Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection

Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications. This is reflec...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 26; no. 7; pp. 909 - 919
Main Authors Zhang, Ping, Verma, Brijesh, Kumar, Kuldeep
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2005
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2004.09.053

Cover

Abstract Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications. This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A computer based feature selection and classification system can provide a second opinion to the radiologists in assessment of microcalcifications. The research in this paper proposes and investigates a neural-genetic algorithm for feature selection in conjunction with neural and statistical classifiers to classify microcalcification patterns in digital mammograms. The obtained results show that the proposed approach is able to find an appropriate feature subset and neural classifier achieves better results than two statistical models.
AbstractList Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing benign and malignant microcalcifications. However, it is very difficult to distinguish benign and malignant microcalcifications. This is reflected in the high percentage of unnecessary biopsies that are performed and many deaths caused by late detection or misdiagnosis. A computer based feature selection and classification system can provide a second opinion to the radiologists in assessment of microcalcifications. The research in this paper proposes and investigates a neural-genetic algorithm for feature selection in conjunction with neural and statistical classifiers to classify microcalcification patterns in digital mammograms. The obtained results show that the proposed approach is able to find an appropriate feature subset and neural classifier achieves better results than two statistical models.
Author Kumar, Kuldeep
Verma, Brijesh
Zhang, Ping
Author_xml – sequence: 1
  givenname: Ping
  surname: Zhang
  fullname: Zhang, Ping
  email: pzhang@staff.bond.edu.au
  organization: School of Information Technology, Bond University, Gold Coast 4229, Australia
– sequence: 2
  givenname: Brijesh
  surname: Verma
  fullname: Verma, Brijesh
  email: b.verma@cqu.edu.au
  organization: School of Information Technology, Central Queensland University, Rockhampton 4702, Australia
– sequence: 3
  givenname: Kuldeep
  surname: Kumar
  fullname: Kumar, Kuldeep
  email: kkumar@staff.bond.edu.au
  organization: School of Information Technology, Bond University, Gold Coast 4229, Australia
BookMark eNqFkE1LAzEQhoNUsK3-Aw_5A7smm2Q_PAhS_IKiFz2HbDKpKdtsSdKK_97UevKgp2GG5x1mnhma-NEDQpeUlJTQ-mpdblUKoMuKEF6SriSCnaApbZuqaBjnEzTNWFO0tRBnaBbjmhBSs66dIvkMu6AGvI8ljkklF5PTudeDitFZBwE7j_Xo1zuvkxs9_nDpHa_AQwaxGlZjyIMN7lUEgy2otAuAIwzwjZ-jU6uGCBc_dY7e7u9eF4_F8uXhaXG7LDQjdSpqofLtGiwYKxjrdWWoMG3LbMU01BVRgtrO8qoD4H1bEUGsbYihwE3bA2dzxI97dRhjDGDlNriNCp-SEnmQJNfyKEkeJEnSySwpx65_xbQ7WBh9CsoN_4VvjmHIj-2zKhm1A6_BuIwmaUb394IvPD2KXg
CitedBy_id crossref_primary_10_1002_spe_2783
crossref_primary_10_1177_0954405411405108
crossref_primary_10_1016_j_compag_2011_05_005
crossref_primary_10_1016_j_neucom_2017_03_048
crossref_primary_10_1016_j_patcog_2009_12_012
crossref_primary_10_1111_j_1468_0394_2010_00547_x
crossref_primary_10_1016_j_drudis_2008_07_006
crossref_primary_10_4018_jdwm_2010040102
crossref_primary_10_1080_00207540601139955
crossref_primary_10_1016_j_jfoodeng_2006_11_020
crossref_primary_10_1007_s00500_007_0248_x
crossref_primary_10_1002_int_20328
crossref_primary_10_1016_j_eswa_2011_05_097
crossref_primary_10_1186_s12859_020_03814_w
crossref_primary_10_3109_03091902_2012_682112
crossref_primary_10_1517_17460441_2014_941351
crossref_primary_10_1007_s10015_007_0432_1
crossref_primary_10_1109_TSMCB_2006_880137
crossref_primary_10_3390_s20020432
crossref_primary_10_1016_j_artmed_2007_09_003
crossref_primary_10_1260_2040_2295_4_2_255
crossref_primary_10_1186_s12859_019_3001_4
crossref_primary_10_1142_S1469026810002914
crossref_primary_10_1007_s11548_011_0628_7
crossref_primary_10_1109_RBME_2012_2232289
crossref_primary_10_2525_ecb_49_1
crossref_primary_10_1016_j_sciaf_2021_e00778
crossref_primary_10_1016_j_ultrasmedbio_2006_07_032
crossref_primary_10_3390_computers11010008
crossref_primary_10_1007_s40846_017_0321_6
crossref_primary_10_3745_KIPSTB_2009_16_B_2_165
crossref_primary_10_7763_IJCTE_2015_V7_927
crossref_primary_10_1007_s11517_006_0100_y
crossref_primary_10_2478_s11756_009_0125_4
crossref_primary_10_1080_21681015_2015_1064484
crossref_primary_10_1186_1472_6947_9_S1_S1
crossref_primary_10_1007_s12293_012_0100_4
crossref_primary_10_1016_j_patcog_2014_06_006
crossref_primary_10_1016_j_foodres_2007_06_009
Cites_doi 10.1142/S0218001493000686
10.1142/S0218001493000674
10.1142/S0218001493000698
10.1109/4233.908389
10.1016/S1076-6332(03)80187-3
10.1109/34.709601
10.1007/BF03325093
10.1148/radiology.198.3.8628853
10.1109/42.293919
10.1016/S1076-6332(03)80718-3
ContentType Journal Article
Copyright 2004 Elsevier B.V.
Copyright_xml – notice: 2004 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2004.09.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 919
ExternalDocumentID 10_1016_j_patrec_2004_09_053
S0167865504002855
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-65a200cefedf533bc2d15d883f23ce620a51f9f429ee4b82050ff70d1e4d8be43
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Wed Oct 01 05:09:18 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 23 02:34:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Microcalcifications pattern classification
Feature selection
Statistical methods
Neural networks
Genetic algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-65a200cefedf533bc2d15d883f23ce620a51f9f429ee4b82050ff70d1e4d8be43
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_patrec_2004_09_053
crossref_citationtrail_10_1016_j_patrec_2004_09_053
elsevier_sciencedirect_doi_10_1016_j_patrec_2004_09_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-15
PublicationDateYYYYMMDD 2005-05-15
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-15
  day: 15
PublicationDecade 2000
PublicationTitle Pattern recognition letters
PublicationYear 2005
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Verma, Zakos (bib25) 2001; 5
Chitre, Y., Dhawan, A.P., Moskowitz, M., 1993. Artificial neural network based classification of mammographic microcalcifications using image structure features, Internat. J. Pattern Recognition Artificial Intell., World Scientific Publishing, Vol. 7. No. 6, pp. 1377–1401
Liu, Setiono (bib13) 1966
Verma (bib24) 1999; 1
Chris, C., Tina, Y., 1997. Performance Enhanced Genetic Programming, Evolutionary Programming VI, Lecture Notes in Computer Science 1213, pp. 87–100
Maria-luiza, A., Osmar, Z., Alexandru, C., 2001. Application of Data Mining Techniques for Medical Image Classification, In: Proceedings of the Second International Workshop on Multimedia Data Mining (MDM/KDD’2001), in conjunction with ACM SIGKDD conference. San Francisco, USA, August 26, pp. 94–101
Verma, B. K., 1998. A neural network based technique to locate and classify microcalcifications in digital mammograms, IEEE World Congress on Comput. Intell., WCCI’98, Anchorage, USA, pp. 2163–2168
Heath, Bowyer, Kopans (bib7) 1998
Shen, L., Rangayyan, R.M., Desautels, J.E.L., 1994. Detection and classification mammography clacifications. International Journal of Pattern Recognition and Artificial Intelligence, World Scientific Publishing, pp. 1403–1416
Kevin, Christopher, Kevin (bib11) 1993; 7
Shen, Rangayyan, Desautels (bib22) 1994; 13
Breast Cancer Facts, 2002.
Qian, Clarke (bib18) 1994; 3
Zokos, J., 1998. Computer-aided Diagnosis of Digital Mammograms Using Computational Intelligence Techniques, Honours Thesis, Griffith University
Metin, Heang-Ping, Berkman (bib17) 2002; 9
Racz, J., and Nieniewski, M., 2000. Computer Aided Diagnosis based on Analysis of Microcalcifications, IDWM2000, Canada
John, Kohavi, Pfleger (bib10) 1994
Guerra-Salcedo, C., Whitley, D., 1999. Genetic Approach to Feature Selection for Ensemble Creation, GECCO-99
Guerra-Salcedo, C., Chen, S., Whitley, D., Stmith, S., 1999. Fast and Accurate Feature Selection Using Hybrid Genetic Strategies, GECCO-99, 1999
Zheng, Qian, Clarke (bib26) 1994
Jiang, Nishikawa, Wolverton, Metz, Giger, Schmidt, Vyborny, Doi (bib9) 1996; 198
Ho (bib8) 1998; 20
Qian, Sun, Song, Clark (bib19) 2001; 8
Cost, Salzberg (bib4) 1996
Kohavi, R., Somerfield, D., 1995. Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology, The First International Conference on Knowledge Discovery and Data Mining
McLachlan (bib16) 1992
Marcoz, Y., and Torres-Torriti, M., 2001. Feature Selection using Genetic Algorithms in SAR airborne imagery
McLachlan (10.1016/j.patrec.2004.09.053_bib16) 1992
Qian (10.1016/j.patrec.2004.09.053_bib19) 2001; 8
Ho (10.1016/j.patrec.2004.09.053_bib8) 1998; 20
Verma (10.1016/j.patrec.2004.09.053_bib25) 2001; 5
Liu (10.1016/j.patrec.2004.09.053_bib13) 1966
10.1016/j.patrec.2004.09.053_bib15
Verma (10.1016/j.patrec.2004.09.053_bib24) 1999; 1
10.1016/j.patrec.2004.09.053_bib14
Kevin (10.1016/j.patrec.2004.09.053_bib11) 1993; 7
10.1016/j.patrec.2004.09.053_bib12
Zheng (10.1016/j.patrec.2004.09.053_bib26) 1994
10.1016/j.patrec.2004.09.053_bib6
10.1016/j.patrec.2004.09.053_bib5
10.1016/j.patrec.2004.09.053_bib3
10.1016/j.patrec.2004.09.053_bib2
10.1016/j.patrec.2004.09.053_bib1
John (10.1016/j.patrec.2004.09.053_bib10) 1994
10.1016/j.patrec.2004.09.053_bib21
Metin (10.1016/j.patrec.2004.09.053_bib17) 2002; 9
10.1016/j.patrec.2004.09.053_bib20
Cost (10.1016/j.patrec.2004.09.053_bib4) 1996
10.1016/j.patrec.2004.09.053_bib27
Shen (10.1016/j.patrec.2004.09.053_bib22) 1994; 13
Jiang (10.1016/j.patrec.2004.09.053_bib9) 1996; 198
10.1016/j.patrec.2004.09.053_bib23
Heath (10.1016/j.patrec.2004.09.053_bib7) 1998
Qian (10.1016/j.patrec.2004.09.053_bib18) 1994; 3
References_xml – reference: Guerra-Salcedo, C., Whitley, D., 1999. Genetic Approach to Feature Selection for Ensemble Creation, GECCO-99,
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: bib8
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
– reference: Breast Cancer Facts, 2002.
– volume: 9
  start-page: 420
  year: 2002
  end-page: 429
  ident: bib17
  article-title: Optimal neural network architecture selection: improvement in computerized detection of microcalcifications
  publication-title: Acad Radiol.
– start-page: 57
  year: 1996
  end-page: 58
  ident: bib4
  article-title: A weighted nearest neighbor algorithm for learning with symbolic features
  publication-title: Machine Learning
– year: 1992
  ident: bib16
  article-title: Discriminant Analysis and Statistical Pattern Recognition
– reference: Verma, B. K., 1998. A neural network based technique to locate and classify microcalcifications in digital mammograms, IEEE World Congress on Comput. Intell., WCCI’98, Anchorage, USA, pp. 2163–2168
– volume: 13
  start-page: 263
  year: 1994
  end-page: 274
  ident: bib22
  article-title: Application of shape analysis to mammographic calcifications
  publication-title: IEEE Trans. Medical Imaging
– start-page: 3437
  year: 1994
  end-page: 3447
  ident: bib26
  article-title: Multistage neural network for pattern recognition in mammogram screening
  publication-title: IEEE Internat. Conf. Neural Networks ICNN
– volume: 1
  start-page: 107
  year: 1999
  end-page: 117
  ident: bib24
  article-title: Comparative evaluation of two neural network based techniques for classification of microcalcifications in digital mammograms
  publication-title: Knowledge and Information System
– volume: 5
  start-page: 46
  year: 2001
  end-page: 54
  ident: bib25
  article-title: A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques
  publication-title: IEEE Trans. Information Technol. Biomedicine
– reference: Marcoz, Y., and Torres-Torriti, M., 2001. Feature Selection using Genetic Algorithms in SAR airborne imagery,
– reference: Guerra-Salcedo, C., Chen, S., Whitley, D., Stmith, S., 1999. Fast and Accurate Feature Selection Using Hybrid Genetic Strategies, GECCO-99, 1999,
– start-page: 121
  year: 1994
  end-page: 129
  ident: bib10
  article-title: Irrelevant Features and the Subset Selection Problem
  publication-title: Proceeding of 11th International Conference Machine Learning
– reference: Zokos, J., 1998. Computer-aided Diagnosis of Digital Mammograms Using Computational Intelligence Techniques, Honours Thesis, Griffith University
– volume: 8
  start-page: 1074
  year: 2001
  end-page: 1082
  ident: bib19
  article-title: Digital mammography: wavelet transform and kalman-filtering neural network in mass segmentation and detection
  publication-title: Acad Radiol.
– reference: Chitre, Y., Dhawan, A.P., Moskowitz, M., 1993. Artificial neural network based classification of mammographic microcalcifications using image structure features, Internat. J. Pattern Recognition Artificial Intell., World Scientific Publishing, Vol. 7. No. 6, pp. 1377–1401
– start-page: 319
  year: 1966
  end-page: 327
  ident: bib13
  article-title: Aprobabilistic Approach to Feature Selection—A filter Solution
  publication-title: Proceeding of 13th International Conference Machine Learning
– reference: Chris, C., Tina, Y., 1997. Performance Enhanced Genetic Programming, Evolutionary Programming VI, Lecture Notes in Computer Science 1213, pp. 87–100
– volume: 7
  start-page: 1417
  year: 1993
  end-page: 1436
  ident: bib11
  article-title: Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography
  publication-title: Internat. J. Pattern Recognition Artificial Intell.
– reference: Racz, J., and Nieniewski, M., 2000. Computer Aided Diagnosis based on Analysis of Microcalcifications, IDWM2000, Canada,
– start-page: 457
  year: 1998
  end-page: 460
  ident: bib7
  article-title: Current status of the digital database for screening mammography
  publication-title: Digital Mammography
– reference: Kohavi, R., Somerfield, D., 1995. Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology, The First International Conference on Knowledge Discovery and Data Mining,
– volume: 3
  start-page: 711
  year: 1994
  end-page: 715
  ident: bib18
  article-title: Adaptive multistage nonlinear filtering and wavelet for medical image enhancement
  publication-title: ICIP
– volume: 198
  start-page: 671
  year: 1996
  end-page: 678
  ident: bib9
  article-title: Malignant and benign clustered microcalcifications: automated feature analysis and classification
  publication-title: Radiology
– reference: Shen, L., Rangayyan, R.M., Desautels, J.E.L., 1994. Detection and classification mammography clacifications. International Journal of Pattern Recognition and Artificial Intelligence, World Scientific Publishing, pp. 1403–1416
– reference: Maria-luiza, A., Osmar, Z., Alexandru, C., 2001. Application of Data Mining Techniques for Medical Image Classification, In: Proceedings of the Second International Workshop on Multimedia Data Mining (MDM/KDD’2001), in conjunction with ACM SIGKDD conference. San Francisco, USA, August 26, pp. 94–101
– ident: 10.1016/j.patrec.2004.09.053_bib12
– ident: 10.1016/j.patrec.2004.09.053_bib21
  doi: 10.1142/S0218001493000686
– ident: 10.1016/j.patrec.2004.09.053_bib14
– ident: 10.1016/j.patrec.2004.09.053_bib2
  doi: 10.1142/S0218001493000674
– volume: 7
  start-page: 1417
  issue: 6
  year: 1993
  ident: 10.1016/j.patrec.2004.09.053_bib11
  article-title: Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography
  publication-title: Internat. J. Pattern Recognition Artificial Intell.
  doi: 10.1142/S0218001493000698
– ident: 10.1016/j.patrec.2004.09.053_bib23
– volume: 5
  start-page: 46
  issue: 1
  year: 2001
  ident: 10.1016/j.patrec.2004.09.053_bib25
  article-title: A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques
  publication-title: IEEE Trans. Information Technol. Biomedicine
  doi: 10.1109/4233.908389
– start-page: 57
  year: 1996
  ident: 10.1016/j.patrec.2004.09.053_bib4
  article-title: A weighted nearest neighbor algorithm for learning with symbolic features
  publication-title: Machine Learning
– ident: 10.1016/j.patrec.2004.09.053_bib27
– ident: 10.1016/j.patrec.2004.09.053_bib3
– start-page: 121
  year: 1994
  ident: 10.1016/j.patrec.2004.09.053_bib10
  article-title: Irrelevant Features and the Subset Selection Problem
– start-page: 457
  year: 1998
  ident: 10.1016/j.patrec.2004.09.053_bib7
  article-title: Current status of the digital database for screening mammography
– ident: 10.1016/j.patrec.2004.09.053_bib5
– volume: 9
  start-page: 420
  year: 2002
  ident: 10.1016/j.patrec.2004.09.053_bib17
  article-title: Optimal neural network architecture selection: improvement in computerized detection of microcalcifications
  publication-title: Acad Radiol.
  doi: 10.1016/S1076-6332(03)80187-3
– ident: 10.1016/j.patrec.2004.09.053_bib1
– ident: 10.1016/j.patrec.2004.09.053_bib6
– ident: 10.1016/j.patrec.2004.09.053_bib15
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.patrec.2004.09.053_bib8
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Machine Intell.
  doi: 10.1109/34.709601
– volume: 1
  start-page: 107
  issue: 1
  year: 1999
  ident: 10.1016/j.patrec.2004.09.053_bib24
  article-title: Comparative evaluation of two neural network based techniques for classification of microcalcifications in digital mammograms
  publication-title: Knowledge and Information System
  doi: 10.1007/BF03325093
– year: 1992
  ident: 10.1016/j.patrec.2004.09.053_bib16
– volume: 198
  start-page: 671
  year: 1996
  ident: 10.1016/j.patrec.2004.09.053_bib9
  article-title: Malignant and benign clustered microcalcifications: automated feature analysis and classification
  publication-title: Radiology
  doi: 10.1148/radiology.198.3.8628853
– start-page: 319
  year: 1966
  ident: 10.1016/j.patrec.2004.09.053_bib13
  article-title: Aprobabilistic Approach to Feature Selection—A filter Solution
– volume: 13
  start-page: 263
  year: 1994
  ident: 10.1016/j.patrec.2004.09.053_bib22
  article-title: Application of shape analysis to mammographic calcifications
  publication-title: IEEE Trans. Medical Imaging
  doi: 10.1109/42.293919
– ident: 10.1016/j.patrec.2004.09.053_bib20
– volume: 3
  start-page: 711
  year: 1994
  ident: 10.1016/j.patrec.2004.09.053_bib18
  article-title: Adaptive multistage nonlinear filtering and wavelet for medical image enhancement
  publication-title: ICIP
– volume: 8
  start-page: 1074
  year: 2001
  ident: 10.1016/j.patrec.2004.09.053_bib19
  article-title: Digital mammography: wavelet transform and kalman-filtering neural network in mass segmentation and detection
  publication-title: Acad Radiol.
  doi: 10.1016/S1076-6332(03)80718-3
– start-page: 3437
  year: 1994
  ident: 10.1016/j.patrec.2004.09.053_bib26
  article-title: Multistage neural network for pattern recognition in mammogram screening
  publication-title: IEEE Internat. Conf. Neural Networks ICNN
SSID ssj0006398
Score 2.136489
Snippet Digital mammography is one of the most suitable methods for early detection of breast cancer. It uses digital mammograms to find suspicious areas containing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 909
SubjectTerms Feature selection
Genetic algorithm
Microcalcifications pattern classification
Neural networks
Statistical methods
Title Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
URI https://dx.doi.org/10.1016/j.patrec.2004.09.053
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AKRWK
  dateStart: 19821001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGuMCBxwDxnHLgWtamSZsc0cQ0QHCBSbtVbZqgTaObYHDkt2P3MYGEQOLYKFZbx_HnRPZngHPObZQqHXmhioQniFk7k1x7Qaa4juJc-gFVI9_dR8ORuBnLcQv6TS0MpVXWvr_y6aW3rkd6tTZ7i8mk90AJ9FRWSWbIlZRrsI74o1Qb1i-vb4f3K4eMIKwaim8SaCroyjQvunK2JZdhRXgqw58R6gvqDHZgqw4X2WX1RbvQskUHtptWDKzemR3Y_MIruAcJUW6g2PvrBaOKoZKMGZ8NhcoTh-9hk4LhSXiKqEYrw-g6lqEtUUkjS2dP8xcceGaEcTlztmT_ZK9lzxycvg-jwdVjf-jVnRQ8g0eCpRfJFH_QWGdzh_FdZngeyFyp0PHQ2Ij7qQycdohN1gpcJV_6zsV-HliRq8yK8ADaxbywh8DC2AkdWC2li4XG41pKQZsxgUmdtjw9grDRXmJqmnHqdjFLmnyyaVLpnDpgisTXCer8CLyV1KKi2fhjftwsTPLNXBJEgl8lj_8teQIbJW8rUbfKU2gvX97sGUYky6wLaxcfQbe2u0-bPOFV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAH3ojxzIFrWZsmbXNEE9N47QJIu0VtmqBNMNA2OPLbsfuAISGQODaK1dZx8tmR_RnghHMbpYmKvDCJhCeIWTuTXHlBlnAVxbn0A6pGvulHvXtxOZCDBnTqWhhKq6zO_vJML07raqRdabP9Mhy2bymBnsoqyQx5IuUCLArJY4rATt-_8jwQgpOa4Jum1_VzRZIXXTjbgsmwpDuV4c_4NIc53XVYrZxFdlZ-zwY07HgT1upGDKzal5uwMscquAWaCDdQ7G16yqheqKBixmdDjvLQ4XvYcMwwDh4hptG6MLqMZWhJVNDI0seH5wkOPDFCuJw5W3B_smnRMQenb8N99_yu0_OqPgqewYBg5kUyxR801tncoXeXGZ4HMk-S0PHQ2Ij7qQyccohM1gpcI1_6zsV-HliRJ5kV4Q40x89juwssjJ1QgVVSulgoDNZSctmMCUzqlOVpC8Jae9pUJOPU6-JR19lkI13qnPpfCu0rjTpvgfcp9VKSbPwxP64XRn8zFo048Kvk3r8lj2Gpd3dzra8v-lf7sFwwuBKJqzyA5mzyag_RN5llR4XtfQB9QuId
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+vs.+statistical+classifier+in+conjunction+with+genetic+algorithm+based+feature+selection&rft.jtitle=Pattern+recognition+letters&rft.au=Zhang%2C+Ping&rft.au=Verma%2C+Brijesh&rft.au=Kumar%2C+Kuldeep&rft.date=2005-05-15&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=26&rft.issue=7&rft.spage=909&rft.epage=919&rft_id=info:doi/10.1016%2Fj.patrec.2004.09.053&rft.externalDocID=S0167865504002855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon