: Machine Learning for Healthcare Conference – reference: R. Liu, G. Chen, R. Mao, E. Cambria, A Multi-task Learning Model for Gold-two-mention Co-reference Resolution, in: 2023 International Joint Conference on Neural Networks, IJCNN, 2023, pp. 1–9. – reference: E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787–795. – volume: 373 start-page: 388 year: 2016 end-page: 403 ident: b44 article-title: Attention pooling-based convolutional neural network for sentence modelling publication-title: Inform. Sci. – start-page: 94 year: 2022 end-page: 104 ident: b25 article-title: Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings publication-title: Proceedings of the 29th International Conference on Computational Linguistics – volume: 32 year: 2019 ident: b37 article-title: Hypergcn: A new method for training graph convolutional networks on hypergraphs publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: b24 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – reference: E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, A. Dai, Learning the graphical structure of electronic health records with graph convolutional transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 606–613. – year: 2016 ident: b56 article-title: Deep variational information bottleneck – start-page: 2287 year: 2022 end-page: 2293 ident: b16 article-title: Knowledge enhanced coreference resolution via gated attention publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine – volume: 44 start-page: 2548 year: 2020 end-page: 2566 ident: b38 article-title: Hypergraph learning: Methods and practices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 ident: b42 article-title: Publicly available clinical BERT embeddings – start-page: 4318 year: 2022 end-page: 4322 ident: b57 article-title: Multi-view information bottleneck without variational approximation publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 90 start-page: 253 year: 2023 end-page: 264 ident: b33 article-title: Fusing topology contexts and logical rules in language models for knowledge graph completion publication-title: Inf. Fusion – start-page: 385 year: 2016 end-page: 390 ident: b62 article-title: Using logistic regression method to classify tweets into the selected topics publication-title: 2016 International Conference on Advanced Computer Science and Information Systems – volume: 94 start-page: 65 year: 2019 end-page: 71 ident: b6 article-title: Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups publication-title: Epilepsy Behav. – year: 2019 ident: b51 article-title: Deep iterative and adaptive learning for graph neural networks – start-page: 2318 year: 2022 end-page: 2325 ident: b8 article-title: Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine – volume: 23 year: 2021 ident: b7 article-title: Construction of genealogical knowledge graphs from obituaries: Multitask neural network extraction system publication-title: J. Med. Internet Res. – year: 2015 ident: b53 article-title: Gated graph sequence neural networks – year: 2021 ident: b18 article-title: SafeDrug: Dual molecular graph encoders for safe drug recommendations – reference: F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903–1911. – reference: S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, E. Cambria, MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp. 7184–7190. – year: 2013 ident: b31 article-title: Hypergraph theory publication-title: An Introduction. Mathematical Engineering – year: 2014 ident: b68 article-title: Adam: A method for stochastic optimization – volume: 23 year: 2021 ident: b67 article-title: SMR: Medical knowledge graph embedding for safe medicine recommendation publication-title: Big Data Res. – reference: L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao, X. Ma, AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 825–832. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b23 article-title: Long short-term memory publication-title: Neural Comput. – year: 2020 ident: b39 article-title: Hypersage: Generalizing inductive representation learning on hypergraphs – reference: Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 3558–3565. – volume: 3 start-page: 1 year: 2016 end-page: 9 ident: b21 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data – volume: 23 start-page: 1 year: 2022 end-page: 20 ident: b9 article-title: JCBIE: a joint continual learning neural network for biomedical information extraction publication-title: BMC Bioinformatics – year: 2017 ident: b45 article-title: Graph attention networks – year: 2016 ident: b50 article-title: Categorical reparameterization with gumbel-softmax – year: 2021 ident: b63 article-title: Change matters: Medication change prediction with recurrent residual networks – year: 2021 ident: b40 article-title: Unignn: a unified framework for graph and hypergraph neural networks – reference: R. Mao, X. Li, Bridging Towers of Multi-task Learning with a Gating Mechanism for Aspect-based Sentiment Analysis and Sequential Metaphor Identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 15, 2021, pp. 13534–13542. – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: b5 article-title: Network-based prediction of drug combinations publication-title: Nature Commun. – volume: 344 year: 2021 ident: b35 article-title: Spectral theory of Laplace operators on oriented hypergraphs publication-title: Discrete Math. – volume: 82 year: 2010 ident: b54 article-title: Hyperbolic geometry of complex networks publication-title: Phys. Rev. E – volume: 8 start-page: 379 year: 2020 end-page: 390 ident: b12 article-title: Graph neural network-based diagnosis prediction publication-title: Big Data – year: 2021 ident: b41 article-title: You are allset: A multiset function framework for hypergraph neural networks – volume: 91 start-page: 515 year: 2023 end-page: 528 ident: b32 article-title: Multi-source aggregated classification for stock price movement prediction publication-title: Inf. Fusion – volume: 46 start-page: D1074 year: 2018 end-page: D1082 ident: b60 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res. – start-page: 19 year: 2020 end-page: 27 ident: b13 article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network publication-title: Proceedings of the 2020 SIAM International Conference on Data Mining – reference: F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, J. Gao, Kame: Knowledge-based attention model for diagnosis prediction in healthcare, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 743–752. – volume: 28 start-page: 31 year: 1988 end-page: 36 ident: b47 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci. – volume: 83 start-page: 35 year: 2017 end-page: 43 ident: b4 article-title: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles publication-title: Artif. Intell. Med. – reference: J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233–240. – start-page: 1 year: 2015 end-page: 5 ident: b20 article-title: Deep learning and the information bottleneck principle publication-title: 2015 IEEE Information Theory Workshop – reference: S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 1077–1082. – year: 2019 ident: b30 article-title: Pre-training of graph augmented transformers for medication recommendation – volume: 37 start-page: 2699 year: 2021 end-page: 2705 ident: b22 article-title: Knowledge enhanced lstm for coreference resolution on biomedical texts publication-title: Bioinformatics – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b61 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM – reference: J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic Hypergraph Neural Networks, in: IJCAI, 2019, pp. 2635–2641. – start-page: 3512 year: 2016 end-page: 3520 ident: b11 article-title: RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism publication-title: Advances in Neural Information Processing Systems – reference: S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1, No. 6, 2013, pp. 380–384. – ident: 10.1016/j.inffus.2023.101939_b15 doi: 10.1145/3269206.3271701 – volume: 91 start-page: 515 year: 2023 ident: 10.1016/j.inffus.2023.101939_b32 article-title: Multi-source aggregated classification for stock price movement prediction publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.10.025 – volume: 344 issue: 6 year: 2021 ident: 10.1016/j.inffus.2023.101939_b35 article-title: Spectral theory of Laplace operators on oriented hypergraphs publication-title: Discrete Math. doi: 10.1016/j.disc.2021.112372 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.inffus.2023.101939_b59 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 3 start-page: 1503 issue: 10 year: 2008 ident: 10.1016/j.inffus.2023.101939_b48 article-title: On the art of compiling and using ‘drug-like’ chemical fragment spaces publication-title: ChemMedChem doi: 10.1002/cmdc.200800178 – ident: 10.1016/j.inffus.2023.101939_b26 doi: 10.1145/3097983.3098109 – year: 2021 ident: 10.1016/j.inffus.2023.101939_b19 article-title: SSI–DDI: Substructure–substructure interactions for drug–drug interaction prediction publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab133 – start-page: 94 year: 2022 ident: 10.1016/j.inffus.2023.101939_b25 article-title: Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings – volume: 45 start-page: 3181 issue: 3 year: 2023 ident: 10.1016/j.inffus.2023.101939_b52 article-title: HGNN+: General hypergraph neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3182052 – year: 2017 ident: 10.1016/j.inffus.2023.101939_b45 – volume: 94 start-page: 65 year: 2019 ident: 10.1016/j.inffus.2023.101939_b6 article-title: Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2019.02.002 – ident: 10.1016/j.inffus.2023.101939_b65 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.inffus.2023.101939_b23 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2016 ident: 10.1016/j.inffus.2023.101939_b50 – start-page: 385 year: 2016 ident: 10.1016/j.inffus.2023.101939_b62 article-title: Using logistic regression method to classify tweets into the selected topics – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.inffus.2023.101939_b21 article-title: MIMIC-III, a freely accessible critical care database publication-title: Sci. Data doi: 10.1038/sdata.2016.35 – volume: 36 start-page: 1234 issue: 4 year: 2020 ident: 10.1016/j.inffus.2023.101939_b43 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – year: 2016 ident: 10.1016/j.inffus.2023.101939_b56 – volume: 32 year: 2019 ident: 10.1016/j.inffus.2023.101939_b37 article-title: Hypergcn: A new method for training graph convolutional networks on hypergraphs publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4318 year: 2022 ident: 10.1016/j.inffus.2023.101939_b57 article-title: Multi-view information bottleneck without variational approximation – ident: 10.1016/j.inffus.2023.101939_b49 doi: 10.1609/aaai.v37i11.26541 – ident: 10.1016/j.inffus.2023.101939_b55 – year: 2016 ident: 10.1016/j.inffus.2023.101939_b28 – ident: 10.1016/j.inffus.2023.101939_b14 doi: 10.1145/3097983.3098126 – volume: 44 start-page: 2548 issue: 5 year: 2020 ident: 10.1016/j.inffus.2023.101939_b38 article-title: Hypergraph learning: Methods and practices publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 90 start-page: 253 year: 2023 ident: 10.1016/j.inffus.2023.101939_b33 article-title: Fusing topology contexts and logical rules in language models for knowledge graph completion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.09.020 – year: 2019 ident: 10.1016/j.inffus.2023.101939_b51 – year: 2021 ident: 10.1016/j.inffus.2023.101939_b18 – ident: 10.1016/j.inffus.2023.101939_b36 doi: 10.1609/aaai.v33i01.33013558 – ident: 10.1016/j.inffus.2023.101939_b69 doi: 10.1109/IJCNN54540.2023.10191719 – volume: 82 issue: 3 year: 2010 ident: 10.1016/j.inffus.2023.101939_b54 article-title: Hyperbolic geometry of complex networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.036106 – volume: 373 start-page: 388 year: 2016 ident: 10.1016/j.inffus.2023.101939_b44 article-title: Attention pooling-based convolutional neural network for sentence modelling publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.08.084 – ident: 10.1016/j.inffus.2023.101939_b10 – year: 2019 ident: 10.1016/j.inffus.2023.101939_b42 – volume: 30 year: 2017 ident: 10.1016/j.inffus.2023.101939_b24 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.inffus.2023.101939_b66 doi: 10.1145/1143844.1143874 – start-page: 2287 year: 2022 ident: 10.1016/j.inffus.2023.101939_b16 article-title: Knowledge enhanced coreference resolution via gated attention – start-page: 19 year: 2020 ident: 10.1016/j.inffus.2023.101939_b13 article-title: Knowledge guided diagnosis prediction via graph spatial-temporal network – year: 2014 ident: 10.1016/j.inffus.2023.101939_b68 – volume: 8 start-page: 379 issue: 5 year: 2020 ident: 10.1016/j.inffus.2023.101939_b12 article-title: Graph neural network-based diagnosis prediction publication-title: Big Data doi: 10.1089/big.2020.0070 – year: 2021 ident: 10.1016/j.inffus.2023.101939_b63 – year: 2020 ident: 10.1016/j.inffus.2023.101939_b39 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.inffus.2023.101939_b5 article-title: Network-based prediction of drug combinations publication-title: Nature Commun. doi: 10.1038/s41467-019-09692-y – year: 2019 ident: 10.1016/j.inffus.2023.101939_b30 – year: 2021 ident: 10.1016/j.inffus.2023.101939_b40 – ident: 10.1016/j.inffus.2023.101939_b70 doi: 10.1609/aaai.v35i15.17596 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.inffus.2023.101939_b9 article-title: JCBIE: a joint continual learning neural network for biomedical information extraction publication-title: BMC Bioinformatics doi: 10.1186/s12859-022-05096-w – year: 2013 ident: 10.1016/j.inffus.2023.101939_b31 article-title: Hypergraph theory – year: 2015 ident: 10.1016/j.inffus.2023.101939_b53 – volume: 23 year: 2021 ident: 10.1016/j.inffus.2023.101939_b67 article-title: SMR: Medical knowledge graph embedding for safe medicine recommendation publication-title: Big Data Res. doi: 10.1016/j.bdr.2020.100174 – volume: 46 start-page: D1074 issue: D1 year: 2018 ident: 10.1016/j.inffus.2023.101939_b60 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 – start-page: 1 year: 2015 ident: 10.1016/j.inffus.2023.101939_b20 article-title: Deep learning and the information bottleneck principle – ident: 10.1016/j.inffus.2023.101939_b2 doi: 10.1609/aaai.v34i01.5427 – ident: 10.1016/j.inffus.2023.101939_b34 doi: 10.24963/ijcai.2019/366 – ident: 10.1016/j.inffus.2023.101939_b64 doi: 10.1145/3485447.3511936 – volume: 83 start-page: 35 year: 2017 ident: 10.1016/j.inffus.2023.101939_b4 article-title: Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2017.05.008 – volume: 23 issue: 8 year: 2021 ident: 10.1016/j.inffus.2023.101939_b7 article-title: Construction of genealogical knowledge graphs from obituaries: Multitask neural network extraction system publication-title: J. Med. Internet Res. doi: 10.2196/25670 – start-page: 3512 year: 2016 ident: 10.1016/j.inffus.2023.101939_b11 article-title: RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism – start-page: 2318 year: 2022 ident: 10.1016/j.inffus.2023.101939_b8 article-title: Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction – ident: 10.1016/j.inffus.2023.101939_b29 doi: 10.1609/aaai.v34i01.5400 – start-page: 301 year: 2016 ident: 10.1016/j.inffus.2023.101939_b3 article-title: Doctor AI: Predicting clinical events via recurrent neural networks – ident: 10.1016/j.inffus.2023.101939_b58 doi: 10.1109/CVPR.2018.00889 – year: 2021 ident: 10.1016/j.inffus.2023.101939_b41 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.inffus.2023.101939_b61 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 10.1016/j.inffus.2023.101939_b1 doi: 10.1145/3097983.3098088 – volume: 37 start-page: 2699 issue: 17 year: 2021 ident: 10.1016/j.inffus.2023.101939_b22 article-title: Knowledge enhanced lstm for coreference resolution on biomedical texts publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab153 – volume: 19 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.inffus.2023.101939_b17 article-title: Incorporating medical code descriptions for diagnosis prediction in healthcare publication-title: BMC Med. Inform. Decis. Mak. – year: 2022 ident: 10.1016/j.inffus.2023.101939_b46 – volume: 28 start-page: 31 issue: 1 year: 1988 ident: 10.1016/j.inffus.2023.101939_b47 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00057a005 – ident: 10.1016/j.inffus.2023.101939_b27 doi: 10.1609/aaai.v33i01.33011126 |
| SSID | ssj0017031 |
| Score | 2.5422916 |
| Snippet | Predicting a patient’s future health condition by analyzing their Electronic Health Records (EHRs) is a trending subject in the intelligent medical field,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 101939 |
| SubjectTerms | Electronic health record Healthcare Hypergraph Information bottleneck Multi-view learning |
| Title | MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare |
| URI | https://dx.doi.org/10.1016/j.inffus.2023.101939 |
| Volume | 100 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: ACRLP dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: AIKHN dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: .~1 dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: AKRWK dateStart: 20000701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4jWvaJG29jbE5nRuiG-xW0iR1E5ljblf_dvPSDxREwVNpyGvDa_LyXvp7v4fQZRjZTTb2M0J1xAkLOSV2FcWEAZWI0VFKXa3D4Uj0J-xuyqc11ClzYQBWWdj-3KY7a120tApttpbzeesJIg8fHhk4xxgSzRkLoYrB1UcF86DAz-44U4Ug0LtMn3MYL_sRsw2QdvsBNMVQMvyn7enLltPbQ7uFr4jb-XD2Uc0sDtDOsCJafT9E42H3pg05RNd4UJ6OkefNXBuNHVaQwNE_ntloc-W4qfFyBb9mwMjhrARmYeu54lmFBDtCk1533OmTolACUdbjX5OQp1JkgadkauJYSU8xAdTtmX0ZzxjXNEg5TZVdrUZKRWWkhbJRdKApT2PrsRyj-uJtYU4QNtoEIM_DVLDIiyNqIioFo8z4XibDBgpK_SSqYBGHYhavSQkXe0lyrSag1STXagORSmqZs2j80T8sVZ98mw2JNfS_Sp7-W_IMbcNdDlU5R_X1amMurMOxTptuRjXRVrvzeP8A19tBf_QJhrjXcA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVtE5sJ2GrqkKhTRdaqZtlJw4tQqUq7cpvx-c8BBICidXxJdHFvofz3XcIXQehdbKRlxGahpywgFNid1FEGFCJmDTU1PU6jIeiN2aPEz6poU5ZCwOwysL25zbdWetipFlos7mYzZpPkHl4cEvfBcZ8A20y7gWQgd18VDgPCgTtjjRVCALTy_o5B_KyXzFbA2u358NQBD3Df_JPX3zO3R7aLYJF3M7fZx_VzPwA7cQV0-r7IRrF3fs2FBHd4n55PEae17PUpNiBBQmc_eOpTTeXjpwaL5bwbwasHM5KZBa2oSueVlCwIzS-6446PVJ0SiCJDflXJOBaicxvJUqbKEpUK2ECuNsz-zCeMZ5SX3OqE7tdjVIJVWEqEptG-ynlOrIhyzGqz9_m5gRhkxof5HmgBQtbUUhNSJVglBmvlamggfxSPzIpaMShm8WrLPFiLzLXqgStylyrDUQqqUVOo_HH_KBUvfy2HKS19L9Knv5b8gpt9UbxQA4ehv0ztA1XctzKOaqvlmtzYaOPlb50q-sT6wbXcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEGACare%3A+Knowledge-guided+multi-view+hypergraph+predictive+framework+for+healthcare&rft.jtitle=Information+fusion&rft.au=Wu%2C+Jialun&rft.au=He%2C+Kai&rft.au=Mao%2C+Rui&rft.au=Li%2C+Chen&rft.date=2023-12-01&rft.issn=1566-2535&rft.volume=100&rft.spage=101939&rft_id=info:doi/10.1016%2Fj.inffus.2023.101939&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2023_101939 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |