Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data

Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementa...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 412; pp. 197 - 215
Main Authors El-Sappagh, Shaker, Abuhmed, Tamer, Riazul Islam, S.M., Kwak, Kyung Sup
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.10.2020
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2020.05.087

Cover

Abstract Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementary, multimodalities. Multitask modeling improves progression-detection performance, robustness, and stability. However, multimodal multitask modeling has not been evaluated using time series and deep learning paradigm, especially for AD progression detection. In this paper, we propose a robust ensemble deep learning model based on a stacked convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This multimodal multitask model jointly predicts multiple variables based on the fusion of five types of multimodal time series data plus a set of background (BG) knowledge. Predicted variables include AD multiclass progression task, and four critical cognitive scores regression tasks. The proposed model extracts local and longitudinal features of each modality using a stacked CNN and BiLSTM network. Concurrently, local features are extracted from the BG data using a feed-forward neural network. Resultant features are fused to a deep network to detect common patterns which jointly used to predict the classification and regression tasks. To validate our model, we performed six experiments on five modalities from Alzheimer’s Disease Neuroimaging Initiative (ADNI) of 1536 subjects. The results of the proposed approach achieve state-of-the-art performance for both multiclass progression and regression tasks. Moreover, our approach can be generalized in other medial domains to analyze heterogeneous temporal data for predicting patient’s future status.
AbstractList Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementary, multimodalities. Multitask modeling improves progression-detection performance, robustness, and stability. However, multimodal multitask modeling has not been evaluated using time series and deep learning paradigm, especially for AD progression detection. In this paper, we propose a robust ensemble deep learning model based on a stacked convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This multimodal multitask model jointly predicts multiple variables based on the fusion of five types of multimodal time series data plus a set of background (BG) knowledge. Predicted variables include AD multiclass progression task, and four critical cognitive scores regression tasks. The proposed model extracts local and longitudinal features of each modality using a stacked CNN and BiLSTM network. Concurrently, local features are extracted from the BG data using a feed-forward neural network. Resultant features are fused to a deep network to detect common patterns which jointly used to predict the classification and regression tasks. To validate our model, we performed six experiments on five modalities from Alzheimer’s Disease Neuroimaging Initiative (ADNI) of 1536 subjects. The results of the proposed approach achieve state-of-the-art performance for both multiclass progression and regression tasks. Moreover, our approach can be generalized in other medial domains to analyze heterogeneous temporal data for predicting patient’s future status.
Author El-Sappagh, Shaker
Kwak, Kyung Sup
Riazul Islam, S.M.
Abuhmed, Tamer
Author_xml – sequence: 1
  givenname: Shaker
  surname: El-Sappagh
  fullname: El-Sappagh, Shaker
  email: shaker.elsappagh@usc.es
  organization: Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
– sequence: 2
  givenname: Tamer
  surname: Abuhmed
  fullname: Abuhmed, Tamer
  email: tamer@skku.edu
  organization: College of Computing, Sungkyunkwan University, Republic of Korea
– sequence: 3
  givenname: S.M.
  surname: Riazul Islam
  fullname: Riazul Islam, S.M.
  email: riaz@sejong.ac.kr
  organization: Department of Computer Science and Engineering, Sejong University, Republic of Korea
– sequence: 4
  givenname: Kyung Sup
  surname: Kwak
  fullname: Kwak, Kyung Sup
  email: kskwak@inha.ac.kr
  organization: Department of Information and Communication Engineering, Inha University, Republic of Korea
BookMark eNqFkE1OwzAQRi1UJErhBix8gYSxkzgJC6Sq4k8qYgNry3XGxSWJKztFghXX4HqcBEdlxQJW80kz75PmHZNJ73ok5IxByoCJ803a4067LuXAIYUihao8IFNWlTypeCUmZAo1LxKeMX5EjkPYALCS8XpK_P2uHWznGtXSboyDCi-0QdzSFpXvbb-mcYstNc7Tefv-jLZD__XxGWhjA6qAdOvd2mMI1vWRHFAPY1rFVUNjiPVIA3qLEVGDOiGHRrUBT3_mjDxdXz0ubpPlw83dYr5MdAZiSIpaiLxSueKmMEpwlTOADAG5gVWNRqlCFFmZ6XjOMiXANGyVG1NVqCOB2Yzk-17tXQgejdx62yn_JhnI0ZvcyL03OXqTUMjoLWIXvzAdpYwvDV7Z9j_4cg9jfOzVopdBW-w1NtZHL7Jx9u-Cb1-tklo
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123452
crossref_primary_10_2174_1573405618666220823115848
crossref_primary_10_1145_3499426
crossref_primary_10_1109_JBHI_2021_3123657
crossref_primary_10_3389_fnins_2021_651920
crossref_primary_10_3390_jcm12144594
crossref_primary_10_1038_s41598_023_42796_6
crossref_primary_10_1038_s41598_024_64376_y
crossref_primary_10_1007_s11042_023_16858_w
crossref_primary_10_1016_j_bbr_2024_114900
crossref_primary_10_1016_j_compbiomed_2023_107602
crossref_primary_10_1007_s10462_021_10016_0
crossref_primary_10_1016_j_media_2025_103503
crossref_primary_10_1080_20479700_2022_2130631
crossref_primary_10_1016_j_neunet_2025_107343
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_3390_s23052381
crossref_primary_10_1007_s00521_024_10399_5
crossref_primary_10_1007_s41060_024_00651_5
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1109_JBHI_2024_3512417
crossref_primary_10_1016_j_knosys_2024_111638
crossref_primary_10_1016_j_neuroimage_2023_119892
crossref_primary_10_1016_j_bios_2024_116475
crossref_primary_10_1007_s12530_022_09467_9
crossref_primary_10_1016_j_dsp_2024_104399
crossref_primary_10_1016_j_bspc_2022_103500
crossref_primary_10_1038_s41598_024_71299_1
crossref_primary_10_1007_s00330_023_09519_x
crossref_primary_10_1007_s40745_024_00550_3
crossref_primary_10_1155_2022_9915481
crossref_primary_10_1109_TMI_2022_3230750
crossref_primary_10_1016_j_media_2022_102643
crossref_primary_10_1109_ACCESS_2021_3052870
crossref_primary_10_7717_peerj_cs_2590
crossref_primary_10_3390_s21217259
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_1093_aje_kwab269
crossref_primary_10_1155_2022_8169203
crossref_primary_10_1038_s41598_021_82098_3
crossref_primary_10_1016_j_inffus_2021_03_004
crossref_primary_10_47164_ijngc_v15i2_1475
crossref_primary_10_1038_s41598_023_28383_9
crossref_primary_10_1016_j_jbi_2022_104012
crossref_primary_10_1016_j_bspc_2023_104652
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1088_2516_1091_acc2fe
crossref_primary_10_3389_fneur_2024_1449234
crossref_primary_10_3390_electronics12092050
crossref_primary_10_1016_j_asoc_2024_111749
crossref_primary_10_1007_s11831_025_10246_3
crossref_primary_10_1016_j_eswa_2024_123342
crossref_primary_10_3390_diagnostics15030377
crossref_primary_10_1016_j_inffus_2024_102345
crossref_primary_10_3390_a17050207
crossref_primary_10_1007_s00521_022_07263_9
crossref_primary_10_3389_fmed_2020_612962
crossref_primary_10_3390_diagnostics13172770
crossref_primary_10_1016_j_knosys_2020_106688
crossref_primary_10_3390_make5020031
crossref_primary_10_1007_s00521_021_06631_1
crossref_primary_10_7717_peerj_cs_2298
crossref_primary_10_1016_j_ibmed_2024_100159
crossref_primary_10_1109_JBHI_2022_3202178
crossref_primary_10_1109_JBHI_2023_3270937
crossref_primary_10_1109_ACCESS_2020_3010556
crossref_primary_10_1049_ipr2_12910
crossref_primary_10_1016_j_neucom_2020_11_064
crossref_primary_10_1007_s00521_025_10994_0
crossref_primary_10_1016_j_ejrad_2025_111948
crossref_primary_10_1038_s44220_024_00237_x
crossref_primary_10_1016_j_neucom_2022_09_009
crossref_primary_10_1016_j_rineng_2023_100927
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_1016_j_compbiomed_2021_104935
crossref_primary_10_1016_j_bspc_2021_102960
crossref_primary_10_1016_j_cmpb_2024_108568
crossref_primary_10_1155_2021_6662337
crossref_primary_10_1093_jamiaopen_ooae087
crossref_primary_10_1109_ACCESS_2022_3158952
crossref_primary_10_1016_j_media_2022_102698
crossref_primary_10_1016_j_advengsoft_2023_103445
crossref_primary_10_3390_s23167167
crossref_primary_10_1142_S0129065725500030
crossref_primary_10_1080_03772063_2025_2451721
crossref_primary_10_1093_jamia_ocac168
crossref_primary_10_1016_j_aej_2023_09_050
crossref_primary_10_3390_s22134943
crossref_primary_10_1016_j_ejmp_2024_104505
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1016_j_bspc_2022_104400
crossref_primary_10_1016_j_eswa_2022_117121
crossref_primary_10_1038_s41598_023_48463_0
crossref_primary_10_1016_j_eswa_2022_117006
crossref_primary_10_3233_JIFS_236542
crossref_primary_10_3390_diagnostics11040607
crossref_primary_10_1007_s00607_024_01352_4
crossref_primary_10_3390_electronics9091439
crossref_primary_10_1109_JBHI_2024_3472462
crossref_primary_10_1007_s11571_022_09787_1
crossref_primary_10_3390_diagnostics14121281
crossref_primary_10_3390_jpm12040509
crossref_primary_10_1016_j_compbiomed_2024_108000
crossref_primary_10_3390_jpm12050742
crossref_primary_10_1155_2022_4874516
crossref_primary_10_1016_j_jbi_2022_104216
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1109_TNSM_2022_3200741
crossref_primary_10_1080_09540091_2022_2123450
crossref_primary_10_1016_j_neuroimage_2022_119505
crossref_primary_10_1080_23335777_2024_2329677
crossref_primary_10_1109_JBHI_2022_3214343
crossref_primary_10_1002_qre_3757
crossref_primary_10_1109_TIM_2025_3547084
crossref_primary_10_3390_s23218867
crossref_primary_10_1038_s41598_024_54065_1
crossref_primary_10_1007_s41060_024_00514_z
crossref_primary_10_26599_BDMA_2024_9020025
crossref_primary_10_1016_j_cirp_2024_04_014
crossref_primary_10_1016_j_eswa_2023_120761
crossref_primary_10_32604_csse_2023_030503
crossref_primary_10_1016_j_medntd_2024_100343
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1001_jamanetworkopen_2022_46637
crossref_primary_10_1016_j_bspc_2024_106404
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1111_exsy_13003
crossref_primary_10_1007_s00330_023_09769_9
crossref_primary_10_1016_j_bspc_2023_105767
crossref_primary_10_32604_cmc_2021_019069
crossref_primary_10_1042_ETLS20210249
crossref_primary_10_1080_20479700_2023_2175414
crossref_primary_10_1007_s12559_023_10169_w
crossref_primary_10_1007_s44196_023_00225_6
Cites_doi 10.1016/j.jalz.2011.03.003
10.1109/TBME.2016.2549363
10.1038/s41598-018-37769-z
10.1109/MSP.2017.2738401
10.1016/j.neurobiolaging.2010.10.019
10.1038/s41598-018-22871-z
10.1016/j.neuroimage.2011.09.069
10.1016/j.jalz.2010.03.018
10.1016/j.bspc.2018.08.009
10.1002/cnm.3225
10.1016/j.artmed.2016.06.003
10.1371/journal.pone.0075487
10.1016/j.neucom.2019.01.021
10.3233/JAD-130359
10.1109/IPTA.2019.8936087
10.1016/j.compmedimag.2019.01.005
10.1109/78.650093
10.1016/j.neuroimage.2012.02.084
10.1002/hbm.22156
10.3390/en11123493
10.1016/j.neuroimage.2014.10.002
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neuroimage.2009.12.092
10.1016/j.bbr.2018.02.017
10.1109/TBME.2018.2869989
10.1016/j.neuroimage.2013.03.073
10.1016/j.neucom.2017.11.039
10.1038/s41598-018-27997-8
10.1038/s41597-019-0103-9
10.1049/iet-ipr.2019.0312
10.1109/TBME.2015.2404809
10.1371/journal.pone.0211558
10.1016/j.jneumeth.2017.12.011
10.1016/j.neuroimage.2019.01.031
10.1016/j.neuroimage.2009.04.023
10.1016/j.neucom.2018.06.084
10.1109/TNNLS.2016.2520964
10.1007/s12021-018-9370-4
10.1097/WCO.0000000000000460
10.1016/j.neurobiolaging.2016.07.005
10.1162/neco.1997.9.8.1735
10.1038/s41591-018-0316-z
10.1016/j.media.2017.01.008
10.1016/j.jalz.2016.11.007
10.1016/j.jalz.2017.11.004
10.1093/brain/awl251
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.05.087
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 215
ExternalDocumentID 10_1016_j_neucom_2020_05_087
S0925231220309383
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-596648a4a2f5fa62a41003e0e2f0b9efaa565373cc3013a60fd1b4ff88ecf5fe3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Oct 16 04:36:47 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 23 02:46:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Progression detection
Alzheimer’s disease
Multimodal multitask learning
Time series data analysis
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-596648a4a2f5fa62a41003e0e2f0b9efaa565373cc3013a60fd1b4ff88ecf5fe3
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_05_087
crossref_citationtrail_10_1016_j_neucom_2020_05_087
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_05_087
PublicationCentury 2000
PublicationDate 2020-10-28
PublicationDateYYYYMMDD 2020-10-28
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Jin, Gao, Thung, Shen, Initiative (b0140) 2016; 46
H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, M. Ghassemi, Clinical intervention prediction and understanding using deep networks, arXiv preprint arXiv:1705.08498.
P.S. Pillai, T.-Y. Leong, Fusing heterogeneous data for alzheimer’s disease classification, Stud. Health Technol. Inform.
Hu, Zhang, Yang, Chen, Zhu, Zuo (b0210) 2018; 275
Qiu, Chang, Panagia, Gopal, Au, Kolachalama (b0025) 2018; 10
S. Ruder, An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098.
Ewers, Walsh, Trojanowski, Shaw, Petersen, Jack, Feldman, Bokde, Alexander, Scheltens (b0095) 2012; 33
Tibshirani (b0255) 1996; 58
Lu, Popuri, Ding, Balachandar, Beg (b0160) 2018; 8
E. Goceri, Formulas behind deep learning success, in: Int. Conf. Appl. Anal. Math. Model, 2018.
E. Goceri, Challenges and recent solutions for image segmentation in the era of deep learning, 2019, pp. 1–6.
Oxtoby, Alexander (b0225) 2017; 30
Ritter, Schumacher, Weygandt, Buchert, Allefeld, Haynes, Initiative (b0280) 2015; 1
Ramachandram, Taylor (b0115) 2017; 34
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980.
Amoroso, Diacono, Fanizzi, La Rocca, Monaco, Lombardi, Guaragnella, Bellotti, Tangaro, Initiative (b0220) 2018; 302
Spasov, Passamonti, Duggento, Liò, Toschi, Initiative (b0195) 2019; 189
O. Sener, V. Koltun, Multi-task learning as multi-objective optimization, in: Advances in Neural Information Processing Systems, 2018, pp. 527–538.
Runtti, Mattila, van Gils, Koikkalainen, Soininen, Lötjönen, Initiative (b0240) 2014; 39
Alberdi, Aztiria, Basarab (b0005) 2016; 71
Moore, Lyons, Gallacher, Initiative (b0060) 2019; 14
Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (b0065) 2015; 104
Cheng, Liu, Zhang, Munsell, Shen (b0050) 2015; 62
Liu, Zhang, Adeli, Shen (b0035) 2018; 66
Ito, Corrigan, Zhao, French, Miller, Soares, Katz, Nicholas, Billing, Anziano (b0075) 2011; 7
Wang, Fan, Bhatt, Davatzikos (b0120) 2010; 50
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Morris (b0070) 2017; 13
Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine (b0015) 2011; 7
Schuster, Paliwal (b0230) 1997; 45
Hochreiter, Schmidhuber (b0200) 1997; 9
Ding, Bucholc, Wang, Glass, Wang, Clarke, Bjourson, Le Roy, O’Kane, Prasad (b0040) 2018; 8
Liu, Cheng, Wang, Wang, Initiative (b0165) 2018; 16
Reuter, Schmansky, Rosas, Fischl (b0245) 2012; 61
Tian, Ma, Zhang, Zhan (b0155) 2018; 11
Wee, Yap, Shen, Initiative (b0055) 2013; 34
Duchesne, Caroli, Geroldi, Collins, Frisoni (b0110) 2009; 47
Nie, Zhang, Meng, Song, Chang, Li (b0085) 2016; 28
Liu, Zhou, Shen, Yin (b0105) 2013; 18
E. Goceri, Capsnet topology to classify tumours from brain images and comparative evaluation, IET Image Processing 14 (2020) 882–889(7).
Li, O’Brien, Lutz, Luo, Initiative (b0100) 2018; 14
Choi, Jin, Initiative (b0190) 2018; 344
Liu, Zhang, Zhang, Zhou (b0135) 2013; 8
Suk, Lee, Shen, Initiative (b0275) 2017; 37
Liao, Ding, Jiang, Wang, Zhang, Zhang (b0130) 2019; 348
Goceri (b0175) 2019; 35
Yousif, Niu, Chambua, Khan (b0205) 2019; 335
Masters, Beyreuther (b0010) 2006; 129
Esteva, Robicquet, Ramsundar, Kuleshov, DePristo, Chou, Cui, Corrado, Thrun, Dean (b0270) 2019; 25
Zhang, Shen, Initiative (b0045) 2012; 59
Lee, Nho, Kang, Sohn, Kim (b0030) 2019; 9
H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data, Scientific data 6 (1) (2019) 96.
Cui, Liu, Initiative (b0215) 2019; 73
Zhou, Liu, Narayan, Ye, Initiative (b0125) 2013; 78
H. Li, M. Habes, D.A. Wolk, Y. Fan, A deep learning model for early prediction of alzheimer’s disease dementia based on hippocampal mri, 2019, ArXiv abs/1904.07282.
Tong, Gao, Guerrero, Ledig, Chen, Rueckert, Initiative (b0080) 2016; 64
Lahmiri, Shmuel (b0265) 2019; 52
Moore (10.1016/j.neucom.2020.05.087_b0060) 2019; 14
Yousif (10.1016/j.neucom.2020.05.087_b0205) 2019; 335
Oxtoby (10.1016/j.neucom.2020.05.087_b0225) 2017; 30
10.1016/j.neucom.2020.05.087_b0090
Schuster (10.1016/j.neucom.2020.05.087_b0230) 1997; 45
Lu (10.1016/j.neucom.2020.05.087_b0160) 2018; 8
Ramachandram (10.1016/j.neucom.2020.05.087_b0115) 2017; 34
10.1016/j.neucom.2020.05.087_b0170
10.1016/j.neucom.2020.05.087_b0250
Hochreiter (10.1016/j.neucom.2020.05.087_b0200) 1997; 9
Liao (10.1016/j.neucom.2020.05.087_b0130) 2019; 348
Ding (10.1016/j.neucom.2020.05.087_b0040) 2018; 8
Goceri (10.1016/j.neucom.2020.05.087_b0175) 2019; 35
Amoroso (10.1016/j.neucom.2020.05.087_b0220) 2018; 302
Cheng (10.1016/j.neucom.2020.05.087_b0050) 2015; 62
Liu (10.1016/j.neucom.2020.05.087_b0105) 2013; 18
Esteva (10.1016/j.neucom.2020.05.087_b0270) 2019; 25
Cui (10.1016/j.neucom.2020.05.087_b0215) 2019; 73
Masters (10.1016/j.neucom.2020.05.087_b0010) 2006; 129
10.1016/j.neucom.2020.05.087_b0180
10.1016/j.neucom.2020.05.087_b0020
10.1016/j.neucom.2020.05.087_b0185
Moradi (10.1016/j.neucom.2020.05.087_b0065) 2015; 104
10.1016/j.neucom.2020.05.087_b0260
10.1016/j.neucom.2020.05.087_b0145
Zhang (10.1016/j.neucom.2020.05.087_b0045) 2012; 59
Liu (10.1016/j.neucom.2020.05.087_b0135) 2013; 8
Suk (10.1016/j.neucom.2020.05.087_b0275) 2017; 37
Spasov (10.1016/j.neucom.2020.05.087_b0195) 2019; 189
Tong (10.1016/j.neucom.2020.05.087_b0080) 2016; 64
Li (10.1016/j.neucom.2020.05.087_b0100) 2018; 14
Choi (10.1016/j.neucom.2020.05.087_b0190) 2018; 344
Tibshirani (10.1016/j.neucom.2020.05.087_b0255) 1996; 58
Runtti (10.1016/j.neucom.2020.05.087_b0240) 2014; 39
Liu (10.1016/j.neucom.2020.05.087_b0035) 2018; 66
Nie (10.1016/j.neucom.2020.05.087_b0085) 2016; 28
Qiu (10.1016/j.neucom.2020.05.087_b0025) 2018; 10
Ito (10.1016/j.neucom.2020.05.087_b0075) 2011; 7
Duchesne (10.1016/j.neucom.2020.05.087_b0110) 2009; 47
10.1016/j.neucom.2020.05.087_b0150
Sperling (10.1016/j.neucom.2020.05.087_b0015) 2011; 7
Hu (10.1016/j.neucom.2020.05.087_b0210) 2018; 275
10.1016/j.neucom.2020.05.087_b0235
Wang (10.1016/j.neucom.2020.05.087_b0120) 2010; 50
Zhou (10.1016/j.neucom.2020.05.087_b0125) 2013; 78
Ewers (10.1016/j.neucom.2020.05.087_b0095) 2012; 33
Wee (10.1016/j.neucom.2020.05.087_b0055) 2013; 34
Alberdi (10.1016/j.neucom.2020.05.087_b0005) 2016; 71
Lahmiri (10.1016/j.neucom.2020.05.087_b0265) 2019; 52
Weiner (10.1016/j.neucom.2020.05.087_b0070) 2017; 13
Lee (10.1016/j.neucom.2020.05.087_b0030) 2019; 9
Tian (10.1016/j.neucom.2020.05.087_b0155) 2018; 11
Ritter (10.1016/j.neucom.2020.05.087_b0280) 2015; 1
Huang (10.1016/j.neucom.2020.05.087_b0140) 2016; 46
Liu (10.1016/j.neucom.2020.05.087_b0165) 2018; 16
Reuter (10.1016/j.neucom.2020.05.087_b0245) 2012; 61
References_xml – volume: 344
  start-page: 103
  year: 2018
  end-page: 109
  ident: b0190
  article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
  publication-title: Behavioural Brain Research
– volume: 78
  start-page: 233
  year: 2013
  end-page: 248
  ident: b0125
  article-title: Modeling disease progression via multi-task learning
  publication-title: NeuroImage
– reference: P.S. Pillai, T.-Y. Leong, Fusing heterogeneous data for alzheimer’s disease classification, Stud. Health Technol. Inform.
– volume: 7
  start-page: 151
  year: 2011
  end-page: 160
  ident: b0075
  article-title: Disease progression model for cognitive deterioration from alzheimer’s disease neuroimaging initiative database
  publication-title: Alzheimer’s & Dementia
– volume: 39
  start-page: 49
  year: 2014
  end-page: 61
  ident: b0240
  article-title: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort
  publication-title: Journal of Alzheimer’s Disease
– volume: 71
  start-page: 1
  year: 2016
  end-page: 29
  ident: b0005
  article-title: On the early diagnosis of alzheimer’s disease from multimodal signals: a survey
  publication-title: Artificial Intelligence in Medicine
– volume: 10
  start-page: 737
  year: 2018
  end-page: 749
  ident: b0025
  article-title: Fusion of deep learning models of mri scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 302
  start-page: 3
  year: 2018
  end-page: 9
  ident: b0220
  article-title: Deep learning reveals alzheimer’s disease onset in mci subjects: results from an international challenge
  publication-title: Journal of Neuroscience Methods
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: b0065
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in mci subjects
  publication-title: Neuroimage
– volume: 348
  start-page: 66
  year: 2019
  end-page: 73
  ident: b0130
  article-title: Multi-task deep convolutional neural network for cancer diagnosis
  publication-title: Neurocomputing
– volume: 73
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0215
  article-title: Rnn-based longitudinal analysis for diagnosis of alzheimer’s disease
  publication-title: Computerized Medical Imaging and Graphics
– volume: 62
  start-page: 1805
  year: 2015
  end-page: 1817
  ident: b0050
  article-title: Domain transfer learning for mci conversion prediction
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 129
  start-page: 2823
  year: 2006
  end-page: 2839
  ident: b0010
  article-title: Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the a
  publication-title: Brain
– volume: 8
  year: 2013
  ident: b0135
  article-title: Joint modeling of transitional patterns of alzheimer’s disease
  publication-title: PloS One
– volume: 30
  start-page: 371
  year: 2017
  ident: b0225
  article-title: Imaging plus x: multimodal models of neurodegenerative disease
  publication-title: Current Opinion in Neurology
– volume: 25
  start-page: 24
  year: 2019
  ident: b0270
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
– volume: 50
  start-page: 1519
  year: 2010
  end-page: 1535
  ident: b0120
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: Neuroimage
– reference: E. Goceri, Challenges and recent solutions for image segmentation in the era of deep learning, 2019, pp. 1–6.
– volume: 59
  start-page: 895
  year: 2012
  end-page: 907
  ident: b0045
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: NeuroImage
– volume: 14
  year: 2019
  ident: b0060
  article-title: Random forest prediction of alzheimer’s disease using pairwise selection from time series data
  publication-title: PloS One
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: b0275
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Medical Image Analysis
– volume: 8
  start-page: 9774
  year: 2018
  ident: b0040
  article-title: A hybrid computational approach for efficient alzheimer’s disease classification based on heterogeneous data
  publication-title: Scientific Reports
– volume: 335
  start-page: 195
  year: 2019
  end-page: 205
  ident: b0205
  article-title: Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification
  publication-title: Neurocomputing
– volume: 66
  start-page: 1195
  year: 2018
  end-page: 1206
  ident: b0035
  article-title: Joint classification and regression via deep multi-task multi-channel learning for alzheimer’s disease diagnosis
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 11
  start-page: 3493
  year: 2018
  ident: b0155
  article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network
  publication-title: Energies
– volume: 64
  start-page: 155
  year: 2016
  end-page: 165
  ident: b0080
  article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, M. Ghassemi, Clinical intervention prediction and understanding using deep networks, arXiv preprint arXiv:1705.08498.
– volume: 9
  start-page: 1952
  year: 2019
  ident: b0030
  article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Scientific Reports
– volume: 33
  start-page: 1203
  year: 2012
  end-page: 1214
  ident: b0095
  article-title: Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance
  publication-title: Neurobiology of Aging
– reference: H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data, Scientific data 6 (1) (2019) 96.
– volume: 18
  start-page: 984
  year: 2013
  end-page: 990
  ident: b0105
  article-title: Multiple kernel learning in the primal for multimodal alzheimer’s disease classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
– reference: E. Goceri, Formulas behind deep learning success, in: Int. Conf. Appl. Anal. Math. Model, 2018.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980.
– volume: 28
  start-page: 1508
  year: 2016
  end-page: 1519
  ident: b0085
  article-title: Modeling disease progression via multisource multitask learners: a case study with alzheimer’s disease
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 13
  start-page: e1
  year: 2017
  end-page: e85
  ident: b0070
  article-title: Recent publications from the alzheimer’s disease neuroimaging initiative: Reviewing progress toward improved ad clinical trials
  publication-title: Alzheimer’s & Dementia
– volume: 34
  start-page: 3411
  year: 2013
  end-page: 3425
  ident: b0055
  article-title: Prediction of alzheimer’s disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Human Brain Mapping
– volume: 16
  start-page: 295
  year: 2018
  end-page: 308
  ident: b0165
  article-title: Multi-modality cascaded convolutional neural networks for alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
– volume: 46
  start-page: 180
  year: 2016
  end-page: 191
  ident: b0140
  article-title: Longitudinal clinical score prediction in alzheimer’s disease with soft-split sparse regression based random forest
  publication-title: Neurobiology of Aging
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: b0245
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0200
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 52
  start-page: 414
  year: 2019
  end-page: 419
  ident: b0265
  article-title: Performance of machine learning methods applied to structural mri and adas cognitive scores in diagnosing alzheimer’s disease
  publication-title: Biomedical Signal Processing and Control
– volume: 189
  start-page: 276
  year: 2019
  end-page: 287
  ident: b0195
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: Neuroimage
– reference: H. Li, M. Habes, D.A. Wolk, Y. Fan, A deep learning model for early prediction of alzheimer’s disease dementia based on hippocampal mri, 2019, ArXiv abs/1904.07282.
– volume: 34
  start-page: 96
  year: 2017
  end-page: 108
  ident: b0115
  article-title: Deep multimodal learning: a survey on recent advances and trends
  publication-title: IEEE Signal Processing Magazine
– volume: 47
  start-page: 1363
  year: 2009
  end-page: 1370
  ident: b0110
  article-title: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
  publication-title: Neuroimage
– reference: O. Sener, V. Koltun, Multi-task learning as multi-objective optimization, in: Advances in Neural Information Processing Systems, 2018, pp. 527–538.
– reference: E. Goceri, Capsnet topology to classify tumours from brain images and comparative evaluation, IET Image Processing 14 (2020) 882–889(7).
– volume: 14
  start-page: 644
  year: 2018
  end-page: 651
  ident: b0100
  article-title: A prognostic model of alzheimer’s disease relying on multiple longitudinal measures and time-to-event data
  publication-title: Alzheimer’s & Dementia
– volume: 1
  start-page: 206
  year: 2015
  end-page: 215
  ident: b0280
  article-title: Multimodal prediction of conversion to alzheimer’s disease based on incomplete biomarkers
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 275
  start-page: 2769
  year: 2018
  end-page: 2782
  ident: b0210
  article-title: Predicting the quality of online health expert question-answering services with temporal features in a deep learning framework
  publication-title: Neurocomputing
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b0230
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
– volume: 35
  year: 2019
  ident: b0175
  article-title: Diagnosis of alzheimer’s disease with Sobolev gradient-based optimization and 3d convolutional neural network
  publication-title: International journal for numerical methods in biomedical engineering
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: b0015
  article-title: Toward defining the preclinical stages of alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– volume: 8
  start-page: 5697
  year: 2018
  ident: b0160
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images
  publication-title: Scientific Reports
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0255
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– reference: S. Ruder, An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098.
– volume: 7
  start-page: 280
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2020.05.087_b0015
  article-title: Toward defining the preclinical stages of alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.003
– volume: 64
  start-page: 155
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.05.087_b0080
  article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2016.2549363
– volume: 18
  start-page: 984
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2020.05.087_b0105
  article-title: Multiple kernel learning in the primal for multimodal alzheimer’s disease classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 1
  start-page: 206
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2020.05.087_b0280
  article-title: Multimodal prediction of conversion to alzheimer’s disease based on incomplete biomarkers
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 9
  start-page: 1952
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0030
  article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-37769-z
– ident: 10.1016/j.neucom.2020.05.087_b0250
– ident: 10.1016/j.neucom.2020.05.087_b0170
– volume: 34
  start-page: 96
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2020.05.087_b0115
  article-title: Deep multimodal learning: a survey on recent advances and trends
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2738401
– ident: 10.1016/j.neucom.2020.05.087_b0090
– volume: 33
  start-page: 1203
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2020.05.087_b0095
  article-title: Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2010.10.019
– volume: 8
  start-page: 5697
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0160
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-22871-z
– ident: 10.1016/j.neucom.2020.05.087_b0260
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2020.05.087_b0045
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 7
  start-page: 151
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2020.05.087_b0075
  article-title: Disease progression model for cognitive deterioration from alzheimer’s disease neuroimaging initiative database
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2010.03.018
– volume: 52
  start-page: 414
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0265
  article-title: Performance of machine learning methods applied to structural mri and adas cognitive scores in diagnosing alzheimer’s disease
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.08.009
– volume: 35
  issue: 7
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0175
  article-title: Diagnosis of alzheimer’s disease with Sobolev gradient-based optimization and 3d convolutional neural network
  publication-title: International journal for numerical methods in biomedical engineering
  doi: 10.1002/cnm.3225
– volume: 71
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.05.087_b0005
  article-title: On the early diagnosis of alzheimer’s disease from multimodal signals: a survey
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2016.06.003
– volume: 8
  issue: 9
  year: 2013
  ident: 10.1016/j.neucom.2020.05.087_b0135
  article-title: Joint modeling of transitional patterns of alzheimer’s disease
  publication-title: PloS One
  doi: 10.1371/journal.pone.0075487
– volume: 335
  start-page: 195
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0205
  article-title: Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.021
– volume: 39
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2020.05.087_b0240
  article-title: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-130359
– ident: 10.1016/j.neucom.2020.05.087_b0180
  doi: 10.1109/IPTA.2019.8936087
– volume: 73
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0215
  article-title: Rnn-based longitudinal analysis for diagnosis of alzheimer’s disease
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2019.01.005
– ident: 10.1016/j.neucom.2020.05.087_b0150
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.neucom.2020.05.087_b0230
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.650093
– ident: 10.1016/j.neucom.2020.05.087_b0235
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2020.05.087_b0245
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 34
  start-page: 3411
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2020.05.087_b0055
  article-title: Prediction of alzheimer’s disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22156
– volume: 11
  start-page: 3493
  issue: 12
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0155
  article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network
  publication-title: Energies
  doi: 10.3390/en11123493
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.neucom.2020.05.087_b0065
  article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in mci subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.neucom.2020.05.087_b0255
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 50
  start-page: 1519
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2020.05.087_b0120
  article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.092
– volume: 344
  start-page: 103
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0190
  article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
  publication-title: Behavioural Brain Research
  doi: 10.1016/j.bbr.2018.02.017
– volume: 66
  start-page: 1195
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0035
  article-title: Joint classification and regression via deep multi-task multi-channel learning for alzheimer’s disease diagnosis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2018.2869989
– ident: 10.1016/j.neucom.2020.05.087_b0020
– volume: 78
  start-page: 233
  year: 2013
  ident: 10.1016/j.neucom.2020.05.087_b0125
  article-title: Modeling disease progression via multi-task learning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.073
– volume: 275
  start-page: 2769
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0210
  article-title: Predicting the quality of online health expert question-answering services with temporal features in a deep learning framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.039
– volume: 8
  start-page: 9774
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0040
  article-title: A hybrid computational approach for efficient alzheimer’s disease classification based on heterogeneous data
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-27997-8
– ident: 10.1016/j.neucom.2020.05.087_b0145
  doi: 10.1038/s41597-019-0103-9
– ident: 10.1016/j.neucom.2020.05.087_b0185
  doi: 10.1049/iet-ipr.2019.0312
– volume: 62
  start-page: 1805
  issue: 7
  year: 2015
  ident: 10.1016/j.neucom.2020.05.087_b0050
  article-title: Domain transfer learning for mci conversion prediction
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2015.2404809
– volume: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0060
  article-title: Random forest prediction of alzheimer’s disease using pairwise selection from time series data
  publication-title: PloS One
  doi: 10.1371/journal.pone.0211558
– volume: 302
  start-page: 3
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0220
  article-title: Deep learning reveals alzheimer’s disease onset in mci subjects: results from an international challenge
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2017.12.011
– volume: 189
  start-page: 276
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0195
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 47
  start-page: 1363
  issue: 4
  year: 2009
  ident: 10.1016/j.neucom.2020.05.087_b0110
  article-title: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.023
– volume: 348
  start-page: 66
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0130
  article-title: Multi-task deep convolutional neural network for cancer diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.084
– volume: 10
  start-page: 737
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0025
  article-title: Fusion of deep learning models of mri scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 28
  start-page: 1508
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2020.05.087_b0085
  article-title: Modeling disease progression via multisource multitask learners: a case study with alzheimer’s disease
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2520964
– volume: 16
  start-page: 295
  issue: 3–4
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0165
  article-title: Multi-modality cascaded convolutional neural networks for alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9370-4
– volume: 30
  start-page: 371
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2020.05.087_b0225
  article-title: Imaging plus x: multimodal models of neurodegenerative disease
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0000000000000460
– volume: 46
  start-page: 180
  year: 2016
  ident: 10.1016/j.neucom.2020.05.087_b0140
  article-title: Longitudinal clinical score prediction in alzheimer’s disease with soft-split sparse regression based random forest
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2016.07.005
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.neucom.2020.05.087_b0200
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.05.087_b0270
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
  doi: 10.1038/s41591-018-0316-z
– volume: 37
  start-page: 101
  year: 2017
  ident: 10.1016/j.neucom.2020.05.087_b0275
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2017.01.008
– volume: 13
  start-page: e1
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2020.05.087_b0070
  article-title: Recent publications from the alzheimer’s disease neuroimaging initiative: Reviewing progress toward improved ad clinical trials
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2016.11.007
– volume: 14
  start-page: 644
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2020.05.087_b0100
  article-title: A prognostic model of alzheimer’s disease relying on multiple longitudinal measures and time-to-event data
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2017.11.004
– volume: 129
  start-page: 2823
  issue: 11
  year: 2006
  ident: 10.1016/j.neucom.2020.05.087_b0010
  article-title: Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the aβ amyloid pathway
  publication-title: Brain
  doi: 10.1093/brain/awl251
SSID ssj0017129
Score 2.6600904
Snippet Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms Alzheimer’s disease
Deep learning
Machine learning
Multimodal multitask learning
Progression detection
Time series data analysis
Title Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
URI https://dx.doi.org/10.1016/j.neucom.2020.05.087
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I56VB1bT2HEeHauKqoDUBSp1sxzHhkJJqzZdGBB_g7_HL-HsOBVICCS2JLqLorPju5M_fx9C5zKniuaUEQPJlvCYKZKlISVJZNoK2iAjtWP7HMT9Ib8eRaMG6tZnYSys0q_91ZruVmv_pOWj2ZqNx63boM2gi6KMud281DJ-cp5YFYOL1xXMgyaUVXx7LCLWuj4-5zBehV5azAiDmsnxd1pg3U_p6UvK6W2jTV8r4k71OTuooYtdtFXrMGD_W-6huTtF-zzNwdgBBEu5eMK51jPsRSHusVO8wVCh4s7k5UGPn_X84-19gf0GDXY4rYqjAzxLB9AqsM1xOYYLK0GP7WzV4CJLuY-Gvcu7bp94LQWioCkoSQRtDU8ll8xERsZMcgr_sw40M0HW1kZKqOzCJFRgTkMZByanGTcmTbUCDx0eoLViWuhDhKNcSRjCNNZJzGlqMiapFdJVMdjDS49QWIdQKE80bvUuJqJGlD2KKvDCBl4EkYDAHyGy8ppVRBt_2Cf16IhvE0ZALvjV8_jfnidow97Z1MXSU7RWzpf6DGqSMmu6SddE652rm_7gE1MX5Uo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwGoaO8-OVQUqULrQSt0sx7Gh0IaqTRcGxN_g7_FLODsOAgmBxBY5d1F0ftyd_N19CJ2KjEqaUUY0OFsSREySNPEpiUPdkJAGaaFst89u1O4HV4NwsIBaVS2MgVW6s7880-1p7Ubqzpr1yXBYv_UaDLIoypi9zUv8RbQUhCw2GdjZyyfOg8aUlQ33WEiMeFU_Z0FeuZob0AiDoMk28DTIup_80xefc7GOVl2wiJvl_2ygBZVvorWKiAG7fbmFpraMdvyUgbBFCBZi9ogzpSbYsULcYUt5gyFExc3R870ajtX0_fVtht0NDbZArbJJB2gWFqGVY-PkMgwPhoMem-WqQEUUYhv1L857rTZxZApEQlZQkBDymiARgWA61CJiIqCwoZWnmPbShtJCQGjnx74EceqLyNMZTQOtk0RJ0FD-DqrlT7naRTjMpIA5TCIVRwFNdMoENUy6MgJ5-Oge8isTcuk6jRvCixGvIGUPvDQ8N4bnXsjB8HuIfGpNyk4bf8jH1ezwbyuGgzP4VXP_35onaLndu-nwzmX3-gCtmDfGj7HkENWK6VwdQYBSpMd2AX4Ashrm3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+multitask+deep+learning+model+for+Alzheimer%E2%80%99s+disease+progression+detection+based+on+time+series+data&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=El-Sappagh%2C+Shaker&rft.au=Abuhmed%2C+Tamer&rft.au=Riazul+Islam%2C+S.M.&rft.au=Kwak%2C+Kyung+Sup&rft.date=2020-10-28&rft.issn=0925-2312&rft.volume=412&rft.spage=197&rft.epage=215&rft_id=info:doi/10.1016%2Fj.neucom.2020.05.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_05_087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon