Heterogeneous data fusion for predicting mild cognitive impairment conversion

In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences be...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 66; pp. 54 - 63
Main Authors Shen, Heng Tao, Zhu, Xiaofeng, Zhang, Zheng, Wang, Shui-Hua, Chen, Yi, Xu, Xing, Shao, Jie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text
ISSN1566-2535
1872-6305
DOI10.1016/j.inffus.2020.08.023

Cover

Abstract In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the normal aging and the disease progression. As a result, our proposed method jointly selects the useful features from the auxiliary data and the predictor data by taking into account the influence of outliers and the age of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the best comparison method, in terms of four evaluation metrics. •Jointly selecting informative features from both the auxiliary and predictor data.•Robust to outliers from the auxiliary and predictor data.•Reducing aging effect induced by the normal aging and the disease progression.
AbstractList In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the normal aging and the disease progression. As a result, our proposed method jointly selects the useful features from the auxiliary data and the predictor data by taking into account the influence of outliers and the age of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the best comparison method, in terms of four evaluation metrics. •Jointly selecting informative features from both the auxiliary and predictor data.•Robust to outliers from the auxiliary and predictor data.•Reducing aging effect induced by the normal aging and the disease progression.
Author Chen, Yi
Zhang, Zheng
Shao, Jie
Zhu, Xiaofeng
Xu, Xing
Wang, Shui-Hua
Shen, Heng Tao
Author_xml – sequence: 1
  givenname: Heng Tao
  surname: Shen
  fullname: Shen, Heng Tao
  organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 2
  givenname: Xiaofeng
  surname: Zhu
  fullname: Zhu, Xiaofeng
  email: seanzhuxf@gmail.com
  organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0003-1470-6998
  surname: Zhang
  fullname: Zhang, Zheng
  email: darrenzz219@gmail.com
  organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China
– sequence: 4
  givenname: Shui-Hua
  surname: Wang
  fullname: Wang, Shui-Hua
  email: shuihuawang@ieee.org
  organization: School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-8762-4523
  surname: Chen
  fullname: Chen, Yi
  organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China
– sequence: 6
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
  organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 7
  givenname: Jie
  orcidid: 0000-0003-2615-1555
  surname: Shao
  fullname: Shao, Jie
  organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
BookMark eNqFkE1LAzEQhoNUsK3-Aw_7B3adfGx214MgRa1Q8aLnkM1OSkqblGxa8N-bUk8e9DQvA8_LzDMjEx88EnJLoaJA5d2mct7aw1gxYFBBWwHjF2RK24aVkkM9ybmWsmQ1r6_IbBw3ALQBTqfkbYkJY1ijx3AYi0EnXeQmF3xhQyz2EQdnkvPrYue2Q2HC2rvkjli43V67uEOf8tIfMZ6Ya3Jp9XbEm585J5_PTx-LZbl6f3ldPK5Kw0GmUojeNkaLugfJWWfqQVhphexFh60WTOLQDE3fgNYALfSc9bLjvaSG2o52yOfk_txrYhjHiFYZl3TKF6So3VZRUCcxaqPOYtRJjIJWZTEZFr_gfXQ7Hb_-wx7OGObHjg6jGo1Db7KgiCapIbi_C74BW5WDbg
CitedBy_id crossref_primary_10_1007_s10845_021_01811_1
crossref_primary_10_1109_JBHI_2021_3109301
crossref_primary_10_1016_j_future_2022_05_014
crossref_primary_10_1016_j_pecinn_2022_100107
crossref_primary_10_1016_j_inffus_2021_09_017
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_1080_24725579_2023_2249487
crossref_primary_10_1016_j_neucom_2024_128022
crossref_primary_10_1109_TNNLS_2021_3089566
crossref_primary_10_1016_j_media_2022_102698
crossref_primary_10_1109_TETCI_2022_3183679
crossref_primary_10_1007_s11063_021_10452_7
crossref_primary_10_1016_j_compbiomed_2023_106790
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_media_2022_102571
crossref_primary_10_1109_ACCESS_2024_3412850
crossref_primary_10_1016_j_media_2021_102057
crossref_primary_10_1142_S0219467822500292
crossref_primary_10_1007_s11063_021_10480_3
crossref_primary_10_1016_j_bspc_2024_106589
crossref_primary_10_1093_comjnl_bxab055
crossref_primary_10_1109_TETCI_2022_3171855
crossref_primary_10_1093_comjnl_bxab095
crossref_primary_10_1007_s11063_021_10487_w
crossref_primary_10_1016_j_bspc_2023_105669
crossref_primary_10_1007_s11063_020_10405_6
crossref_primary_10_1016_j_ipm_2020_102411
crossref_primary_10_3233_JAD_215568
crossref_primary_10_1007_s40747_024_01680_0
crossref_primary_10_1016_j_inffus_2024_102296
crossref_primary_10_1016_j_inffus_2021_03_006
crossref_primary_10_1109_TIM_2022_3162265
crossref_primary_10_1093_comjnl_bxab103
crossref_primary_10_1016_j_inffus_2021_05_010
crossref_primary_10_1093_comjnl_bxab024
crossref_primary_10_1145_3457124
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_1007_s11063_021_10479_w
crossref_primary_10_1093_comjnl_bxab020
crossref_primary_10_1093_comjnl_bxab064
crossref_primary_10_1080_24725579_2023_2227197
crossref_primary_10_1016_j_bbr_2023_114325
crossref_primary_10_1016_j_patrec_2024_02_016
crossref_primary_10_1109_ACCESS_2024_3401547
crossref_primary_10_1016_j_cmpb_2025_108703
crossref_primary_10_1016_j_ipm_2021_102743
crossref_primary_10_34133_2021_8786793
crossref_primary_10_1007_s11063_021_10453_6
crossref_primary_10_1007_s11063_021_10483_0
crossref_primary_10_1371_journal_pone_0284111
crossref_primary_10_1093_comjnl_bxab114
crossref_primary_10_1016_j_jbi_2023_104300
crossref_primary_10_1093_comjnl_bxab078
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1016_j_inffus_2021_07_013
crossref_primary_10_1109_ACCESS_2021_3060631
crossref_primary_10_1016_j_ipm_2022_102919
crossref_primary_10_1016_j_ipm_2020_102439
crossref_primary_10_56294_saludcyt2024837
crossref_primary_10_1007_s12559_023_10169_w
crossref_primary_10_1007_s40998_024_00769_z
crossref_primary_10_1016_j_patrec_2021_06_001
Cites_doi 10.1007/978-3-319-23528-8_24
10.1016/j.neuroimage.2012.09.058
10.1016/j.media.2019.101625
10.1109/ICDM.2014.32
10.1109/TIP.2017.2726188
10.1109/TPAMI.2018.2789887
10.1109/ICDM.2018.00122
10.1016/j.neuroimage.2014.01.033
10.1109/JBHI.2019.2914970
10.24963/ijcai.2019/622
10.1142/S0129065716500507
10.1016/j.jalz.2016.11.007
10.1016/j.neuroimage.2010.01.005
10.1016/j.nicl.2013.05.004
10.1080/01621459.2014.923775
10.1609/aaai.v31i1.10833
10.1016/j.neunet.2020.05.030
10.1109/JSTSP.2019.2957952
10.1007/s11280-019-00766-x
10.1016/j.neunet.2019.10.010
10.1142/S0129065716500258
10.1186/s40708-019-0096-3
10.1016/j.neucom.2019.11.118
10.1016/j.nicl.2012.10.002
10.1016/j.neuroimage.2008.10.031
10.1016/j.neuroimage.2017.08.059
10.1109/TNNLS.2016.2551724
10.1016/j.patcog.2019.107175
10.1109/TCYB.2018.2887094
10.1038/s41591-020-0755-1
10.1007/s11280-019-00731-8
10.1109/PRNI.2011.12
10.1016/j.media.2015.10.008
10.1109/TNNLS.2016.2521602
10.1002/cpa.20303
10.1109/TBME.2015.2404809
10.1016/j.neuroimage.2014.10.002
10.1016/j.neucom.2014.09.072
10.1109/TMI.2015.2508280
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2020.08.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
EndPage 63
ExternalDocumentID 10_1016_j_inffus_2020_08_023
S1566253520303584
GrantInformation_xml – fundername: Key Project of Shenzhen Municipal Technology Research
  grantid: JSGG20200103103401723
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102200
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61632007; 61876046
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2018GZDZX0032; 2019YFG0535
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-44bf7ca45b06329c5d4f6f46b49e8a426ed7d7b70aa0080b32b693b61c1f919e3
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Wed Oct 29 21:16:40 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Fri Feb 23 02:45:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Sparse learning
Alzheimer’s disease
Mild cognitive impairment
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-44bf7ca45b06329c5d4f6f46b49e8a426ed7d7b70aa0080b32b693b61c1f919e3
ORCID 0000-0002-8762-4523
0000-0003-2615-1555
0000-0003-1470-6998
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2020_08_023
crossref_primary_10_1016_j_inffus_2020_08_023
elsevier_sciencedirect_doi_10_1016_j_inffus_2020_08_023
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Wu, Shen (b15) 2019
Xu, Lu, Song, Yang, Shen, Li (b50) 2019
Young, Modat, Cardoso (b42) 2013; 2
Khedher, Ramírez, Górriz, Brahim, Segovia, Initiative (b7) 2015; 151
Gui, Sun, Ji, Tao, Tan (b22) 2016; 28
Franke, Ziegler, Klöppel (b45) 2010; 50
Eskildsen, Coupé, García-Lorenzo (b32) 2013; 65
Shu, Wang, Zhu (b5) 2019
Shen, Zhu, Zheng, Zhu (b25) 2020
Holzinger, Langs, Denk, Zatloukal, Müller (b3) 2019; 9
Martinez-Murcia, Ortiz, Gorriz, Ramirez, Castillo-Barnes (b11) 2019; 24
Guo, Gao, Shen (b13) 2016; 35
L. Chen, X. Li, S. Wang, H.-Y. Hu, N. Huang, Q.Z. Sheng, M. Sharaf, Mining personal health index from annual geriatric medical examinations, in: ICDM, 2014, pp. 761–766.
D.H. Ye, K.M. Pohl, C. Davatzikos, Semi-supervised pattern classification: application to structural MRI of Alzheimer’s disease, in: PRNI, 2011, pp. 1–4.
O’Sullivan, Heinsen, Grinberg, Chimelli, Amaro, do Nascimento Saldiva, Jeanquartier, Jean-Quartier, Martin, Sajid (b1) 2019; 6
Coupé, Eskildsen, Manjón (b41) 2012; 1
Zhu, Yang, Zhang, Zhang (b23) 2019
Hu, Zhu, Zhu, Gan (b34) 2020; 23
Daubechies, Devore, Fornasier (b46) 2010; 63
Kang, Lu, Lu, Peng, Chen, Xu (b43) 2020
Zhu, Li, Zhang, Ju, Wu (b37) 2017; 28
Moradi, Pepe, Gaser (b17) 2015; 104
Gorriz, Group (b2) 2019
Ortiz, Munilla, Gorriz, Ramirez (b8) 2016; 26
Hao, Zhou, Guo (b4) 2020
Shen, Liu, Yang, Xu, Huang, Shen, Hong (b38) 2020
Zhu, Suk, Wang, Lee, Shen, Initiative (b9) 2017; 38
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Morris, Petersen, Saykin, Shaw, Toga, Trojanowski (b26) 2017; 13
Zhu, Khondker, Lu, Ibrahim (b27) 2014; 109
Wang, Nie, Hong, Chang, Yang, Yu (b28) 2017; 26
Khedher, Illán, Górriz, Ramírez, Brahim, Meyer-Baese (b10) 2017; 27
Lorenzi, Filippone, Frisoni, Alexander, Ourselin, Initiative (b14) 2019; 190
Lombardi, Crescioli, Cavedo, Lucenteforte, Casazza, Bellatorre, Lista, Costantino, Frisoni, Virgili (b12) 2020
Cheng, Liu, Zhang, Munsell, Shen (b29) 2015; 62
Shen, Xu, Liu, Yang, Huang, Shen (b44) 2018; 40
Kang, Zhao, Shi, Peng, Zhu, Zhou, Peng, Chen, Xu (b31) 2020; 122
Zhang, Li, Zong, Zhu, Cheng (b36) 2017; 8
Misra, Fan, Davatzikos (b48) 2009; 44
Zhu, Gan, Lu, Li, Zhang (b39) 2020; 23
H. Peng, Y. Fan, A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization, in: AAAI, 2017, pp. 2471–2477.
Kong, An, Zhang, Zhu (b6) 2019
S. Wang, F. Nie, X. Chang, L. Yao, X. Li, Q.Z. Sheng, Unsupervised feature analysis with class margin optimization, in: ECML/PKDD, 2015, pp. 383–398.
Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin, Yao, Shen, Initiative (b19) 2020; 60
Thung, Wee, Yap, Shen (b49) 2014; 91
J. Gui, P. Li, Multi-view feature selection for heterogeneous face recognition, in: ICDM, 2018, pp. 983–988.
Zhu, Zhu, Zheng (b21) 2020; 105
X. Zhu, Prediction of mild cognitive impairment conversion using auxiliary information, in: IJCAI, 2019, pp. 4475–4481.
Janelidze, Mattsson, Palmqvist, Smith, Beach, Serrano, Chai, Proctor, Eichenlaub, Zetterberg (b16) 2020; 26
Zhou, Tian, Zhu, Jin, Sun (b35) 2020; 14
Kang, Pan, Hoi, Xu (b40) 2020; 50
Daubechies (10.1016/j.inffus.2020.08.023_b46) 2010; 63
Misra (10.1016/j.inffus.2020.08.023_b48) 2009; 44
Hao (10.1016/j.inffus.2020.08.023_b4) 2020
Zhu (10.1016/j.inffus.2020.08.023_b23) 2019
Martinez-Murcia (10.1016/j.inffus.2020.08.023_b11) 2019; 24
Lombardi (10.1016/j.inffus.2020.08.023_b12) 2020
Zhu (10.1016/j.inffus.2020.08.023_b37) 2017; 28
Eskildsen (10.1016/j.inffus.2020.08.023_b32) 2013; 65
Shen (10.1016/j.inffus.2020.08.023_b25) 2020
10.1016/j.inffus.2020.08.023_b30
Guo (10.1016/j.inffus.2020.08.023_b13) 2016; 35
Thung (10.1016/j.inffus.2020.08.023_b49) 2014; 91
10.1016/j.inffus.2020.08.023_b33
Guo (10.1016/j.inffus.2020.08.023_b15) 2019
Cheng (10.1016/j.inffus.2020.08.023_b29) 2015; 62
Shu (10.1016/j.inffus.2020.08.023_b5) 2019
Hu (10.1016/j.inffus.2020.08.023_b34) 2020; 23
Shen (10.1016/j.inffus.2020.08.023_b38) 2020
Shen (10.1016/j.inffus.2020.08.023_b44) 2018; 40
Kang (10.1016/j.inffus.2020.08.023_b31) 2020; 122
Zhou (10.1016/j.inffus.2020.08.023_b35) 2020; 14
Zhu (10.1016/j.inffus.2020.08.023_b27) 2014; 109
Xu (10.1016/j.inffus.2020.08.023_b50) 2019
Moradi (10.1016/j.inffus.2020.08.023_b17) 2015; 104
Young (10.1016/j.inffus.2020.08.023_b42) 2013; 2
Hao (10.1016/j.inffus.2020.08.023_b19) 2020; 60
10.1016/j.inffus.2020.08.023_b20
Ortiz (10.1016/j.inffus.2020.08.023_b8) 2016; 26
10.1016/j.inffus.2020.08.023_b24
Wang (10.1016/j.inffus.2020.08.023_b28) 2017; 26
Khedher (10.1016/j.inffus.2020.08.023_b7) 2015; 151
Coupé (10.1016/j.inffus.2020.08.023_b41) 2012; 1
Zhu (10.1016/j.inffus.2020.08.023_b21) 2020; 105
Holzinger (10.1016/j.inffus.2020.08.023_b3) 2019; 9
10.1016/j.inffus.2020.08.023_b18
Weiner (10.1016/j.inffus.2020.08.023_b26) 2017; 13
Franke (10.1016/j.inffus.2020.08.023_b45) 2010; 50
Gui (10.1016/j.inffus.2020.08.023_b22) 2016; 28
O’Sullivan (10.1016/j.inffus.2020.08.023_b1) 2019; 6
Lorenzi (10.1016/j.inffus.2020.08.023_b14) 2019; 190
Kang (10.1016/j.inffus.2020.08.023_b40) 2020; 50
Gorriz (10.1016/j.inffus.2020.08.023_b2) 2019
Kang (10.1016/j.inffus.2020.08.023_b43) 2020
Kong (10.1016/j.inffus.2020.08.023_b6) 2019
10.1016/j.inffus.2020.08.023_b47
Zhu (10.1016/j.inffus.2020.08.023_b9) 2017; 38
Janelidze (10.1016/j.inffus.2020.08.023_b16) 2020; 26
Zhang (10.1016/j.inffus.2020.08.023_b36) 2017; 8
Khedher (10.1016/j.inffus.2020.08.023_b10) 2017; 27
Zhu (10.1016/j.inffus.2020.08.023_b39) 2020; 23
References_xml – volume: 24
  start-page: 17
  year: 2019
  end-page: 26
  ident: b11
  article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 60
  year: 2020
  ident: b19
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
– volume: 63
  start-page: 1
  year: 2010
  end-page: 38
  ident: b46
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure Appl. Math.
– year: 2020
  ident: b38
  article-title: Exploiting subspace relation in semantic labels for cross-modal hashing
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 65
  start-page: 511
  year: 2013
  end-page: 521
  ident: b32
  article-title: Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
– volume: 35
  start-page: 1077
  year: 2016
  end-page: 1089
  ident: b13
  article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching
  publication-title: IEEE Trans. Med. Imaging
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: b17
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: NeuroImage
– volume: 23
  start-page: 1945
  year: 2020
  end-page: 1968
  ident: b34
  article-title: Robust SVM with adaptive graph learning
  publication-title: World Wide Web
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: b45
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
– reference: X. Zhu, Prediction of mild cognitive impairment conversion using auxiliary information, in: IJCAI, 2019, pp. 4475–4481.
– start-page: 1
  year: 2019
  end-page: 47
  ident: b6
  article-title: L2RM: Low-rank linear regression models for high-dimensional matrix responses
  publication-title: J. Amer. Statist. Assoc.
– volume: 23
  start-page: 1969
  year: 2020
  end-page: 1988
  ident: b39
  article-title: Spectral clustering via half-quadratic optimization
  publication-title: World Wide Web
– volume: 26
  start-page: 379
  year: 2020
  end-page: 386
  ident: b16
  article-title: Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia
  publication-title: Nat. Med.
– volume: 2
  start-page: 735
  year: 2013
  end-page: 745
  ident: b42
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment
  publication-title: NeuroImage: Clin.
– year: 2020
  ident: b43
  article-title: Structure learning with similarity preserving
  publication-title: Neural Netw.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 19
  ident: b36
  article-title: Learning k for knn classification
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– year: 2019
  ident: b2
  article-title: Statistical agnostic mapping: a framework in neuroimaging based on concentration inequalities
– volume: 9
  year: 2019
  ident: b3
  article-title: Causability and explainability of artificial intelligence in medicine
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 27
  year: 2017
  ident: b10
  article-title: Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support
  publication-title: Int. J. Neural Syst.
– volume: 109
  start-page: 977
  year: 2014
  end-page: 990
  ident: b27
  article-title: Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers
  publication-title: J. Amer. Statist. Assoc.
– volume: 40
  start-page: 3034
  year: 2018
  end-page: 3044
  ident: b44
  article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 122
  start-page: 279
  year: 2020
  end-page: 288
  ident: b31
  article-title: Partition level multiview subspace clustering
  publication-title: Neural Netw.
– volume: 28
  start-page: 1263
  year: 2017
  end-page: 1275
  ident: b37
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: H. Peng, Y. Fan, A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization, in: AAAI, 2017, pp. 2471–2477.
– volume: 190
  start-page: 56
  year: 2019
  end-page: 68
  ident: b14
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: NeuroImage
– reference: S. Wang, F. Nie, X. Chang, L. Yao, X. Li, Q.Z. Sheng, Unsupervised feature analysis with class margin optimization, in: ECML/PKDD, 2015, pp. 383–398.
– volume: 151
  start-page: 139
  year: 2015
  end-page: 150
  ident: b7
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented mri images
  publication-title: Neurocomputing
– start-page: 1
  year: 2019
  end-page: 29
  ident: b5
  article-title: D-CCA: A decomposition-based canonical correlation analysis for high-dimensional datasets
  publication-title: J. Amer. Statist. Assoc.
– volume: 26
  year: 2016
  ident: b8
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– volume: 28
  start-page: 1490
  year: 2016
  end-page: 1507
  ident: b22
  article-title: Feature selection based on structured sparsity: A comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2020
  ident: b25
  article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 13
  start-page: e1
  year: 2017
  end-page: e85
  ident: b26
  article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials
  publication-title: Alzheimer’s Dement.
– reference: L. Chen, X. Li, S. Wang, H.-Y. Hu, N. Huang, Q.Z. Sheng, M. Sharaf, Mining personal health index from annual geriatric medical examinations, in: ICDM, 2014, pp. 761–766.
– volume: 91
  start-page: 386
  year: 2014
  end-page: 400
  ident: b49
  article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
  publication-title: NeuroImage
– volume: 26
  start-page: 5019
  year: 2017
  end-page: 5030
  ident: b28
  article-title: Fast and orthogonal locality preserving projections for dimensionality reduction
  publication-title: IEEE Trans. Image Process.
– year: 2020
  ident: b4
  article-title: A brief survey on semantic segmentation with deep learning
  publication-title: Neurocomputing
– volume: 105
  year: 2020
  ident: b21
  article-title: Spectral rotation for deep one-step clustering
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 141
  year: 2012
  end-page: 152
  ident: b41
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
– volume: 50
  start-page: 1833
  year: 2020
  end-page: 1843
  ident: b40
  article-title: Robust graph learning from noisy data
  publication-title: IEEE Trans. Cybern.
– volume: 44
  start-page: 1415
  year: 2009
  end-page: 1422
  ident: b48
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
– reference: D.H. Ye, K.M. Pohl, C. Davatzikos, Semi-supervised pattern classification: application to structural MRI of Alzheimer’s disease, in: PRNI, 2011, pp. 1–4.
– year: 2019
  ident: b23
  article-title: Efficient utilization of missing data in cost-sensitive learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 62
  start-page: 1805
  year: 2015
  end-page: 1817
  ident: b29
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14
  start-page: 118
  year: 2020
  end-page: 129
  ident: b35
  article-title: Video coding optimization for virtual reality 360-degree source
  publication-title: J. Sel. Top. Signal Process.
– volume: 38
  start-page: 205
  year: 2017
  end-page: 214
  ident: b9
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med. Image Anal.
– year: 2019
  ident: b15
  article-title: Learning longitudinal classification-regression model for infant hippocampus segmentation
  publication-title: Neurocomputing
– year: 2019
  ident: b50
  article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval
  publication-title: IEEE Trans. Cybern.
– year: 2020
  ident: b12
  article-title: Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment
  publication-title: Cochrane Database Syst. Rev.
– volume: 6
  start-page: 3
  year: 2019
  ident: b1
  article-title: The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure
  publication-title: Brain Inf.
– reference: J. Gui, P. Li, Multi-view feature selection for heterogeneous face recognition, in: ICDM, 2018, pp. 983–988.
– start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b5
  article-title: D-CCA: A decomposition-based canonical correlation analysis for high-dimensional datasets
  publication-title: J. Amer. Statist. Assoc.
– year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b25
  article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: 10.1016/j.inffus.2020.08.023_b24
  doi: 10.1007/978-3-319-23528-8_24
– volume: 65
  start-page: 511
  year: 2013
  ident: 10.1016/j.inffus.2020.08.023_b32
  article-title: Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.09.058
– volume: 60
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b19
  article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101625
– ident: 10.1016/j.inffus.2020.08.023_b18
  doi: 10.1109/ICDM.2014.32
– volume: 26
  start-page: 5019
  issue: 10
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b28
  article-title: Fast and orthogonal locality preserving projections for dimensionality reduction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2726188
– year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b50
  article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval
  publication-title: IEEE Trans. Cybern.
– volume: 40
  start-page: 3034
  issue: 12
  year: 2018
  ident: 10.1016/j.inffus.2020.08.023_b44
  article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2789887
– ident: 10.1016/j.inffus.2020.08.023_b30
  doi: 10.1109/ICDM.2018.00122
– volume: 91
  start-page: 386
  year: 2014
  ident: 10.1016/j.inffus.2020.08.023_b49
  article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.01.033
– year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b23
  article-title: Efficient utilization of missing data in cost-sensitive learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 24
  start-page: 17
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b11
  article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2914970
– ident: 10.1016/j.inffus.2020.08.023_b20
  doi: 10.24963/ijcai.2019/622
– start-page: 1
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b6
  article-title: L2RM: Low-rank linear regression models for high-dimensional matrix responses
  publication-title: J. Amer. Statist. Assoc.
– volume: 27
  issue: 03
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b10
  article-title: Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500507
– volume: 13
  start-page: e1
  issn: 1552-5260
  issue: 4
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b26
  article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials
  publication-title: Alzheimer’s Dement.
  doi: 10.1016/j.jalz.2016.11.007
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  ident: 10.1016/j.inffus.2020.08.023_b45
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 9
  issue: 4
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b3
  article-title: Causability and explainability of artificial intelligence in medicine
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 2
  start-page: 735
  year: 2013
  ident: 10.1016/j.inffus.2020.08.023_b42
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2013.05.004
– volume: 109
  start-page: 977
  issue: 507
  year: 2014
  ident: 10.1016/j.inffus.2020.08.023_b27
  article-title: Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2014.923775
– ident: 10.1016/j.inffus.2020.08.023_b47
  doi: 10.1609/aaai.v31i1.10833
– year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b43
  article-title: Structure learning with similarity preserving
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.030
– year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b2
– volume: 14
  start-page: 118
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b35
  article-title: Video coding optimization for virtual reality 360-degree source
  publication-title: J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2957952
– volume: 23
  start-page: 1945
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b34
  article-title: Robust SVM with adaptive graph learning
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00766-x
– year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b38
  article-title: Exploiting subspace relation in semantic labels for cross-modal hashing
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 122
  start-page: 279
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b31
  article-title: Partition level multiview subspace clustering
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.10.010
– volume: 26
  issue: 07
  year: 2016
  ident: 10.1016/j.inffus.2020.08.023_b8
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500258
– issue: 3
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b12
  article-title: Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment
  publication-title: Cochrane Database Syst. Rev.
– volume: 8
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b36
  article-title: Learning k for knn classification
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 6
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b1
  article-title: The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure
  publication-title: Brain Inf.
  doi: 10.1186/s40708-019-0096-3
– year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b4
  article-title: A brief survey on semantic segmentation with deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.118
– volume: 1
  start-page: 141
  issue: 1
  year: 2012
  ident: 10.1016/j.inffus.2020.08.023_b41
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2012.10.002
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 10.1016/j.inffus.2020.08.023_b48
  article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 190
  start-page: 56
  year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b14
  article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.059
– volume: 28
  start-page: 1490
  issue: 7
  year: 2016
  ident: 10.1016/j.inffus.2020.08.023_b22
  article-title: Feature selection based on structured sparsity: A comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2551724
– volume: 105
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b21
  article-title: Spectral rotation for deep one-step clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107175
– volume: 50
  start-page: 1833
  issue: 5
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b40
  article-title: Robust graph learning from noisy data
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2887094
– volume: 26
  start-page: 379
  issue: 3
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b16
  article-title: Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0755-1
– volume: 23
  start-page: 1969
  year: 2020
  ident: 10.1016/j.inffus.2020.08.023_b39
  article-title: Spectral clustering via half-quadratic optimization
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00731-8
– ident: 10.1016/j.inffus.2020.08.023_b33
  doi: 10.1109/PRNI.2011.12
– volume: 38
  start-page: 205
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b9
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.10.008
– volume: 28
  start-page: 1263
  issue: 6
  year: 2017
  ident: 10.1016/j.inffus.2020.08.023_b37
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2521602
– volume: 63
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.inffus.2020.08.023_b46
  article-title: Iteratively reweighted least squares minimization for sparse recovery
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20303
– year: 2019
  ident: 10.1016/j.inffus.2020.08.023_b15
  article-title: Learning longitudinal classification-regression model for infant hippocampus segmentation
  publication-title: Neurocomputing
– volume: 62
  start-page: 1805
  issue: 7
  year: 2015
  ident: 10.1016/j.inffus.2020.08.023_b29
  article-title: Domain transfer learning for MCI conversion prediction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2404809
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.inffus.2020.08.023_b17
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 151
  start-page: 139
  year: 2015
  ident: 10.1016/j.inffus.2020.08.023_b7
  article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented mri images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.072
– volume: 35
  start-page: 1077
  issue: 4
  year: 2016
  ident: 10.1016/j.inffus.2020.08.023_b13
  article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2508280
SSID ssj0017031
Score 2.5259871
Snippet In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms Alzheimer’s disease
Feature selection
Mild cognitive impairment
Sparse learning
Transfer learning
Title Heterogeneous data fusion for predicting mild cognitive impairment conversion
URI https://dx.doi.org/10.1016/j.inffus.2020.08.023
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: ACRLP
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIKHN
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: .~1
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AKRWK
  dateStart: 20000701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MHr2jwmm-RYiiU-WkQt9BayL6jUttT26m93Z_NAQRQ8BcJOEmaGmdnNN98QcqU4-IEEwVLwgIGKQlYoGTPgILhfRJ5xI1mGI56N4W4STVqkX_fCIKyyiv1lTHfRurrTrbTZXU6n3WfceQTITmL9NLR5FDvYIcYpBtcfDczDR352x5nKOcPVdfucw3hZI5oNknYHniPyDMKf09OXlDPYI7tVrUh75efsk5aeH5CdYUO0-n5IhhnCWRbWC7TdwlPEe1L7LqtsaqtRulzhfxhENtO36UzRBixEsTtyusKjQeqA5-7U7IiMBzcv_YxVExKYtKX-mgEIE8sCImErjSCVkQLDDXABqU4Km3y1ilUsYq8osDQUYSB4GlojSN-kfqrDY9KeL-b6hFAvSZXhRcJBA5g0SgS39jWJNIm2z-enJKwVk8uKPhynWMzyGif2mpfqzFGdOQ63DMJTwhqpZUmf8cf6uNZ5_s0Nchvhf5U8-7fkOdkOEKjioNgXpL1ebfSlrTTWouNcqUO2ev2nh0e83t5no0_Wo9Yu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVNHEuTjKiiipA04VW6hbFiS0FlbYq7cpvx-ckFUgIJNbIdqK70z2c774j5LYQ4PIcJIvAAQaF77GsyAMGAqRwM9_RdiRLMhTxGJ4m_qRFek0vDMIqa99f-XTrresn3Vqa3UVZdl-w8uDITmLs1DNxdItsg88DrMDuPjY4DxcJ2i1pqhAMlzf9cxbkZbSo18jazR3L5Mm9n-PTl5jTPyD7dbJI76vvOSQtNTsie8mGafX9mCQx4lnmxgyUqeEpAj6peZeRNjXpKF0s8UcMQpvpWzkt6AYtRLE9slzi3SC1yHN7bXZCxv2HUS9m9YgElptcf8UApA7yDHxpUg0e5X4BWmgQEiIVZib6qiIoAhk4WYa5ofS4FJFntJC7OnIj5Z2S9mw-U2eEOmFUaJGFAhSAjvxQCqNgHeY6VOZ80SFeI5g0r_nDcYzFNG2AYq9pJc4UxZnidEvudQjb7FpU_Bl_rA8amaff7CA1Lv7Xnef_3nlDduJRMkgHj8PnC7LLEbVicdmXpL1artWVSTtW8tqa1Sc-6dYu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+data+fusion+for+predicting+mild+cognitive+impairment+conversion&rft.jtitle=Information+fusion&rft.au=Shen%2C+Heng+Tao&rft.au=Zhu%2C+Xiaofeng&rft.au=Zhang%2C+Zheng&rft.au=Wang%2C+Shui-Hua&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=66&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.inffus.2020.08.023&rft.externalDocID=S1566253520303584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon