Heterogeneous data fusion for predicting mild cognitive impairment conversion
In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences be...
Saved in:
| Published in | Information fusion Vol. 66; pp. 54 - 63 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1566-2535 1872-6305 |
| DOI | 10.1016/j.inffus.2020.08.023 |
Cover
| Abstract | In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the normal aging and the disease progression. As a result, our proposed method jointly selects the useful features from the auxiliary data and the predictor data by taking into account the influence of outliers and the age of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the best comparison method, in terms of four evaluation metrics.
•Jointly selecting informative features from both the auxiliary and predictor data.•Robust to outliers from the auxiliary and predictor data.•Reducing aging effect induced by the normal aging and the disease progression. |
|---|---|
| AbstractList | In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the normal aging and the disease progression. As a result, our proposed method jointly selects the useful features from the auxiliary data and the predictor data by taking into account the influence of outliers and the age of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the best comparison method, in terms of four evaluation metrics.
•Jointly selecting informative features from both the auxiliary and predictor data.•Robust to outliers from the auxiliary and predictor data.•Reducing aging effect induced by the normal aging and the disease progression. |
| Author | Chen, Yi Zhang, Zheng Shao, Jie Zhu, Xiaofeng Xu, Xing Wang, Shui-Hua Shen, Heng Tao |
| Author_xml | – sequence: 1 givenname: Heng Tao surname: Shen fullname: Shen, Heng Tao organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Xiaofeng surname: Zhu fullname: Zhu, Xiaofeng email: seanzhuxf@gmail.com organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 3 givenname: Zheng orcidid: 0000-0003-1470-6998 surname: Zhang fullname: Zhang, Zheng email: darrenzz219@gmail.com organization: Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 4 givenname: Shui-Hua surname: Wang fullname: Wang, Shui-Hua email: shuihuawang@ieee.org organization: School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK – sequence: 5 givenname: Yi orcidid: 0000-0002-8762-4523 surname: Chen fullname: Chen, Yi organization: School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China – sequence: 6 givenname: Xing surname: Xu fullname: Xu, Xing organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 7 givenname: Jie orcidid: 0000-0003-2615-1555 surname: Shao fullname: Shao, Jie organization: School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw_7B3adfGx214MgRa1Q8aLnkM1OSkqblGxa8N-bUk8e9DQvA8_LzDMjEx88EnJLoaJA5d2mct7aw1gxYFBBWwHjF2RK24aVkkM9ybmWsmQ1r6_IbBw3ALQBTqfkbYkJY1ijx3AYi0EnXeQmF3xhQyz2EQdnkvPrYue2Q2HC2rvkjli43V67uEOf8tIfMZ6Ya3Jp9XbEm585J5_PTx-LZbl6f3ldPK5Kw0GmUojeNkaLugfJWWfqQVhphexFh60WTOLQDE3fgNYALfSc9bLjvaSG2o52yOfk_txrYhjHiFYZl3TKF6So3VZRUCcxaqPOYtRJjIJWZTEZFr_gfXQ7Hb_-wx7OGObHjg6jGo1Db7KgiCapIbi_C74BW5WDbg |
| CitedBy_id | crossref_primary_10_1007_s10845_021_01811_1 crossref_primary_10_1109_JBHI_2021_3109301 crossref_primary_10_1016_j_future_2022_05_014 crossref_primary_10_1016_j_pecinn_2022_100107 crossref_primary_10_1016_j_inffus_2021_09_017 crossref_primary_10_1016_j_inffus_2022_11_028 crossref_primary_10_1080_24725579_2023_2249487 crossref_primary_10_1016_j_neucom_2024_128022 crossref_primary_10_1109_TNNLS_2021_3089566 crossref_primary_10_1016_j_media_2022_102698 crossref_primary_10_1109_TETCI_2022_3183679 crossref_primary_10_1007_s11063_021_10452_7 crossref_primary_10_1016_j_compbiomed_2023_106790 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1016_j_media_2022_102571 crossref_primary_10_1109_ACCESS_2024_3412850 crossref_primary_10_1016_j_media_2021_102057 crossref_primary_10_1142_S0219467822500292 crossref_primary_10_1007_s11063_021_10480_3 crossref_primary_10_1016_j_bspc_2024_106589 crossref_primary_10_1093_comjnl_bxab055 crossref_primary_10_1109_TETCI_2022_3171855 crossref_primary_10_1093_comjnl_bxab095 crossref_primary_10_1007_s11063_021_10487_w crossref_primary_10_1016_j_bspc_2023_105669 crossref_primary_10_1007_s11063_020_10405_6 crossref_primary_10_1016_j_ipm_2020_102411 crossref_primary_10_3233_JAD_215568 crossref_primary_10_1007_s40747_024_01680_0 crossref_primary_10_1016_j_inffus_2024_102296 crossref_primary_10_1016_j_inffus_2021_03_006 crossref_primary_10_1109_TIM_2022_3162265 crossref_primary_10_1093_comjnl_bxab103 crossref_primary_10_1016_j_inffus_2021_05_010 crossref_primary_10_1093_comjnl_bxab024 crossref_primary_10_1145_3457124 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_1007_s11063_021_10479_w crossref_primary_10_1093_comjnl_bxab020 crossref_primary_10_1093_comjnl_bxab064 crossref_primary_10_1080_24725579_2023_2227197 crossref_primary_10_1016_j_bbr_2023_114325 crossref_primary_10_1016_j_patrec_2024_02_016 crossref_primary_10_1109_ACCESS_2024_3401547 crossref_primary_10_1016_j_cmpb_2025_108703 crossref_primary_10_1016_j_ipm_2021_102743 crossref_primary_10_34133_2021_8786793 crossref_primary_10_1007_s11063_021_10453_6 crossref_primary_10_1007_s11063_021_10483_0 crossref_primary_10_1371_journal_pone_0284111 crossref_primary_10_1093_comjnl_bxab114 crossref_primary_10_1016_j_jbi_2023_104300 crossref_primary_10_1093_comjnl_bxab078 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1016_j_inffus_2021_07_013 crossref_primary_10_1109_ACCESS_2021_3060631 crossref_primary_10_1016_j_ipm_2022_102919 crossref_primary_10_1016_j_ipm_2020_102439 crossref_primary_10_56294_saludcyt2024837 crossref_primary_10_1007_s12559_023_10169_w crossref_primary_10_1007_s40998_024_00769_z crossref_primary_10_1016_j_patrec_2021_06_001 |
| Cites_doi | 10.1007/978-3-319-23528-8_24 10.1016/j.neuroimage.2012.09.058 10.1016/j.media.2019.101625 10.1109/ICDM.2014.32 10.1109/TIP.2017.2726188 10.1109/TPAMI.2018.2789887 10.1109/ICDM.2018.00122 10.1016/j.neuroimage.2014.01.033 10.1109/JBHI.2019.2914970 10.24963/ijcai.2019/622 10.1142/S0129065716500507 10.1016/j.jalz.2016.11.007 10.1016/j.neuroimage.2010.01.005 10.1016/j.nicl.2013.05.004 10.1080/01621459.2014.923775 10.1609/aaai.v31i1.10833 10.1016/j.neunet.2020.05.030 10.1109/JSTSP.2019.2957952 10.1007/s11280-019-00766-x 10.1016/j.neunet.2019.10.010 10.1142/S0129065716500258 10.1186/s40708-019-0096-3 10.1016/j.neucom.2019.11.118 10.1016/j.nicl.2012.10.002 10.1016/j.neuroimage.2008.10.031 10.1016/j.neuroimage.2017.08.059 10.1109/TNNLS.2016.2551724 10.1016/j.patcog.2019.107175 10.1109/TCYB.2018.2887094 10.1038/s41591-020-0755-1 10.1007/s11280-019-00731-8 10.1109/PRNI.2011.12 10.1016/j.media.2015.10.008 10.1109/TNNLS.2016.2521602 10.1002/cpa.20303 10.1109/TBME.2015.2404809 10.1016/j.neuroimage.2014.10.002 10.1016/j.neucom.2014.09.072 10.1109/TMI.2015.2508280 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.inffus.2020.08.023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6305 |
| EndPage | 63 |
| ExternalDocumentID | 10_1016_j_inffus_2020_08_023 S1566253520303584 |
| GrantInformation_xml | – fundername: Key Project of Shenzhen Municipal Technology Research grantid: JSGG20200103103401723 – fundername: National Key Research and Development Program of China grantid: 2018AAA0102200 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61632007; 61876046 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Sichuan Science and Technology Program grantid: 2018GZDZX0032; 2019YFG0535 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-44bf7ca45b06329c5d4f6f46b49e8a426ed7d7b70aa0080b32b693b61c1f919e3 |
| IEDL.DBID | .~1 |
| ISSN | 1566-2535 |
| IngestDate | Wed Oct 29 21:16:40 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Fri Feb 23 02:45:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection Sparse learning Alzheimer’s disease Mild cognitive impairment Transfer learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-44bf7ca45b06329c5d4f6f46b49e8a426ed7d7b70aa0080b32b693b61c1f919e3 |
| ORCID | 0000-0002-8762-4523 0000-0003-2615-1555 0000-0003-1470-6998 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_inffus_2020_08_023 crossref_primary_10_1016_j_inffus_2020_08_023 elsevier_sciencedirect_doi_10_1016_j_inffus_2020_08_023 |
| PublicationCentury | 2000 |
| PublicationDate | February 2021 2021-02-00 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Information fusion |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Guo, Wu, Shen (b15) 2019 Xu, Lu, Song, Yang, Shen, Li (b50) 2019 Young, Modat, Cardoso (b42) 2013; 2 Khedher, Ramírez, Górriz, Brahim, Segovia, Initiative (b7) 2015; 151 Gui, Sun, Ji, Tao, Tan (b22) 2016; 28 Franke, Ziegler, Klöppel (b45) 2010; 50 Eskildsen, Coupé, García-Lorenzo (b32) 2013; 65 Shu, Wang, Zhu (b5) 2019 Shen, Zhu, Zheng, Zhu (b25) 2020 Holzinger, Langs, Denk, Zatloukal, Müller (b3) 2019; 9 Martinez-Murcia, Ortiz, Gorriz, Ramirez, Castillo-Barnes (b11) 2019; 24 Guo, Gao, Shen (b13) 2016; 35 L. Chen, X. Li, S. Wang, H.-Y. Hu, N. Huang, Q.Z. Sheng, M. Sharaf, Mining personal health index from annual geriatric medical examinations, in: ICDM, 2014, pp. 761–766. D.H. Ye, K.M. Pohl, C. Davatzikos, Semi-supervised pattern classification: application to structural MRI of Alzheimer’s disease, in: PRNI, 2011, pp. 1–4. O’Sullivan, Heinsen, Grinberg, Chimelli, Amaro, do Nascimento Saldiva, Jeanquartier, Jean-Quartier, Martin, Sajid (b1) 2019; 6 Coupé, Eskildsen, Manjón (b41) 2012; 1 Zhu, Yang, Zhang, Zhang (b23) 2019 Hu, Zhu, Zhu, Gan (b34) 2020; 23 Daubechies, Devore, Fornasier (b46) 2010; 63 Kang, Lu, Lu, Peng, Chen, Xu (b43) 2020 Zhu, Li, Zhang, Ju, Wu (b37) 2017; 28 Moradi, Pepe, Gaser (b17) 2015; 104 Gorriz, Group (b2) 2019 Ortiz, Munilla, Gorriz, Ramirez (b8) 2016; 26 Hao, Zhou, Guo (b4) 2020 Shen, Liu, Yang, Xu, Huang, Shen, Hong (b38) 2020 Zhu, Suk, Wang, Lee, Shen, Initiative (b9) 2017; 38 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Morris, Petersen, Saykin, Shaw, Toga, Trojanowski (b26) 2017; 13 Zhu, Khondker, Lu, Ibrahim (b27) 2014; 109 Wang, Nie, Hong, Chang, Yang, Yu (b28) 2017; 26 Khedher, Illán, Górriz, Ramírez, Brahim, Meyer-Baese (b10) 2017; 27 Lorenzi, Filippone, Frisoni, Alexander, Ourselin, Initiative (b14) 2019; 190 Lombardi, Crescioli, Cavedo, Lucenteforte, Casazza, Bellatorre, Lista, Costantino, Frisoni, Virgili (b12) 2020 Cheng, Liu, Zhang, Munsell, Shen (b29) 2015; 62 Shen, Xu, Liu, Yang, Huang, Shen (b44) 2018; 40 Kang, Zhao, Shi, Peng, Zhu, Zhou, Peng, Chen, Xu (b31) 2020; 122 Zhang, Li, Zong, Zhu, Cheng (b36) 2017; 8 Misra, Fan, Davatzikos (b48) 2009; 44 Zhu, Gan, Lu, Li, Zhang (b39) 2020; 23 H. Peng, Y. Fan, A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization, in: AAAI, 2017, pp. 2471–2477. Kong, An, Zhang, Zhu (b6) 2019 S. Wang, F. Nie, X. Chang, L. Yao, X. Li, Q.Z. Sheng, Unsupervised feature analysis with class margin optimization, in: ECML/PKDD, 2015, pp. 383–398. Hao, Bao, Guo, Yu, Zhang, Risacher, Saykin, Yao, Shen, Initiative (b19) 2020; 60 Thung, Wee, Yap, Shen (b49) 2014; 91 J. Gui, P. Li, Multi-view feature selection for heterogeneous face recognition, in: ICDM, 2018, pp. 983–988. Zhu, Zhu, Zheng (b21) 2020; 105 X. Zhu, Prediction of mild cognitive impairment conversion using auxiliary information, in: IJCAI, 2019, pp. 4475–4481. Janelidze, Mattsson, Palmqvist, Smith, Beach, Serrano, Chai, Proctor, Eichenlaub, Zetterberg (b16) 2020; 26 Zhou, Tian, Zhu, Jin, Sun (b35) 2020; 14 Kang, Pan, Hoi, Xu (b40) 2020; 50 Daubechies (10.1016/j.inffus.2020.08.023_b46) 2010; 63 Misra (10.1016/j.inffus.2020.08.023_b48) 2009; 44 Hao (10.1016/j.inffus.2020.08.023_b4) 2020 Zhu (10.1016/j.inffus.2020.08.023_b23) 2019 Martinez-Murcia (10.1016/j.inffus.2020.08.023_b11) 2019; 24 Lombardi (10.1016/j.inffus.2020.08.023_b12) 2020 Zhu (10.1016/j.inffus.2020.08.023_b37) 2017; 28 Eskildsen (10.1016/j.inffus.2020.08.023_b32) 2013; 65 Shen (10.1016/j.inffus.2020.08.023_b25) 2020 10.1016/j.inffus.2020.08.023_b30 Guo (10.1016/j.inffus.2020.08.023_b13) 2016; 35 Thung (10.1016/j.inffus.2020.08.023_b49) 2014; 91 10.1016/j.inffus.2020.08.023_b33 Guo (10.1016/j.inffus.2020.08.023_b15) 2019 Cheng (10.1016/j.inffus.2020.08.023_b29) 2015; 62 Shu (10.1016/j.inffus.2020.08.023_b5) 2019 Hu (10.1016/j.inffus.2020.08.023_b34) 2020; 23 Shen (10.1016/j.inffus.2020.08.023_b38) 2020 Shen (10.1016/j.inffus.2020.08.023_b44) 2018; 40 Kang (10.1016/j.inffus.2020.08.023_b31) 2020; 122 Zhou (10.1016/j.inffus.2020.08.023_b35) 2020; 14 Zhu (10.1016/j.inffus.2020.08.023_b27) 2014; 109 Xu (10.1016/j.inffus.2020.08.023_b50) 2019 Moradi (10.1016/j.inffus.2020.08.023_b17) 2015; 104 Young (10.1016/j.inffus.2020.08.023_b42) 2013; 2 Hao (10.1016/j.inffus.2020.08.023_b19) 2020; 60 10.1016/j.inffus.2020.08.023_b20 Ortiz (10.1016/j.inffus.2020.08.023_b8) 2016; 26 10.1016/j.inffus.2020.08.023_b24 Wang (10.1016/j.inffus.2020.08.023_b28) 2017; 26 Khedher (10.1016/j.inffus.2020.08.023_b7) 2015; 151 Coupé (10.1016/j.inffus.2020.08.023_b41) 2012; 1 Zhu (10.1016/j.inffus.2020.08.023_b21) 2020; 105 Holzinger (10.1016/j.inffus.2020.08.023_b3) 2019; 9 10.1016/j.inffus.2020.08.023_b18 Weiner (10.1016/j.inffus.2020.08.023_b26) 2017; 13 Franke (10.1016/j.inffus.2020.08.023_b45) 2010; 50 Gui (10.1016/j.inffus.2020.08.023_b22) 2016; 28 O’Sullivan (10.1016/j.inffus.2020.08.023_b1) 2019; 6 Lorenzi (10.1016/j.inffus.2020.08.023_b14) 2019; 190 Kang (10.1016/j.inffus.2020.08.023_b40) 2020; 50 Gorriz (10.1016/j.inffus.2020.08.023_b2) 2019 Kang (10.1016/j.inffus.2020.08.023_b43) 2020 Kong (10.1016/j.inffus.2020.08.023_b6) 2019 10.1016/j.inffus.2020.08.023_b47 Zhu (10.1016/j.inffus.2020.08.023_b9) 2017; 38 Janelidze (10.1016/j.inffus.2020.08.023_b16) 2020; 26 Zhang (10.1016/j.inffus.2020.08.023_b36) 2017; 8 Khedher (10.1016/j.inffus.2020.08.023_b10) 2017; 27 Zhu (10.1016/j.inffus.2020.08.023_b39) 2020; 23 |
| References_xml | – volume: 24 start-page: 17 year: 2019 end-page: 26 ident: b11 article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders publication-title: IEEE J. Biomed. Health Inf. – volume: 60 year: 2020 ident: b19 article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. – volume: 63 start-page: 1 year: 2010 end-page: 38 ident: b46 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure Appl. Math. – year: 2020 ident: b38 article-title: Exploiting subspace relation in semantic labels for cross-modal hashing publication-title: IEEE Trans. Knowl. Data Eng. – volume: 65 start-page: 511 year: 2013 end-page: 521 ident: b32 article-title: Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage – volume: 35 start-page: 1077 year: 2016 end-page: 1089 ident: b13 article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching publication-title: IEEE Trans. Med. Imaging – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: b17 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: NeuroImage – volume: 23 start-page: 1945 year: 2020 end-page: 1968 ident: b34 article-title: Robust SVM with adaptive graph learning publication-title: World Wide Web – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: b45 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage – reference: X. Zhu, Prediction of mild cognitive impairment conversion using auxiliary information, in: IJCAI, 2019, pp. 4475–4481. – start-page: 1 year: 2019 end-page: 47 ident: b6 article-title: L2RM: Low-rank linear regression models for high-dimensional matrix responses publication-title: J. Amer. Statist. Assoc. – volume: 23 start-page: 1969 year: 2020 end-page: 1988 ident: b39 article-title: Spectral clustering via half-quadratic optimization publication-title: World Wide Web – volume: 26 start-page: 379 year: 2020 end-page: 386 ident: b16 article-title: Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia publication-title: Nat. Med. – volume: 2 start-page: 735 year: 2013 end-page: 745 ident: b42 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment publication-title: NeuroImage: Clin. – year: 2020 ident: b43 article-title: Structure learning with similarity preserving publication-title: Neural Netw. – volume: 8 start-page: 1 year: 2017 end-page: 19 ident: b36 article-title: Learning k for knn classification publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – year: 2019 ident: b2 article-title: Statistical agnostic mapping: a framework in neuroimaging based on concentration inequalities – volume: 9 year: 2019 ident: b3 article-title: Causability and explainability of artificial intelligence in medicine publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – volume: 27 year: 2017 ident: b10 article-title: Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support publication-title: Int. J. Neural Syst. – volume: 109 start-page: 977 year: 2014 end-page: 990 ident: b27 article-title: Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers publication-title: J. Amer. Statist. Assoc. – volume: 40 start-page: 3034 year: 2018 end-page: 3044 ident: b44 article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 122 start-page: 279 year: 2020 end-page: 288 ident: b31 article-title: Partition level multiview subspace clustering publication-title: Neural Netw. – volume: 28 start-page: 1263 year: 2017 end-page: 1275 ident: b37 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: H. Peng, Y. Fan, A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization, in: AAAI, 2017, pp. 2471–2477. – volume: 190 start-page: 56 year: 2019 end-page: 68 ident: b14 article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease publication-title: NeuroImage – reference: S. Wang, F. Nie, X. Chang, L. Yao, X. Li, Q.Z. Sheng, Unsupervised feature analysis with class margin optimization, in: ECML/PKDD, 2015, pp. 383–398. – volume: 151 start-page: 139 year: 2015 end-page: 150 ident: b7 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented mri images publication-title: Neurocomputing – start-page: 1 year: 2019 end-page: 29 ident: b5 article-title: D-CCA: A decomposition-based canonical correlation analysis for high-dimensional datasets publication-title: J. Amer. Statist. Assoc. – volume: 26 year: 2016 ident: b8 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int. J. Neural Syst. – volume: 28 start-page: 1490 year: 2016 end-page: 1507 ident: b22 article-title: Feature selection based on structured sparsity: A comprehensive study publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2020 ident: b25 article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 13 start-page: e1 year: 2017 end-page: e85 ident: b26 article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials publication-title: Alzheimer’s Dement. – reference: L. Chen, X. Li, S. Wang, H.-Y. Hu, N. Huang, Q.Z. Sheng, M. Sharaf, Mining personal health index from annual geriatric medical examinations, in: ICDM, 2014, pp. 761–766. – volume: 91 start-page: 386 year: 2014 end-page: 400 ident: b49 article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: NeuroImage – volume: 26 start-page: 5019 year: 2017 end-page: 5030 ident: b28 article-title: Fast and orthogonal locality preserving projections for dimensionality reduction publication-title: IEEE Trans. Image Process. – year: 2020 ident: b4 article-title: A brief survey on semantic segmentation with deep learning publication-title: Neurocomputing – volume: 105 year: 2020 ident: b21 article-title: Spectral rotation for deep one-step clustering publication-title: Pattern Recognit. – volume: 1 start-page: 141 year: 2012 end-page: 152 ident: b41 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: Clin. – volume: 50 start-page: 1833 year: 2020 end-page: 1843 ident: b40 article-title: Robust graph learning from noisy data publication-title: IEEE Trans. Cybern. – volume: 44 start-page: 1415 year: 2009 end-page: 1422 ident: b48 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage – reference: D.H. Ye, K.M. Pohl, C. Davatzikos, Semi-supervised pattern classification: application to structural MRI of Alzheimer’s disease, in: PRNI, 2011, pp. 1–4. – year: 2019 ident: b23 article-title: Efficient utilization of missing data in cost-sensitive learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 62 start-page: 1805 year: 2015 end-page: 1817 ident: b29 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. – volume: 14 start-page: 118 year: 2020 end-page: 129 ident: b35 article-title: Video coding optimization for virtual reality 360-degree source publication-title: J. Sel. Top. Signal Process. – volume: 38 start-page: 205 year: 2017 end-page: 214 ident: b9 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med. Image Anal. – year: 2019 ident: b15 article-title: Learning longitudinal classification-regression model for infant hippocampus segmentation publication-title: Neurocomputing – year: 2019 ident: b50 article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval publication-title: IEEE Trans. Cybern. – year: 2020 ident: b12 article-title: Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment publication-title: Cochrane Database Syst. Rev. – volume: 6 start-page: 3 year: 2019 ident: b1 article-title: The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure publication-title: Brain Inf. – reference: J. Gui, P. Li, Multi-view feature selection for heterogeneous face recognition, in: ICDM, 2018, pp. 983–988. – start-page: 1 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b5 article-title: D-CCA: A decomposition-based canonical correlation analysis for high-dimensional datasets publication-title: J. Amer. Statist. Assoc. – year: 2020 ident: 10.1016/j.inffus.2020.08.023_b25 article-title: Half-quadratic minimization for unsupervised feature selection on incomplete data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.inffus.2020.08.023_b24 doi: 10.1007/978-3-319-23528-8_24 – volume: 65 start-page: 511 year: 2013 ident: 10.1016/j.inffus.2020.08.023_b32 article-title: Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.09.058 – volume: 60 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b19 article-title: Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101625 – ident: 10.1016/j.inffus.2020.08.023_b18 doi: 10.1109/ICDM.2014.32 – volume: 26 start-page: 5019 issue: 10 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b28 article-title: Fast and orthogonal locality preserving projections for dimensionality reduction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2726188 – year: 2019 ident: 10.1016/j.inffus.2020.08.023_b50 article-title: Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval publication-title: IEEE Trans. Cybern. – volume: 40 start-page: 3034 issue: 12 year: 2018 ident: 10.1016/j.inffus.2020.08.023_b44 article-title: Unsupervised deep hashing with similarity-adaptive and discrete optimization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2789887 – ident: 10.1016/j.inffus.2020.08.023_b30 doi: 10.1109/ICDM.2018.00122 – volume: 91 start-page: 386 year: 2014 ident: 10.1016/j.inffus.2020.08.023_b49 article-title: Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.01.033 – year: 2019 ident: 10.1016/j.inffus.2020.08.023_b23 article-title: Efficient utilization of missing data in cost-sensitive learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 24 start-page: 17 issue: 1 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b11 article-title: Studying the manifold structure of Alzheimer’s disease: a deep learning approach using convolutional autoencoders publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2019.2914970 – ident: 10.1016/j.inffus.2020.08.023_b20 doi: 10.24963/ijcai.2019/622 – start-page: 1 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b6 article-title: L2RM: Low-rank linear regression models for high-dimensional matrix responses publication-title: J. Amer. Statist. Assoc. – volume: 27 issue: 03 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b10 article-title: Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500507 – volume: 13 start-page: e1 issn: 1552-5260 issue: 4 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b26 article-title: Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2016.11.007 – volume: 50 start-page: 883 issue: 3 year: 2010 ident: 10.1016/j.inffus.2020.08.023_b45 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 9 issue: 4 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b3 article-title: Causability and explainability of artificial intelligence in medicine publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – volume: 2 start-page: 735 year: 2013 ident: 10.1016/j.inffus.2020.08.023_b42 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2013.05.004 – volume: 109 start-page: 977 issue: 507 year: 2014 ident: 10.1016/j.inffus.2020.08.023_b27 article-title: Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2014.923775 – ident: 10.1016/j.inffus.2020.08.023_b47 doi: 10.1609/aaai.v31i1.10833 – year: 2020 ident: 10.1016/j.inffus.2020.08.023_b43 article-title: Structure learning with similarity preserving publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.05.030 – year: 2019 ident: 10.1016/j.inffus.2020.08.023_b2 – volume: 14 start-page: 118 issue: 1 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b35 article-title: Video coding optimization for virtual reality 360-degree source publication-title: J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2957952 – volume: 23 start-page: 1945 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b34 article-title: Robust SVM with adaptive graph learning publication-title: World Wide Web doi: 10.1007/s11280-019-00766-x – year: 2020 ident: 10.1016/j.inffus.2020.08.023_b38 article-title: Exploiting subspace relation in semantic labels for cross-modal hashing publication-title: IEEE Trans. Knowl. Data Eng. – volume: 122 start-page: 279 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b31 article-title: Partition level multiview subspace clustering publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.10.010 – volume: 26 issue: 07 year: 2016 ident: 10.1016/j.inffus.2020.08.023_b8 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500258 – issue: 3 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b12 article-title: Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment publication-title: Cochrane Database Syst. Rev. – volume: 8 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b36 article-title: Learning k for knn classification publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 6 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b1 article-title: The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure publication-title: Brain Inf. doi: 10.1186/s40708-019-0096-3 – year: 2020 ident: 10.1016/j.inffus.2020.08.023_b4 article-title: A brief survey on semantic segmentation with deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.118 – volume: 1 start-page: 141 issue: 1 year: 2012 ident: 10.1016/j.inffus.2020.08.023_b41 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2012.10.002 – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 10.1016/j.inffus.2020.08.023_b48 article-title: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 190 start-page: 56 year: 2019 ident: 10.1016/j.inffus.2020.08.023_b14 article-title: Probabilistic disease progression modeling to characterize diagnostic uncertainty: application to staging and prediction in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.059 – volume: 28 start-page: 1490 issue: 7 year: 2016 ident: 10.1016/j.inffus.2020.08.023_b22 article-title: Feature selection based on structured sparsity: A comprehensive study publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2551724 – volume: 105 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b21 article-title: Spectral rotation for deep one-step clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107175 – volume: 50 start-page: 1833 issue: 5 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b40 article-title: Robust graph learning from noisy data publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2887094 – volume: 26 start-page: 379 issue: 3 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b16 article-title: Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia publication-title: Nat. Med. doi: 10.1038/s41591-020-0755-1 – volume: 23 start-page: 1969 year: 2020 ident: 10.1016/j.inffus.2020.08.023_b39 article-title: Spectral clustering via half-quadratic optimization publication-title: World Wide Web doi: 10.1007/s11280-019-00731-8 – ident: 10.1016/j.inffus.2020.08.023_b33 doi: 10.1109/PRNI.2011.12 – volume: 38 start-page: 205 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b9 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.10.008 – volume: 28 start-page: 1263 issue: 6 year: 2017 ident: 10.1016/j.inffus.2020.08.023_b37 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2521602 – volume: 63 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.inffus.2020.08.023_b46 article-title: Iteratively reweighted least squares minimization for sparse recovery publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20303 – year: 2019 ident: 10.1016/j.inffus.2020.08.023_b15 article-title: Learning longitudinal classification-regression model for infant hippocampus segmentation publication-title: Neurocomputing – volume: 62 start-page: 1805 issue: 7 year: 2015 ident: 10.1016/j.inffus.2020.08.023_b29 article-title: Domain transfer learning for MCI conversion prediction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2404809 – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.inffus.2020.08.023_b17 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 151 start-page: 139 year: 2015 ident: 10.1016/j.inffus.2020.08.023_b7 article-title: Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented mri images publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.072 – volume: 35 start-page: 1077 issue: 4 year: 2016 ident: 10.1016/j.inffus.2020.08.023_b13 article-title: Deformable MR prostate segmentation via deep feature learning and sparse patch matching publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2508280 |
| SSID | ssj0017031 |
| Score | 2.5259871 |
| Snippet | In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 54 |
| SubjectTerms | Alzheimer’s disease Feature selection Mild cognitive impairment Sparse learning Transfer learning |
| Title | Heterogeneous data fusion for predicting mild cognitive impairment conversion |
| URI | https://dx.doi.org/10.1016/j.inffus.2020.08.023 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: ACRLP dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: AIKHN dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: .~1 dateStart: 20000701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017031 issn: 1566-2535 databaseCode: AKRWK dateStart: 20000701 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MHr2jwmm-RYiiU-WkQt9BayL6jUttT26m93Z_NAQRQ8BcJOEmaGmdnNN98QcqU4-IEEwVLwgIGKQlYoGTPgILhfRJ5xI1mGI56N4W4STVqkX_fCIKyyiv1lTHfRurrTrbTZXU6n3WfceQTITmL9NLR5FDvYIcYpBtcfDczDR352x5nKOcPVdfucw3hZI5oNknYHniPyDMKf09OXlDPYI7tVrUh75efsk5aeH5CdYUO0-n5IhhnCWRbWC7TdwlPEe1L7LqtsaqtRulzhfxhENtO36UzRBixEsTtyusKjQeqA5-7U7IiMBzcv_YxVExKYtKX-mgEIE8sCImErjSCVkQLDDXABqU4Km3y1ilUsYq8osDQUYSB4GlojSN-kfqrDY9KeL-b6hFAvSZXhRcJBA5g0SgS39jWJNIm2z-enJKwVk8uKPhynWMzyGif2mpfqzFGdOQ63DMJTwhqpZUmf8cf6uNZ5_s0Nchvhf5U8-7fkOdkOEKjioNgXpL1ebfSlrTTWouNcqUO2ev2nh0e83t5no0_Wo9Yu |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YHVNHEuTjKiiipA04VW6hbFiS0FlbYq7cpvx-ckFUgIJNbIdqK70z2c774j5LYQ4PIcJIvAAQaF77GsyAMGAqRwM9_RdiRLMhTxGJ4m_qRFek0vDMIqa99f-XTrresn3Vqa3UVZdl-w8uDITmLs1DNxdItsg88DrMDuPjY4DxcJ2i1pqhAMlzf9cxbkZbSo18jazR3L5Mm9n-PTl5jTPyD7dbJI76vvOSQtNTsie8mGafX9mCQx4lnmxgyUqeEpAj6peZeRNjXpKF0s8UcMQpvpWzkt6AYtRLE9slzi3SC1yHN7bXZCxv2HUS9m9YgElptcf8UApA7yDHxpUg0e5X4BWmgQEiIVZib6qiIoAhk4WYa5ofS4FJFntJC7OnIj5Z2S9mw-U2eEOmFUaJGFAhSAjvxQCqNgHeY6VOZ80SFeI5g0r_nDcYzFNG2AYq9pJc4UxZnidEvudQjb7FpU_Bl_rA8amaff7CA1Lv7Xnef_3nlDduJRMkgHj8PnC7LLEbVicdmXpL1artWVSTtW8tqa1Sc-6dYu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+data+fusion+for+predicting+mild+cognitive+impairment+conversion&rft.jtitle=Information+fusion&rft.au=Shen%2C+Heng+Tao&rft.au=Zhu%2C+Xiaofeng&rft.au=Zhang%2C+Zheng&rft.au=Wang%2C+Shui-Hua&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=66&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.inffus.2020.08.023&rft.externalDocID=S1566253520303584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |