Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data
Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good applicat...
Saved in:
| Published in | Image and vision computing Vol. 104; p. 104023 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0262-8856 1872-8138 |
| DOI | 10.1016/j.imavis.2020.104023 |
Cover
| Abstract | Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good application prospect in the fields of national security and social security. With the deepening of the research on face recognition, small-scale face recognition has achieved good recognition results, but in the era of big data, the existing small-scale face recognition methods have gradually failed to meet the social needs, and how to get a good face recognition effect in the era of big data has become a new research hotspot. Based on this, this paper aims to optimize the existing face recognition algorithm, study the face recognition method driven by big data, and propose a deep learning multi feature fusion face recognition algorithm driven by big data. First, for the problem that 2DPCA (Two-dimensional Principle Component Analysis) can well extract the global features of the face under large samples, but the local features of the face are difficult to process, this paper uses the LBP (Local Binary Pattern, LBP) algorithm to extract the texture features of the face, and the extracted texture features are integrated with the global features extracted by 2DPCA to multi-feature fusion, so that the fused features can take into account both global and local features, and have better recognition results. Then using the obtained fusion features as input, training in a convolutional neural network, and measuring the similarity based on the feature vectors of the sample set and the training set after the training, can realize multi-feature fusion face recognition. Through the analysis of simulation experiments, it is found that, compared with the use of global features or local features alone, the fusion features obtained by multi-feature fusion of global features extracted by 2DPCA and local features extracted by LBP algorithm have better recognition effect in the big data environment. After convolutional neural network trains and recognizes this feature, a high recognition accuracy rate is obtained, which can show that the face recognition method designed in this paper has good application potential in the era of big data. In the background of big data, the accuracy of face recognition can reach more than 90%, which can meet the needs of society well.
•This paper aims to optimize the existing face recognition algorithm.•This paper uses the LBP algorithm to extract the texture features of the face.•This method fuse local & global features of human face in big data background.•The accuracy of face recognition reaches more than 90%. |
|---|---|
| AbstractList | Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition is a biometric recognition method with the characteristics of non-contact, non mandatory, friendly and harmonious, which has a good application prospect in the fields of national security and social security. With the deepening of the research on face recognition, small-scale face recognition has achieved good recognition results, but in the era of big data, the existing small-scale face recognition methods have gradually failed to meet the social needs, and how to get a good face recognition effect in the era of big data has become a new research hotspot. Based on this, this paper aims to optimize the existing face recognition algorithm, study the face recognition method driven by big data, and propose a deep learning multi feature fusion face recognition algorithm driven by big data. First, for the problem that 2DPCA (Two-dimensional Principle Component Analysis) can well extract the global features of the face under large samples, but the local features of the face are difficult to process, this paper uses the LBP (Local Binary Pattern, LBP) algorithm to extract the texture features of the face, and the extracted texture features are integrated with the global features extracted by 2DPCA to multi-feature fusion, so that the fused features can take into account both global and local features, and have better recognition results. Then using the obtained fusion features as input, training in a convolutional neural network, and measuring the similarity based on the feature vectors of the sample set and the training set after the training, can realize multi-feature fusion face recognition. Through the analysis of simulation experiments, it is found that, compared with the use of global features or local features alone, the fusion features obtained by multi-feature fusion of global features extracted by 2DPCA and local features extracted by LBP algorithm have better recognition effect in the big data environment. After convolutional neural network trains and recognizes this feature, a high recognition accuracy rate is obtained, which can show that the face recognition method designed in this paper has good application potential in the era of big data. In the background of big data, the accuracy of face recognition can reach more than 90%, which can meet the needs of society well.
•This paper aims to optimize the existing face recognition algorithm.•This paper uses the LBP algorithm to extract the texture features of the face.•This method fuse local & global features of human face in big data background.•The accuracy of face recognition reaches more than 90%. |
| ArticleNumber | 104023 |
| Author | Zhu, Yinghui Jiang, Yuzhen |
| Author_xml | – sequence: 1 givenname: Yinghui surname: Zhu fullname: Zhu, Yinghui – sequence: 2 givenname: Yuzhen surname: Jiang fullname: Jiang, Yuzhen email: jyz366@163.com |
| BookMark | eNqFkMtKAzEUhoNUsK2-gYu8QGsuk7m4EKR4g0I3ug5pcjKeMp0pSVqoT--048qFrs7h53wH_m9CRm3XAiG3nM054_ndZo5bc8A4F0ycoowJeUHGvCzErOSyHJExE3m_lyq_IpMYN4yxghXVmOBql3CLXyZh19LOU28s0AC2q1s8Z6apu4Dpc0vXJoKjfeQAdrQBE1psa7rdNwmpB5P2AajfxxPlAh6gpesjXWNNnUnmmlx600S4-ZlT8vH89L54nS1XL2-Lx-XMSpanWWZlxm3fQAivjFHAXeWF9RXkhVznShpTcG9BZYVSBau8LLLKqYoJxWTpuJyS--GvDV2MAby2mM71UjDYaM70SZre6EGaPknTg7Qezn7Bu9CfheN_2MOAQV_sgBB0tAitBYe9yqRdh38_-AbYxIu3 |
| CitedBy_id | crossref_primary_10_1007_s12596_024_01868_0 crossref_primary_10_1155_2022_7493441 crossref_primary_10_1109_ACCESS_2024_3373264 crossref_primary_10_1109_ACCESS_2023_3326235 crossref_primary_10_1016_j_jobe_2021_102690 crossref_primary_10_3390_electronics12061354 crossref_primary_10_3934_electreng_2021005 crossref_primary_10_1109_ACCESS_2021_3116131 crossref_primary_10_1016_j_eswa_2023_119678 crossref_primary_10_3390_sym13030495 crossref_primary_10_3390_bioengineering10060738 crossref_primary_10_1007_s11277_022_09805_9 crossref_primary_10_1155_2022_3466987 crossref_primary_10_1155_2022_2086613 crossref_primary_10_1155_2022_2987227 crossref_primary_10_1007_s12652_022_03897_8 crossref_primary_10_1007_s11227_021_04058_y crossref_primary_10_1016_j_measurement_2024_114319 crossref_primary_10_1007_s11042_022_13153_y crossref_primary_10_1007_s12559_024_10316_x crossref_primary_10_1007_s00784_022_04724_2 crossref_primary_10_3390_coatings14121592 crossref_primary_10_4108_ew_3450 crossref_primary_10_1016_j_patcog_2023_109812 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_3390_a17110529 crossref_primary_10_1007_s12559_024_10357_2 |
| Cites_doi | 10.1109/MSP.2018.2855727 10.1134/S0030400X18030025 10.1134/S1054661819020044 10.1109/TNSE.2016.2586848 10.1166/jno.2017.2049 10.1109/5.726791 10.1109/TPAMI.2006.244 10.1016/j.epsr.2017.01.035 10.1016/S0031-3203(99)00032-1 10.1109/TGRS.2017.2669341 10.1109/TCYB.2018.2856208 10.1109/MSP.2017.2693418 10.1109/TMTT.2017.2772782 10.1109/TPAMI.2004.1261097 10.1007/s10494-017-9807-0 10.1049/trit.2019.0028 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.imavis.2020.104023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-8138 |
| ExternalDocumentID | 10_1016_j_imavis_2020_104023 S0262885620301554 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-4c341c40222f5aa5e1d9f2cf9e673b653aa71fce54755709f3749d59025038d13 |
| IEDL.DBID | .~1 |
| ISSN | 0262-8856 |
| IngestDate | Thu Oct 09 00:27:02 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Fri Feb 23 02:45:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Multi-feature fusion Big data Face recognition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-4c341c40222f5aa5e1d9f2cf9e673b653aa71fce54755709f3749d59025038d13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2020_104023 crossref_primary_10_1016_j_imavis_2020_104023 elsevier_sciencedirect_doi_10_1016_j_imavis_2020_104023 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Image and vision computing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ahonen, Hadid, Pietikainen (bb0110) 2006; 28 AbhijitGhosh, Nirala, Yadav (bb0020) 2018; 124 Yang, Zhang, Frangi, Yang (bb0100) 2004; 26 Zhu, Wei (bb0085) 2017; 12 Anbarasan, BalaAnand, Sivaparthipan, Sundarasekar, Kadry, Krishnamoorthy, Dinesh JacksonSamuel, Antony Dasel (bb0140) 2020; Vol. 150 Li, HongweiGe, Zhang (bb0035) 2017; 47 YoshuaBengio, Fischer, Zhang, Yuhuai Wu. (bb0055) 2017; 29 Guo, Wang, Zhao, Qi (bb0030) 2018; 47 Li, Sun, Zhang (bb0040) 2019; 29 Zhang, Wang, Zhang (bb0080) 2017; 146 Park, Ham, Park, Kim, Park (bb0050) 2018; 66 Pietik?inen, Ojala, Xu (bb0105) 2000; 33 Xu, WenhuaZeng, Yen (bb0120) 2019; 49 Basavegowda, Shekar, Dagnew (bb0135) 2020; 5.1 Bronstein, Bruna, LeCun, Szlam, Vandergheynst (bb0115) 2017; 34 TOKA Onur; ÇETİN (bb0090) 2018; 67 Fang, Zhang, Yang, Liu, Guo (bb0070) 2018; 77 Naiki, Hayashi, Takemura (bb0015) 2017; 32 Gardezi, Faye, FaouziAdjed, Hussain (bb0025) 2017; 7 Jain (bb0010) 2017; 41 Ortega-Zamorano, Jerez, Juárez, Franco (bb0060) 2017; 46 Lecun, Bottou, Bengio, Haffner (bb0075) 1989; 86 Rafii (bb0045) 2018; 35 Lee, Chang, Chang (bb0130) 2017; 3 Cheng, Wang, Xu, Wang, Xiang, Pan (bb0065) 2017; 55 Wang, Chen (bb0095) 2017; 63 Jiao, Yang, He, Gu, Lau (bb0005) 2017; 124 Wu, Wang, Xiao, Ling (bb0125) 2017; 99 Park (10.1016/j.imavis.2020.104023_bb0050) 2018; 66 Gardezi (10.1016/j.imavis.2020.104023_bb0025) 2017; 7 Jiao (10.1016/j.imavis.2020.104023_bb0005) 2017; 124 YoshuaBengio (10.1016/j.imavis.2020.104023_bb0055) 2017; 29 Cheng (10.1016/j.imavis.2020.104023_bb0065) 2017; 55 AbhijitGhosh (10.1016/j.imavis.2020.104023_bb0020) 2018; 124 Xu (10.1016/j.imavis.2020.104023_bb0120) 2019; 49 Bronstein (10.1016/j.imavis.2020.104023_bb0115) 2017; 34 Li (10.1016/j.imavis.2020.104023_bb0035) 2017; 47 Wu (10.1016/j.imavis.2020.104023_bb0125) 2017; 99 TOKA Onur; ÇETİN (10.1016/j.imavis.2020.104023_bb0090) 2018; 67 Yang (10.1016/j.imavis.2020.104023_bb0100) 2004; 26 Guo (10.1016/j.imavis.2020.104023_bb0030) 2018; 47 Li (10.1016/j.imavis.2020.104023_bb0040) 2019; 29 Basavegowda (10.1016/j.imavis.2020.104023_bb0135) 2020; 5.1 Lee (10.1016/j.imavis.2020.104023_bb0130) 2017; 3 Jain (10.1016/j.imavis.2020.104023_bb0010) 2017; 41 Anbarasan (10.1016/j.imavis.2020.104023_bb0140) 2020; Vol. 150 Lecun (10.1016/j.imavis.2020.104023_bb0075) 1989; 86 Rafii (10.1016/j.imavis.2020.104023_bb0045) 2018; 35 Zhang (10.1016/j.imavis.2020.104023_bb0080) 2017; 146 Fang (10.1016/j.imavis.2020.104023_bb0070) 2018; 77 Ortega-Zamorano (10.1016/j.imavis.2020.104023_bb0060) 2017; 46 Zhu (10.1016/j.imavis.2020.104023_bb0085) 2017; 12 Wang (10.1016/j.imavis.2020.104023_bb0095) 2017; 63 Naiki (10.1016/j.imavis.2020.104023_bb0015) 2017; 32 Pietik?inen (10.1016/j.imavis.2020.104023_bb0105) 2000; 33 Ahonen (10.1016/j.imavis.2020.104023_bb0110) 2006; 28 |
| References_xml | – volume: 26 start-page: 131 year: 2004 end-page: 137 ident: bb0100 article-title: Two-dimensional pca: a new approach to appearance-based face representation and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 41 year: 2017 end-page: 98 ident: bb0010 article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based pca learning paradigm publication-title: J. Med. Syst. – volume: 124 start-page: 437 year: 2018 end-page: 449 ident: bb0020 article-title: Analysis of fringe field formed inside lda measurement volume using compact two hololens imaging systems publication-title: Opt. Spectrosc. – volume: Vol. 150 year: 2020 ident: bb0140 article-title: Detection of flood disaster system based on IoT, big data and convolutional deep neural network publication-title: Computer Communications – volume: 47 start-page: 1 year: 2017 end-page: 21 ident: bb0035 article-title: Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem publication-title: Neural. Process. Lett. – volume: 28 start-page: 2037 year: 2006 end-page: 2041 ident: bb0110 article-title: Face description with local binary patterns: application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 67 start-page: 1 year: 2018 end-page: 10 ident: bb0090 article-title: A correction on tangentboost algorithm publication-title: Communications – volume: 55 start-page: 3322 year: 2017 end-page: 3337 ident: bb0065 article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network.IEEE publication-title: Trans. Geosci. Remote Sens. – volume: 35 start-page: 88 year: 2018 end-page: 92 ident: bb0045 article-title: Sliding discrete fourier transform with kernel windowing [lecture notes] publication-title: IEEE Signal Process. Mag. – volume: 66 start-page: 1644 year: 2018 end-page: 1659 ident: bb0050 article-title: Polyphase-basis discrete cosine transform for real-time measurement of heart rate with cwdoppler radar publication-title: IEEE Trans. Microwave Theory Tech. – volume: 124 start-page: 1 year: 2017 end-page: 19 ident: bb0005 article-title: Joint image denoising and disparity estimation via stereo structure pca and noise-tolerant cost publication-title: Int. J. Comput. Vis. – volume: 47 start-page: 481 year: 2018 end-page: 485 ident: bb0030 article-title: A method of seam carving forensics based on lbp and markov features publication-title: J. Uni. Electronic Sci. Technol. China – volume: 63 start-page: 182 year: 2017 end-page: 192 ident: bb0095 article-title: Joint representation classification for collective face recognition – volume: 7 start-page: 30 year: 2017 end-page: 35 ident: bb0025 article-title: Mammogram classification using chi-square distribution on local binary pattern features publication-title: J. Med. Imag. Health Inform. – volume: 3 start-page: 117 year: 2017 end-page: 131 ident: bb0130 article-title: Analyses of the clustering coefficient and the Pearson degree correlation coefficient of chung’s duplication model publication-title: IEEE Trans. Network Sci. Eng. – volume: 86 start-page: 2278 year: 1989 end-page: 2324 ident: bb0075 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: bb0080 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm publication-title: Electr. Power Syst. Res. – volume: 29 start-page: 258 year: 2019 end-page: 267 ident: bb0040 article-title: Building recognition using gist feature based on locality sensitive histograms of oriented gradients publication-title: Pattern Recog. Image Anal. – volume: 99 start-page: 25 year: 2017 end-page: 46 ident: bb0125 article-title: A priori assessment of prediction confidence for data-driven turbulence modeling publication-title: Flow Turb. Combust. – volume: 46 start-page: 1 year: 2017 end-page: 16 ident: bb0060 article-title: Fpga implementation of neurocomputational models: comparison between standard back-propagation and c-mantec constructive algorithm publication-title: Neural. Process. Lett. – volume: 77 start-page: 1 year: 2018 end-page: 18 ident: bb0070 article-title: Blind visual quality assessment for image super-resolution by convolutional neural network publication-title: Multimed. Tools Appl. – volume: 49 start-page: 3968 year: 2019 end-page: 3979 ident: bb0120 article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization publication-title: IEEE Trans. Cybern. – volume: 33 start-page: 43 year: 2000 end-page: 52 ident: bb0105 article-title: Rotation-invariant texture classification using feature distributions publication-title: Pattern Recogn. – volume: 32 start-page: 43 year: 2017 end-page: 59 ident: bb0015 article-title: Anlda and flow visualization study of pulsatile flow in an aortic bifurcation model publication-title: Biorheology – volume: 12 start-page: 452 year: 2017 end-page: 459 ident: bb0085 article-title: Localization algorithm in wireless sensor networks based on improved support vector machine publication-title: J. Nanoelectron. Optoelectron. – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: bb0115 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. – volume: 5.1 start-page: 22 year: 2020 end-page: 33 ident: bb0135 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Trans. Intell. Technol. – volume: 29 start-page: 1 year: 2017 end-page: 23 ident: bb0055 article-title: Stdp-compatible approximation of back-propagation in an energy-based model publication-title: Neural Comput. – volume: 35 start-page: 88 issue: 6 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0045 article-title: Sliding discrete fourier transform with kernel windowing [lecture notes] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2855727 – volume: 124 start-page: 437 issue: 3 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0020 article-title: Analysis of fringe field formed inside lda measurement volume using compact two hololens imaging systems publication-title: Opt. Spectrosc. doi: 10.1134/S0030400X18030025 – volume: 29 start-page: 258 issue: 2 year: 2019 ident: 10.1016/j.imavis.2020.104023_bb0040 article-title: Building recognition using gist feature based on locality sensitive histograms of oriented gradients publication-title: Pattern Recog. Image Anal. doi: 10.1134/S1054661819020044 – volume: 3 start-page: 117 issue: 3 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0130 article-title: Analyses of the clustering coefficient and the Pearson degree correlation coefficient of chung’s duplication model publication-title: IEEE Trans. Network Sci. Eng. doi: 10.1109/TNSE.2016.2586848 – volume: 77 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0070 article-title: Blind visual quality assessment for image super-resolution by convolutional neural network publication-title: Multimed. Tools Appl. – volume: 46 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0060 article-title: Fpga implementation of neurocomputational models: comparison between standard back-propagation and c-mantec constructive algorithm publication-title: Neural. Process. Lett. – volume: 12 start-page: 452 issue: 5 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0085 article-title: Localization algorithm in wireless sensor networks based on improved support vector machine publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2017.2049 – volume: 41 start-page: 41 issue: 6 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0010 article-title: Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based pca learning paradigm publication-title: J. Med. Syst. – volume: 86 start-page: 2278 issue: 11 year: 1989 ident: 10.1016/j.imavis.2020.104023_bb0075 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 10.1016/j.imavis.2020.104023_bb0110 article-title: Face description with local binary patterns: application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 47 start-page: 481 issue: 4 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0030 article-title: A method of seam carving forensics based on lbp and markov features publication-title: J. Uni. Electronic Sci. Technol. China – volume: 146 start-page: 270 issue: 2 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0080 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – volume: 47 start-page: 1 issue: 14 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0035 article-title: Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem publication-title: Neural. Process. Lett. – volume: 33 start-page: 43 issue: 1 year: 2000 ident: 10.1016/j.imavis.2020.104023_bb0105 article-title: Rotation-invariant texture classification using feature distributions publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(99)00032-1 – volume: 29 start-page: 1 issue: 24 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0055 article-title: Stdp-compatible approximation of back-propagation in an energy-based model publication-title: Neural Comput. – volume: 55 start-page: 3322 issue: 6 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0065 article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network.IEEE publication-title: Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2669341 – volume: 67 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0090 article-title: A correction on tangentboost algorithm publication-title: Communications – volume: 63 start-page: 182 issue: 5 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0095 article-title: Joint representation classification for collective face recognition – volume: 49 start-page: 3968 issue: 11 year: 2019 ident: 10.1016/j.imavis.2020.104023_bb0120 article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2856208 – volume: 34 start-page: 18 issue: 4 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0115 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 7 start-page: 30 issue: 5 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0025 article-title: Mammogram classification using chi-square distribution on local binary pattern features publication-title: J. Med. Imag. Health Inform. – volume: 66 start-page: 1644 issue: 3 year: 2018 ident: 10.1016/j.imavis.2020.104023_bb0050 article-title: Polyphase-basis discrete cosine transform for real-time measurement of heart rate with cwdoppler radar publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.2017.2772782 – volume: Vol. 150 year: 2020 ident: 10.1016/j.imavis.2020.104023_bb0140 article-title: Detection of flood disaster system based on IoT, big data and convolutional deep neural network – volume: 26 start-page: 131 issue: 1 year: 2004 ident: 10.1016/j.imavis.2020.104023_bb0100 article-title: Two-dimensional pca: a new approach to appearance-based face representation and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.1261097 – volume: 32 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0015 article-title: Anlda and flow visualization study of pulsatile flow in an aortic bifurcation model publication-title: Biorheology – volume: 124 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0005 article-title: Joint image denoising and disparity estimation via stereo structure pca and noise-tolerant cost publication-title: Int. J. Comput. Vis. – volume: 99 start-page: 25 issue: 1 year: 2017 ident: 10.1016/j.imavis.2020.104023_bb0125 article-title: A priori assessment of prediction confidence for data-driven turbulence modeling publication-title: Flow Turb. Combust. doi: 10.1007/s10494-017-9807-0 – volume: 5.1 start-page: 22 issue: 2020 year: 2020 ident: 10.1016/j.imavis.2020.104023_bb0135 article-title: Deep learning approach for microarray cancer data classification publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2019.0028 |
| SSID | ssj0007079 |
| Score | 2.461974 |
| Snippet | Today, with the rapid development of science and technology, the era of big data has been proposed and triggered reforms in all walks of life. Face recognition... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104023 |
| SubjectTerms | Big data Deep learning Face recognition Multi-feature fusion |
| Title | Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data |
| URI | https://dx.doi.org/10.1016/j.imavis.2020.104023 |
| Volume | 104 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYqWGDgKCDKUXlgNc3hxMlYVVQFRBmgUrfIZwnqpdIOLPx2_BKnFAmBxBjLT4qe7XfY3_seQld-qgNFtSAek4JQymIiFGeE21DZeJ5itHhof-jHvQG9G0bDGupUtTAAq3S2v7TphbV2Iy2nzdY8z1tPNnsIksT6b4jqrVeECnbKoIvB9ccXzAMY4Mp7Fnvy7eyqfK7AeOUTKOW3WWJQPHZ6Qfize9pwOd0DtOdiRdwuf-cQ1fS0jvZd3IjdqXyro90NUsEjlD9aKzBx5ZV4ZrDhUuM1UMiO8fFotsiXLxMMPkxhO6S0nmPXQWKEC5QhNrog_cRmBTdqWC3AMGLxjkU-woAsPUaD7s1zp0dcQwUibWawJFRanyUp5Hgm4jzSvkpNIE2qYxaKOAo5Z76ROqIMmLlSE9qlUkDwAqQxyg9P0NZ0NtWnCJsUiFS5jpMwpEbEaSCACy5IlLAxBOMNFFZ6zKRjG4emF-OsgpW9ZqX2M9B-Vmq_gchaal6ybfwxn1VLlH3bNZl1CL9Knv1b8hztwFcJablAW8vFSl_awGQpmsXOa6Lt9u19r_8J3m3iKQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADjwKiPD2whraJEzcjqqgKtGWglbpFdmyXoL5U2oGF344vcUqREEisji1FZ_u-O_u7zwDXtVC5kirhVFksHEpZ4AjJmcNNqKyrVcloetHe6QatPn0Y-IMCNPJaGKRVWt-f-fTUW9uWirVmZZYklWeTPbj1usFvjOoNKm7AJvVdhhnYzccXzwMl4LKDFrP1Tfe8fi4leSVjrOU3aaKb3nZWXe9nfFrDnOY-7Npgkdxm_3MABTUpwZ4NHIndlm8l2FlTFTyE5Mm4gbGtryRTTTSPFVkxhUwbHw2n82TxMiYIYpKYJqnUjNgnJIYkpRkSrVLVT6KXeKRG5Bw9IxHvRCRDgtTSI-g373qNlmNfVHBikxosHBob0IopJnna59xXNRlqN9ahCpgnAt_jnNV0rHzKUJor1J6ZK4kKL6gaI2veMRQn04k6AaJDVFLlKqh7HtUiCF2BYnBuXQoTRDBeBi-3YxRbuXF89WIU5byy1yizfoTWjzLrl8FZjZplcht_9Gf5FEXflk1kEOHXkaf_HnkFW61epx2177uPZ7CNXzJ-yzkUF_OlujBRykJcpqvwEzJ6474 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+face+recognition+algorithm+based+on+deep+learning+multi+feature+fusion+driven+by+big+data&rft.jtitle=Image+and+vision+computing&rft.au=Zhu%2C+Yinghui&rft.au=Jiang%2C+Yuzhen&rft.date=2020-12-01&rft.issn=0262-8856&rft.volume=104&rft.spage=104023&rft_id=info:doi/10.1016%2Fj.imavis.2020.104023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2020_104023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |