Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms

To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, af...

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 52; pp. 598 - 608
Main Authors Abdu, Danladi Mamman, Wei, Guo, Yang, Wang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2023.03.167

Cover

Abstract To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, affecting passengers’ comfort and endangering operation safety. For this reason, different theories and techniques have been employed to assess bridge pier settlement. However, few attempts have been made to utilise train vertical acceleration, the most sensitive index, to estimate pier settlement, which has the potential to save time and overcome all the other methods' geographical and economic challenges. In this study, a CRH380A high-speed train acceleration response dataset is obtained using train-track-bridge interaction simulation in Simpack. The dataset is used to train three machine learning models selected based on PyCaret. The model test results proved that pier settlement can be accurately predicted using train vertical acceleration response. Gradient boost regressor outperformed the other models on the test result with an R-squared of 99%, a mean absolute error of 0.39, and a mean squared error of 0.24. Extra tree regressor is the second-best model on the test result, with an R-squared of 98%, a mean absolute error of 0.56, and a mean squared error of 0.47. The random forest regressor test result has an R-squared of 97%, a mean absolute error of 0.73, and a mean squared error of 0.75. Additionally, over 70% of the gradient boost test prediction error is below 0.5 mm, and the maximum error is 1.5 mm, demonstrating the accuracy of the machine technique to predict pier settlement using the vertical acceleration response of the train.
AbstractList To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, affecting passengers’ comfort and endangering operation safety. For this reason, different theories and techniques have been employed to assess bridge pier settlement. However, few attempts have been made to utilise train vertical acceleration, the most sensitive index, to estimate pier settlement, which has the potential to save time and overcome all the other methods' geographical and economic challenges. In this study, a CRH380A high-speed train acceleration response dataset is obtained using train-track-bridge interaction simulation in Simpack. The dataset is used to train three machine learning models selected based on PyCaret. The model test results proved that pier settlement can be accurately predicted using train vertical acceleration response. Gradient boost regressor outperformed the other models on the test result with an R-squared of 99%, a mean absolute error of 0.39, and a mean squared error of 0.24. Extra tree regressor is the second-best model on the test result, with an R-squared of 98%, a mean absolute error of 0.56, and a mean squared error of 0.47. The random forest regressor test result has an R-squared of 97%, a mean absolute error of 0.73, and a mean squared error of 0.75. Additionally, over 70% of the gradient boost test prediction error is below 0.5 mm, and the maximum error is 1.5 mm, demonstrating the accuracy of the machine technique to predict pier settlement using the vertical acceleration response of the train.
Author Yang, Wang
Wei, Guo
Abdu, Danladi Mamman
Author_xml – sequence: 1
  givenname: Danladi Mamman
  surname: Abdu
  fullname: Abdu, Danladi Mamman
  organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China
– sequence: 2
  givenname: Guo
  surname: Wei
  fullname: Wei, Guo
  email: guowei@csu.edu.cn
  organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China
– sequence: 3
  givenname: Wang
  surname: Yang
  fullname: Yang, Wang
  organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China
BookMark eNqFkE1PwzAMhiMEEmPsH3DIH2jJV1vggDRNfEmTuMA5ShN3y9SmU5yB9u9pNw6IA9gHW5bfV_ZzQU5DH4CQK85yznh5vck9prizuWBC5kzmvKxOyETIQmSMC3X6oz8nM8QNY0xwxYSqJgTniIDYQUi0b2g0vv00e1pH71ZAtx4iRUiphcNGbRAc7QNNw2KgxlpoIZrkh1EE3PYBge7QhxXtjF37ALQFE8M4MO2qjz6tO7wkZ41pEWbfdUreHx_eFs_Z8vXpZTFfZlayMmWF4wacFLfOODmkuRHcMFlVomgUr7lsmBR1zZRQdWlqV0NT2GKI0gionJJTcnf0tbFHjNBo69Ph2PH8VnOmR4J6o48E9UhQM6kHgoNY_RJvo-9M3P8nuz_KYHjsY8Cn0XoIFpyPYJN2vf_b4AtwHZLf
CitedBy_id crossref_primary_10_1016_j_soildyn_2025_109228
crossref_primary_10_1371_journal_pone_0303249
crossref_primary_10_3390_buildings15050779
crossref_primary_10_1016_j_istruc_2025_108466
crossref_primary_10_1061_PPSCFX_SCENG_1292
crossref_primary_10_1016_j_kscej_2024_100134
Cites_doi 10.1016/j.engstruct.2009.03.019
10.1016/j.engstruct.2010.12.011
10.1016/j.jsv.2009.02.031
10.1016/j.engstruct.2019.109859
10.1061/(ASCE)TE.1943-5436.0000577
10.1260/1369-4332.13.1.95
10.1111/j.1475-1305.2010.00752.x
10.1142/S0219455420410047
10.3389/fbuil.2017.00004
10.1023/A:1010933404324
10.1080/23248378.2013.791498
10.1007/s10994-011-5261-8
10.1016/0045-7949(94)00377-F
10.1007/s00521-012-1334-2
10.1016/j.ijnonlinmec.2013.10.004
10.1002/stc.1909
10.1016/j.jsv.2007.05.034
10.1360/N092014-00105
10.1002/stc.2296
10.1061/(ASCE)BE.1943-5592.0001322
10.1088/1742-6596/382/1/012047
10.1016/j.engstruct.2019.109998
10.1007/s11831-015-9157-9
10.1177/0954409716675001
10.1007/s11431-014-5692-0
10.1142/S021945541850092X
10.1016/j.engstruct.2018.02.059
10.1016/j.tust.2004.01.003
10.1080/10298436.2010.484547
10.1002/stc.1998
10.1016/j.engstruct.2014.11.018
10.12989/sss.2015.16.3.521
10.1007/s10994-006-6226-1
ContentType Journal Article
Copyright 2023 Institution of Structural Engineers
Copyright_xml – notice: 2023 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2023.03.167
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
EndPage 608
ExternalDocumentID 10_1016_j_istruc_2023_03_167
S235201242300454X
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEIPS
AFJKZ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSH
SST
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c306t-5d1aed329dad3d3da821a037725f41b13f032bb0424b6abdbef5c55556a2e7d43
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Thu Apr 24 23:10:01 EDT 2025
Wed Oct 01 03:29:28 EDT 2025
Sun Apr 06 06:53:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Random forest regressor
Train vertical acceleration
Bridge pier settlement
Extra tree regressor
Machine learning
Gradient boost regressor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-5d1aed329dad3d3da821a037725f41b13f032bb0424b6abdbef5c55556a2e7d43
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_istruc_2023_03_167
crossref_primary_10_1016_j_istruc_2023_03_167
elsevier_sciencedirect_doi_10_1016_j_istruc_2023_03_167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mata (b0165) 2011; 33
Fernando S. A machine learning based methodology for anomaly detection in dam behaviour[EB/OL]. /2022-12-20. https://www.tdx.cat/handle/10803/405808?show=full.
Ranković, Novaković, Grujović (b0175) 2014; 24
Pandey, Barai (b0185) 1995; 54
Bandara (b0210) 2013
Welcome to PyCaret[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/.
Guan, Rice, Li (b0115) 2017; 24
Zhang, Shan, Yang (b0220) 2017; 2017
Brownjohn (b0140) 1851; 2007
Dervilis, Choi, Antoniadou (b0205) 2012; 382
HU Z, Xie K, Zhu H. Effect on Continuous Welded Rail Caused by Bridge Pier Settlement of Large-Span Bridge with High-rise Piers--《Railway Standard Design》2013/10 [EB/OL]. /2022-12-21. https://en.cnki.com.cn/Article_en/CJFDTOTAL-TDBS201310007.htm.
Yang, Xu, Zhang (b0130) 2020; 203
Chen, Zhai, Sun (b0065) 2014; 44
Alam B. Getting started with the Extra Trees algorithm in Python[EB/OL]. Hands-On-Cloud. 2022-05-27/2022-09-16. https://hands-on.cloud/getting-started-with-the-extra-trees-algorithm-in-python/.
Cao Y, Xia H, Wang K-P. Pre-evaluation of impact of foundation construction near existing railway bridge on running train[J]. 2013, 35: 95–101.
Chen, Zhai (b0040) 2020; 209
Kang, Schneider, Wenner (b0025) 2018; 163
Yang, Wang, Shi (b0215) 2020; 20
Breiman (b0260) 2001; 45
Giannakos (b0005) 2010; 11
Lin, Yoda (b0030) 2017
Özöğür-Akyüz, Ünay, Smola (b0240) 2011; 85
Santillan, Fraile-Ardanuy, Toledo (b0180) 2013
Hastie, Tibshirani (b0275) 2017
Wang K-P, Xia H, Guo W. Influence of uneven settlement of bridge piers on running safety of high-speed trains. Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33: 137-142+155.
Gu, Gul, Wu (b0190) 2017; 24
1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-12. https://scikit-learn/stable/modules/ensemble.html.
Tang, Chen, Bao (b0195) 2019; 26
Yau (b0075) 2009; 324
Train[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/get-started/functions/train.
Zhu, Cai (b0045) 2014; 58
Xia, Zhang, Guo (b0010) 2018
Geurts, Ernst, Wehenkel (b0235) 2006; 63
Lee, Lee, Nam (b0105) 2004; 19
Guo, Wang, Zeng (b0230) 2021
1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-16. https://scikit-learn/stable/modules/ensemble.html.
Bakhary, Hao, Deeks (b0200) 2010; 13
Chen, Ni (b0125) 2018
Bonopera, Chang, Chen (b0100) 2018; 18
Guan, Rice, Li (b0110) 2015; 16
Chen, Zhai, Yin (b0035) 2018; 232
Goodfellow, Bengio, Courville (b0160) 2016
Sun, Chen, Zelelew (b0225) 2013; 139
TB10621-2009. Code for Design of High Speed Railway. (in Chinese).[EB/OL]. /2022-12-14. https://chat.openai.com.
Nguyen L H. Real-time Anomaly Detection in the Behaviour of Structures.
Steenbergen, Metrikine, Esveld (b0015) 2007; 306
Yau (b0080) 2009; 31
Chen, Zhai, Cai (b0020) 2015; 58
Louppe G. Understanding Random Forests: From Theory to Practice. Unpublished, 2014.
Invernizzi, Lacidogna, Manuello (b0060) 2011; 47
Guan, Bridge, Li (b0120) 2019; 24
Salazar, Morán, Toledo (b0145) 2017; 24
Casas, Moughty (b0135) 2017; 3
Alam B. Implementation of Random Forest algorithm using Python[EB/OL]. Hands-On-Cloud. 2022-01-22/2022-09-16. https://hands-on.cloud/implementation-of-random-forest-algorithm-using-python/.
Ahmari, Yang, Zhong (b0055) 2015; 84
Zhai, Xia, Cai (b0095) 2013; 1
Guan (10.1016/j.istruc.2023.03.167_b0110) 2015; 16
Mata (10.1016/j.istruc.2023.03.167_b0165) 2011; 33
Zhang (10.1016/j.istruc.2023.03.167_b0220) 2017; 2017
Lee (10.1016/j.istruc.2023.03.167_b0105) 2004; 19
Yau (10.1016/j.istruc.2023.03.167_b0075) 2009; 324
10.1016/j.istruc.2023.03.167_b0255
Chen (10.1016/j.istruc.2023.03.167_b0065) 2014; 44
Geurts (10.1016/j.istruc.2023.03.167_b0235) 2006; 63
Chen (10.1016/j.istruc.2023.03.167_b0040) 2020; 209
Tang (10.1016/j.istruc.2023.03.167_b0195) 2019; 26
Guo (10.1016/j.istruc.2023.03.167_b0230) 2021
Xia (10.1016/j.istruc.2023.03.167_b0010) 2018
Guan (10.1016/j.istruc.2023.03.167_b0120) 2019; 24
Casas (10.1016/j.istruc.2023.03.167_b0135) 2017; 3
10.1016/j.istruc.2023.03.167_b0150
10.1016/j.istruc.2023.03.167_b0270
Chen (10.1016/j.istruc.2023.03.167_b0020) 2015; 58
Lin (10.1016/j.istruc.2023.03.167_b0030) 2017
10.1016/j.istruc.2023.03.167_b0070
Kang (10.1016/j.istruc.2023.03.167_b0025) 2018; 163
Ahmari (10.1016/j.istruc.2023.03.167_b0055) 2015; 84
Guan (10.1016/j.istruc.2023.03.167_b0115) 2017; 24
Steenbergen (10.1016/j.istruc.2023.03.167_b0015) 2007; 306
10.1016/j.istruc.2023.03.167_b0265
Invernizzi (10.1016/j.istruc.2023.03.167_b0060) 2011; 47
Zhu (10.1016/j.istruc.2023.03.167_b0045) 2014; 58
Giannakos (10.1016/j.istruc.2023.03.167_b0005) 2010; 11
Özöğür-Akyüz (10.1016/j.istruc.2023.03.167_b0240) 2011; 85
10.1016/j.istruc.2023.03.167_b0085
10.1016/j.istruc.2023.03.167_b0280
Dervilis (10.1016/j.istruc.2023.03.167_b0205) 2012; 382
Yau (10.1016/j.istruc.2023.03.167_b0080) 2009; 31
Yang (10.1016/j.istruc.2023.03.167_b0130) 2020; 203
10.1016/j.istruc.2023.03.167_b0155
Bandara (10.1016/j.istruc.2023.03.167_b0210) 2013
Sun (10.1016/j.istruc.2023.03.167_b0225) 2013; 139
Hastie (10.1016/j.istruc.2023.03.167_b0275) 2017
Ranković (10.1016/j.istruc.2023.03.167_b0175) 2014; 24
Santillan (10.1016/j.istruc.2023.03.167_b0180) 2013
Brownjohn (10.1016/j.istruc.2023.03.167_b0140) 1851; 2007
Yang (10.1016/j.istruc.2023.03.167_b0215) 2020; 20
10.1016/j.istruc.2023.03.167_b0250
Goodfellow (10.1016/j.istruc.2023.03.167_b0160) 2016
10.1016/j.istruc.2023.03.167_b0050
10.1016/j.istruc.2023.03.167_b0170
Bakhary (10.1016/j.istruc.2023.03.167_b0200) 2010; 13
10.1016/j.istruc.2023.03.167_b0090
Breiman (10.1016/j.istruc.2023.03.167_b0260) 2001; 45
Gu (10.1016/j.istruc.2023.03.167_b0190) 2017; 24
Chen (10.1016/j.istruc.2023.03.167_b0035) 2018; 232
Zhai (10.1016/j.istruc.2023.03.167_b0095) 2013; 1
10.1016/j.istruc.2023.03.167_b0245
Chen (10.1016/j.istruc.2023.03.167_b0125) 2018
Salazar (10.1016/j.istruc.2023.03.167_b0145) 2017; 24
Bonopera (10.1016/j.istruc.2023.03.167_b0100) 2018; 18
Pandey (10.1016/j.istruc.2023.03.167_b0185) 1995; 54
References_xml – volume: 382
  year: 2012
  ident: b0205
  article-title: Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading
  publication-title: J Phys Conf Ser
– volume: 19
  start-page: 551
  year: 2004
  end-page: 565
  ident: b0105
  article-title: Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting
  publication-title: Tunn Undergr Space Technol
– volume: 203
  year: 2020
  ident: b0130
  article-title: Measuring bridge frequencies by a test vehicle in non-moving and moving states
  publication-title: Eng Struct
– reference: TB10621-2009. Code for Design of High Speed Railway. (in Chinese).[EB/OL]. /2022-12-14. https://chat.openai.com.
– year: 2017
  ident: b0275
  article-title: Generalized Additive Models
– volume: 84
  start-page: 172
  year: 2015
  end-page: 183
  ident: b0055
  article-title: Dynamic interaction between vehicle and bridge deck subjected to support settlement
  publication-title: Eng Struct
– volume: 31
  start-page: 2115
  year: 2009
  end-page: 2122
  ident: b0080
  article-title: Response of a train moving on multi-span railway bridges undergoing ground settlement
  publication-title: Eng Struct
– volume: 33
  start-page: 903
  year: 2011
  end-page: 910
  ident: b0165
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
– start-page: 1
  year: 2021
  end-page: 30
  ident: b0230
  article-title: Moving Safety Evaluation of High-speed Train on Post-earthquake Bridge Utilizing Real-time Hybrid Simulation
  publication-title: J Earthq Eng
– reference: Alam B. Implementation of Random Forest algorithm using Python[EB/OL]. Hands-On-Cloud. 2022-01-22/2022-09-16. https://hands-on.cloud/implementation-of-random-forest-algorithm-using-python/.
– volume: 47
  start-page: 158
  year: 2011
  end-page: 169
  ident: b0060
  article-title: AE Monitoring and Numerical Simulation of a Two-span Model Masonry Arch Bridge Subjected to Pier Scour: AE and Simulation of a Bridge Subjected to Scour
  publication-title: Strain
– volume: 2007
  start-page: 589
  year: 1851
  end-page: 622
  ident: b0140
  article-title: Structural health monitoring of civil infrastructure
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– reference: Louppe G. Understanding Random Forests: From Theory to Practice. Unpublished, 2014.
– reference: Train[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/get-started/functions/train.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0220
  article-title: Effect of Bridge-Pier Differential Settlement on the Dynamic Response of a High-Speed Railway Train-Track-Bridge System
  publication-title: Math Probl Eng
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0260
  article-title: Random Forests
  publication-title: Mach Learn
– volume: 16
  start-page: 521
  year: 2015
  end-page: 535
  ident: b0110
  article-title: Dynamic and static structural displacement measurement using backscattering DC coupled radar
  publication-title: Smart Struct Syst
– volume: 44
  start-page: 770
  year: 2014
  end-page: 777
  ident: b0065
  article-title: Mapping Relationship between Pier Settlement and Rail Deformation of High-speed Railway (I): Unit Slab Ballastless Track System
  publication-title: Scientia Sinica Technologica
– reference: Welcome to PyCaret[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/.
– volume: 232
  start-page: 421
  year: 2018
  end-page: 434
  ident: b0035
  article-title: Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement
  publication-title: Proc Inst Mech Eng, Part F: J Rail Rapid Transit
– volume: 85
  start-page: 1
  year: 2011
  end-page: 2
  ident: b0240
  article-title: Guest editorial: model selection and optimization in machine learning
  publication-title: Mach Learn
– reference: Wang K-P, Xia H, Guo W. Influence of uneven settlement of bridge piers on running safety of high-speed trains. Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33: 137-142+155.
– year: 2013
  ident: b0210
  article-title: Damage identification and condition assessment of building structures using frequency response functions and neural networks
– volume: 20
  start-page: 2041004
  year: 2020
  ident: b0215
  article-title: State-of-the-Art of Vehicle-Based Methods for Detecting Various Properties of Highway Bridges and Railway Tracks
  publication-title: Int J Struct Stab Dyn
– volume: 24
  start-page: e1998
  year: 2017
  ident: b0190
  article-title: Damage detection under varying temperature using artificial neural networks
  publication-title: Struct Control Health Monit
– reference: Nguyen L H. Real-time Anomaly Detection in the Behaviour of Structures.
– volume: 26
  start-page: e2296
  year: 2019
  ident: b0195
  article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Struct Control Health Monit
– volume: 139
  start-page: 1224
  year: 2013
  end-page: 1234
  ident: b0225
  article-title: Stress and Deflection Parametric Study of High-Speed Railway CRTS-II Ballastless Track Slab on Elevated Bridge Foundations
  publication-title: J Transp Eng
– volume: 24
  year: 2017
  ident: b0115
  article-title: Structural displacement measurements using DC coupled radar with active transponder
  publication-title: Struct Control Health Monit
– reference: 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-16. https://scikit-learn/stable/modules/ensemble.html.
– volume: 13
  start-page: 95
  year: 2010
  end-page: 110
  ident: b0200
  article-title: Structure Damage Detection Using Neural Network with Multi-Stage Substructuring
  publication-title: Adv Struct Eng
– volume: 24
  start-page: 04018102
  year: 2019
  ident: b0120
  article-title: Smart Radar Sensor Network for Bridge Displacement Monitoring
  publication-title: J Bridg Eng
– reference: 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-12. https://scikit-learn/stable/modules/ensemble.html.
– volume: 24
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0145
  article-title: Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations
  publication-title: Arch Comput Meth Eng
– volume: 3
  year: 2017
  ident: b0135
  article-title: Bridge Damage Detection Based on Vibration Data: Past and New Developments
  publication-title: Front Built Environ
– volume: 24
  start-page: 1115
  year: 2014
  end-page: 1121
  ident: b0175
  article-title: Predicting piezometric water level in dams via artificial neural networks
  publication-title: Neural Comput Appl
– reference: HU Z, Xie K, Zhu H. Effect on Continuous Welded Rail Caused by Bridge Pier Settlement of Large-Span Bridge with High-rise Piers--《Railway Standard Design》2013/10 [EB/OL]. /2022-12-21. https://en.cnki.com.cn/Article_en/CJFDTOTAL-TDBS201310007.htm.
– volume: 306
  start-page: 361
  year: 2007
  end-page: 371
  ident: b0015
  article-title: Assessment of design parameters of a slab track railway system from a dynamic viewpoint
  publication-title: J Sound Vib
– year: 2018
  ident: b0010
  article-title: Dynamic Interaction of Train-Bridge Systems in High-Speed Railways
– year: 2018
  ident: b0125
  article-title: Structural health monitoring of large civil engineering structures
– volume: 18
  start-page: 1850092
  year: 2018
  ident: b0100
  article-title: Compressive Column Load Identification in Steel Space Frames Using Second-Order Deflection-Based Methods
  publication-title: Int J Struct Stab Dyn
– start-page: 1
  year: 2013
  end-page: 8
  ident: b0180
  article-title: Dam seepage analysis based on artificial neural networks: The hysteresis phenomenon
  publication-title: The 2013 International Joint Conference on Neural Networks (IJCNN)[C]
– volume: 58
  start-page: 222
  year: 2014
  end-page: 232
  ident: b0045
  article-title: Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads
  publication-title: Int J Non Linear Mech
– year: 2016
  ident: b0160
  article-title: Deep learning
– volume: 58
  start-page: 202
  year: 2015
  end-page: 210
  ident: b0020
  article-title: Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction
  publication-title: Sci China Technol Sci
– volume: 209
  year: 2020
  ident: b0040
  article-title: Theoretical method of determining pier settlement limit value for China’s high-speed railway bridges considering complete factors
  publication-title: Eng Struct
– volume: 11
  start-page: 267
  year: 2010
  ident: b0005
  article-title: High-speed railway infrastructure: recent developments and performance
  publication-title: Int J Pavement Eng
– year: 2017
  ident: b0030
  article-title: Bridge engineering: classifications, design loading, and analysis methods
– volume: 324
  start-page: 816
  year: 2009
  end-page: 831
  ident: b0075
  article-title: Response of a maglev vehicle moving on a series of guideways with differential settlement
  publication-title: J Sound Vib
– reference: Alam B. Getting started with the Extra Trees algorithm in Python[EB/OL]. Hands-On-Cloud. 2022-05-27/2022-09-16. https://hands-on.cloud/getting-started-with-the-extra-trees-algorithm-in-python/.
– volume: 54
  start-page: 597
  year: 1995
  end-page: 608
  ident: b0185
  article-title: Multilayer perceptron in damage detection of bridge structures
  publication-title: Comput Struct
– volume: 163
  start-page: 184
  year: 2018
  end-page: 196
  ident: b0025
  article-title: Development of design and construction of high-speed railway bridges in Germany
  publication-title: Eng Struct
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: b0235
  article-title: Extremely randomized trees
  publication-title: Mach Learn
– reference: Fernando S. A machine learning based methodology for anomaly detection in dam behaviour[EB/OL]. /2022-12-20. https://www.tdx.cat/handle/10803/405808?show=full.
– reference: Cao Y, Xia H, Wang K-P. Pre-evaluation of impact of foundation construction near existing railway bridge on running train[J]. 2013, 35: 95–101.
– volume: 1
  start-page: 3
  year: 2013
  end-page: 24
  ident: b0095
  article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation
  publication-title: Int J Rail Transp
– ident: 10.1016/j.istruc.2023.03.167_b0245
– ident: 10.1016/j.istruc.2023.03.167_b0270
– volume: 31
  start-page: 2115
  issue: 9
  year: 2009
  ident: 10.1016/j.istruc.2023.03.167_b0080
  article-title: Response of a train moving on multi-span railway bridges undergoing ground settlement
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2009.03.019
– volume: 33
  start-page: 903
  issue: 3
  year: 2011
  ident: 10.1016/j.istruc.2023.03.167_b0165
  article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2010.12.011
– year: 2018
  ident: 10.1016/j.istruc.2023.03.167_b0125
– ident: 10.1016/j.istruc.2023.03.167_b0155
– ident: 10.1016/j.istruc.2023.03.167_b0090
– ident: 10.1016/j.istruc.2023.03.167_b0255
– ident: 10.1016/j.istruc.2023.03.167_b0085
– year: 2018
  ident: 10.1016/j.istruc.2023.03.167_b0010
– volume: 324
  start-page: 816
  issue: 3–5
  year: 2009
  ident: 10.1016/j.istruc.2023.03.167_b0075
  article-title: Response of a maglev vehicle moving on a series of guideways with differential settlement
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.02.031
– volume: 203
  year: 2020
  ident: 10.1016/j.istruc.2023.03.167_b0130
  article-title: Measuring bridge frequencies by a test vehicle in non-moving and moving states
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109859
– volume: 139
  start-page: 1224
  issue: 12
  year: 2013
  ident: 10.1016/j.istruc.2023.03.167_b0225
  article-title: Stress and Deflection Parametric Study of High-Speed Railway CRTS-II Ballastless Track Slab on Elevated Bridge Foundations
  publication-title: J Transp Eng
  doi: 10.1061/(ASCE)TE.1943-5436.0000577
– volume: 13
  start-page: 95
  issue: 1
  year: 2010
  ident: 10.1016/j.istruc.2023.03.167_b0200
  article-title: Structure Damage Detection Using Neural Network with Multi-Stage Substructuring
  publication-title: Adv Struct Eng
  doi: 10.1260/1369-4332.13.1.95
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0220
  article-title: Effect of Bridge-Pier Differential Settlement on the Dynamic Response of a High-Speed Railway Train-Track-Bridge System
  publication-title: Math Probl Eng
– volume: 47
  start-page: 158
  year: 2011
  ident: 10.1016/j.istruc.2023.03.167_b0060
  article-title: AE Monitoring and Numerical Simulation of a Two-span Model Masonry Arch Bridge Subjected to Pier Scour: AE and Simulation of a Bridge Subjected to Scour
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2010.00752.x
– volume: 20
  start-page: 2041004
  issue: 13
  year: 2020
  ident: 10.1016/j.istruc.2023.03.167_b0215
  article-title: State-of-the-Art of Vehicle-Based Methods for Detecting Various Properties of Highway Bridges and Railway Tracks
  publication-title: Int J Struct Stab Dyn
  doi: 10.1142/S0219455420410047
– volume: 3
  year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0135
  article-title: Bridge Damage Detection Based on Vibration Data: Past and New Developments
  publication-title: Front Built Environ
  doi: 10.3389/fbuil.2017.00004
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.istruc.2023.03.167_b0260
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 1
  start-page: 3
  issue: 1–2
  year: 2013
  ident: 10.1016/j.istruc.2023.03.167_b0095
  article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation
  publication-title: Int J Rail Transp
  doi: 10.1080/23248378.2013.791498
– ident: 10.1016/j.istruc.2023.03.167_b0265
– volume: 85
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.istruc.2023.03.167_b0240
  article-title: Guest editorial: model selection and optimization in machine learning
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5261-8
– volume: 54
  start-page: 597
  issue: 4
  year: 1995
  ident: 10.1016/j.istruc.2023.03.167_b0185
  article-title: Multilayer perceptron in damage detection of bridge structures
  publication-title: Comput Struct
  doi: 10.1016/0045-7949(94)00377-F
– volume: 24
  start-page: 1115
  issue: 5
  year: 2014
  ident: 10.1016/j.istruc.2023.03.167_b0175
  article-title: Predicting piezometric water level in dams via artificial neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1334-2
– year: 2013
  ident: 10.1016/j.istruc.2023.03.167_b0210
– ident: 10.1016/j.istruc.2023.03.167_b0250
– ident: 10.1016/j.istruc.2023.03.167_b0070
– volume: 58
  start-page: 222
  year: 2014
  ident: 10.1016/j.istruc.2023.03.167_b0045
  article-title: Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads
  publication-title: Int J Non Linear Mech
  doi: 10.1016/j.ijnonlinmec.2013.10.004
– volume: 24
  issue: 4
  year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0115
  article-title: Structural displacement measurements using DC coupled radar with active transponder
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1909
– volume: 306
  start-page: 361
  issue: 1–2
  year: 2007
  ident: 10.1016/j.istruc.2023.03.167_b0015
  article-title: Assessment of design parameters of a slab track railway system from a dynamic viewpoint
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.05.034
– volume: 44
  start-page: 770
  issue: 7
  year: 2014
  ident: 10.1016/j.istruc.2023.03.167_b0065
  article-title: Mapping Relationship between Pier Settlement and Rail Deformation of High-speed Railway (I): Unit Slab Ballastless Track System
  publication-title: Scientia Sinica Technologica
  doi: 10.1360/N092014-00105
– volume: 26
  start-page: e2296
  issue: 1
  year: 2019
  ident: 10.1016/j.istruc.2023.03.167_b0195
  article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2296
– volume: 24
  start-page: 04018102
  issue: 1
  year: 2019
  ident: 10.1016/j.istruc.2023.03.167_b0120
  article-title: Smart Radar Sensor Network for Bridge Displacement Monitoring
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001322
– volume: 382
  year: 2012
  ident: 10.1016/j.istruc.2023.03.167_b0205
  article-title: Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/382/1/012047
– volume: 209
  year: 2020
  ident: 10.1016/j.istruc.2023.03.167_b0040
  article-title: Theoretical method of determining pier settlement limit value for China’s high-speed railway bridges considering complete factors
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.109998
– volume: 24
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0145
  article-title: Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations
  publication-title: Arch Comput Meth Eng
  doi: 10.1007/s11831-015-9157-9
– year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0275
– volume: 232
  start-page: 421
  issue: 2
  year: 2018
  ident: 10.1016/j.istruc.2023.03.167_b0035
  article-title: Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement
  publication-title: Proc Inst Mech Eng, Part F: J Rail Rapid Transit
  doi: 10.1177/0954409716675001
– volume: 58
  start-page: 202
  issue: 2
  year: 2015
  ident: 10.1016/j.istruc.2023.03.167_b0020
  article-title: Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-014-5692-0
– ident: 10.1016/j.istruc.2023.03.167_b0050
– volume: 18
  start-page: 1850092
  issue: 07
  year: 2018
  ident: 10.1016/j.istruc.2023.03.167_b0100
  article-title: Compressive Column Load Identification in Steel Space Frames Using Second-Order Deflection-Based Methods
  publication-title: Int J Struct Stab Dyn
  doi: 10.1142/S021945541850092X
– volume: 163
  start-page: 184
  year: 2018
  ident: 10.1016/j.istruc.2023.03.167_b0025
  article-title: Development of design and construction of high-speed railway bridges in Germany
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.02.059
– start-page: 1
  year: 2013
  ident: 10.1016/j.istruc.2023.03.167_b0180
  article-title: Dam seepage analysis based on artificial neural networks: The hysteresis phenomenon
– ident: 10.1016/j.istruc.2023.03.167_b0170
– volume: 19
  start-page: 551
  issue: 6
  year: 2004
  ident: 10.1016/j.istruc.2023.03.167_b0105
  article-title: Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2004.01.003
– volume: 11
  start-page: 267
  issue: 4
  year: 2010
  ident: 10.1016/j.istruc.2023.03.167_b0005
  article-title: High-speed railway infrastructure: recent developments and performance
  publication-title: Int J Pavement Eng
  doi: 10.1080/10298436.2010.484547
– ident: 10.1016/j.istruc.2023.03.167_b0150
– volume: 24
  start-page: e1998
  issue: 11
  year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0190
  article-title: Damage detection under varying temperature using artificial neural networks
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.1998
– ident: 10.1016/j.istruc.2023.03.167_b0280
– year: 2017
  ident: 10.1016/j.istruc.2023.03.167_b0030
– volume: 84
  start-page: 172
  year: 2015
  ident: 10.1016/j.istruc.2023.03.167_b0055
  article-title: Dynamic interaction between vehicle and bridge deck subjected to support settlement
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.11.018
– volume: 16
  start-page: 521
  issue: 3
  year: 2015
  ident: 10.1016/j.istruc.2023.03.167_b0110
  article-title: Dynamic and static structural displacement measurement using backscattering DC coupled radar
  publication-title: Smart Struct Syst
  doi: 10.12989/sss.2015.16.3.521
– volume: 2007
  start-page: 589
  issue: 365
  year: 1851
  ident: 10.1016/j.istruc.2023.03.167_b0140
  article-title: Structural health monitoring of civil infrastructure
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– year: 2016
  ident: 10.1016/j.istruc.2023.03.167_b0160
– start-page: 1
  year: 2021
  ident: 10.1016/j.istruc.2023.03.167_b0230
  article-title: Moving Safety Evaluation of High-speed Train on Post-earthquake Bridge Utilizing Real-time Hybrid Simulation
  publication-title: J Earthq Eng
– volume: 63
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.istruc.2023.03.167_b0235
  article-title: Extremely randomized trees
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
SSID ssj0002140247
Score 2.2975657
Snippet To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 598
SubjectTerms Bridge pier settlement
Extra tree regressor
Gradient boost regressor
Machine learning
Random forest regressor
Train vertical acceleration
Title Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms
URI https://dx.doi.org/10.1016/j.istruc.2023.03.167
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: ACRLP
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AIKHN
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AKRWK
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu-hB_MT5RQ5e49ok7drjGI6puIsOditJk8zKXMc2EP97X5J2TBAFe2ub9OPl8X6v6S-_h9CNjiXExpwSE3NJOAsUkeAZJFBMUW4r42g73_E0iodj_jCJJg3Ur9fCWFplFft9THfRujrSqazZWRRF55lC7gDhFfIBpyM32UEtwJ8kaaJW7_5xONpMtcANAYm6rsxcZIkIlNeL6BzTq3BSrbe2kLgVPA1dzfkfQGoLeAYHaL_KGHHPP9Qhauj5Edrb0hE8RqveRl8TlwYvRTH7EJ_YL8bCC7goXmkrVuxaWOBSuJxjVx4CizwH6PGOgJeeMqux5cNP8bujWmpc1ZaYYjGblsti_fq-OkHjwd1Lf0iqagokh8-CNYlUKLRiNFUCxoEpkdBQBAyy68jwUIbMBIxKaX-FylhIJbWJ8gi2WFDdVZydoua8nOszhG1WqHhKpVUCShUTJk5TYQSncP0kMm3EavNleSU1bl9pltWcsrfMGz2zRs8CloHR24hsei281MYf7bv1yGTfXCYDNPi15_m_e16gXbvnuWKXqAnn9RVkJWt5XXndFyG54zQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QHtQH4zXitQ--Tra2G-yREMmUy4uQ8Na0a4czwAiQGP-9p91GMDGauMet3eX07Jyz7uv3IfSgAwmxMSZOEjDpMOoqR4JnOK6iijCjjKPNfMdgGERj9jLxJxXUKdfCGFhlEfvzmG6jdbGnUVizsUzTxiuB2gHCK9QDlkdusodqzKdNeDtr7edeNNxOtcAFIRM1rcycb4AIhJWL6CzSK7VUrY9GSNwQnnpWc_6HJLWTeLrH6KioGHE7v6kTVNGLU3S4wyN4htbtLb8mzhK8EunsQ3zifDEWXsJJ8VobsmLbwiQuhbMFtvIQWMQxpJ7cEfAqh8xqbPDwUzy3UEuNC22JKRazabZKN2_z9Tkad59Gncgp1BScGD4LNo6vPKEVJaESMA5UiRbxhEuhuvYT5kmPJi4lUppfoTIQUkmd-LEPWyCIbipGL1B1kS30JcKmKlQsJNIwAYWKiiQIQ5EIRuD8LT-pI1qaj8cF1bh5pBkvMWXvPDc6N0bnLuVg9Dpytr2WOdXGH-2b5cjwby7DIRv82vPq3z3v0X40GvR5_3nYu0YH5kiOG7tBVWirb6FC2ci7wgO_ANHR5hU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+railway+bridge+pier+settlement+based+on+train+acceleration+response+using+machine+learning+algorithms&rft.jtitle=Structures+%28Oxford%29&rft.au=Abdu%2C+Danladi+Mamman&rft.au=Wei%2C+Guo&rft.au=Yang%2C+Wang&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=52&rft.spage=598&rft.epage=608&rft_id=info:doi/10.1016%2Fj.istruc.2023.03.167&rft.externalDocID=S235201242300454X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon