Counter-propagation artificial neural network-based motion detection algorithm for static-camera surveillance scenarios

Motion detection plays an important role in most static-camera video surveillance systems, yet video communications over wireless networks can easily suffer from network congestion or unstable bandwidth, especially for embedded applications. A rate control scheme produces variable bit rate video str...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 273; pp. 481 - 493
Main Authors Chen, Bo-Hao, Huang, Shih-Chia, Yen, Jui-Yu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 17.01.2018
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2017.08.002

Cover

Abstract Motion detection plays an important role in most static-camera video surveillance systems, yet video communications over wireless networks can easily suffer from network congestion or unstable bandwidth, especially for embedded applications. A rate control scheme produces variable bit rate video streams to match the available network bandwidth. However, effectively detecting moving objects in a variable bit rate video stream is a considerable challenge. This paper proposes an advanced approach based on a counter-propagation artificial neural network to achieve effective moving-object detection in such conditions. Qualitative and quantitative tests over real-world limited bandwidth networks show that the proposed method substantially outperforms other state-of-the-art methods.
AbstractList Motion detection plays an important role in most static-camera video surveillance systems, yet video communications over wireless networks can easily suffer from network congestion or unstable bandwidth, especially for embedded applications. A rate control scheme produces variable bit rate video streams to match the available network bandwidth. However, effectively detecting moving objects in a variable bit rate video stream is a considerable challenge. This paper proposes an advanced approach based on a counter-propagation artificial neural network to achieve effective moving-object detection in such conditions. Qualitative and quantitative tests over real-world limited bandwidth networks show that the proposed method substantially outperforms other state-of-the-art methods.
Author Huang, Shih-Chia
Chen, Bo-Hao
Yen, Jui-Yu
Author_xml – sequence: 1
  givenname: Bo-Hao
  surname: Chen
  fullname: Chen, Bo-Hao
  email: bhchen@saturn.yzu.edu.tw
  organization: Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan
– sequence: 2
  givenname: Shih-Chia
  surname: Huang
  fullname: Huang, Shih-Chia
  email: schuang@ntut.edu.tw
  organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan
– sequence: 3
  givenname: Jui-Yu
  surname: Yen
  fullname: Yen, Jui-Yu
  email: tim904021@hotmail.com
  organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei 106, Taiwan
BookMark eNqFkMtOwzAURC1UJNrCH7DIDyT40bxYIKGKl1SJDawtx74uLklcXbut-HvShhULWM1mzkhzZmTS-x4IuWY0Y5QVN5ush532XcYpKzNaZZTyMzJlVcnTilfFhExpzfOUC8YvyCyEDR2KjNdTclj6XR8B0y36rVqr6HyfKIzOOu1UmwzDeIp48PiZNiqASTp_qhmIoEegXXt08aNLrMckxGFGp1p1gCoJO9yDa1vVa0iChl6h8-GSnFvVBrj6yTl5f3x4Wz6nq9enl-X9KtWCFjEtrK2LsqmNEnzBjGY5K4GWuVB1ZQ3PYVHQUglTcMYNt3Vl8tw2ojC6bkAIJuZkMe5q9CEgWLlF1yn8kozKozy5kaM8eZQnaSUHeQN2-wvTLp7kRFSu_Q--G2EYju0doAzawXDfOByESePd3wPfT4STsQ
CitedBy_id crossref_primary_10_3390_app13169433
crossref_primary_10_1142_S0129065720500161
crossref_primary_10_1007_s40430_022_03954_5
crossref_primary_10_1016_j_ins_2019_09_015
crossref_primary_10_1080_1062936X_2021_2013318
crossref_primary_10_1007_s11042_020_09838_x
crossref_primary_10_1007_s12204_020_2202_3
crossref_primary_10_1007_s40430_024_04892_0
crossref_primary_10_1155_2020_2075781
crossref_primary_10_1016_j_jvcir_2021_103116
crossref_primary_10_1016_j_rineng_2024_103892
crossref_primary_10_1007_s11801_020_9030_4
crossref_primary_10_1007_s00419_020_01840_x
crossref_primary_10_1007_s12652_023_04521_z
Cites_doi 10.1016/j.neucom.2011.10.041
10.1016/j.neucom.2014.10.032
10.1109/TCYB.2013.2248057
10.1109/TIE.2013.2262764
10.1109/72.286919
10.1109/TNNLS.2013.2270314
10.1016/j.neucom.2014.08.062
10.1109/TIP.2010.2101613
10.1109/TCSVT.2007.906935
10.1016/j.neucom.2014.11.026
10.1016/j.neucom.2013.01.048
10.1109/TMM.2014.2298377
10.1109/TCSVT.2003.815165
10.1109/TSMCC.2010.2092425
10.1016/j.patrec.2006.04.007
10.1016/j.ins.2014.12.033
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.08.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 493
ExternalDocumentID 10_1016_j_neucom_2017_08_002
S0925231217313383
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-6ff967b9da3241dc1517e0753a98fd25e4607a3d6212d2f98d55fb36dc9be3313
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Wed Oct 01 02:27:35 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 23 02:30:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Video surveillance
Motion detection
Neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6ff967b9da3241dc1517e0753a98fd25e4607a3d6212d2f98d55fb36dc9be3313
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2017_08_002
crossref_citationtrail_10_1016_j_neucom_2017_08_002
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-17
PublicationDateYYYYMMDD 2018-01-17
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-17
  day: 17
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cheng, Huang, Ruan (bib0007) 2011; 41
Manzanera, Richefeu (bib0012) 2007; 28
Jodoin, Mignotte, Konrad (bib0014) 2007; 17
Wiegand, Sullivan, Bjntegaard, Luthra (bib0027) 2003; 13
Huang, Do (bib0004) 2014; 44
St-Charles, Bilodeau, Bergevin (bib0017) 2014
Huang, Chen (bib0019) 2013; 24
Taati, Snoek, Mihailidis (bib0002) 2013; 100
Ko, Soatto, Estrin (bib0010) 2008
Chen, Huang (bib0024) 2012
St-Charles, Bilodeau (bib0018) 2014
Yen, Chen, Huang (bib0025) 2012
Cyganek, Gruszczynski (bib0001) 2014; 126
Chen, Huang (bib0021) 2015; 299
Buntine, Weigend (bib0026) 1994; 5
Do, Huang (bib0008) 2011
Ha, Lee (bib0015) 2010; 49
Wang, Zheng, Shi, Xue, Liu, He (bib0005) 2015; 151
Chen, Huang (bib0023) 2013
Manzanera, Richefeu (bib0011) 2004
Huang, Chen (bib0020) 2014; 61
Zhou, Zhang (bib0013) 2005; 3
Chen, Shi, Ke (bib0028) 2017
Lillo-Castellano, Mora-Jimnez, Figuera-Pozuelo, Rojo-Ivarez (bib0003) 2015; 153
Guraya, Cheikh (bib0009) 2015; 149
Barnich, Droogenbroeck (bib0016) 2011; 20
Chen, Huang (bib0022) 2014; 16
Chen, Chang, Huang (bib0006) 2016
Chen (10.1016/j.neucom.2017.08.002_bib0023) 2013
Jodoin (10.1016/j.neucom.2017.08.002_bib0014) 2007; 17
Manzanera (10.1016/j.neucom.2017.08.002_bib0011) 2004
Cyganek (10.1016/j.neucom.2017.08.002_bib0001) 2014; 126
Chen (10.1016/j.neucom.2017.08.002_bib0028) 2017
Huang (10.1016/j.neucom.2017.08.002_bib0004) 2014; 44
Zhou (10.1016/j.neucom.2017.08.002_bib0013) 2005; 3
Manzanera (10.1016/j.neucom.2017.08.002_bib0012) 2007; 28
Wiegand (10.1016/j.neucom.2017.08.002_bib0027) 2003; 13
Chen (10.1016/j.neucom.2017.08.002_bib0006) 2016
Lillo-Castellano (10.1016/j.neucom.2017.08.002_bib0003) 2015; 153
Cheng (10.1016/j.neucom.2017.08.002_bib0007) 2011; 41
Ha (10.1016/j.neucom.2017.08.002_bib0015) 2010; 49
Chen (10.1016/j.neucom.2017.08.002_bib0021) 2015; 299
Yen (10.1016/j.neucom.2017.08.002_bib0025) 2012
Buntine (10.1016/j.neucom.2017.08.002_bib0026) 1994; 5
Barnich (10.1016/j.neucom.2017.08.002_bib0016) 2011; 20
St-Charles (10.1016/j.neucom.2017.08.002_bib0018) 2014
Guraya (10.1016/j.neucom.2017.08.002_sbref0009) 2015; 149
Chen (10.1016/j.neucom.2017.08.002_bib0022) 2014; 16
Chen (10.1016/j.neucom.2017.08.002_bib0024) 2012
Huang (10.1016/j.neucom.2017.08.002_bib0019) 2013; 24
Taati (10.1016/j.neucom.2017.08.002_bib0002) 2013; 100
Do (10.1016/j.neucom.2017.08.002_bib0008) 2011
Huang (10.1016/j.neucom.2017.08.002_bib0020) 2014; 61
Ko (10.1016/j.neucom.2017.08.002_bib0010) 2008
St-Charles (10.1016/j.neucom.2017.08.002_bib0017) 2014
Wang (10.1016/j.neucom.2017.08.002_sbref0005) 2015; 151
References_xml – volume: 149
  start-page: 1348
  year: 2015
  end-page: 1359
  ident: bib0009
  article-title: Neural networks based visual attention model for surveillance videos
  publication-title: Neurocomputing
– volume: 5
  start-page: 480
  year: 1994
  end-page: 488
  ident: bib0026
  article-title: Computing second derivatives in feed-forward networks: a review
  publication-title: IEEE Trans. Neural Netw.
– start-page: 414
  year: 2014
  end-page: 419
  ident: bib0017
  article-title: Flexible background subtraction with self-balanced local sensitivity
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 299
  start-page: 283
  year: 2015
  end-page: 295
  ident: bib0021
  article-title: Probabilistic neural networks based moving vehicles extraction algorithm for intelligent traffic surveillance systems
  publication-title: Inf. Sci.
– volume: 49
  start-page: 047
  year: 2010
  end-page: 201
  ident: bib0015
  article-title: Foreground objects detection using multiple difference images
  publication-title: Opt. Eng.
– volume: 20
  start-page: 1709
  year: 2011
  end-page: 1724
  ident: bib0016
  article-title: Vibe: A universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
– volume: 17
  start-page: 1758
  year: 2007
  end-page: 1763
  ident: bib0014
  article-title: Statistical background subtraction using spatial cues
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 717
  year: 2012
  end-page: 720
  ident: bib0025
  article-title: Enhanced extraction of moving objects in variable bit-rate video streams
  publication-title: Proceedings of ACM international conference on Multimedia
– volume: 24
  start-page: 1920
  year: 2013
  end-page: 1931
  ident: bib0019
  article-title: Highly accurate moving object detection in variable-bit-rate video-based traffic monitoring systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 320
  year: 2007
  end-page: 328
  ident: bib0012
  article-title: A new motion detection algorithm based on
  publication-title: Pattern Recognit. Lett.
– volume: 100
  start-page: 163
  year: 2013
  end-page: 169
  ident: bib0002
  article-title: Video analysis for identifying human operation difficulties and faucet usability assessment
  publication-title: Neurocomputing
– start-page: 134
  year: 2017
  end-page: 141
  ident: bib0028
  article-title: Low-rank representation with contextual regularization for moving object detection in big surveillance video data
  publication-title: Proceedings of IEEE Third International Conference on Multimedia Big Data, Laguna Hills, CA
– volume: 61
  start-page: 2099
  year: 2014
  end-page: 2112
  ident: bib0020
  article-title: Automatic moving object extraction through a real world variable-bandwidth network for traffic monitoring systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 126
  start-page: 78
  year: 2014
  end-page: 94
  ident: bib0001
  article-title: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring
  publication-title: Neurocomputing
– volume: 3
  start-page: 2224
  year: 2005
  end-page: 2229
  ident: bib0013
  article-title: Modified GMM background modeling and optical flow for detection of moving objects
  publication-title: Proceedings of International Conference on Systems, Man, and Cybernetics
– start-page: 276
  year: 2008
  end-page: 289
  ident: bib0010
  article-title: Background subtraction with distributions
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 46
  year: 2004
  end-page: 51
  ident: bib0011
  article-title: A robust and computationally efficient motion detection algorithm based on
  publication-title: Proceedings of Indian Conference on Vision, Graphics and Image Processing, ICVGIP’04
– volume: 41
  start-page: 589
  year: 2011
  end-page: 598
  ident: bib0007
  article-title: Scene analysis for object detection in advanced surveillance systems using laplacian distribution model
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
– start-page: 2505
  year: 2012
  end-page: 2509
  ident: bib0024
  article-title: A novel moving vehicles extraction algorithm over wireless internet
  publication-title: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib0008
  article-title: Dynamic background modeling based on radial basis function neural networks for moving object detection
  publication-title: Proceedings of IEEE International Conference on Multimedia and Expo, Barcelona
– start-page: 69
  year: 2013
  end-page: 75
  ident: bib0023
  article-title: Accurate detection of moving objects in traffic video streams over limited bandwidth networks
  publication-title: Proceedings of IEEE International Symposium on Multimedia
– start-page: 509
  year: 2014
  end-page: 515
  ident: bib0018
  article-title: Improving background subtraction using local binary similarity patterns
  publication-title: Proceedings of IEEE Winter Conference on Applications of Computer Vision
– volume: 151
  start-page: 1500
  year: 2015
  end-page: 1506
  ident: bib0005
  article-title: Embedding metric learning into set-based face recognition for video surveillance
  publication-title: Neurocomputing
– volume: 13
  start-page: 560
  year: 2003
  end-page: 576
  ident: bib0027
  article-title: Overview of the h.264/AVC video coding standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 439
  year: 2016
  end-page: 444
  ident: bib0006
  article-title: Denoising using inverse-distance weighting with sparse approximation
  publication-title: Proceedings of IEEE International Symposium on Multimedia (ISM), San Jose, CA
– volume: 44
  start-page: 114
  year: 2014
  end-page: 125
  ident: bib0004
  article-title: Radial basis function based neural network for motion detection in dynamic scenes
  publication-title: IEEE Trans. Cyber.
– volume: 153
  start-page: 286
  year: 2015
  end-page: 299
  ident: bib0003
  article-title: Traffic sign segmentation and classification using statistical learning methods
  publication-title: Neurocomputing
– volume: 16
  start-page: 837
  year: 2014
  end-page: 847
  ident: bib0022
  article-title: An advanced moving object detection algorithm for automatic traffic monitoring in real-world limited bandwidth networks
  publication-title: IEEE Trans. Multimed.
– volume: 100
  start-page: 163
  year: 2013
  ident: 10.1016/j.neucom.2017.08.002_bib0002
  article-title: Video analysis for identifying human operation difficulties and faucet usability assessment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.041
– volume: 151
  start-page: 1500
  year: 2015
  ident: 10.1016/j.neucom.2017.08.002_sbref0005
  article-title: Embedding metric learning into set-based face recognition for video surveillance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.032
– volume: 44
  start-page: 114
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0004
  article-title: Radial basis function based neural network for motion detection in dynamic scenes
  publication-title: IEEE Trans. Cyber.
  doi: 10.1109/TCYB.2013.2248057
– volume: 61
  start-page: 2099
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0020
  article-title: Automatic moving object extraction through a real world variable-bandwidth network for traffic monitoring systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2262764
– start-page: 717
  year: 2012
  ident: 10.1016/j.neucom.2017.08.002_bib0025
  article-title: Enhanced extraction of moving objects in variable bit-rate video streams
– volume: 5
  start-page: 480
  issue: 3
  year: 1994
  ident: 10.1016/j.neucom.2017.08.002_bib0026
  article-title: Computing second derivatives in feed-forward networks: a review
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.286919
– start-page: 509
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0018
  article-title: Improving background subtraction using local binary similarity patterns
– volume: 24
  start-page: 1920
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2017.08.002_bib0019
  article-title: Highly accurate moving object detection in variable-bit-rate video-based traffic monitoring systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2270314
– start-page: 2505
  year: 2012
  ident: 10.1016/j.neucom.2017.08.002_bib0024
  article-title: A novel moving vehicles extraction algorithm over wireless internet
– volume: 149
  start-page: 1348
  year: 2015
  ident: 10.1016/j.neucom.2017.08.002_sbref0009
  article-title: Neural networks based visual attention model for surveillance videos
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.062
– volume: 20
  start-page: 1709
  issue: 6
  year: 2011
  ident: 10.1016/j.neucom.2017.08.002_bib0016
  article-title: Vibe: A universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2101613
– start-page: 276
  year: 2008
  ident: 10.1016/j.neucom.2017.08.002_bib0010
  article-title: Background subtraction with distributions
– volume: 17
  start-page: 1758
  issue: 12
  year: 2007
  ident: 10.1016/j.neucom.2017.08.002_bib0014
  article-title: Statistical background subtraction using spatial cues
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2007.906935
– volume: 153
  start-page: 286
  year: 2015
  ident: 10.1016/j.neucom.2017.08.002_bib0003
  article-title: Traffic sign segmentation and classification using statistical learning methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.026
– start-page: 439
  year: 2016
  ident: 10.1016/j.neucom.2017.08.002_bib0006
  article-title: Denoising using inverse-distance weighting with sparse approximation
– volume: 3
  start-page: 2224
  year: 2005
  ident: 10.1016/j.neucom.2017.08.002_bib0013
  article-title: Modified GMM background modeling and optical flow for detection of moving objects
– volume: 126
  start-page: 78
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0001
  article-title: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.048
– volume: 16
  start-page: 837
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0022
  article-title: An advanced moving object detection algorithm for automatic traffic monitoring in real-world limited bandwidth networks
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2014.2298377
– volume: 13
  start-page: 560
  issue: 7
  year: 2003
  ident: 10.1016/j.neucom.2017.08.002_bib0027
  article-title: Overview of the h.264/AVC video coding standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2003.815165
– volume: 41
  start-page: 589
  issue: 5
  year: 2011
  ident: 10.1016/j.neucom.2017.08.002_bib0007
  article-title: Scene analysis for object detection in advanced surveillance systems using laplacian distribution model
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2010.2092425
– start-page: 46
  year: 2004
  ident: 10.1016/j.neucom.2017.08.002_bib0011
  article-title: A robust and computationally efficient motion detection algorithm based on Σ−Δ background estimation
– start-page: 69
  year: 2013
  ident: 10.1016/j.neucom.2017.08.002_bib0023
  article-title: Accurate detection of moving objects in traffic video streams over limited bandwidth networks
– volume: 28
  start-page: 320
  year: 2007
  ident: 10.1016/j.neucom.2017.08.002_bib0012
  article-title: A new motion detection algorithm based on Σ−Δ background estimation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.04.007
– start-page: 1
  year: 2011
  ident: 10.1016/j.neucom.2017.08.002_bib0008
  article-title: Dynamic background modeling based on radial basis function neural networks for moving object detection
– start-page: 414
  year: 2014
  ident: 10.1016/j.neucom.2017.08.002_bib0017
  article-title: Flexible background subtraction with self-balanced local sensitivity
– volume: 49
  start-page: 047
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2017.08.002_bib0015
  article-title: Foreground objects detection using multiple difference images
  publication-title: Opt. Eng.
– start-page: 134
  year: 2017
  ident: 10.1016/j.neucom.2017.08.002_bib0028
  article-title: Low-rank representation with contextual regularization for moving object detection in big surveillance video data
– volume: 299
  start-page: 283
  year: 2015
  ident: 10.1016/j.neucom.2017.08.002_bib0021
  article-title: Probabilistic neural networks based moving vehicles extraction algorithm for intelligent traffic surveillance systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.12.033
SSID ssj0017129
Score 2.2808182
Snippet Motion detection plays an important role in most static-camera video surveillance systems, yet video communications over wireless networks can easily suffer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 481
SubjectTerms Motion detection
Neural network
Video surveillance
Title Counter-propagation artificial neural network-based motion detection algorithm for static-camera surveillance scenarios
URI https://dx.doi.org/10.1016/j.neucom.2017.08.002
Volume 273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD6xuEyeO67GqqAqILlCpW-TENgSVtmpT2Pjt3OVRgYRAYkkUy1acs333XfTdHSFXCSyrAMPClDUBC4ULmYbzDRenfSscDzUGCt-PouE4vJ2ISYP061gYpFVWur_U6YW2rlo6lTQ7iyzrPHiKgxflA6YOCkcLI9hDiVUM2h8bmocvfV7m2-OCYe86fK7geM3sGjkjMFfZLkmVP5unLyZnsEd2KqxIe-V09knDzg7Ibl2HgVbH8pC8Y2A5tDDQhqAfCllT_IgyOwTFnJXFrWB8MzRchpble6ixeUHGggHTp_kyy59fKeBYioFGWcpSjT-t6Gq9fLNYnwjeRzH_E3jY89URGQ-uH_tDVhVUYCl4BjmLnFORTJTRAKN8k4K1lxYwQ6BV1xkubBh5UgcmAntmuFNdI4RLgsikKrEBSPmYNGfzmT0h1GgrbaTCxDgDiMpLrHYe14kKbcSt6J6SoJZjnFbZxrHoxTSuaWUvcSn9GKUfYy1Mj58Sthm1KLNt_NFf1ksUf9s1MRiEX0ee_XvkOdmGJ2QAMl9ekGa-XNtLACZ50ip2Xots9W7uhqNPf0Pn6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6xuEyeO6xFVoAJtF6jULXJiG4qgRW0KG7-duzwqkBBILInk2Ipztu--i767I-Q8gWUVYFiYsiZgoXAh03C-4eK0b4XjocZA4f4g6g7Dm5EY1UinioVBWmWp-wudnmvrsqVVSrP1Oh637jzFwYvyAVMHuaO1QlZDwSV6YM2PJc_Dlz4vEu5xwbB7FT-Xk7wmdoGkEZisbBasyp_t0xebc7VFNkqwSC-K-WyTmp3skM2qEAMtz-UuecfIcmhhoA5BQeTCpvgVRXoIikkr81tO-WZouQwt6vdQY7OcjQUDnh-ms3H2-EIByFKMNBqnLNX414rOF7M3iwWK4H0UE0CBiz2d75Hh1eV9p8vKigosBdcgY5FzKpKJMhpwlG9SMPfSAmgItGo7w4UNI0_qwERg0Ax3qm2EcEkQmVQlNgAx75P6ZDqxB4QabaWNVJgYZwBSeYnVzuM6UaGNuBXtBgkqOcZpmW4cq148xxWv7CkupB-j9GMshunxBmHLUa9Fuo0_-stqieJv2yYGi_DryMN_jzwja937fi_uXQ9uj8g6PEE6IPPlMalns4U9AZSSJaf5LvwE6mTpgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counter-propagation+artificial+neural+network-based+motion+detection+algorithm+for+static-camera+surveillance+scenarios&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chen%2C+Bo-Hao&rft.au=Huang%2C+Shih-Chia&rft.au=Yen%2C+Jui-Yu&rft.date=2018-01-17&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=273&rft.spage=481&rft.epage=493&rft_id=info:doi/10.1016%2Fj.neucom.2017.08.002&rft.externalDocID=S0925231217313383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon