A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing

•A multi-objective hybrid method for task scheduling problem is proposed.•Represented the NP-Complete task scheduling problem in the form of mathematical model.•Proposed a task scheduling framework for processing the applications/tasks in efficient way.•The proposed method is a hybrid optimization t...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 32; p. 100605
Main Authors Dubey, Kalka, Sharma, S.C.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2021.100605

Cover

Abstract •A multi-objective hybrid method for task scheduling problem is proposed.•Represented the NP-Complete task scheduling problem in the form of mathematical model.•Proposed a task scheduling framework for processing the applications/tasks in efficient way.•The proposed method is a hybrid optimization technique using the Chemical Reaction Optimization (CRO) and Particle Swarm Optimization (PSO).•Proposed CR-PSO framework is simulated at CloudSim simulator to evaluated the performance. In cloud computing, efficient task scheduling espouses many challenges. To schedule the multiple cloudlets with deadline constraints on hybrid cloud resources while meeting the various quality requirements is a challenging issue. The purpose of this research work is to address the task scheduling problem of cloud computing. A novel hybrid task scheduling algorithm named Chemical Reaction Partial Swarm Optimization has been proposed for the allotment of multiple independent tasks on the available virtual machines. It enhances the classical chemical reaction optimization and partial swarm optimization and does hybridization by combining the features for the optimal schedule sequence where tasks can be processed based upon the demand and deadline simultaneously to improve the quality in terms of factors like cost, energy, and makespan. We present the comprehensive simulation experiment using the CloudSim toolkit, which shows the effectiveness of the proposed algorithms. To analyse average execution time, comparative experiments have been carried out using various combinations of virtual machines and the number of tasks. The results bring out a significant reduction in execution time of the order of 1–6 percent, which further improves even more than 10 percent in some cases. The results of the makespan reflect the effectiveness of the algorithm in order of 5–12 percent, and the outcome of total cost 2–10 percent and energy consumption rate shows the 1–9 percent improvement.
AbstractList •A multi-objective hybrid method for task scheduling problem is proposed.•Represented the NP-Complete task scheduling problem in the form of mathematical model.•Proposed a task scheduling framework for processing the applications/tasks in efficient way.•The proposed method is a hybrid optimization technique using the Chemical Reaction Optimization (CRO) and Particle Swarm Optimization (PSO).•Proposed CR-PSO framework is simulated at CloudSim simulator to evaluated the performance. In cloud computing, efficient task scheduling espouses many challenges. To schedule the multiple cloudlets with deadline constraints on hybrid cloud resources while meeting the various quality requirements is a challenging issue. The purpose of this research work is to address the task scheduling problem of cloud computing. A novel hybrid task scheduling algorithm named Chemical Reaction Partial Swarm Optimization has been proposed for the allotment of multiple independent tasks on the available virtual machines. It enhances the classical chemical reaction optimization and partial swarm optimization and does hybridization by combining the features for the optimal schedule sequence where tasks can be processed based upon the demand and deadline simultaneously to improve the quality in terms of factors like cost, energy, and makespan. We present the comprehensive simulation experiment using the CloudSim toolkit, which shows the effectiveness of the proposed algorithms. To analyse average execution time, comparative experiments have been carried out using various combinations of virtual machines and the number of tasks. The results bring out a significant reduction in execution time of the order of 1–6 percent, which further improves even more than 10 percent in some cases. The results of the makespan reflect the effectiveness of the algorithm in order of 5–12 percent, and the outcome of total cost 2–10 percent and energy consumption rate shows the 1–9 percent improvement.
ArticleNumber 100605
Author Sharma, S.C.
Dubey, Kalka
Author_xml – sequence: 1
  givenname: Kalka
  orcidid: 0000-0003-4938-8918
  surname: Dubey
  fullname: Dubey, Kalka
  email: kdubey@pp.iitr.ac.in
– sequence: 2
  givenname: S.C.
  orcidid: 0000-0001-8093-7319
  surname: Sharma
  fullname: Sharma, S.C.
  email: subhash.sharma@pt.iitr.ac.in
BookMark eNqFkMtKAzEUhrOoYK19Axd5gam5TObiQijFGxQq2n3IJJk2dSYpSabi25syrlzoWZwDP3yHc74rMLHOagBuMFpghIvbwyIMQbp-QRDBKUIFYhMwJQSjjNGyvgTzEA4oFStwTfMpUEto3Ul3sB-6aDLXHLSM5qTh6i17fd_AKMIHDHKv1dAZu4Oi2zlv4r6Hn6lDpYVKuYbS2RC9MDZCY6Hs3KBS1h-HmKhrcNGKLuj5z5yB7ePDdvWcrTdPL6vlOpMUFTErUCtrSgQjTS6qusGkrBvKaIWpYDVpsCIlK6qCkbZkVYlJXaq2oU1O2jqvFJ2Bu3Gt9C4Er1suTRTROHu-rOMY8bMlfuCjJX62xEdLCc5_wUdveuG__sPuR0ynv05Gex6k0VZqZXwyyZUzfy_4BgIMh_E
CitedBy_id crossref_primary_10_32604_cmes_2023_026671
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1109_ACCESS_2024_3484388
crossref_primary_10_1155_int_6378720
crossref_primary_10_1109_ACCESS_2023_3329052
crossref_primary_10_1155_2024_1444493
crossref_primary_10_1007_s11277_023_10672_1
crossref_primary_10_3233_IDT_230717
crossref_primary_10_1109_TGCN_2023_3283509
crossref_primary_10_1109_ACCESS_2024_3462720
crossref_primary_10_1155_2022_4525220
crossref_primary_10_7717_peerj_cs_1346
crossref_primary_10_1155_2023_8830895
crossref_primary_10_26634_jcc_11_1_20484
crossref_primary_10_1080_01969722_2022_2157609
crossref_primary_10_7717_peerj_cs_2120
crossref_primary_10_1007_s10586_023_04021_x
Cites_doi 10.1016/j.future.2017.03.024
10.1016/j.eswa.2020.114230
10.1109/TPDS.2014.2385698
10.1016/j.procs.2020.03.312
10.1109/TPDS.2011.35
10.1016/j.swevo.2021.100841
10.1007/s10586-014-0420-x
10.1016/j.procs.2010.04.243
10.1109/ACCESS.2020.3002184
10.1016/j.asoc.2019.105627
10.1016/j.cie.2019.03.006
10.1016/j.jnca.2017.11.016
10.1007/s13369-018-3664-6
10.1016/j.procs.2017.12.093
10.1016/j.amc.2007.03.047
10.14257/ijgdc.2014.7.1.04
10.1109/ACCESS.2019.2950110
10.1016/j.asej.2017.10.007
10.1016/j.compeleceng.2017.11.018
10.1007/s10619-019-07273-y
10.1016/j.procs.2015.07.419
10.1016/j.procs.2018.08.114
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2021.100605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2021_100605
S2210537921000937
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-60fc932a52b4a89b1279b353813a592b1d27568652f75871297dfb3b42f948d3
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Thu Apr 24 23:11:10 EDT 2025
Wed Oct 01 02:20:28 EDT 2025
Fri Feb 23 02:41:34 EST 2024
IsPeerReviewed false
IsScholarly true
Keywords Task scheduling
Cloud computing
CRO
Multi-objective
PSO
Deadline
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-60fc932a52b4a89b1279b353813a592b1d27568652f75871297dfb3b42f948d3
ORCID 0000-0001-8093-7319
0000-0003-4938-8918
ParticipantIDs crossref_citationtrail_10_1016_j_suscom_2021_100605
crossref_primary_10_1016_j_suscom_2021_100605
elsevier_sciencedirect_doi_10_1016_j_suscom_2021_100605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xu, Li, He, Zhang, Li (bib0155) 2014; 26
Shi, Eberhart (bib0200) 1999; 3
Kumari, Jain (bib0015) 2017
Shojafar, Javanmardi, Abolfazli, Cordeschi (bib0115) 2015; 18
Wu (bib0085) 2018
Chaudhary, Kumar (bib0050) 2019; 83
Houssein, Gad, Wazery, Suganthan (bib0045) 2021
Kumar, Sharma (bib0170) 2018; 69
Kumar, Sharma (bib0090) 2018; 19
Nasr, Dubey, El-Bahnasawy, Sharma, Attiya, El-Sayed (bib0025) 2019
Kennedy, Eberhart (bib0065) 1995; 4
Midya, Roy, Majumder, Phadikar (bib0030) 2018; 103
Shukri, Al-Sayyed, Hudaib, Mirjalili (bib0150) 2021; 168
Zavala, Munoz, Aguirre, Diharce, Rionda (bib0075) 2008
Jiang, Hu, Huang, Wu (bib0205) 2007; 193
Guo, Liu, Xue (bib0020) 2018
Guo, Liu, Xue (bib0100) 2018
Jena (bib0110) 2015; 57
Pandey, Wu, Guru, Buyya (bib0080) 2010
Selvaraj, Jaquline, Selvaraj (bib0130) 2016; 7
Nayak, Tripathy (bib0055) 2018; 9
Nasr, El-Bahnasawy, Attiya, El-Sayed (bib0060) 2019; 44
Buyya, Ranjan, Calheiros (bib0195) 2009
Wang, Wang (bib0185) 2012; 1
Dai, Lou, Lu (bib0125) 2015; 2
Chen, Zhang (bib0175) 2012
Zhao (bib0070) 2014; 7
Singh, Kumar (bib0165) 2020; 167
Ma, Li, Fu, Yan, Hu (bib0120) 2016
Sarangi, Samal, Sarangi (bib0220) 2019
Zhou (bib0215) 2010; 5
Dubey, Kumar, Sharma (bib0040) 2018; 125
Xu, Lam, Li (bib0190) 2011; 22
Yang, Jiang, Lv, Choo (bib0005) 2020; 105
Zade, Mansouri, Javidi (bib0145) 2021; 176
Dubey, Shams, Sharma, Alarifi, Amoon, Nasr (bib0010) 2019; 7
Garg, Buyya (bib0095) 2011
Alarifi, Dubey, Amoon, Altameem, Abd El-Samie, Altameem, Sharma, Nasr (bib0035) 2020; 8
Mansouri, Javidi (bib0140) 2019; 38
Truong, Dustdar (bib0180) 2010; 1
Hamdan, Zawawi (bib0210) 2009
Fang, Li (bib0135) 2017
Marzouki, Driss, Ghédira (bib0160) 2018; 126
Mansouri, Zade, Javidi (bib0105) 2019; 130
Garg (10.1016/j.suscom.2021.100605_bib0095) 2011
Dubey (10.1016/j.suscom.2021.100605_bib0040) 2018; 125
Selvaraj (10.1016/j.suscom.2021.100605_bib0130) 2016; 7
Singh (10.1016/j.suscom.2021.100605_bib0165) 2020; 167
Zavala (10.1016/j.suscom.2021.100605_bib0075) 2008
Jena (10.1016/j.suscom.2021.100605_bib0110) 2015; 57
Chen (10.1016/j.suscom.2021.100605_bib0175) 2012
Shukri (10.1016/j.suscom.2021.100605_bib0150) 2021; 168
Houssein (10.1016/j.suscom.2021.100605_bib0045) 2021
Nayak (10.1016/j.suscom.2021.100605_bib0055) 2018; 9
Nasr (10.1016/j.suscom.2021.100605_bib0060) 2019; 44
Shi (10.1016/j.suscom.2021.100605_bib0200) 1999; 3
Hamdan (10.1016/j.suscom.2021.100605_bib0210) 2009
Mansouri (10.1016/j.suscom.2021.100605_bib0105) 2019; 130
Marzouki (10.1016/j.suscom.2021.100605_bib0160) 2018; 126
Shojafar (10.1016/j.suscom.2021.100605_bib0115) 2015; 18
Truong (10.1016/j.suscom.2021.100605_bib0180) 2010; 1
Zade (10.1016/j.suscom.2021.100605_bib0145) 2021; 176
Kumari (10.1016/j.suscom.2021.100605_bib0015) 2017
Alarifi (10.1016/j.suscom.2021.100605_bib0035) 2020; 8
Zhao (10.1016/j.suscom.2021.100605_bib0070) 2014; 7
Dai (10.1016/j.suscom.2021.100605_bib0125) 2015; 2
Kumar (10.1016/j.suscom.2021.100605_bib0170) 2018; 69
Sarangi (10.1016/j.suscom.2021.100605_bib0220) 2019
Kumar (10.1016/j.suscom.2021.100605_bib0090) 2018; 19
Xu (10.1016/j.suscom.2021.100605_bib0155) 2014; 26
Fang (10.1016/j.suscom.2021.100605_bib0135) 2017
Jiang (10.1016/j.suscom.2021.100605_bib0205) 2007; 193
Kennedy (10.1016/j.suscom.2021.100605_bib0065) 1995; 4
Wu (10.1016/j.suscom.2021.100605_bib0085) 2018
Midya (10.1016/j.suscom.2021.100605_bib0030) 2018; 103
Chaudhary (10.1016/j.suscom.2021.100605_bib0050) 2019; 83
Wang (10.1016/j.suscom.2021.100605_bib0185) 2012; 1
Nasr (10.1016/j.suscom.2021.100605_bib0025) 2019
Buyya (10.1016/j.suscom.2021.100605_bib0195) 2009
Guo (10.1016/j.suscom.2021.100605_bib0100) 2018
Yang (10.1016/j.suscom.2021.100605_bib0005) 2020; 105
Zhou (10.1016/j.suscom.2021.100605_bib0215) 2010; 5
Guo (10.1016/j.suscom.2021.100605_bib0020) 2018
Pandey (10.1016/j.suscom.2021.100605_bib0080) 2010
Ma (10.1016/j.suscom.2021.100605_bib0120) 2016
Mansouri (10.1016/j.suscom.2021.100605_bib0140) 2019; 38
Xu (10.1016/j.suscom.2021.100605_bib0190) 2011; 22
Dubey (10.1016/j.suscom.2021.100605_bib0010) 2019; 7
References_xml – volume: 19
  start-page: 147
  year: 2018
  end-page: 164
  ident: bib0090
  article-title: PSO-COGENT: cost and energy efficient scheduling in cloud environment with deadline constraint
  publication-title: Sustain. Comput. Inform. Syst.
– start-page: 571
  year: 2017
  end-page: 574
  ident: bib0135
  article-title: Task scheduling strategy for Cloud computing based on the improvement of ant Colony algorithm
  publication-title: 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC)
– volume: 105
  start-page: 985
  year: 2020
  end-page: 992
  ident: bib0005
  article-title: A task scheduling algorithm considering game theory designed for energy management in cloud computing
  publication-title: Future Gener. Comput. Syst.
– volume: 38
  start-page: 365
  year: 2019
  end-page: 400
  ident: bib0140
  article-title: Cost-based job scheduling strategy in cloud computing environments
  publication-title: Distrib. Parallel Databases
– volume: 103
  start-page: 58
  year: 2018
  end-page: 84
  ident: bib0030
  article-title: Multi-objective optimization technique for resource allocation and task scheduling in vehicular cloud architecture: a hybrid adaptive nature inspired approach
  publication-title: J. Netw. Comput. Appl.
– volume: 8
  start-page: 115356
  year: 2020
  end-page: 115369
  ident: bib0035
  article-title: Energy-efficient hybrid framework for green cloud computing
  publication-title: IEEE Access
– year: 2021
  ident: bib0045
  article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
– start-page: 519
  year: 2017
  end-page: 523
  ident: bib0015
  article-title: An efficient resource utilization based integrated task scheduling algorithm
  publication-title: 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN)
– start-page: 773
  year: 2012
  end-page: 778
  ident: bib0175
  article-title: A set-based discrete PSO for cloud workflow scheduling with user-defined QoS constraints
  publication-title: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 9
  start-page: 3315
  year: 2018
  end-page: 3324
  ident: bib0055
  article-title: Deadline based task scheduling using multi-criteria decision-making in cloud environment
  publication-title: Ain Shams Eng. J.
– volume: 130
  start-page: 597
  year: 2019
  end-page: 633
  ident: bib0105
  article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory
  publication-title: Comput. Ind. Eng.
– volume: 22
  start-page: 1624
  year: 2011
  end-page: 1631
  ident: bib0190
  article-title: Chemical reaction optimization for task scheduling in grid computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 69
  start-page: 395
  year: 2018
  end-page: 411
  ident: bib0170
  article-title: Deadline constrained based dynamic load balancing algorithm with elasticity in cloud environment
  publication-title: Comput. Electr. Eng.
– start-page: 1
  year: 2009
  end-page: 11
  ident: bib0195
  article-title: Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: challenges and opportunities
  publication-title: 2009 International Conference on High Performance Computing & Simulation
– start-page: 2537
  year: 2018
  end-page: 2541
  ident: bib0100
  article-title: A PSO-based energy-efficient fault-tolerant static scheduling algorithm for Real-time tasks in clouds
  publication-title: 2018 IEEE 4th International Conference on Computer and Communications (ICCC)
– volume: 7
  start-page: 33
  year: 2014
  end-page: 42
  ident: bib0070
  article-title: Cost-aware scheduling algorithm based on PSO in Cloud Computing environment
  publication-title: Int. J. Grid Distrib. Comput.
– volume: 193
  start-page: 231
  year: 2007
  end-page: 239
  ident: bib0205
  article-title: An improved particle swarm optimization algorithm
  publication-title: Appl. Math. Comput.
– volume: 168
  year: 2021
  ident: bib0150
  article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments
  publication-title: Expert Syst. Appl.
– volume: 125
  start-page: 725
  year: 2018
  end-page: 732
  ident: bib0040
  article-title: Modified HEFT algorithm for task scheduling in cloud environment
  publication-title: Procedia Comput. Sci.
– start-page: 829
  year: 2016
  end-page: 835
  ident: bib0120
  article-title: A novel dynamic task scheduling algorithm based on improved genetic algorithm in cloud computing
  publication-title: Wireless Communications, Networking and Applications
– start-page: 115
  year: 2009
  end-page: 118
  ident: bib0210
  article-title: Testing of a modified particle swarm optimization algorithm using different benchmark functions
  publication-title: 2009 3rd International Workshop on Soft Computing Applications
– volume: 126
  start-page: 1424
  year: 2018
  end-page: 1433
  ident: bib0160
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Comput. Sci.
– volume: 176
  year: 2021
  ident: bib0145
  article-title: SAEA: a security-aware and energy-aware task scheduling strategy by Parallel Squirrel Search Algorithm in cloud environment
  publication-title: Expert Syst. Appl.
– start-page: 400
  year: 2010
  end-page: 407
  ident: bib0080
  article-title: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments
  publication-title: 2010 24th IEEE International Conference on Advanced Information Networking and Applications
– volume: 1
  start-page: 2175
  year: 2010
  end-page: 2184
  ident: bib0180
  article-title: Composable cost estimation and monitoring for computational applications in cloud computing environments
  publication-title: Procedia Comput. Sci.
– volume: 57
  start-page: 1219
  year: 2015
  end-page: 1227
  ident: bib0110
  article-title: Multi objective task scheduling in cloud environment using nested PSO framework
  publication-title: Procedia Comput. Sci.
– volume: 18
  start-page: 829
  year: 2015
  end-page: 844
  ident: bib0115
  article-title: FUGE: a joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method
  publication-title: Cluster Comput.
– volume: 2
  start-page: 428
  year: 2015
  end-page: 431
  ident: bib0125
  article-title: A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with multi-QoS constraints in cloud computing
  publication-title: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics
– volume: 167
  start-page: 531
  year: 2020
  end-page: 540
  ident: bib0165
  article-title: Hybrid artificial chemical reaction optimization algorithm for cluster analysis
  publication-title: Procedia Comput. Sci.
– volume: 26
  start-page: 3208
  year: 2014
  end-page: 3222
  ident: bib0155
  article-title: A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems
  publication-title: Ieee Trans. Parallel Distrib. Syst.
– start-page: 1
  year: 2019
  end-page: 21
  ident: bib0025
  article-title: HPFE: a new secure framework for serving multi-users with multi-tasks in public cloud without violating SLA
  publication-title: Neural Comput. Appl.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0065
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95-International Conference on Neural Networks
– year: 2008
  ident: bib0075
  article-title: Constrained optimization with an improved particle swarm optimization algorithm
  publication-title: Int. J. Intell. Comput. Cybern.
– start-page: 2537
  year: 2018
  end-page: 2541
  ident: bib0020
  article-title: A PSO-based energy-efficient fault-tolerant static scheduling algorithm for Real-time tasks in clouds
  publication-title: 2018 IEEE 4th International Conference on Computer and Communications (ICCC)
– volume: 44
  start-page: 3765
  year: 2019
  end-page: 3780
  ident: bib0060
  article-title: Cost-effective algorithm for workflow scheduling in cloud computing under deadline constraint
  publication-title: Arab. J. Sci. Eng.
– volume: 3
  start-page: 1945
  year: 1999
  end-page: 1950
  ident: bib0200
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)
– start-page: 463
  year: 2019
  end-page: 467
  ident: bib0220
  article-title: Analysis of gaussian & cauchy mutations in modified particle swarm optimization algorithm
  publication-title: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)
– volume: 83
  year: 2019
  ident: bib0050
  article-title: Cost optimized hybrid genetic-gravitational search algorithm for load scheduling in cloud computing
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 159535
  year: 2019
  end-page: 159546
  ident: bib0010
  article-title: A management system for servicing multi-organizations on community cloud model in secure cloud environment
  publication-title: IEEE Access
– volume: 1
  start-page: 648
  year: 2012
  end-page: 655
  ident: bib0185
  article-title: An energy and data locality aware bi-level multiobjective task scheduling model based on mapreduce for cloud computing
  publication-title: 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
– volume: 5
  start-page: 377
  year: 2010
  end-page: 380
  ident: bib0215
  article-title: Modified particle swarm optimization for unconstrained optimization
  publication-title: 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE)
– start-page: 105
  year: 2011
  end-page: 113
  ident: bib0095
  article-title: Networkcloudsim: modelling parallel applications in cloud simulations
  publication-title: 2011 Fourth IEEE International Conference on Utility and Cloud Computing
– start-page: 99
  year: 2018
  end-page: 101
  ident: bib0085
  article-title: Cloud computing task scheduling policy based on improved particle swarm optimization
  publication-title: 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)
– volume: 7
  start-page: 491
  year: 2016
  end-page: 494
  ident: bib0130
  article-title: Ant colony optimization algorithm for scheduling cloud tasks
  publication-title: Int. J. Comput. Technol. Appl
– volume: 105
  start-page: 985
  year: 2020
  ident: 10.1016/j.suscom.2021.100605_bib0005
  article-title: A task scheduling algorithm considering game theory designed for energy management in cloud computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.03.024
– volume: 168
  year: 2021
  ident: 10.1016/j.suscom.2021.100605_bib0150
  article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114230
– volume: 26
  start-page: 3208
  issue: 12
  year: 2014
  ident: 10.1016/j.suscom.2021.100605_bib0155
  article-title: A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems
  publication-title: Ieee Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2385698
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.suscom.2021.100605_bib0065
  article-title: Particle swarm optimization
– start-page: 400
  year: 2010
  ident: 10.1016/j.suscom.2021.100605_bib0080
  article-title: A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments
– volume: 167
  start-page: 531
  year: 2020
  ident: 10.1016/j.suscom.2021.100605_bib0165
  article-title: Hybrid artificial chemical reaction optimization algorithm for cluster analysis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.312
– volume: 22
  start-page: 1624
  issue: 10
  year: 2011
  ident: 10.1016/j.suscom.2021.100605_bib0190
  article-title: Chemical reaction optimization for task scheduling in grid computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2011.35
– year: 2021
  ident: 10.1016/j.suscom.2021.100605_bib0045
  article-title: Task scheduling in cloud computing based on meta-heuristics: review, taxonomy, open challenges, and future trends
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100841
– volume: 18
  start-page: 829
  issue: 2
  year: 2015
  ident: 10.1016/j.suscom.2021.100605_bib0115
  article-title: FUGE: a joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-014-0420-x
– start-page: 773
  year: 2012
  ident: 10.1016/j.suscom.2021.100605_bib0175
  article-title: A set-based discrete PSO for cloud workflow scheduling with user-defined QoS constraints
– start-page: 2537
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0100
  article-title: A PSO-based energy-efficient fault-tolerant static scheduling algorithm for Real-time tasks in clouds
– volume: 176
  year: 2021
  ident: 10.1016/j.suscom.2021.100605_bib0145
  article-title: SAEA: a security-aware and energy-aware task scheduling strategy by Parallel Squirrel Search Algorithm in cloud environment
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 2175
  issue: 1
  year: 2010
  ident: 10.1016/j.suscom.2021.100605_bib0180
  article-title: Composable cost estimation and monitoring for computational applications in cloud computing environments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2010.04.243
– start-page: 519
  year: 2017
  ident: 10.1016/j.suscom.2021.100605_bib0015
  article-title: An efficient resource utilization based integrated task scheduling algorithm
– volume: 8
  start-page: 115356
  year: 2020
  ident: 10.1016/j.suscom.2021.100605_bib0035
  article-title: Energy-efficient hybrid framework for green cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002184
– start-page: 2537
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0020
  article-title: A PSO-based energy-efficient fault-tolerant static scheduling algorithm for Real-time tasks in clouds
– volume: 83
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0050
  article-title: Cost optimized hybrid genetic-gravitational search algorithm for load scheduling in cloud computing
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105627
– volume: 130
  start-page: 597
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0105
  article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.03.006
– volume: 7
  start-page: 491
  issue: 3
  year: 2016
  ident: 10.1016/j.suscom.2021.100605_bib0130
  article-title: Ant colony optimization algorithm for scheduling cloud tasks
  publication-title: Int. J. Comput. Technol. Appl
– volume: 103
  start-page: 58
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0030
  article-title: Multi-objective optimization technique for resource allocation and task scheduling in vehicular cloud architecture: a hybrid adaptive nature inspired approach
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.11.016
– start-page: 105
  year: 2011
  ident: 10.1016/j.suscom.2021.100605_bib0095
  article-title: Networkcloudsim: modelling parallel applications in cloud simulations
– volume: 44
  start-page: 3765
  issue: 4
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0060
  article-title: Cost-effective algorithm for workflow scheduling in cloud computing under deadline constraint
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3664-6
– volume: 125
  start-page: 725
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0040
  article-title: Modified HEFT algorithm for task scheduling in cloud environment
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.12.093
– start-page: 829
  year: 2016
  ident: 10.1016/j.suscom.2021.100605_bib0120
  article-title: A novel dynamic task scheduling algorithm based on improved genetic algorithm in cloud computing
– volume: 193
  start-page: 231
  issue: 1
  year: 2007
  ident: 10.1016/j.suscom.2021.100605_bib0205
  article-title: An improved particle swarm optimization algorithm
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.03.047
– year: 2008
  ident: 10.1016/j.suscom.2021.100605_bib0075
  article-title: Constrained optimization with an improved particle swarm optimization algorithm
  publication-title: Int. J. Intell. Comput. Cybern.
– start-page: 1
  year: 2009
  ident: 10.1016/j.suscom.2021.100605_bib0195
  article-title: Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: challenges and opportunities
– volume: 1
  start-page: 648
  year: 2012
  ident: 10.1016/j.suscom.2021.100605_bib0185
  article-title: An energy and data locality aware bi-level multiobjective task scheduling model based on mapreduce for cloud computing
– volume: 7
  start-page: 33
  issue: 1
  year: 2014
  ident: 10.1016/j.suscom.2021.100605_bib0070
  article-title: Cost-aware scheduling algorithm based on PSO in Cloud Computing environment
  publication-title: Int. J. Grid Distrib. Comput.
  doi: 10.14257/ijgdc.2014.7.1.04
– volume: 7
  start-page: 159535
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0010
  article-title: A management system for servicing multi-organizations on community cloud model in secure cloud environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950110
– volume: 9
  start-page: 3315
  issue: 4
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0055
  article-title: Deadline based task scheduling using multi-criteria decision-making in cloud environment
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.10.007
– start-page: 463
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0220
  article-title: Analysis of gaussian & cauchy mutations in modified particle swarm optimization algorithm
– volume: 69
  start-page: 395
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0170
  article-title: Deadline constrained based dynamic load balancing algorithm with elasticity in cloud environment
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.11.018
– volume: 5
  start-page: 377
  year: 2010
  ident: 10.1016/j.suscom.2021.100605_bib0215
  article-title: Modified particle swarm optimization for unconstrained optimization
– start-page: 1
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0025
  article-title: HPFE: a new secure framework for serving multi-users with multi-tasks in public cloud without violating SLA
  publication-title: Neural Comput. Appl.
– volume: 19
  start-page: 147
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0090
  article-title: PSO-COGENT: cost and energy efficient scheduling in cloud environment with deadline constraint
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 3
  start-page: 1945
  year: 1999
  ident: 10.1016/j.suscom.2021.100605_bib0200
  article-title: Empirical study of particle swarm optimization
– volume: 38
  start-page: 365
  year: 2019
  ident: 10.1016/j.suscom.2021.100605_bib0140
  article-title: Cost-based job scheduling strategy in cloud computing environments
  publication-title: Distrib. Parallel Databases
  doi: 10.1007/s10619-019-07273-y
– volume: 57
  start-page: 1219
  year: 2015
  ident: 10.1016/j.suscom.2021.100605_bib0110
  article-title: Multi objective task scheduling in cloud environment using nested PSO framework
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.419
– volume: 126
  start-page: 1424
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0160
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.08.114
– start-page: 99
  year: 2018
  ident: 10.1016/j.suscom.2021.100605_bib0085
  article-title: Cloud computing task scheduling policy based on improved particle swarm optimization
– volume: 2
  start-page: 428
  year: 2015
  ident: 10.1016/j.suscom.2021.100605_bib0125
  article-title: A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with multi-QoS constraints in cloud computing
– start-page: 115
  year: 2009
  ident: 10.1016/j.suscom.2021.100605_bib0210
  article-title: Testing of a modified particle swarm optimization algorithm using different benchmark functions
– start-page: 571
  year: 2017
  ident: 10.1016/j.suscom.2021.100605_bib0135
  article-title: Task scheduling strategy for Cloud computing based on the improvement of ant Colony algorithm
SSID ssj0000561934
Score 2.444602
Snippet •A multi-objective hybrid method for task scheduling problem is proposed.•Represented the NP-Complete task scheduling problem in the form of mathematical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100605
SubjectTerms Cloud computing
CRO
Deadline
Multi-objective
PSO
Task scheduling
Title A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud computing
URI https://dx.doi.org/10.1016/j.suscom.2021.100605
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2210-5379
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000561934
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  issn: 2210-5379
  databaseCode: AIKHN
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000561934
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 2210-5379
  databaseCode: ACRLP
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000561934
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 2210-5379
  databaseCode: .~1
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000561934
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw2iSNs1xmpgGiIEYSLtVTdPCxminrePIb8fuA4GEQOLYKlYjJ_VnJ59tQk5Dl0c6VIohGDPphGAH4xjLa-tYOlbxpChWfTP0Bo_yauyOG6RX58IgrbKy_aVNL6x19aZTabMzn0w6Iw7RiiuU5k4Rl2NGuZQKuxicvTuf5yzoIevichnHMxSoM-gKmtdytUTaCAesQ8aAh33sfkKoL6jT3yIblbtIu-WMtkkjTnfIZt2KgVZ_5i6xXZpmb_GMFgRBlplpacho757djW5pHi5fKASyACyYf07D2VO2mOTPrxQPYqmFlUZ_k0boLmLXiJxOUhrNspWlUfE1kNojD_2Lh96AVQ0UWASRQM688yQC_wzWw8jQ18bhShsBJs4Roau5cSwWf_c9lycQNiiAfmUTI4zkiZa-FfukmWZpfIAEKCkS4ScqkonUofWF5QbQD6IVro0nW0TUOguiqrg4znYW1CyyaVBqOkBNB6WmW4R9Ss3L4hp_jFf1cgTfNkkA9v9XycN_Sx6RdXwqGSzHpJkvVvEJ-CG5aRcbrU3WupfXg-EHArjbZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjiirD1xNie3E8bGqQAXKIigStyiOE2gpSdWmHPl2ZrIgkBBIXJOMYo2defOc5xlCjkKXRzpUiiEYM-mEEAfjGMtr61g6VvGkKFZ9de11H-TFo_s4Rzr1WRiUVVaxv4zpRbSurrQqb7bGg0HrngNbcYXS3Cl4uZonC9LlChnY8bvzudGCKbIu_i6jAUOL-ghdofOazqaoG-EAdigZ8LCR3U8Q9QV2zlbJcpUv0nY5pDUyF6frZKXuxUCrT3OD2DZNs7d4RAuFIMvMsIxktHPHbu9vaB5OXygwWUAWPIBOw9FTNhnkz68Ud2KphanGhJNGmC9i24icDlIajbKZpVHxNrDaJP2z036ny6oOCiwCKpAz7ySJIEGDCTEy9LVxuNJGQIxzROhqbhyL1d99z-UJ8AYF2K9sYoSRPNHSt2KLNNIsjbdRASVFIvxERTKROrS-sNwA_AFd4dp4sklE7bMgqqqL42hHQS0jGwalpwP0dFB6uknYp9W4rK7xx_Oqno7g2yoJAAB-tdz5t-UhWez2r3pB7_z6cpcs4Z1SzrJHGvlkFu9DUpKbg2LRfQA3Q9z5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multi-objective+CR-PSO+task+scheduling+algorithm+with+deadline+constraint+in+cloud+computing&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Dubey%2C+Kalka&rft.au=Sharma%2C+S.C.&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=32&rft_id=info:doi/10.1016%2Fj.suscom.2021.100605&rft.externalDocID=S2210537921000937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon