Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms
To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, af...
        Saved in:
      
    
          | Published in | Structures (Oxford) Vol. 52; pp. 598 - 608 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.06.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-0124 2352-0124  | 
| DOI | 10.1016/j.istruc.2023.03.167 | 
Cover
| Abstract | To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, affecting passengers’ comfort and endangering operation safety. For this reason, different theories and techniques have been employed to assess bridge pier settlement. However, few attempts have been made to utilise train vertical acceleration, the most sensitive index, to estimate pier settlement, which has the potential to save time and overcome all the other methods' geographical and economic challenges. In this study, a CRH380A high-speed train acceleration response dataset is obtained using train-track-bridge interaction simulation in Simpack. The dataset is used to train three machine learning models selected based on PyCaret. The model test results proved that pier settlement can be accurately predicted using train vertical acceleration response. Gradient boost regressor outperformed the other models on the test result with an R-squared of 99%, a mean absolute error of 0.39, and a mean squared error of 0.24. Extra tree regressor is the second-best model on the test result, with an R-squared of 98%, a mean absolute error of 0.56, and a mean squared error of 0.47. The random forest regressor test result has an R-squared of 97%, a mean absolute error of 0.73, and a mean squared error of 0.75. Additionally, over 70% of the gradient boost test prediction error is below 0.5 mm, and the maximum error is 1.5 mm, demonstrating the accuracy of the machine technique to predict pier settlement using the vertical acceleration response of the train. | 
    
|---|---|
| AbstractList | To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of the mileage. Bridge pier settlement has proven to be an inevitable phenomenon, despite its critical effect on the train-track-bridge system, affecting passengers’ comfort and endangering operation safety. For this reason, different theories and techniques have been employed to assess bridge pier settlement. However, few attempts have been made to utilise train vertical acceleration, the most sensitive index, to estimate pier settlement, which has the potential to save time and overcome all the other methods' geographical and economic challenges. In this study, a CRH380A high-speed train acceleration response dataset is obtained using train-track-bridge interaction simulation in Simpack. The dataset is used to train three machine learning models selected based on PyCaret. The model test results proved that pier settlement can be accurately predicted using train vertical acceleration response. Gradient boost regressor outperformed the other models on the test result with an R-squared of 99%, a mean absolute error of 0.39, and a mean squared error of 0.24. Extra tree regressor is the second-best model on the test result, with an R-squared of 98%, a mean absolute error of 0.56, and a mean squared error of 0.47. The random forest regressor test result has an R-squared of 97%, a mean absolute error of 0.73, and a mean squared error of 0.75. Additionally, over 70% of the gradient boost test prediction error is below 0.5 mm, and the maximum error is 1.5 mm, demonstrating the accuracy of the machine technique to predict pier settlement using the vertical acceleration response of the train. | 
    
| Author | Yang, Wang Wei, Guo Abdu, Danladi Mamman  | 
    
| Author_xml | – sequence: 1 givenname: Danladi Mamman surname: Abdu fullname: Abdu, Danladi Mamman organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China – sequence: 2 givenname: Guo surname: Wei fullname: Wei, Guo email: guowei@csu.edu.cn organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China – sequence: 3 givenname: Wang surname: Yang fullname: Yang, Wang organization: School of Civil Engineering Central South University, Railway Campus, Changsha 410083, China  | 
    
| BookMark | eNqFkE1PwzAMhiMEEmPsH3DIH2jJV1vggDRNfEmTuMA5ShN3y9SmU5yB9u9pNw6IA9gHW5bfV_ZzQU5DH4CQK85yznh5vck9prizuWBC5kzmvKxOyETIQmSMC3X6oz8nM8QNY0xwxYSqJgTniIDYQUi0b2g0vv00e1pH71ZAtx4iRUiphcNGbRAc7QNNw2KgxlpoIZrkh1EE3PYBge7QhxXtjF37ALQFE8M4MO2qjz6tO7wkZ41pEWbfdUreHx_eFs_Z8vXpZTFfZlayMmWF4wacFLfOODmkuRHcMFlVomgUr7lsmBR1zZRQdWlqV0NT2GKI0gionJJTcnf0tbFHjNBo69Ph2PH8VnOmR4J6o48E9UhQM6kHgoNY_RJvo-9M3P8nuz_KYHjsY8Cn0XoIFpyPYJN2vf_b4AtwHZLf | 
    
| CitedBy_id | crossref_primary_10_1016_j_soildyn_2025_109228 crossref_primary_10_1371_journal_pone_0303249 crossref_primary_10_3390_buildings15050779 crossref_primary_10_1016_j_istruc_2025_108466 crossref_primary_10_1061_PPSCFX_SCENG_1292 crossref_primary_10_1016_j_kscej_2024_100134  | 
    
| Cites_doi | 10.1016/j.engstruct.2009.03.019 10.1016/j.engstruct.2010.12.011 10.1016/j.jsv.2009.02.031 10.1016/j.engstruct.2019.109859 10.1061/(ASCE)TE.1943-5436.0000577 10.1260/1369-4332.13.1.95 10.1111/j.1475-1305.2010.00752.x 10.1142/S0219455420410047 10.3389/fbuil.2017.00004 10.1023/A:1010933404324 10.1080/23248378.2013.791498 10.1007/s10994-011-5261-8 10.1016/0045-7949(94)00377-F 10.1007/s00521-012-1334-2 10.1016/j.ijnonlinmec.2013.10.004 10.1002/stc.1909 10.1016/j.jsv.2007.05.034 10.1360/N092014-00105 10.1002/stc.2296 10.1061/(ASCE)BE.1943-5592.0001322 10.1088/1742-6596/382/1/012047 10.1016/j.engstruct.2019.109998 10.1007/s11831-015-9157-9 10.1177/0954409716675001 10.1007/s11431-014-5692-0 10.1142/S021945541850092X 10.1016/j.engstruct.2018.02.059 10.1016/j.tust.2004.01.003 10.1080/10298436.2010.484547 10.1002/stc.1998 10.1016/j.engstruct.2014.11.018 10.12989/sss.2015.16.3.521 10.1007/s10994-006-6226-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Institution of Structural Engineers | 
    
| Copyright_xml | – notice: 2023 Institution of Structural Engineers | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.istruc.2023.03.167 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2352-0124 | 
    
| EndPage | 608 | 
    
| ExternalDocumentID | 10_1016_j_istruc_2023_03_167 S235201242300454X  | 
    
| GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADEZE AEBSH AEIPS AFJKZ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSH SST SSZ T5K ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG  | 
    
| ID | FETCH-LOGICAL-c306t-5d1aed329dad3d3da821a037725f41b13f032bb0424b6abdbef5c55556a2e7d43 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 2352-0124 | 
    
| IngestDate | Thu Apr 24 23:10:01 EDT 2025 Wed Oct 01 03:29:28 EDT 2025 Sun Apr 06 06:53:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Random forest regressor Train vertical acceleration Bridge pier settlement Extra tree regressor Machine learning Gradient boost regressor  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-5d1aed329dad3d3da821a037725f41b13f032bb0424b6abdbef5c55556a2e7d43 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_istruc_2023_03_167 crossref_primary_10_1016_j_istruc_2023_03_167 elsevier_sciencedirect_doi_10_1016_j_istruc_2023_03_167  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2023 2023-06-00  | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Structures (Oxford) | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Mata (b0165) 2011; 33 Fernando S. A machine learning based methodology for anomaly detection in dam behaviour[EB/OL]. /2022-12-20. https://www.tdx.cat/handle/10803/405808?show=full. Ranković, Novaković, Grujović (b0175) 2014; 24 Pandey, Barai (b0185) 1995; 54 Bandara (b0210) 2013 Welcome to PyCaret[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/. Guan, Rice, Li (b0115) 2017; 24 Zhang, Shan, Yang (b0220) 2017; 2017 Brownjohn (b0140) 1851; 2007 Dervilis, Choi, Antoniadou (b0205) 2012; 382 HU Z, Xie K, Zhu H. Effect on Continuous Welded Rail Caused by Bridge Pier Settlement of Large-Span Bridge with High-rise Piers--《Railway Standard Design》2013/10 [EB/OL]. /2022-12-21. https://en.cnki.com.cn/Article_en/CJFDTOTAL-TDBS201310007.htm. Yang, Xu, Zhang (b0130) 2020; 203 Chen, Zhai, Sun (b0065) 2014; 44 Alam B. Getting started with the Extra Trees algorithm in Python[EB/OL]. Hands-On-Cloud. 2022-05-27/2022-09-16. https://hands-on.cloud/getting-started-with-the-extra-trees-algorithm-in-python/. Cao Y, Xia H, Wang K-P. Pre-evaluation of impact of foundation construction near existing railway bridge on running train[J]. 2013, 35: 95–101. Chen, Zhai (b0040) 2020; 209 Kang, Schneider, Wenner (b0025) 2018; 163 Yang, Wang, Shi (b0215) 2020; 20 Breiman (b0260) 2001; 45 Giannakos (b0005) 2010; 11 Lin, Yoda (b0030) 2017 Özöğür-Akyüz, Ünay, Smola (b0240) 2011; 85 Santillan, Fraile-Ardanuy, Toledo (b0180) 2013 Hastie, Tibshirani (b0275) 2017 Wang K-P, Xia H, Guo W. Influence of uneven settlement of bridge piers on running safety of high-speed trains. Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33: 137-142+155. Gu, Gul, Wu (b0190) 2017; 24 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-12. https://scikit-learn/stable/modules/ensemble.html. Tang, Chen, Bao (b0195) 2019; 26 Yau (b0075) 2009; 324 Train[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/get-started/functions/train. Zhu, Cai (b0045) 2014; 58 Xia, Zhang, Guo (b0010) 2018 Geurts, Ernst, Wehenkel (b0235) 2006; 63 Lee, Lee, Nam (b0105) 2004; 19 Guo, Wang, Zeng (b0230) 2021 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-16. https://scikit-learn/stable/modules/ensemble.html. Bakhary, Hao, Deeks (b0200) 2010; 13 Chen, Ni (b0125) 2018 Bonopera, Chang, Chen (b0100) 2018; 18 Guan, Rice, Li (b0110) 2015; 16 Chen, Zhai, Yin (b0035) 2018; 232 Goodfellow, Bengio, Courville (b0160) 2016 Sun, Chen, Zelelew (b0225) 2013; 139 TB10621-2009. Code for Design of High Speed Railway. (in Chinese).[EB/OL]. /2022-12-14. https://chat.openai.com. Nguyen L H. Real-time Anomaly Detection in the Behaviour of Structures. Steenbergen, Metrikine, Esveld (b0015) 2007; 306 Yau (b0080) 2009; 31 Chen, Zhai, Cai (b0020) 2015; 58 Louppe G. Understanding Random Forests: From Theory to Practice. Unpublished, 2014. Invernizzi, Lacidogna, Manuello (b0060) 2011; 47 Guan, Bridge, Li (b0120) 2019; 24 Salazar, Morán, Toledo (b0145) 2017; 24 Casas, Moughty (b0135) 2017; 3 Alam B. Implementation of Random Forest algorithm using Python[EB/OL]. Hands-On-Cloud. 2022-01-22/2022-09-16. https://hands-on.cloud/implementation-of-random-forest-algorithm-using-python/. Ahmari, Yang, Zhong (b0055) 2015; 84 Zhai, Xia, Cai (b0095) 2013; 1 Guan (10.1016/j.istruc.2023.03.167_b0110) 2015; 16 Mata (10.1016/j.istruc.2023.03.167_b0165) 2011; 33 Zhang (10.1016/j.istruc.2023.03.167_b0220) 2017; 2017 Lee (10.1016/j.istruc.2023.03.167_b0105) 2004; 19 Yau (10.1016/j.istruc.2023.03.167_b0075) 2009; 324 10.1016/j.istruc.2023.03.167_b0255 Chen (10.1016/j.istruc.2023.03.167_b0065) 2014; 44 Geurts (10.1016/j.istruc.2023.03.167_b0235) 2006; 63 Chen (10.1016/j.istruc.2023.03.167_b0040) 2020; 209 Tang (10.1016/j.istruc.2023.03.167_b0195) 2019; 26 Guo (10.1016/j.istruc.2023.03.167_b0230) 2021 Xia (10.1016/j.istruc.2023.03.167_b0010) 2018 Guan (10.1016/j.istruc.2023.03.167_b0120) 2019; 24 Casas (10.1016/j.istruc.2023.03.167_b0135) 2017; 3 10.1016/j.istruc.2023.03.167_b0150 10.1016/j.istruc.2023.03.167_b0270 Chen (10.1016/j.istruc.2023.03.167_b0020) 2015; 58 Lin (10.1016/j.istruc.2023.03.167_b0030) 2017 10.1016/j.istruc.2023.03.167_b0070 Kang (10.1016/j.istruc.2023.03.167_b0025) 2018; 163 Ahmari (10.1016/j.istruc.2023.03.167_b0055) 2015; 84 Guan (10.1016/j.istruc.2023.03.167_b0115) 2017; 24 Steenbergen (10.1016/j.istruc.2023.03.167_b0015) 2007; 306 10.1016/j.istruc.2023.03.167_b0265 Invernizzi (10.1016/j.istruc.2023.03.167_b0060) 2011; 47 Zhu (10.1016/j.istruc.2023.03.167_b0045) 2014; 58 Giannakos (10.1016/j.istruc.2023.03.167_b0005) 2010; 11 Özöğür-Akyüz (10.1016/j.istruc.2023.03.167_b0240) 2011; 85 10.1016/j.istruc.2023.03.167_b0085 10.1016/j.istruc.2023.03.167_b0280 Dervilis (10.1016/j.istruc.2023.03.167_b0205) 2012; 382 Yau (10.1016/j.istruc.2023.03.167_b0080) 2009; 31 Yang (10.1016/j.istruc.2023.03.167_b0130) 2020; 203 10.1016/j.istruc.2023.03.167_b0155 Bandara (10.1016/j.istruc.2023.03.167_b0210) 2013 Sun (10.1016/j.istruc.2023.03.167_b0225) 2013; 139 Hastie (10.1016/j.istruc.2023.03.167_b0275) 2017 Ranković (10.1016/j.istruc.2023.03.167_b0175) 2014; 24 Santillan (10.1016/j.istruc.2023.03.167_b0180) 2013 Brownjohn (10.1016/j.istruc.2023.03.167_b0140) 1851; 2007 Yang (10.1016/j.istruc.2023.03.167_b0215) 2020; 20 10.1016/j.istruc.2023.03.167_b0250 Goodfellow (10.1016/j.istruc.2023.03.167_b0160) 2016 10.1016/j.istruc.2023.03.167_b0050 10.1016/j.istruc.2023.03.167_b0170 Bakhary (10.1016/j.istruc.2023.03.167_b0200) 2010; 13 10.1016/j.istruc.2023.03.167_b0090 Breiman (10.1016/j.istruc.2023.03.167_b0260) 2001; 45 Gu (10.1016/j.istruc.2023.03.167_b0190) 2017; 24 Chen (10.1016/j.istruc.2023.03.167_b0035) 2018; 232 Zhai (10.1016/j.istruc.2023.03.167_b0095) 2013; 1 10.1016/j.istruc.2023.03.167_b0245 Chen (10.1016/j.istruc.2023.03.167_b0125) 2018 Salazar (10.1016/j.istruc.2023.03.167_b0145) 2017; 24 Bonopera (10.1016/j.istruc.2023.03.167_b0100) 2018; 18 Pandey (10.1016/j.istruc.2023.03.167_b0185) 1995; 54  | 
    
| References_xml | – volume: 382 year: 2012 ident: b0205 article-title: Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading publication-title: J Phys Conf Ser – volume: 19 start-page: 551 year: 2004 end-page: 565 ident: b0105 article-title: Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting publication-title: Tunn Undergr Space Technol – volume: 203 year: 2020 ident: b0130 article-title: Measuring bridge frequencies by a test vehicle in non-moving and moving states publication-title: Eng Struct – reference: TB10621-2009. Code for Design of High Speed Railway. (in Chinese).[EB/OL]. /2022-12-14. https://chat.openai.com. – year: 2017 ident: b0275 article-title: Generalized Additive Models – volume: 84 start-page: 172 year: 2015 end-page: 183 ident: b0055 article-title: Dynamic interaction between vehicle and bridge deck subjected to support settlement publication-title: Eng Struct – volume: 31 start-page: 2115 year: 2009 end-page: 2122 ident: b0080 article-title: Response of a train moving on multi-span railway bridges undergoing ground settlement publication-title: Eng Struct – volume: 33 start-page: 903 year: 2011 end-page: 910 ident: b0165 article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models publication-title: Eng Struct – start-page: 1 year: 2021 end-page: 30 ident: b0230 article-title: Moving Safety Evaluation of High-speed Train on Post-earthquake Bridge Utilizing Real-time Hybrid Simulation publication-title: J Earthq Eng – reference: Alam B. Implementation of Random Forest algorithm using Python[EB/OL]. Hands-On-Cloud. 2022-01-22/2022-09-16. https://hands-on.cloud/implementation-of-random-forest-algorithm-using-python/. – volume: 47 start-page: 158 year: 2011 end-page: 169 ident: b0060 article-title: AE Monitoring and Numerical Simulation of a Two-span Model Masonry Arch Bridge Subjected to Pier Scour: AE and Simulation of a Bridge Subjected to Scour publication-title: Strain – volume: 2007 start-page: 589 year: 1851 end-page: 622 ident: b0140 article-title: Structural health monitoring of civil infrastructure publication-title: Philos Trans R Soc A Math Phys Eng Sci – reference: Louppe G. Understanding Random Forests: From Theory to Practice. Unpublished, 2014. – reference: Train[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/get-started/functions/train. – volume: 2017 start-page: 1 year: 2017 end-page: 13 ident: b0220 article-title: Effect of Bridge-Pier Differential Settlement on the Dynamic Response of a High-Speed Railway Train-Track-Bridge System publication-title: Math Probl Eng – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0260 article-title: Random Forests publication-title: Mach Learn – volume: 16 start-page: 521 year: 2015 end-page: 535 ident: b0110 article-title: Dynamic and static structural displacement measurement using backscattering DC coupled radar publication-title: Smart Struct Syst – volume: 44 start-page: 770 year: 2014 end-page: 777 ident: b0065 article-title: Mapping Relationship between Pier Settlement and Rail Deformation of High-speed Railway (I): Unit Slab Ballastless Track System publication-title: Scientia Sinica Technologica – reference: Welcome to PyCaret[EB/OL]. /2022-09-16. https://pycaret.gitbook.io/docs/. – volume: 232 start-page: 421 year: 2018 end-page: 434 ident: b0035 article-title: Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement publication-title: Proc Inst Mech Eng, Part F: J Rail Rapid Transit – volume: 85 start-page: 1 year: 2011 end-page: 2 ident: b0240 article-title: Guest editorial: model selection and optimization in machine learning publication-title: Mach Learn – reference: Wang K-P, Xia H, Guo W. Influence of uneven settlement of bridge piers on running safety of high-speed trains. Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33: 137-142+155. – year: 2013 ident: b0210 article-title: Damage identification and condition assessment of building structures using frequency response functions and neural networks – volume: 20 start-page: 2041004 year: 2020 ident: b0215 article-title: State-of-the-Art of Vehicle-Based Methods for Detecting Various Properties of Highway Bridges and Railway Tracks publication-title: Int J Struct Stab Dyn – volume: 24 start-page: e1998 year: 2017 ident: b0190 article-title: Damage detection under varying temperature using artificial neural networks publication-title: Struct Control Health Monit – reference: Nguyen L H. Real-time Anomaly Detection in the Behaviour of Structures. – volume: 26 start-page: e2296 year: 2019 ident: b0195 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit – volume: 139 start-page: 1224 year: 2013 end-page: 1234 ident: b0225 article-title: Stress and Deflection Parametric Study of High-Speed Railway CRTS-II Ballastless Track Slab on Elevated Bridge Foundations publication-title: J Transp Eng – volume: 24 year: 2017 ident: b0115 article-title: Structural displacement measurements using DC coupled radar with active transponder publication-title: Struct Control Health Monit – reference: 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-16. https://scikit-learn/stable/modules/ensemble.html. – volume: 13 start-page: 95 year: 2010 end-page: 110 ident: b0200 article-title: Structure Damage Detection Using Neural Network with Multi-Stage Substructuring publication-title: Adv Struct Eng – volume: 24 start-page: 04018102 year: 2019 ident: b0120 article-title: Smart Radar Sensor Network for Bridge Displacement Monitoring publication-title: J Bridg Eng – reference: 1.11. Ensemble methods[EB/OL]. scikit-learn. /2022-09-12. https://scikit-learn/stable/modules/ensemble.html. – volume: 24 start-page: 1 year: 2017 end-page: 21 ident: b0145 article-title: Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations publication-title: Arch Comput Meth Eng – volume: 3 year: 2017 ident: b0135 article-title: Bridge Damage Detection Based on Vibration Data: Past and New Developments publication-title: Front Built Environ – volume: 24 start-page: 1115 year: 2014 end-page: 1121 ident: b0175 article-title: Predicting piezometric water level in dams via artificial neural networks publication-title: Neural Comput Appl – reference: HU Z, Xie K, Zhu H. Effect on Continuous Welded Rail Caused by Bridge Pier Settlement of Large-Span Bridge with High-rise Piers--《Railway Standard Design》2013/10 [EB/OL]. /2022-12-21. https://en.cnki.com.cn/Article_en/CJFDTOTAL-TDBS201310007.htm. – volume: 306 start-page: 361 year: 2007 end-page: 371 ident: b0015 article-title: Assessment of design parameters of a slab track railway system from a dynamic viewpoint publication-title: J Sound Vib – year: 2018 ident: b0010 article-title: Dynamic Interaction of Train-Bridge Systems in High-Speed Railways – year: 2018 ident: b0125 article-title: Structural health monitoring of large civil engineering structures – volume: 18 start-page: 1850092 year: 2018 ident: b0100 article-title: Compressive Column Load Identification in Steel Space Frames Using Second-Order Deflection-Based Methods publication-title: Int J Struct Stab Dyn – start-page: 1 year: 2013 end-page: 8 ident: b0180 article-title: Dam seepage analysis based on artificial neural networks: The hysteresis phenomenon publication-title: The 2013 International Joint Conference on Neural Networks (IJCNN)[C] – volume: 58 start-page: 222 year: 2014 end-page: 232 ident: b0045 article-title: Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads publication-title: Int J Non Linear Mech – year: 2016 ident: b0160 article-title: Deep learning – volume: 58 start-page: 202 year: 2015 end-page: 210 ident: b0020 article-title: Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction publication-title: Sci China Technol Sci – volume: 209 year: 2020 ident: b0040 article-title: Theoretical method of determining pier settlement limit value for China’s high-speed railway bridges considering complete factors publication-title: Eng Struct – volume: 11 start-page: 267 year: 2010 ident: b0005 article-title: High-speed railway infrastructure: recent developments and performance publication-title: Int J Pavement Eng – year: 2017 ident: b0030 article-title: Bridge engineering: classifications, design loading, and analysis methods – volume: 324 start-page: 816 year: 2009 end-page: 831 ident: b0075 article-title: Response of a maglev vehicle moving on a series of guideways with differential settlement publication-title: J Sound Vib – reference: Alam B. Getting started with the Extra Trees algorithm in Python[EB/OL]. Hands-On-Cloud. 2022-05-27/2022-09-16. https://hands-on.cloud/getting-started-with-the-extra-trees-algorithm-in-python/. – volume: 54 start-page: 597 year: 1995 end-page: 608 ident: b0185 article-title: Multilayer perceptron in damage detection of bridge structures publication-title: Comput Struct – volume: 163 start-page: 184 year: 2018 end-page: 196 ident: b0025 article-title: Development of design and construction of high-speed railway bridges in Germany publication-title: Eng Struct – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: b0235 article-title: Extremely randomized trees publication-title: Mach Learn – reference: Fernando S. A machine learning based methodology for anomaly detection in dam behaviour[EB/OL]. /2022-12-20. https://www.tdx.cat/handle/10803/405808?show=full. – reference: Cao Y, Xia H, Wang K-P. Pre-evaluation of impact of foundation construction near existing railway bridge on running train[J]. 2013, 35: 95–101. – volume: 1 start-page: 3 year: 2013 end-page: 24 ident: b0095 article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation publication-title: Int J Rail Transp – ident: 10.1016/j.istruc.2023.03.167_b0245 – ident: 10.1016/j.istruc.2023.03.167_b0270 – volume: 31 start-page: 2115 issue: 9 year: 2009 ident: 10.1016/j.istruc.2023.03.167_b0080 article-title: Response of a train moving on multi-span railway bridges undergoing ground settlement publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.03.019 – volume: 33 start-page: 903 issue: 3 year: 2011 ident: 10.1016/j.istruc.2023.03.167_b0165 article-title: Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.12.011 – year: 2018 ident: 10.1016/j.istruc.2023.03.167_b0125 – ident: 10.1016/j.istruc.2023.03.167_b0155 – ident: 10.1016/j.istruc.2023.03.167_b0090 – ident: 10.1016/j.istruc.2023.03.167_b0255 – ident: 10.1016/j.istruc.2023.03.167_b0085 – year: 2018 ident: 10.1016/j.istruc.2023.03.167_b0010 – volume: 324 start-page: 816 issue: 3–5 year: 2009 ident: 10.1016/j.istruc.2023.03.167_b0075 article-title: Response of a maglev vehicle moving on a series of guideways with differential settlement publication-title: J Sound Vib doi: 10.1016/j.jsv.2009.02.031 – volume: 203 year: 2020 ident: 10.1016/j.istruc.2023.03.167_b0130 article-title: Measuring bridge frequencies by a test vehicle in non-moving and moving states publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109859 – volume: 139 start-page: 1224 issue: 12 year: 2013 ident: 10.1016/j.istruc.2023.03.167_b0225 article-title: Stress and Deflection Parametric Study of High-Speed Railway CRTS-II Ballastless Track Slab on Elevated Bridge Foundations publication-title: J Transp Eng doi: 10.1061/(ASCE)TE.1943-5436.0000577 – volume: 13 start-page: 95 issue: 1 year: 2010 ident: 10.1016/j.istruc.2023.03.167_b0200 article-title: Structure Damage Detection Using Neural Network with Multi-Stage Substructuring publication-title: Adv Struct Eng doi: 10.1260/1369-4332.13.1.95 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0220 article-title: Effect of Bridge-Pier Differential Settlement on the Dynamic Response of a High-Speed Railway Train-Track-Bridge System publication-title: Math Probl Eng – volume: 47 start-page: 158 year: 2011 ident: 10.1016/j.istruc.2023.03.167_b0060 article-title: AE Monitoring and Numerical Simulation of a Two-span Model Masonry Arch Bridge Subjected to Pier Scour: AE and Simulation of a Bridge Subjected to Scour publication-title: Strain doi: 10.1111/j.1475-1305.2010.00752.x – volume: 20 start-page: 2041004 issue: 13 year: 2020 ident: 10.1016/j.istruc.2023.03.167_b0215 article-title: State-of-the-Art of Vehicle-Based Methods for Detecting Various Properties of Highway Bridges and Railway Tracks publication-title: Int J Struct Stab Dyn doi: 10.1142/S0219455420410047 – volume: 3 year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0135 article-title: Bridge Damage Detection Based on Vibration Data: Past and New Developments publication-title: Front Built Environ doi: 10.3389/fbuil.2017.00004 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.istruc.2023.03.167_b0260 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 1 start-page: 3 issue: 1–2 year: 2013 ident: 10.1016/j.istruc.2023.03.167_b0095 article-title: High-speed train–track–bridge dynamic interactions – Part I: theoretical model and numerical simulation publication-title: Int J Rail Transp doi: 10.1080/23248378.2013.791498 – ident: 10.1016/j.istruc.2023.03.167_b0265 – volume: 85 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.istruc.2023.03.167_b0240 article-title: Guest editorial: model selection and optimization in machine learning publication-title: Mach Learn doi: 10.1007/s10994-011-5261-8 – volume: 54 start-page: 597 issue: 4 year: 1995 ident: 10.1016/j.istruc.2023.03.167_b0185 article-title: Multilayer perceptron in damage detection of bridge structures publication-title: Comput Struct doi: 10.1016/0045-7949(94)00377-F – volume: 24 start-page: 1115 issue: 5 year: 2014 ident: 10.1016/j.istruc.2023.03.167_b0175 article-title: Predicting piezometric water level in dams via artificial neural networks publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1334-2 – year: 2013 ident: 10.1016/j.istruc.2023.03.167_b0210 – ident: 10.1016/j.istruc.2023.03.167_b0250 – ident: 10.1016/j.istruc.2023.03.167_b0070 – volume: 58 start-page: 222 year: 2014 ident: 10.1016/j.istruc.2023.03.167_b0045 article-title: Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads publication-title: Int J Non Linear Mech doi: 10.1016/j.ijnonlinmec.2013.10.004 – volume: 24 issue: 4 year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0115 article-title: Structural displacement measurements using DC coupled radar with active transponder publication-title: Struct Control Health Monit doi: 10.1002/stc.1909 – volume: 306 start-page: 361 issue: 1–2 year: 2007 ident: 10.1016/j.istruc.2023.03.167_b0015 article-title: Assessment of design parameters of a slab track railway system from a dynamic viewpoint publication-title: J Sound Vib doi: 10.1016/j.jsv.2007.05.034 – volume: 44 start-page: 770 issue: 7 year: 2014 ident: 10.1016/j.istruc.2023.03.167_b0065 article-title: Mapping Relationship between Pier Settlement and Rail Deformation of High-speed Railway (I): Unit Slab Ballastless Track System publication-title: Scientia Sinica Technologica doi: 10.1360/N092014-00105 – volume: 26 start-page: e2296 issue: 1 year: 2019 ident: 10.1016/j.istruc.2023.03.167_b0195 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit doi: 10.1002/stc.2296 – volume: 24 start-page: 04018102 issue: 1 year: 2019 ident: 10.1016/j.istruc.2023.03.167_b0120 article-title: Smart Radar Sensor Network for Bridge Displacement Monitoring publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001322 – volume: 382 year: 2012 ident: 10.1016/j.istruc.2023.03.167_b0205 article-title: Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/382/1/012047 – volume: 209 year: 2020 ident: 10.1016/j.istruc.2023.03.167_b0040 article-title: Theoretical method of determining pier settlement limit value for China’s high-speed railway bridges considering complete factors publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.109998 – volume: 24 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0145 article-title: Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations publication-title: Arch Comput Meth Eng doi: 10.1007/s11831-015-9157-9 – year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0275 – volume: 232 start-page: 421 issue: 2 year: 2018 ident: 10.1016/j.istruc.2023.03.167_b0035 article-title: Analysis of structural stresses of tracks and vehicle dynamic responses in train–track–bridge system with pier settlement publication-title: Proc Inst Mech Eng, Part F: J Rail Rapid Transit doi: 10.1177/0954409716675001 – volume: 58 start-page: 202 issue: 2 year: 2015 ident: 10.1016/j.istruc.2023.03.167_b0020 article-title: Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction publication-title: Sci China Technol Sci doi: 10.1007/s11431-014-5692-0 – ident: 10.1016/j.istruc.2023.03.167_b0050 – volume: 18 start-page: 1850092 issue: 07 year: 2018 ident: 10.1016/j.istruc.2023.03.167_b0100 article-title: Compressive Column Load Identification in Steel Space Frames Using Second-Order Deflection-Based Methods publication-title: Int J Struct Stab Dyn doi: 10.1142/S021945541850092X – volume: 163 start-page: 184 year: 2018 ident: 10.1016/j.istruc.2023.03.167_b0025 article-title: Development of design and construction of high-speed railway bridges in Germany publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.02.059 – start-page: 1 year: 2013 ident: 10.1016/j.istruc.2023.03.167_b0180 article-title: Dam seepage analysis based on artificial neural networks: The hysteresis phenomenon – ident: 10.1016/j.istruc.2023.03.167_b0170 – volume: 19 start-page: 551 issue: 6 year: 2004 ident: 10.1016/j.istruc.2023.03.167_b0105 article-title: Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2004.01.003 – volume: 11 start-page: 267 issue: 4 year: 2010 ident: 10.1016/j.istruc.2023.03.167_b0005 article-title: High-speed railway infrastructure: recent developments and performance publication-title: Int J Pavement Eng doi: 10.1080/10298436.2010.484547 – ident: 10.1016/j.istruc.2023.03.167_b0150 – volume: 24 start-page: e1998 issue: 11 year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0190 article-title: Damage detection under varying temperature using artificial neural networks publication-title: Struct Control Health Monit doi: 10.1002/stc.1998 – ident: 10.1016/j.istruc.2023.03.167_b0280 – year: 2017 ident: 10.1016/j.istruc.2023.03.167_b0030 – volume: 84 start-page: 172 year: 2015 ident: 10.1016/j.istruc.2023.03.167_b0055 article-title: Dynamic interaction between vehicle and bridge deck subjected to support settlement publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.11.018 – volume: 16 start-page: 521 issue: 3 year: 2015 ident: 10.1016/j.istruc.2023.03.167_b0110 article-title: Dynamic and static structural displacement measurement using backscattering DC coupled radar publication-title: Smart Struct Syst doi: 10.12989/sss.2015.16.3.521 – volume: 2007 start-page: 589 issue: 365 year: 1851 ident: 10.1016/j.istruc.2023.03.167_b0140 article-title: Structural health monitoring of civil infrastructure publication-title: Philos Trans R Soc A Math Phys Eng Sci – year: 2016 ident: 10.1016/j.istruc.2023.03.167_b0160 – start-page: 1 year: 2021 ident: 10.1016/j.istruc.2023.03.167_b0230 article-title: Moving Safety Evaluation of High-speed Train on Post-earthquake Bridge Utilizing Real-time Hybrid Simulation publication-title: J Earthq Eng – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.istruc.2023.03.167_b0235 article-title: Extremely randomized trees publication-title: Mach Learn doi: 10.1007/s10994-006-6226-1  | 
    
| SSID | ssj0002140247 | 
    
| Score | 2.2975657 | 
    
| Snippet | To meet up with the safety and design requirements of High-Speed Railways, bridge structure has become an essential part of the lines occupying up to 90% of... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 598 | 
    
| SubjectTerms | Bridge pier settlement Extra tree regressor Gradient boost regressor Machine learning Random forest regressor Train vertical acceleration  | 
    
| Title | Assessment of railway bridge pier settlement based on train acceleration response using machine learning algorithms | 
    
| URI | https://dx.doi.org/10.1016/j.istruc.2023.03.167 | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: ACRLP dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AIKHN dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AKRWK dateStart: 20150201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu-hB_MT5RQ5e49ok7drjGI6puIsOditJk8zKXMc2EP97X5J2TBAFe2ub9OPl8X6v6S-_h9CNjiXExpwSE3NJOAsUkeAZJFBMUW4r42g73_E0iodj_jCJJg3Ur9fCWFplFft9THfRujrSqazZWRRF55lC7gDhFfIBpyM32UEtwJ8kaaJW7_5xONpMtcANAYm6rsxcZIkIlNeL6BzTq3BSrbe2kLgVPA1dzfkfQGoLeAYHaL_KGHHPP9Qhauj5Edrb0hE8RqveRl8TlwYvRTH7EJ_YL8bCC7goXmkrVuxaWOBSuJxjVx4CizwH6PGOgJeeMqux5cNP8bujWmpc1ZaYYjGblsti_fq-OkHjwd1Lf0iqagokh8-CNYlUKLRiNFUCxoEpkdBQBAyy68jwUIbMBIxKaX-FylhIJbWJ8gi2WFDdVZydoua8nOszhG1WqHhKpVUCShUTJk5TYQSncP0kMm3EavNleSU1bl9pltWcsrfMGz2zRs8CloHR24hsei281MYf7bv1yGTfXCYDNPi15_m_e16gXbvnuWKXqAnn9RVkJWt5XXndFyG54zQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QHtQH4zXitQ--Tra2G-yREMmUy4uQ8Na0a4czwAiQGP-9p91GMDGauMet3eX07Jyz7uv3IfSgAwmxMSZOEjDpMOoqR4JnOK6iijCjjKPNfMdgGERj9jLxJxXUKdfCGFhlEfvzmG6jdbGnUVizsUzTxiuB2gHCK9QDlkdusodqzKdNeDtr7edeNNxOtcAFIRM1rcycb4AIhJWL6CzSK7VUrY9GSNwQnnpWc_6HJLWTeLrH6KioGHE7v6kTVNGLU3S4wyN4htbtLb8mzhK8EunsQ3zifDEWXsJJ8VobsmLbwiQuhbMFtvIQWMQxpJ7cEfAqh8xqbPDwUzy3UEuNC22JKRazabZKN2_z9Tkad59Gncgp1BScGD4LNo6vPKEVJaESMA5UiRbxhEuhuvYT5kmPJi4lUppfoTIQUkmd-LEPWyCIbipGL1B1kS30JcKmKlQsJNIwAYWKiiQIQ5EIRuD8LT-pI1qaj8cF1bh5pBkvMWXvPDc6N0bnLuVg9Dpytr2WOdXGH-2b5cjwby7DIRv82vPq3z3v0X40GvR5_3nYu0YH5kiOG7tBVWirb6FC2ci7wgO_ANHR5hU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+railway+bridge+pier+settlement+based+on+train+acceleration+response+using+machine+learning+algorithms&rft.jtitle=Structures+%28Oxford%29&rft.au=Abdu%2C+Danladi+Mamman&rft.au=Wei%2C+Guo&rft.au=Yang%2C+Wang&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=52&rft.spage=598&rft.epage=608&rft_id=info:doi/10.1016%2Fj.istruc.2023.03.167&rft.externalDocID=S235201242300454X | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |