Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data
Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementa...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 412; pp. 197 - 215 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
28.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2020.05.087 |
Cover
| Abstract | Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementary, multimodalities. Multitask modeling improves progression-detection performance, robustness, and stability. However, multimodal multitask modeling has not been evaluated using time series and deep learning paradigm, especially for AD progression detection. In this paper, we propose a robust ensemble deep learning model based on a stacked convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This multimodal multitask model jointly predicts multiple variables based on the fusion of five types of multimodal time series data plus a set of background (BG) knowledge. Predicted variables include AD multiclass progression task, and four critical cognitive scores regression tasks. The proposed model extracts local and longitudinal features of each modality using a stacked CNN and BiLSTM network. Concurrently, local features are extracted from the BG data using a feed-forward neural network. Resultant features are fused to a deep network to detect common patterns which jointly used to predict the classification and regression tasks. To validate our model, we performed six experiments on five modalities from Alzheimer’s Disease Neuroimaging Initiative (ADNI) of 1536 subjects. The results of the proposed approach achieve state-of-the-art performance for both multiclass progression and regression tasks. Moreover, our approach can be generalized in other medial domains to analyze heterogeneous temporal data for predicting patient’s future status. |
|---|---|
| AbstractList | Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects the performance of a progression detection and medically unacceptable. Besides, AD patients are represented by heterogeneous, yet complementary, multimodalities. Multitask modeling improves progression-detection performance, robustness, and stability. However, multimodal multitask modeling has not been evaluated using time series and deep learning paradigm, especially for AD progression detection. In this paper, we propose a robust ensemble deep learning model based on a stacked convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This multimodal multitask model jointly predicts multiple variables based on the fusion of five types of multimodal time series data plus a set of background (BG) knowledge. Predicted variables include AD multiclass progression task, and four critical cognitive scores regression tasks. The proposed model extracts local and longitudinal features of each modality using a stacked CNN and BiLSTM network. Concurrently, local features are extracted from the BG data using a feed-forward neural network. Resultant features are fused to a deep network to detect common patterns which jointly used to predict the classification and regression tasks. To validate our model, we performed six experiments on five modalities from Alzheimer’s Disease Neuroimaging Initiative (ADNI) of 1536 subjects. The results of the proposed approach achieve state-of-the-art performance for both multiclass progression and regression tasks. Moreover, our approach can be generalized in other medial domains to analyze heterogeneous temporal data for predicting patient’s future status. |
| Author | El-Sappagh, Shaker Kwak, Kyung Sup Riazul Islam, S.M. Abuhmed, Tamer |
| Author_xml | – sequence: 1 givenname: Shaker surname: El-Sappagh fullname: El-Sappagh, Shaker email: shaker.elsappagh@usc.es organization: Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain – sequence: 2 givenname: Tamer surname: Abuhmed fullname: Abuhmed, Tamer email: tamer@skku.edu organization: College of Computing, Sungkyunkwan University, Republic of Korea – sequence: 3 givenname: S.M. surname: Riazul Islam fullname: Riazul Islam, S.M. email: riaz@sejong.ac.kr organization: Department of Computer Science and Engineering, Sejong University, Republic of Korea – sequence: 4 givenname: Kyung Sup surname: Kwak fullname: Kwak, Kyung Sup email: kskwak@inha.ac.kr organization: Department of Information and Communication Engineering, Inha University, Republic of Korea |
| BookMark | eNqFkE1OwzAQRi1UJErhBix8gYSxkzgJC6Sq4k8qYgNry3XGxSWJKztFghXX4HqcBEdlxQJW80kz75PmHZNJ73ok5IxByoCJ803a4067LuXAIYUihao8IFNWlTypeCUmZAo1LxKeMX5EjkPYALCS8XpK_P2uHWznGtXSboyDCi-0QdzSFpXvbb-mcYstNc7Tefv-jLZD__XxGWhjA6qAdOvd2mMI1vWRHFAPY1rFVUNjiPVIA3qLEVGDOiGHRrUBT3_mjDxdXz0ubpPlw83dYr5MdAZiSIpaiLxSueKmMEpwlTOADAG5gVWNRqlCFFmZ6XjOMiXANGyVG1NVqCOB2Yzk-17tXQgejdx62yn_JhnI0ZvcyL03OXqTUMjoLWIXvzAdpYwvDV7Z9j_4cg9jfOzVopdBW-w1NtZHL7Jx9u-Cb1-tklo |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123452 crossref_primary_10_2174_1573405618666220823115848 crossref_primary_10_1145_3499426 crossref_primary_10_1109_JBHI_2021_3123657 crossref_primary_10_3389_fnins_2021_651920 crossref_primary_10_3390_jcm12144594 crossref_primary_10_1038_s41598_023_42796_6 crossref_primary_10_1038_s41598_024_64376_y crossref_primary_10_1007_s11042_023_16858_w crossref_primary_10_1016_j_bbr_2024_114900 crossref_primary_10_1016_j_compbiomed_2023_107602 crossref_primary_10_1007_s10462_021_10016_0 crossref_primary_10_1016_j_media_2025_103503 crossref_primary_10_1080_20479700_2022_2130631 crossref_primary_10_1016_j_neunet_2025_107343 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_3390_s23052381 crossref_primary_10_1007_s00521_024_10399_5 crossref_primary_10_1007_s41060_024_00651_5 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1109_JBHI_2024_3512417 crossref_primary_10_1016_j_knosys_2024_111638 crossref_primary_10_1016_j_neuroimage_2023_119892 crossref_primary_10_1016_j_bios_2024_116475 crossref_primary_10_1007_s12530_022_09467_9 crossref_primary_10_1016_j_dsp_2024_104399 crossref_primary_10_1016_j_bspc_2022_103500 crossref_primary_10_1038_s41598_024_71299_1 crossref_primary_10_1007_s00330_023_09519_x crossref_primary_10_1007_s40745_024_00550_3 crossref_primary_10_1155_2022_9915481 crossref_primary_10_1109_TMI_2022_3230750 crossref_primary_10_1016_j_media_2022_102643 crossref_primary_10_1109_ACCESS_2021_3052870 crossref_primary_10_7717_peerj_cs_2590 crossref_primary_10_3390_s21217259 crossref_primary_10_1016_j_neuroimage_2024_120695 crossref_primary_10_1093_aje_kwab269 crossref_primary_10_1155_2022_8169203 crossref_primary_10_1038_s41598_021_82098_3 crossref_primary_10_1016_j_inffus_2021_03_004 crossref_primary_10_47164_ijngc_v15i2_1475 crossref_primary_10_1038_s41598_023_28383_9 crossref_primary_10_1016_j_jbi_2022_104012 crossref_primary_10_1016_j_bspc_2023_104652 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1088_2516_1091_acc2fe crossref_primary_10_3389_fneur_2024_1449234 crossref_primary_10_3390_electronics12092050 crossref_primary_10_1016_j_asoc_2024_111749 crossref_primary_10_1007_s11831_025_10246_3 crossref_primary_10_1016_j_eswa_2024_123342 crossref_primary_10_3390_diagnostics15030377 crossref_primary_10_1016_j_inffus_2024_102345 crossref_primary_10_3390_a17050207 crossref_primary_10_1007_s00521_022_07263_9 crossref_primary_10_3389_fmed_2020_612962 crossref_primary_10_3390_diagnostics13172770 crossref_primary_10_1016_j_knosys_2020_106688 crossref_primary_10_3390_make5020031 crossref_primary_10_1007_s00521_021_06631_1 crossref_primary_10_7717_peerj_cs_2298 crossref_primary_10_1016_j_ibmed_2024_100159 crossref_primary_10_1109_JBHI_2022_3202178 crossref_primary_10_1109_JBHI_2023_3270937 crossref_primary_10_1109_ACCESS_2020_3010556 crossref_primary_10_1049_ipr2_12910 crossref_primary_10_1016_j_neucom_2020_11_064 crossref_primary_10_1007_s00521_025_10994_0 crossref_primary_10_1016_j_ejrad_2025_111948 crossref_primary_10_1038_s44220_024_00237_x crossref_primary_10_1016_j_neucom_2022_09_009 crossref_primary_10_1016_j_rineng_2023_100927 crossref_primary_10_1016_j_inffus_2022_11_028 crossref_primary_10_1016_j_compbiomed_2021_104935 crossref_primary_10_1016_j_bspc_2021_102960 crossref_primary_10_1016_j_cmpb_2024_108568 crossref_primary_10_1155_2021_6662337 crossref_primary_10_1093_jamiaopen_ooae087 crossref_primary_10_1109_ACCESS_2022_3158952 crossref_primary_10_1016_j_media_2022_102698 crossref_primary_10_1016_j_advengsoft_2023_103445 crossref_primary_10_3390_s23167167 crossref_primary_10_1142_S0129065725500030 crossref_primary_10_1080_03772063_2025_2451721 crossref_primary_10_1093_jamia_ocac168 crossref_primary_10_1016_j_aej_2023_09_050 crossref_primary_10_3390_s22134943 crossref_primary_10_1016_j_ejmp_2024_104505 crossref_primary_10_1016_j_compbiomed_2024_108635 crossref_primary_10_1016_j_bspc_2022_104400 crossref_primary_10_1016_j_eswa_2022_117121 crossref_primary_10_1038_s41598_023_48463_0 crossref_primary_10_1016_j_eswa_2022_117006 crossref_primary_10_3233_JIFS_236542 crossref_primary_10_3390_diagnostics11040607 crossref_primary_10_1007_s00607_024_01352_4 crossref_primary_10_3390_electronics9091439 crossref_primary_10_1109_JBHI_2024_3472462 crossref_primary_10_1007_s11571_022_09787_1 crossref_primary_10_3390_diagnostics14121281 crossref_primary_10_3390_jpm12040509 crossref_primary_10_1016_j_compbiomed_2024_108000 crossref_primary_10_3390_jpm12050742 crossref_primary_10_1155_2022_4874516 crossref_primary_10_1016_j_jbi_2022_104216 crossref_primary_10_1109_ACCESS_2021_3062484 crossref_primary_10_1109_TNSM_2022_3200741 crossref_primary_10_1080_09540091_2022_2123450 crossref_primary_10_1016_j_neuroimage_2022_119505 crossref_primary_10_1080_23335777_2024_2329677 crossref_primary_10_1109_JBHI_2022_3214343 crossref_primary_10_1002_qre_3757 crossref_primary_10_1109_TIM_2025_3547084 crossref_primary_10_3390_s23218867 crossref_primary_10_1038_s41598_024_54065_1 crossref_primary_10_1007_s41060_024_00514_z crossref_primary_10_26599_BDMA_2024_9020025 crossref_primary_10_1016_j_cirp_2024_04_014 crossref_primary_10_1016_j_eswa_2023_120761 crossref_primary_10_32604_csse_2023_030503 crossref_primary_10_1016_j_medntd_2024_100343 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1001_jamanetworkopen_2022_46637 crossref_primary_10_1016_j_bspc_2024_106404 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1111_exsy_13003 crossref_primary_10_1007_s00330_023_09769_9 crossref_primary_10_1016_j_bspc_2023_105767 crossref_primary_10_32604_cmc_2021_019069 crossref_primary_10_1042_ETLS20210249 crossref_primary_10_1080_20479700_2023_2175414 crossref_primary_10_1007_s12559_023_10169_w crossref_primary_10_1007_s44196_023_00225_6 |
| Cites_doi | 10.1016/j.jalz.2011.03.003 10.1109/TBME.2016.2549363 10.1038/s41598-018-37769-z 10.1109/MSP.2017.2738401 10.1016/j.neurobiolaging.2010.10.019 10.1038/s41598-018-22871-z 10.1016/j.neuroimage.2011.09.069 10.1016/j.jalz.2010.03.018 10.1016/j.bspc.2018.08.009 10.1002/cnm.3225 10.1016/j.artmed.2016.06.003 10.1371/journal.pone.0075487 10.1016/j.neucom.2019.01.021 10.3233/JAD-130359 10.1109/IPTA.2019.8936087 10.1016/j.compmedimag.2019.01.005 10.1109/78.650093 10.1016/j.neuroimage.2012.02.084 10.1002/hbm.22156 10.3390/en11123493 10.1016/j.neuroimage.2014.10.002 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.neuroimage.2009.12.092 10.1016/j.bbr.2018.02.017 10.1109/TBME.2018.2869989 10.1016/j.neuroimage.2013.03.073 10.1016/j.neucom.2017.11.039 10.1038/s41598-018-27997-8 10.1038/s41597-019-0103-9 10.1049/iet-ipr.2019.0312 10.1109/TBME.2015.2404809 10.1371/journal.pone.0211558 10.1016/j.jneumeth.2017.12.011 10.1016/j.neuroimage.2019.01.031 10.1016/j.neuroimage.2009.04.023 10.1016/j.neucom.2018.06.084 10.1109/TNNLS.2016.2520964 10.1007/s12021-018-9370-4 10.1097/WCO.0000000000000460 10.1016/j.neurobiolaging.2016.07.005 10.1162/neco.1997.9.8.1735 10.1038/s41591-018-0316-z 10.1016/j.media.2017.01.008 10.1016/j.jalz.2016.11.007 10.1016/j.jalz.2017.11.004 10.1093/brain/awl251 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2020.05.087 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 215 |
| ExternalDocumentID | 10_1016_j_neucom_2020_05_087 S0925231220309383 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-596648a4a2f5fa62a41003e0e2f0b9efaa565373cc3013a60fd1b4ff88ecf5fe3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Thu Oct 16 04:36:47 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 23 02:46:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Progression detection Alzheimer’s disease Multimodal multitask learning Time series data analysis Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-596648a4a2f5fa62a41003e0e2f0b9efaa565373cc3013a60fd1b4ff88ecf5fe3 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_05_087 crossref_citationtrail_10_1016_j_neucom_2020_05_087 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_05_087 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-28 |
| PublicationDateYYYYMMDD | 2020-10-28 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huang, Jin, Gao, Thung, Shen, Initiative (b0140) 2016; 46 H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, M. Ghassemi, Clinical intervention prediction and understanding using deep networks, arXiv preprint arXiv:1705.08498. P.S. Pillai, T.-Y. Leong, Fusing heterogeneous data for alzheimer’s disease classification, Stud. Health Technol. Inform. Hu, Zhang, Yang, Chen, Zhu, Zuo (b0210) 2018; 275 Qiu, Chang, Panagia, Gopal, Au, Kolachalama (b0025) 2018; 10 S. Ruder, An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098. Ewers, Walsh, Trojanowski, Shaw, Petersen, Jack, Feldman, Bokde, Alexander, Scheltens (b0095) 2012; 33 Tibshirani (b0255) 1996; 58 Lu, Popuri, Ding, Balachandar, Beg (b0160) 2018; 8 E. Goceri, Formulas behind deep learning success, in: Int. Conf. Appl. Anal. Math. Model, 2018. E. Goceri, Challenges and recent solutions for image segmentation in the era of deep learning, 2019, pp. 1–6. Oxtoby, Alexander (b0225) 2017; 30 Ritter, Schumacher, Weygandt, Buchert, Allefeld, Haynes, Initiative (b0280) 2015; 1 Ramachandram, Taylor (b0115) 2017; 34 D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980. Amoroso, Diacono, Fanizzi, La Rocca, Monaco, Lombardi, Guaragnella, Bellotti, Tangaro, Initiative (b0220) 2018; 302 Spasov, Passamonti, Duggento, Liò, Toschi, Initiative (b0195) 2019; 189 O. Sener, V. Koltun, Multi-task learning as multi-objective optimization, in: Advances in Neural Information Processing Systems, 2018, pp. 527–538. Runtti, Mattila, van Gils, Koikkalainen, Soininen, Lötjönen, Initiative (b0240) 2014; 39 Alberdi, Aztiria, Basarab (b0005) 2016; 71 Moore, Lyons, Gallacher, Initiative (b0060) 2019; 14 Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (b0065) 2015; 104 Cheng, Liu, Zhang, Munsell, Shen (b0050) 2015; 62 Liu, Zhang, Adeli, Shen (b0035) 2018; 66 Ito, Corrigan, Zhao, French, Miller, Soares, Katz, Nicholas, Billing, Anziano (b0075) 2011; 7 Wang, Fan, Bhatt, Davatzikos (b0120) 2010; 50 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Morris (b0070) 2017; 13 Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack, Kaye, Montine (b0015) 2011; 7 Schuster, Paliwal (b0230) 1997; 45 Hochreiter, Schmidhuber (b0200) 1997; 9 Ding, Bucholc, Wang, Glass, Wang, Clarke, Bjourson, Le Roy, O’Kane, Prasad (b0040) 2018; 8 Liu, Cheng, Wang, Wang, Initiative (b0165) 2018; 16 Reuter, Schmansky, Rosas, Fischl (b0245) 2012; 61 Tian, Ma, Zhang, Zhan (b0155) 2018; 11 Wee, Yap, Shen, Initiative (b0055) 2013; 34 Duchesne, Caroli, Geroldi, Collins, Frisoni (b0110) 2009; 47 Nie, Zhang, Meng, Song, Chang, Li (b0085) 2016; 28 Liu, Zhou, Shen, Yin (b0105) 2013; 18 E. Goceri, Capsnet topology to classify tumours from brain images and comparative evaluation, IET Image Processing 14 (2020) 882–889(7). Li, O’Brien, Lutz, Luo, Initiative (b0100) 2018; 14 Choi, Jin, Initiative (b0190) 2018; 344 Liu, Zhang, Zhang, Zhou (b0135) 2013; 8 Suk, Lee, Shen, Initiative (b0275) 2017; 37 Liao, Ding, Jiang, Wang, Zhang, Zhang (b0130) 2019; 348 Goceri (b0175) 2019; 35 Yousif, Niu, Chambua, Khan (b0205) 2019; 335 Masters, Beyreuther (b0010) 2006; 129 Esteva, Robicquet, Ramsundar, Kuleshov, DePristo, Chou, Cui, Corrado, Thrun, Dean (b0270) 2019; 25 Zhang, Shen, Initiative (b0045) 2012; 59 Lee, Nho, Kang, Sohn, Kim (b0030) 2019; 9 H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data, Scientific data 6 (1) (2019) 96. Cui, Liu, Initiative (b0215) 2019; 73 Zhou, Liu, Narayan, Ye, Initiative (b0125) 2013; 78 H. Li, M. Habes, D.A. Wolk, Y. Fan, A deep learning model for early prediction of alzheimer’s disease dementia based on hippocampal mri, 2019, ArXiv abs/1904.07282. Tong, Gao, Guerrero, Ledig, Chen, Rueckert, Initiative (b0080) 2016; 64 Lahmiri, Shmuel (b0265) 2019; 52 Moore (10.1016/j.neucom.2020.05.087_b0060) 2019; 14 Yousif (10.1016/j.neucom.2020.05.087_b0205) 2019; 335 Oxtoby (10.1016/j.neucom.2020.05.087_b0225) 2017; 30 10.1016/j.neucom.2020.05.087_b0090 Schuster (10.1016/j.neucom.2020.05.087_b0230) 1997; 45 Lu (10.1016/j.neucom.2020.05.087_b0160) 2018; 8 Ramachandram (10.1016/j.neucom.2020.05.087_b0115) 2017; 34 10.1016/j.neucom.2020.05.087_b0170 10.1016/j.neucom.2020.05.087_b0250 Hochreiter (10.1016/j.neucom.2020.05.087_b0200) 1997; 9 Liao (10.1016/j.neucom.2020.05.087_b0130) 2019; 348 Ding (10.1016/j.neucom.2020.05.087_b0040) 2018; 8 Goceri (10.1016/j.neucom.2020.05.087_b0175) 2019; 35 Amoroso (10.1016/j.neucom.2020.05.087_b0220) 2018; 302 Cheng (10.1016/j.neucom.2020.05.087_b0050) 2015; 62 Liu (10.1016/j.neucom.2020.05.087_b0105) 2013; 18 Esteva (10.1016/j.neucom.2020.05.087_b0270) 2019; 25 Cui (10.1016/j.neucom.2020.05.087_b0215) 2019; 73 Masters (10.1016/j.neucom.2020.05.087_b0010) 2006; 129 10.1016/j.neucom.2020.05.087_b0180 10.1016/j.neucom.2020.05.087_b0020 10.1016/j.neucom.2020.05.087_b0185 Moradi (10.1016/j.neucom.2020.05.087_b0065) 2015; 104 10.1016/j.neucom.2020.05.087_b0260 10.1016/j.neucom.2020.05.087_b0145 Zhang (10.1016/j.neucom.2020.05.087_b0045) 2012; 59 Liu (10.1016/j.neucom.2020.05.087_b0135) 2013; 8 Suk (10.1016/j.neucom.2020.05.087_b0275) 2017; 37 Spasov (10.1016/j.neucom.2020.05.087_b0195) 2019; 189 Tong (10.1016/j.neucom.2020.05.087_b0080) 2016; 64 Li (10.1016/j.neucom.2020.05.087_b0100) 2018; 14 Choi (10.1016/j.neucom.2020.05.087_b0190) 2018; 344 Tibshirani (10.1016/j.neucom.2020.05.087_b0255) 1996; 58 Runtti (10.1016/j.neucom.2020.05.087_b0240) 2014; 39 Liu (10.1016/j.neucom.2020.05.087_b0035) 2018; 66 Nie (10.1016/j.neucom.2020.05.087_b0085) 2016; 28 Qiu (10.1016/j.neucom.2020.05.087_b0025) 2018; 10 Ito (10.1016/j.neucom.2020.05.087_b0075) 2011; 7 Duchesne (10.1016/j.neucom.2020.05.087_b0110) 2009; 47 10.1016/j.neucom.2020.05.087_b0150 Sperling (10.1016/j.neucom.2020.05.087_b0015) 2011; 7 Hu (10.1016/j.neucom.2020.05.087_b0210) 2018; 275 10.1016/j.neucom.2020.05.087_b0235 Wang (10.1016/j.neucom.2020.05.087_b0120) 2010; 50 Zhou (10.1016/j.neucom.2020.05.087_b0125) 2013; 78 Ewers (10.1016/j.neucom.2020.05.087_b0095) 2012; 33 Wee (10.1016/j.neucom.2020.05.087_b0055) 2013; 34 Alberdi (10.1016/j.neucom.2020.05.087_b0005) 2016; 71 Lahmiri (10.1016/j.neucom.2020.05.087_b0265) 2019; 52 Weiner (10.1016/j.neucom.2020.05.087_b0070) 2017; 13 Lee (10.1016/j.neucom.2020.05.087_b0030) 2019; 9 Tian (10.1016/j.neucom.2020.05.087_b0155) 2018; 11 Ritter (10.1016/j.neucom.2020.05.087_b0280) 2015; 1 Huang (10.1016/j.neucom.2020.05.087_b0140) 2016; 46 Liu (10.1016/j.neucom.2020.05.087_b0165) 2018; 16 Reuter (10.1016/j.neucom.2020.05.087_b0245) 2012; 61 |
| References_xml | – volume: 344 start-page: 103 year: 2018 end-page: 109 ident: b0190 article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging publication-title: Behavioural Brain Research – volume: 78 start-page: 233 year: 2013 end-page: 248 ident: b0125 article-title: Modeling disease progression via multi-task learning publication-title: NeuroImage – reference: P.S. Pillai, T.-Y. Leong, Fusing heterogeneous data for alzheimer’s disease classification, Stud. Health Technol. Inform. – volume: 7 start-page: 151 year: 2011 end-page: 160 ident: b0075 article-title: Disease progression model for cognitive deterioration from alzheimer’s disease neuroimaging initiative database publication-title: Alzheimer’s & Dementia – volume: 39 start-page: 49 year: 2014 end-page: 61 ident: b0240 article-title: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort publication-title: Journal of Alzheimer’s Disease – volume: 71 start-page: 1 year: 2016 end-page: 29 ident: b0005 article-title: On the early diagnosis of alzheimer’s disease from multimodal signals: a survey publication-title: Artificial Intelligence in Medicine – volume: 10 start-page: 737 year: 2018 end-page: 749 ident: b0025 article-title: Fusion of deep learning models of mri scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 302 start-page: 3 year: 2018 end-page: 9 ident: b0220 article-title: Deep learning reveals alzheimer’s disease onset in mci subjects: results from an international challenge publication-title: Journal of Neuroscience Methods – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: b0065 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in mci subjects publication-title: Neuroimage – volume: 348 start-page: 66 year: 2019 end-page: 73 ident: b0130 article-title: Multi-task deep convolutional neural network for cancer diagnosis publication-title: Neurocomputing – volume: 73 start-page: 1 year: 2019 end-page: 10 ident: b0215 article-title: Rnn-based longitudinal analysis for diagnosis of alzheimer’s disease publication-title: Computerized Medical Imaging and Graphics – volume: 62 start-page: 1805 year: 2015 end-page: 1817 ident: b0050 article-title: Domain transfer learning for mci conversion prediction publication-title: IEEE Transactions on Biomedical Engineering – volume: 129 start-page: 2823 year: 2006 end-page: 2839 ident: b0010 article-title: Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the a publication-title: Brain – volume: 8 year: 2013 ident: b0135 article-title: Joint modeling of transitional patterns of alzheimer’s disease publication-title: PloS One – volume: 30 start-page: 371 year: 2017 ident: b0225 article-title: Imaging plus x: multimodal models of neurodegenerative disease publication-title: Current Opinion in Neurology – volume: 25 start-page: 24 year: 2019 ident: b0270 article-title: A guide to deep learning in healthcare publication-title: Nature Medicine – volume: 50 start-page: 1519 year: 2010 end-page: 1535 ident: b0120 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: Neuroimage – reference: E. Goceri, Challenges and recent solutions for image segmentation in the era of deep learning, 2019, pp. 1–6. – volume: 59 start-page: 895 year: 2012 end-page: 907 ident: b0045 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: NeuroImage – volume: 14 year: 2019 ident: b0060 article-title: Random forest prediction of alzheimer’s disease using pairwise selection from time series data publication-title: PloS One – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: b0275 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Medical Image Analysis – volume: 8 start-page: 9774 year: 2018 ident: b0040 article-title: A hybrid computational approach for efficient alzheimer’s disease classification based on heterogeneous data publication-title: Scientific Reports – volume: 335 start-page: 195 year: 2019 end-page: 205 ident: b0205 article-title: Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification publication-title: Neurocomputing – volume: 66 start-page: 1195 year: 2018 end-page: 1206 ident: b0035 article-title: Joint classification and regression via deep multi-task multi-channel learning for alzheimer’s disease diagnosis publication-title: IEEE Transactions on Biomedical Engineering – volume: 11 start-page: 3493 year: 2018 ident: b0155 article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network publication-title: Energies – volume: 64 start-page: 155 year: 2016 end-page: 165 ident: b0080 article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease publication-title: IEEE Transactions on Biomedical Engineering – reference: H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, M. Ghassemi, Clinical intervention prediction and understanding using deep networks, arXiv preprint arXiv:1705.08498. – volume: 9 start-page: 1952 year: 2019 ident: b0030 article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach publication-title: Scientific Reports – volume: 33 start-page: 1203 year: 2012 end-page: 1214 ident: b0095 article-title: Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance publication-title: Neurobiology of Aging – reference: H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, A. Galstyan, Multitask learning and benchmarking with clinical time series data, Scientific data 6 (1) (2019) 96. – volume: 18 start-page: 984 year: 2013 end-page: 990 ident: b0105 article-title: Multiple kernel learning in the primal for multimodal alzheimer’s disease classification publication-title: IEEE Journal of Biomedical and Health Informatics – reference: E. Goceri, Formulas behind deep learning success, in: Int. Conf. Appl. Anal. Math. Model, 2018. – reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980. – volume: 28 start-page: 1508 year: 2016 end-page: 1519 ident: b0085 article-title: Modeling disease progression via multisource multitask learners: a case study with alzheimer’s disease publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 13 start-page: e1 year: 2017 end-page: e85 ident: b0070 article-title: Recent publications from the alzheimer’s disease neuroimaging initiative: Reviewing progress toward improved ad clinical trials publication-title: Alzheimer’s & Dementia – volume: 34 start-page: 3411 year: 2013 end-page: 3425 ident: b0055 article-title: Prediction of alzheimer’s disease and mild cognitive impairment using cortical morphological patterns publication-title: Human Brain Mapping – volume: 16 start-page: 295 year: 2018 end-page: 308 ident: b0165 article-title: Multi-modality cascaded convolutional neural networks for alzheimer’s disease diagnosis publication-title: Neuroinformatics – volume: 46 start-page: 180 year: 2016 end-page: 191 ident: b0140 article-title: Longitudinal clinical score prediction in alzheimer’s disease with soft-split sparse regression based random forest publication-title: Neurobiology of Aging – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: b0245 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0200 article-title: Long short-term memory publication-title: Neural Computation – volume: 52 start-page: 414 year: 2019 end-page: 419 ident: b0265 article-title: Performance of machine learning methods applied to structural mri and adas cognitive scores in diagnosing alzheimer’s disease publication-title: Biomedical Signal Processing and Control – volume: 189 start-page: 276 year: 2019 end-page: 287 ident: b0195 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease publication-title: Neuroimage – reference: H. Li, M. Habes, D.A. Wolk, Y. Fan, A deep learning model for early prediction of alzheimer’s disease dementia based on hippocampal mri, 2019, ArXiv abs/1904.07282. – volume: 34 start-page: 96 year: 2017 end-page: 108 ident: b0115 article-title: Deep multimodal learning: a survey on recent advances and trends publication-title: IEEE Signal Processing Magazine – volume: 47 start-page: 1363 year: 2009 end-page: 1370 ident: b0110 article-title: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features publication-title: Neuroimage – reference: O. Sener, V. Koltun, Multi-task learning as multi-objective optimization, in: Advances in Neural Information Processing Systems, 2018, pp. 527–538. – reference: E. Goceri, Capsnet topology to classify tumours from brain images and comparative evaluation, IET Image Processing 14 (2020) 882–889(7). – volume: 14 start-page: 644 year: 2018 end-page: 651 ident: b0100 article-title: A prognostic model of alzheimer’s disease relying on multiple longitudinal measures and time-to-event data publication-title: Alzheimer’s & Dementia – volume: 1 start-page: 206 year: 2015 end-page: 215 ident: b0280 article-title: Multimodal prediction of conversion to alzheimer’s disease based on incomplete biomarkers publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 275 start-page: 2769 year: 2018 end-page: 2782 ident: b0210 article-title: Predicting the quality of online health expert question-answering services with temporal features in a deep learning framework publication-title: Neurocomputing – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: b0230 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing – volume: 35 year: 2019 ident: b0175 article-title: Diagnosis of alzheimer’s disease with Sobolev gradient-based optimization and 3d convolutional neural network publication-title: International journal for numerical methods in biomedical engineering – volume: 7 start-page: 280 year: 2011 end-page: 292 ident: b0015 article-title: Toward defining the preclinical stages of alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease publication-title: Alzheimer’s & Dementia – volume: 8 start-page: 5697 year: 2018 ident: b0160 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images publication-title: Scientific Reports – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0255 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – reference: S. Ruder, An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098. – volume: 7 start-page: 280 issue: 3 year: 2011 ident: 10.1016/j.neucom.2020.05.087_b0015 article-title: Toward defining the preclinical stages of alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.003 – volume: 64 start-page: 155 issue: 1 year: 2016 ident: 10.1016/j.neucom.2020.05.087_b0080 article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2016.2549363 – volume: 18 start-page: 984 issue: 3 year: 2013 ident: 10.1016/j.neucom.2020.05.087_b0105 article-title: Multiple kernel learning in the primal for multimodal alzheimer’s disease classification publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 1 start-page: 206 issue: 2 year: 2015 ident: 10.1016/j.neucom.2020.05.087_b0280 article-title: Multimodal prediction of conversion to alzheimer’s disease based on incomplete biomarkers publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 9 start-page: 1952 issue: 1 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0030 article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach publication-title: Scientific Reports doi: 10.1038/s41598-018-37769-z – ident: 10.1016/j.neucom.2020.05.087_b0250 – ident: 10.1016/j.neucom.2020.05.087_b0170 – volume: 34 start-page: 96 issue: 6 year: 2017 ident: 10.1016/j.neucom.2020.05.087_b0115 article-title: Deep multimodal learning: a survey on recent advances and trends publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2738401 – ident: 10.1016/j.neucom.2020.05.087_b0090 – volume: 33 start-page: 1203 issue: 7 year: 2012 ident: 10.1016/j.neucom.2020.05.087_b0095 article-title: Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2010.10.019 – volume: 8 start-page: 5697 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0160 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images publication-title: Scientific Reports doi: 10.1038/s41598-018-22871-z – ident: 10.1016/j.neucom.2020.05.087_b0260 – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 10.1016/j.neucom.2020.05.087_b0045 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 7 start-page: 151 issue: 2 year: 2011 ident: 10.1016/j.neucom.2020.05.087_b0075 article-title: Disease progression model for cognitive deterioration from alzheimer’s disease neuroimaging initiative database publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2010.03.018 – volume: 52 start-page: 414 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0265 article-title: Performance of machine learning methods applied to structural mri and adas cognitive scores in diagnosing alzheimer’s disease publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2018.08.009 – volume: 35 issue: 7 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0175 article-title: Diagnosis of alzheimer’s disease with Sobolev gradient-based optimization and 3d convolutional neural network publication-title: International journal for numerical methods in biomedical engineering doi: 10.1002/cnm.3225 – volume: 71 start-page: 1 year: 2016 ident: 10.1016/j.neucom.2020.05.087_b0005 article-title: On the early diagnosis of alzheimer’s disease from multimodal signals: a survey publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2016.06.003 – volume: 8 issue: 9 year: 2013 ident: 10.1016/j.neucom.2020.05.087_b0135 article-title: Joint modeling of transitional patterns of alzheimer’s disease publication-title: PloS One doi: 10.1371/journal.pone.0075487 – volume: 335 start-page: 195 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0205 article-title: Multi-task learning model based on recurrent convolutional neural networks for citation sentiment and purpose classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.021 – volume: 39 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.neucom.2020.05.087_b0240 article-title: Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-130359 – ident: 10.1016/j.neucom.2020.05.087_b0180 doi: 10.1109/IPTA.2019.8936087 – volume: 73 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0215 article-title: Rnn-based longitudinal analysis for diagnosis of alzheimer’s disease publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2019.01.005 – ident: 10.1016/j.neucom.2020.05.087_b0150 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10.1016/j.neucom.2020.05.087_b0230 article-title: Bidirectional recurrent neural networks publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.650093 – ident: 10.1016/j.neucom.2020.05.087_b0235 – volume: 61 start-page: 1402 issue: 4 year: 2012 ident: 10.1016/j.neucom.2020.05.087_b0245 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 34 start-page: 3411 issue: 12 year: 2013 ident: 10.1016/j.neucom.2020.05.087_b0055 article-title: Prediction of alzheimer’s disease and mild cognitive impairment using cortical morphological patterns publication-title: Human Brain Mapping doi: 10.1002/hbm.22156 – volume: 11 start-page: 3493 issue: 12 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0155 article-title: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network publication-title: Energies doi: 10.3390/en11123493 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.neucom.2020.05.087_b0065 article-title: Machine learning framework for early MRI-based alzheimer’s conversion prediction in mci subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.neucom.2020.05.087_b0255 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 50 start-page: 1519 issue: 4 year: 2010 ident: 10.1016/j.neucom.2020.05.087_b0120 article-title: High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.092 – volume: 344 start-page: 103 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0190 article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging publication-title: Behavioural Brain Research doi: 10.1016/j.bbr.2018.02.017 – volume: 66 start-page: 1195 issue: 5 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0035 article-title: Joint classification and regression via deep multi-task multi-channel learning for alzheimer’s disease diagnosis publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2018.2869989 – ident: 10.1016/j.neucom.2020.05.087_b0020 – volume: 78 start-page: 233 year: 2013 ident: 10.1016/j.neucom.2020.05.087_b0125 article-title: Modeling disease progression via multi-task learning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.073 – volume: 275 start-page: 2769 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0210 article-title: Predicting the quality of online health expert question-answering services with temporal features in a deep learning framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.039 – volume: 8 start-page: 9774 issue: 1 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0040 article-title: A hybrid computational approach for efficient alzheimer’s disease classification based on heterogeneous data publication-title: Scientific Reports doi: 10.1038/s41598-018-27997-8 – ident: 10.1016/j.neucom.2020.05.087_b0145 doi: 10.1038/s41597-019-0103-9 – ident: 10.1016/j.neucom.2020.05.087_b0185 doi: 10.1049/iet-ipr.2019.0312 – volume: 62 start-page: 1805 issue: 7 year: 2015 ident: 10.1016/j.neucom.2020.05.087_b0050 article-title: Domain transfer learning for mci conversion prediction publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2015.2404809 – volume: 14 issue: 2 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0060 article-title: Random forest prediction of alzheimer’s disease using pairwise selection from time series data publication-title: PloS One doi: 10.1371/journal.pone.0211558 – volume: 302 start-page: 3 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0220 article-title: Deep learning reveals alzheimer’s disease onset in mci subjects: results from an international challenge publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2017.12.011 – volume: 189 start-page: 276 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0195 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 47 start-page: 1363 issue: 4 year: 2009 ident: 10.1016/j.neucom.2020.05.087_b0110 article-title: Relating one-year cognitive change in mild cognitive impairment to baseline MRI features publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.023 – volume: 348 start-page: 66 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0130 article-title: Multi-task deep convolutional neural network for cancer diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.084 – volume: 10 start-page: 737 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0025 article-title: Fusion of deep learning models of mri scans, mini–mental state examination, and logical memory test enhances diagnosis of mild cognitive impairment publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 28 start-page: 1508 issue: 7 year: 2016 ident: 10.1016/j.neucom.2020.05.087_b0085 article-title: Modeling disease progression via multisource multitask learners: a case study with alzheimer’s disease publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2520964 – volume: 16 start-page: 295 issue: 3–4 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0165 article-title: Multi-modality cascaded convolutional neural networks for alzheimer’s disease diagnosis publication-title: Neuroinformatics doi: 10.1007/s12021-018-9370-4 – volume: 30 start-page: 371 issue: 4 year: 2017 ident: 10.1016/j.neucom.2020.05.087_b0225 article-title: Imaging plus x: multimodal models of neurodegenerative disease publication-title: Current Opinion in Neurology doi: 10.1097/WCO.0000000000000460 – volume: 46 start-page: 180 year: 2016 ident: 10.1016/j.neucom.2020.05.087_b0140 article-title: Longitudinal clinical score prediction in alzheimer’s disease with soft-split sparse regression based random forest publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2016.07.005 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.neucom.2020.05.087_b0200 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 25 start-page: 24 issue: 1 year: 2019 ident: 10.1016/j.neucom.2020.05.087_b0270 article-title: A guide to deep learning in healthcare publication-title: Nature Medicine doi: 10.1038/s41591-018-0316-z – volume: 37 start-page: 101 year: 2017 ident: 10.1016/j.neucom.2020.05.087_b0275 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Medical Image Analysis doi: 10.1016/j.media.2017.01.008 – volume: 13 start-page: e1 issue: 4 year: 2017 ident: 10.1016/j.neucom.2020.05.087_b0070 article-title: Recent publications from the alzheimer’s disease neuroimaging initiative: Reviewing progress toward improved ad clinical trials publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2016.11.007 – volume: 14 start-page: 644 issue: 5 year: 2018 ident: 10.1016/j.neucom.2020.05.087_b0100 article-title: A prognostic model of alzheimer’s disease relying on multiple longitudinal measures and time-to-event data publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2017.11.004 – volume: 129 start-page: 2823 issue: 11 year: 2006 ident: 10.1016/j.neucom.2020.05.087_b0010 article-title: Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the aβ amyloid pathway publication-title: Brain doi: 10.1093/brain/awl251 |
| SSID | ssj0017129 |
| Score | 2.6600904 |
| Snippet | Early prediction of Alzheimer’s disease (AD) is crucial for delaying its progression. As a chronic disease, ignoring the temporal dimension of AD data affects... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 197 |
| SubjectTerms | Alzheimer’s disease Deep learning Machine learning Multimodal multitask learning Progression detection Time series data analysis |
| Title | Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data |
| URI | https://dx.doi.org/10.1016/j.neucom.2020.05.087 |
| Volume | 412 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I56VB1bT2HEeHauKqoDUBSp1sxzHhkJJqzZdGBB_g7_HL-HsOBVICCS2JLqLorPju5M_fx9C5zKniuaUEQPJlvCYKZKlISVJZNoK2iAjtWP7HMT9Ib8eRaMG6tZnYSys0q_91ZruVmv_pOWj2ZqNx63boM2gi6KMud281DJ-cp5YFYOL1xXMgyaUVXx7LCLWuj4-5zBehV5azAiDmsnxd1pg3U_p6UvK6W2jTV8r4k71OTuooYtdtFXrMGD_W-6huTtF-zzNwdgBBEu5eMK51jPsRSHusVO8wVCh4s7k5UGPn_X84-19gf0GDXY4rYqjAzxLB9AqsM1xOYYLK0GP7WzV4CJLuY-Gvcu7bp94LQWioCkoSQRtDU8ll8xERsZMcgr_sw40M0HW1kZKqOzCJFRgTkMZByanGTcmTbUCDx0eoLViWuhDhKNcSRjCNNZJzGlqMiapFdJVMdjDS49QWIdQKE80bvUuJqJGlD2KKvDCBl4EkYDAHyGy8ppVRBt_2Cf16IhvE0ZALvjV8_jfnidow97Z1MXSU7RWzpf6DGqSMmu6SddE652rm_7gE1MX5Uo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwGoaO8-OVQUqULrQSt0sx7Gh0IaqTRcGxN_g7_FLODsOAgmBxBY5d1F0ftyd_N19CJ2KjEqaUUY0OFsSREySNPEpiUPdkJAGaaFst89u1O4HV4NwsIBaVS2MgVW6s7880-1p7Ubqzpr1yXBYv_UaDLIoypi9zUv8RbQUhCw2GdjZyyfOg8aUlQ33WEiMeFU_Z0FeuZob0AiDoMk28DTIup_80xefc7GOVl2wiJvl_2ygBZVvorWKiAG7fbmFpraMdvyUgbBFCBZi9ogzpSbYsULcYUt5gyFExc3R870ajtX0_fVtht0NDbZArbJJB2gWFqGVY-PkMgwPhoMem-WqQEUUYhv1L857rTZxZApEQlZQkBDymiARgWA61CJiIqCwoZWnmPbShtJCQGjnx74EceqLyNMZTQOtk0RJ0FD-DqrlT7naRTjMpIA5TCIVRwFNdMoENUy6MgJ5-Oge8isTcuk6jRvCixGvIGUPvDQ8N4bnXsjB8HuIfGpNyk4bf8jH1ezwbyuGgzP4VXP_35onaLndu-nwzmX3-gCtmDfGj7HkENWK6VwdQYBSpMd2AX4Ashrm3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+multitask+deep+learning+model+for+Alzheimer%E2%80%99s+disease+progression+detection+based+on+time+series+data&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=El-Sappagh%2C+Shaker&rft.au=Abuhmed%2C+Tamer&rft.au=Riazul+Islam%2C+S.M.&rft.au=Kwak%2C+Kyung+Sup&rft.date=2020-10-28&rft.issn=0925-2312&rft.volume=412&rft.spage=197&rft.epage=215&rft_id=info:doi/10.1016%2Fj.neucom.2020.05.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_05_087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |