Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data

Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good applicat...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 104; p. 104023
Main Authors Zhu, Yinghui, Jiang, Yuzhen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2020.104023

Cover

Abstract Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good application prospect in the fields of national security and social security. With the deepening of the research on face recognition, small-scale face recognition has achieved good recognition results, but in the era of big data, the existing small-scale face recognition methods have gradually failed to meet the social needs, and how to get a good face recognition effect in the era of big data has become a new research hotspot. Based on this, this paper aims to optimize the existing face recognition algorithm, study the face recognition method driven by big data, and propose a deep learning multi feature fusion face recognition algorithm driven by big data. First, for the problem that 2DPCA (Two-dimensional Principle Component Analysis) can well extract the global features of the face under large samples, but the local features of the face are difficult to process, this paper uses the LBP (Local Binary Pattern, LBP) algorithm to extract the texture features of the face, and the extracted texture features are integrated with the global features extracted by 2DPCA to multi-feature fusion, so that the fused features can take into account both global and local features, and have better recognition results. Then using the obtained fusion features as input, training in a convolutional neural network, and measuring the similarity based on the feature vectors of the sample set and the training set after the training, can realize multi-feature fusion face recognition. Through the analysis of simulation experiments, it is found that, compared with the use of global features or local features alone, the fusion features obtained by multi-feature fusion of global features extracted by 2DPCA and local features extracted by LBP algorithm have better recognition effect in the big data environment. After convolutional neural network trains and recognizes this feature, a high recognition accuracy rate is obtained, which can show that the face recognition method designed in this paper has good application potential in the era of big data. In the background of big data, the accuracy of face recognition can reach more than 90%, which can meet the needs of society well. •This paper aims to optimize the existing face recognition algorithm.•This paper uses the LBP algorithm to extract the texture features of the face.•This method fuse local & global features of human face in big data background.•The accuracy of face recognition reaches more than 90%.
AbstractList Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good application prospect in the fields of national security and social security. With the deepening of the research on face recognition, small-scale face recognition has achieved good recognition results, but in the era of big data, the existing small-scale face recognition methods have gradually failed to meet the social needs, and how to get a good face recognition effect in the era of big data has become a new research hotspot. Based on this, this paper aims to optimize the existing face recognition algorithm, study the face recognition method driven by big data, and propose a deep learning multi feature fusion face recognition algorithm driven by big data. First, for the problem that 2DPCA (Two-dimensional Principle Component Analysis) can well extract the global features of the face under large samples, but the local features of the face are difficult to process, this paper uses the LBP (Local Binary Pattern, LBP) algorithm to extract the texture features of the face, and the extracted texture features are integrated with the global features extracted by 2DPCA to multi-feature fusion, so that the fused features can take into account both global and local features, and have better recognition results. Then using the obtained fusion features as input, training in a convolutional neural network, and measuring the similarity based on the feature vectors of the sample set and the training set after the training, can realize multi-feature fusion face recognition. Through the analysis of simulation experiments, it is found that, compared with the use of global features or local features alone, the fusion features obtained by multi-feature fusion of global features extracted by 2DPCA and local features extracted by LBP algorithm have better recognition effect in the big data environment. After convolutional neural network trains and recognizes this feature, a high recognition accuracy rate is obtained, which can show that the face recognition method designed in this paper has good application potential in the era of big data. In the background of big data, the accuracy of face recognition can reach more than 90%, which can meet the needs of society well. •This paper aims to optimize the existing face recognition algorithm.•This paper uses the LBP algorithm to extract the texture features of the face.•This method fuse local & global features of human face in big data background.•The accuracy of face recognition reaches more than 90%.
ArticleNumber 104023
Author Zhu, Yinghui
Jiang, Yuzhen
Author_xml – sequence: 1
  givenname: Yinghui
  surname: Zhu
  fullname: Zhu, Yinghui
– sequence: 2
  givenname: Yuzhen
  surname: Jiang
  fullname: Jiang, Yuzhen
  email: jyz366@163.com
BookMark eNqFkMtKAzEUhoNUsK2-gYu8QGsuk7m4EKR4g0I3ug5pcjKeMp0pSVqoT--048qFrs7h53wH_m9CRm3XAiG3nM054_ndZo5bc8A4F0ycoowJeUHGvCzErOSyHJExE3m_lyq_IpMYN4yxghXVmOBql3CLXyZh19LOU28s0AC2q1s8Z6apu4Dpc0vXJoKjfeQAdrQBE1psa7rdNwmpB5P2AajfxxPlAh6gpesjXWNNnUnmmlx600S4-ZlT8vH89L54nS1XL2-Lx-XMSpanWWZlxm3fQAivjFHAXeWF9RXkhVznShpTcG9BZYVSBau8LLLKqYoJxWTpuJyS--GvDV2MAby2mM71UjDYaM70SZre6EGaPknTg7Qezn7Bu9CfheN_2MOAQV_sgBB0tAitBYe9yqRdh38_-AbYxIu3
CitedBy_id crossref_primary_10_1007_s12596_024_01868_0
crossref_primary_10_1155_2022_7493441
crossref_primary_10_1109_ACCESS_2024_3373264
crossref_primary_10_1109_ACCESS_2023_3326235
crossref_primary_10_1016_j_jobe_2021_102690
crossref_primary_10_3390_electronics12061354
crossref_primary_10_3934_electreng_2021005
crossref_primary_10_1109_ACCESS_2021_3116131
crossref_primary_10_1016_j_eswa_2023_119678
crossref_primary_10_3390_sym13030495
crossref_primary_10_3390_bioengineering10060738
crossref_primary_10_1007_s11277_022_09805_9
crossref_primary_10_1155_2022_3466987
crossref_primary_10_1155_2022_2086613
crossref_primary_10_1155_2022_2987227
crossref_primary_10_1007_s12652_022_03897_8
crossref_primary_10_1007_s11227_021_04058_y
crossref_primary_10_1016_j_measurement_2024_114319
crossref_primary_10_1007_s11042_022_13153_y
crossref_primary_10_1007_s12559_024_10316_x
crossref_primary_10_1007_s00784_022_04724_2
crossref_primary_10_3390_coatings14121592
crossref_primary_10_4108_ew_3450
crossref_primary_10_1016_j_patcog_2023_109812
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3390_a17110529
crossref_primary_10_1007_s12559_024_10357_2
Cites_doi 10.1109/MSP.2018.2855727
10.1134/S0030400X18030025
10.1134/S1054661819020044
10.1109/TNSE.2016.2586848
10.1166/jno.2017.2049
10.1109/5.726791
10.1109/TPAMI.2006.244
10.1016/j.epsr.2017.01.035
10.1016/S0031-3203(99)00032-1
10.1109/TGRS.2017.2669341
10.1109/TCYB.2018.2856208
10.1109/MSP.2017.2693418
10.1109/TMTT.2017.2772782
10.1109/TPAMI.2004.1261097
10.1007/s10494-017-9807-0
10.1049/trit.2019.0028
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2020.104023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2020_104023
S0262885620301554
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-4c341c40222f5aa5e1d9f2cf9e673b653aa71fce54755709f3749d59025038d13
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Thu Oct 09 00:27:02 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Fri Feb 23 02:45:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-feature fusion
Big data
Face recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-4c341c40222f5aa5e1d9f2cf9e673b653aa71fce54755709f3749d59025038d13
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2020_104023
crossref_primary_10_1016_j_imavis_2020_104023
elsevier_sciencedirect_doi_10_1016_j_imavis_2020_104023
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ahonen, Hadid, Pietikainen (bb0110) 2006; 28
AbhijitGhosh, Nirala, Yadav (bb0020) 2018; 124
Yang, Zhang, Frangi, Yang (bb0100) 2004; 26
Zhu, Wei (bb0085) 2017; 12
Anbarasan, BalaAnand, Sivaparthipan, Sundarasekar, Kadry, Krishnamoorthy, Dinesh JacksonSamuel, Antony Dasel (bb0140) 2020; Vol. 150
Li, HongweiGe, Zhang (bb0035) 2017; 47
YoshuaBengio, Fischer, Zhang, Yuhuai Wu. (bb0055) 2017; 29
Guo, Wang, Zhao, Qi (bb0030) 2018; 47
Li, Sun, Zhang (bb0040) 2019; 29
Zhang, Wang, Zhang (bb0080) 2017; 146
Park, Ham, Park, Kim, Park (bb0050) 2018; 66
Pietik?inen, Ojala, Xu (bb0105) 2000; 33
Xu, WenhuaZeng, Yen (bb0120) 2019; 49
Basavegowda, Shekar, Dagnew (bb0135) 2020; 5.1
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (bb0115) 2017; 34
TOKA Onur; ÇETİN (bb0090) 2018; 67
Fang, Zhang, Yang, Liu, Guo (bb0070) 2018; 77
Naiki, Hayashi, Takemura (bb0015) 2017; 32
Gardezi, Faye, FaouziAdjed, Hussain (bb0025) 2017; 7
Jain (bb0010) 2017; 41
Ortega-Zamorano, Jerez, Juárez, Franco (bb0060) 2017; 46
Lecun, Bottou, Bengio, Haffner (bb0075) 1989; 86
Rafii (bb0045) 2018; 35
Lee, Chang, Chang (bb0130) 2017; 3
Cheng, Wang, Xu, Wang, Xiang, Pan (bb0065) 2017; 55
Wang, Chen (bb0095) 2017; 63
Jiao, Yang, He, Gu, Lau (bb0005) 2017; 124
Wu, Wang, Xiao, Ling (bb0125) 2017; 99
Park (10.1016/j.imavis.2020.104023_bb0050) 2018; 66
Gardezi (10.1016/j.imavis.2020.104023_bb0025) 2017; 7
Jiao (10.1016/j.imavis.2020.104023_bb0005) 2017; 124
YoshuaBengio (10.1016/j.imavis.2020.104023_bb0055) 2017; 29
Cheng (10.1016/j.imavis.2020.104023_bb0065) 2017; 55
AbhijitGhosh (10.1016/j.imavis.2020.104023_bb0020) 2018; 124
Xu (10.1016/j.imavis.2020.104023_bb0120) 2019; 49
Bronstein (10.1016/j.imavis.2020.104023_bb0115) 2017; 34
Li (10.1016/j.imavis.2020.104023_bb0035) 2017; 47
Wu (10.1016/j.imavis.2020.104023_bb0125) 2017; 99
TOKA Onur; ÇETİN (10.1016/j.imavis.2020.104023_bb0090) 2018; 67
Yang (10.1016/j.imavis.2020.104023_bb0100) 2004; 26
Guo (10.1016/j.imavis.2020.104023_bb0030) 2018; 47
Li (10.1016/j.imavis.2020.104023_bb0040) 2019; 29
Basavegowda (10.1016/j.imavis.2020.104023_bb0135) 2020; 5.1
Lee (10.1016/j.imavis.2020.104023_bb0130) 2017; 3
Jain (10.1016/j.imavis.2020.104023_bb0010) 2017; 41
Anbarasan (10.1016/j.imavis.2020.104023_bb0140) 2020; Vol. 150
Lecun (10.1016/j.imavis.2020.104023_bb0075) 1989; 86
Rafii (10.1016/j.imavis.2020.104023_bb0045) 2018; 35
Zhang (10.1016/j.imavis.2020.104023_bb0080) 2017; 146
Fang (10.1016/j.imavis.2020.104023_bb0070) 2018; 77
Ortega-Zamorano (10.1016/j.imavis.2020.104023_bb0060) 2017; 46
Zhu (10.1016/j.imavis.2020.104023_bb0085) 2017; 12
Wang (10.1016/j.imavis.2020.104023_bb0095) 2017; 63
Naiki (10.1016/j.imavis.2020.104023_bb0015) 2017; 32
Pietik?inen (10.1016/j.imavis.2020.104023_bb0105) 2000; 33
Ahonen (10.1016/j.imavis.2020.104023_bb0110) 2006; 28
References_xml – volume: 26
  start-page: 131
  year: 2004
  end-page: 137
  ident: bb0100
  article-title: Two-dimensional pca: a new approach to appearance-based face representation and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 41
  year: 2017
  end-page: 98
  ident: bb0010
  article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based pca learning paradigm
  publication-title: J. Med. Syst.
– volume: 124
  start-page: 437
  year: 2018
  end-page: 449
  ident: bb0020
  article-title: Analysis of fringe field formed inside lda measurement volume using compact two hololens imaging systems
  publication-title: Opt. Spectrosc.
– volume: Vol. 150
  year: 2020
  ident: bb0140
  article-title: Detection of flood disaster system based on IoT, big data and convolutional deep neural network
  publication-title: Computer Communications
– volume: 47
  start-page: 1
  year: 2017
  end-page: 21
  ident: bb0035
  article-title: Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem
  publication-title: Neural. Process. Lett.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: bb0110
  article-title: Face description with local binary patterns: application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 67
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0090
  article-title: A correction on tangentboost algorithm
  publication-title: Communications
– volume: 55
  start-page: 3322
  year: 2017
  end-page: 3337
  ident: bb0065
  article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network.IEEE
  publication-title: Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 88
  year: 2018
  end-page: 92
  ident: bb0045
  article-title: Sliding discrete fourier transform with kernel windowing [lecture notes]
  publication-title: IEEE Signal Process. Mag.
– volume: 66
  start-page: 1644
  year: 2018
  end-page: 1659
  ident: bb0050
  article-title: Polyphase-basis discrete cosine transform for real-time measurement of heart rate with cwdoppler radar
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 124
  start-page: 1
  year: 2017
  end-page: 19
  ident: bb0005
  article-title: Joint image denoising and disparity estimation via stereo structure pca and noise-tolerant cost
  publication-title: Int. J. Comput. Vis.
– volume: 47
  start-page: 481
  year: 2018
  end-page: 485
  ident: bb0030
  article-title: A method of seam carving forensics based on lbp and markov features
  publication-title: J. Uni. Electronic Sci. Technol. China
– volume: 63
  start-page: 182
  year: 2017
  end-page: 192
  ident: bb0095
  article-title: Joint representation classification for collective face recognition
– volume: 7
  start-page: 30
  year: 2017
  end-page: 35
  ident: bb0025
  article-title: Mammogram classification using chi-square distribution on local binary pattern features
  publication-title: J. Med. Imag. Health Inform.
– volume: 3
  start-page: 117
  year: 2017
  end-page: 131
  ident: bb0130
  article-title: Analyses of the clustering coefficient and the Pearson degree correlation coefficient of chung’s duplication model
  publication-title: IEEE Trans. Network Sci. Eng.
– volume: 86
  start-page: 2278
  year: 1989
  end-page: 2324
  ident: bb0075
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: bb0080
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 29
  start-page: 258
  year: 2019
  end-page: 267
  ident: bb0040
  article-title: Building recognition using gist feature based on locality sensitive histograms of oriented gradients
  publication-title: Pattern Recog. Image Anal.
– volume: 99
  start-page: 25
  year: 2017
  end-page: 46
  ident: bb0125
  article-title: A priori assessment of prediction confidence for data-driven turbulence modeling
  publication-title: Flow Turb. Combust.
– volume: 46
  start-page: 1
  year: 2017
  end-page: 16
  ident: bb0060
  article-title: Fpga implementation of neurocomputational models: comparison between standard back-propagation and c-mantec constructive algorithm
  publication-title: Neural. Process. Lett.
– volume: 77
  start-page: 1
  year: 2018
  end-page: 18
  ident: bb0070
  article-title: Blind visual quality assessment for image super-resolution by convolutional neural network
  publication-title: Multimed. Tools Appl.
– volume: 49
  start-page: 3968
  year: 2019
  end-page: 3979
  ident: bb0120
  article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 43
  year: 2000
  end-page: 52
  ident: bb0105
  article-title: Rotation-invariant texture classification using feature distributions
  publication-title: Pattern Recogn.
– volume: 32
  start-page: 43
  year: 2017
  end-page: 59
  ident: bb0015
  article-title: Anlda and flow visualization study of pulsatile flow in an aortic bifurcation model
  publication-title: Biorheology
– volume: 12
  start-page: 452
  year: 2017
  end-page: 459
  ident: bb0085
  article-title: Localization algorithm in wireless sensor networks based on improved support vector machine
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: bb0115
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 5.1
  start-page: 22
  year: 2020
  end-page: 33
  ident: bb0135
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Trans. Intell. Technol.
– volume: 29
  start-page: 1
  year: 2017
  end-page: 23
  ident: bb0055
  article-title: Stdp-compatible approximation of back-propagation in an energy-based model
  publication-title: Neural Comput.
– volume: 35
  start-page: 88
  issue: 6
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0045
  article-title: Sliding discrete fourier transform with kernel windowing [lecture notes]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2855727
– volume: 124
  start-page: 437
  issue: 3
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0020
  article-title: Analysis of fringe field formed inside lda measurement volume using compact two hololens imaging systems
  publication-title: Opt. Spectrosc.
  doi: 10.1134/S0030400X18030025
– volume: 29
  start-page: 258
  issue: 2
  year: 2019
  ident: 10.1016/j.imavis.2020.104023_bb0040
  article-title: Building recognition using gist feature based on locality sensitive histograms of oriented gradients
  publication-title: Pattern Recog. Image Anal.
  doi: 10.1134/S1054661819020044
– volume: 3
  start-page: 117
  issue: 3
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0130
  article-title: Analyses of the clustering coefficient and the Pearson degree correlation coefficient of chung’s duplication model
  publication-title: IEEE Trans. Network Sci. Eng.
  doi: 10.1109/TNSE.2016.2586848
– volume: 77
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0070
  article-title: Blind visual quality assessment for image super-resolution by convolutional neural network
  publication-title: Multimed. Tools Appl.
– volume: 46
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0060
  article-title: Fpga implementation of neurocomputational models: comparison between standard back-propagation and c-mantec constructive algorithm
  publication-title: Neural. Process. Lett.
– volume: 12
  start-page: 452
  issue: 5
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0085
  article-title: Localization algorithm in wireless sensor networks based on improved support vector machine
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2017.2049
– volume: 41
  start-page: 41
  issue: 6
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0010
  article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based pca learning paradigm
  publication-title: J. Med. Syst.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1989
  ident: 10.1016/j.imavis.2020.104023_bb0075
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.imavis.2020.104023_bb0110
  article-title: Face description with local binary patterns: application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 47
  start-page: 481
  issue: 4
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0030
  article-title: A method of seam carving forensics based on lbp and markov features
  publication-title: J. Uni. Electronic Sci. Technol. China
– volume: 146
  start-page: 270
  issue: 2
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0080
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– volume: 47
  start-page: 1
  issue: 14
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0035
  article-title: Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem
  publication-title: Neural. Process. Lett.
– volume: 33
  start-page: 43
  issue: 1
  year: 2000
  ident: 10.1016/j.imavis.2020.104023_bb0105
  article-title: Rotation-invariant texture classification using feature distributions
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(99)00032-1
– volume: 29
  start-page: 1
  issue: 24
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0055
  article-title: Stdp-compatible approximation of back-propagation in an energy-based model
  publication-title: Neural Comput.
– volume: 55
  start-page: 3322
  issue: 6
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0065
  article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network.IEEE
  publication-title: Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2669341
– volume: 67
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0090
  article-title: A correction on tangentboost algorithm
  publication-title: Communications
– volume: 63
  start-page: 182
  issue: 5
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0095
  article-title: Joint representation classification for collective face recognition
– volume: 49
  start-page: 3968
  issue: 11
  year: 2019
  ident: 10.1016/j.imavis.2020.104023_bb0120
  article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2856208
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0115
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 7
  start-page: 30
  issue: 5
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0025
  article-title: Mammogram classification using chi-square distribution on local binary pattern features
  publication-title: J. Med. Imag. Health Inform.
– volume: 66
  start-page: 1644
  issue: 3
  year: 2018
  ident: 10.1016/j.imavis.2020.104023_bb0050
  article-title: Polyphase-basis discrete cosine transform for real-time measurement of heart rate with cwdoppler radar
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.2017.2772782
– volume: Vol. 150
  year: 2020
  ident: 10.1016/j.imavis.2020.104023_bb0140
  article-title: Detection of flood disaster system based on IoT, big data and convolutional deep neural network
– volume: 26
  start-page: 131
  issue: 1
  year: 2004
  ident: 10.1016/j.imavis.2020.104023_bb0100
  article-title: Two-dimensional pca: a new approach to appearance-based face representation and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.1261097
– volume: 32
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0015
  article-title: Anlda and flow visualization study of pulsatile flow in an aortic bifurcation model
  publication-title: Biorheology
– volume: 124
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0005
  article-title: Joint image denoising and disparity estimation via stereo structure pca and noise-tolerant cost
  publication-title: Int. J. Comput. Vis.
– volume: 99
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.imavis.2020.104023_bb0125
  article-title: A priori assessment of prediction confidence for data-driven turbulence modeling
  publication-title: Flow Turb. Combust.
  doi: 10.1007/s10494-017-9807-0
– volume: 5.1
  start-page: 22
  issue: 2020
  year: 2020
  ident: 10.1016/j.imavis.2020.104023_bb0135
  article-title: Deep learning approach for microarray cancer data classification
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0028
SSID ssj0007079
Score 2.461974
Snippet Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104023
SubjectTerms Big data
Deep learning
Face recognition
Multi-feature fusion
Title Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data
URI https://dx.doi.org/10.1016/j.imavis.2020.104023
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqWGDgKCDKUXlgNc3hxMlYVVQFRBmgUrfIZwnqpdIOLPx2_BKnFAmBxBjLT4qe7XfY3_seQld-qgNFtSAek4JQymIiFGeE21DZeJ5itHhof-jHvQG9G0bDGupUtTAAq3S2v7TphbV2Iy2nzdY8z1tPNnsIksT6b4jqrVeECnbKoIvB9ccXzAMY4Mp7Fnvy7eyqfK7AeOUTKOW3WWJQPHZ6Qfize9pwOd0DtOdiRdwuf-cQ1fS0jvZd3IjdqXyro90NUsEjlD9aKzBx5ZV4ZrDhUuM1UMiO8fFotsiXLxMMPkxhO6S0nmPXQWKEC5QhNrog_cRmBTdqWC3AMGLxjkU-woAsPUaD7s1zp0dcQwUibWawJFRanyUp5Hgm4jzSvkpNIE2qYxaKOAo5Z76ROqIMmLlSE9qlUkDwAqQxyg9P0NZ0NtWnCJsUiFS5jpMwpEbEaSCACy5IlLAxBOMNFFZ6zKRjG4emF-OsgpW9ZqX2M9B-Vmq_gchaal6ybfwxn1VLlH3bNZl1CL9Knv1b8hztwFcJablAW8vFSl_awGQpmsXOa6Lt9u19r_8J3m3iKQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD2whraJEzcjqqgKtGWglbpFdmyXoL5U2oGF344vcUqREEisji1FZ_u-O_u7zwDXtVC5kirhVFksHEpZ4AjJmcNNqKyrVcloetHe6QatPn0Y-IMCNPJaGKRVWt-f-fTUW9uWirVmZZYklWeTPbj1usFvjOoNKm7AJvVdhhnYzccXzwMl4LKDFrP1Tfe8fi4leSVjrOU3aaKb3nZWXe9nfFrDnOY-7Npgkdxm_3MABTUpwZ4NHIndlm8l2FlTFTyE5Mm4gbGtryRTTTSPFVkxhUwbHw2n82TxMiYIYpKYJqnUjNgnJIYkpRkSrVLVT6KXeKRG5Bw9IxHvRCRDgtTSI-g373qNlmNfVHBikxosHBob0IopJnna59xXNRlqN9ahCpgnAt_jnNV0rHzKUJor1J6ZK4kKL6gaI2veMRQn04k6AaJDVFLlKqh7HtUiCF2BYnBuXQoTRDBeBi-3YxRbuXF89WIU5byy1yizfoTWjzLrl8FZjZplcht_9Gf5FEXflk1kEOHXkaf_HnkFW61epx2177uPZ7CNXzJ-yzkUF_OlujBRykJcpqvwEzJ6474
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+face+recognition+algorithm+based+on+deep+learning+multi+feature+fusion+driven+by+big+data&rft.jtitle=Image+and+vision+computing&rft.au=Zhu%2C+Yinghui&rft.au=Jiang%2C+Yuzhen&rft.date=2020-12-01&rft.issn=0262-8856&rft.volume=104&rft.spage=104023&rft_id=info:doi/10.1016%2Fj.imavis.2020.104023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2020_104023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon