A model for hydraulic fracture growth across multiple elastic layers

Typical stress conditions in gas reservoirs consisting of multiple thin coal seams interlayed with shales, tuffs and sandstones, often lead to generation of a planar vertical hydraulic fracture. A pseudo-3D model, in which the growth of the planar hydraulic fracture occurs through multiple horizonta...

Full description

Saved in:
Bibliographic Details
Published inJournal of petroleum science & engineering Vol. 167; pp. 918 - 928
Main Authors Zhang, X., Wu, B., Connell, L.D., Han, Y., Jeffrey, R.G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0920-4105
1873-4715
DOI10.1016/j.petrol.2018.04.071

Cover

Abstract Typical stress conditions in gas reservoirs consisting of multiple thin coal seams interlayed with shales, tuffs and sandstones, often lead to generation of a planar vertical hydraulic fracture. A pseudo-3D model, in which the growth of the planar hydraulic fracture occurs through multiple horizontal layers with different elastic properties, is developed to account for the effects of modulus contrasts on fracture shapes. In this model, plane strain deformation is assumed for pseudo-3D cells that have uniform cross-sectional pressure distribution, and the horizontal fluid flow is simplified to be one dimensional. The vertical and horizontal fracture growth are controlled in the model by two failure criteria, respectively. Viscous fluid friction effects are included for vertical growth and a correction factor is applied to the horizontal failure criterion to adjust the propagation speeds. The numerical results for different values of the correction factor are presented for a vertically planar fracture propagating in a homogeneous rock subject to stress contrasts. Fitting the pseudo-3D results to fully-3D results provides a means to determine the correlation factor that is found to be a function of material constants and cell length. The correlation factor obtained is then extended to hydraulic fracture propagation in a layered rock mass. There are two options in choosing material constants for the correlation factor and their results are examined. Both choices demonstrate the same varying trends for fracture height and propagation speed. The existence of softer coal seams retards upward fracture growth, with a stepwise injection pressure associated with the discontinuous upward growth. •Fracture growth in the vertical direction is affected by modulus contrast.•A correction factor produces reasonable fracture length and height predictions.•Injection pressure variation acts as an indicative for fracture growth into different layers.
AbstractList Typical stress conditions in gas reservoirs consisting of multiple thin coal seams interlayed with shales, tuffs and sandstones, often lead to generation of a planar vertical hydraulic fracture. A pseudo-3D model, in which the growth of the planar hydraulic fracture occurs through multiple horizontal layers with different elastic properties, is developed to account for the effects of modulus contrasts on fracture shapes. In this model, plane strain deformation is assumed for pseudo-3D cells that have uniform cross-sectional pressure distribution, and the horizontal fluid flow is simplified to be one dimensional. The vertical and horizontal fracture growth are controlled in the model by two failure criteria, respectively. Viscous fluid friction effects are included for vertical growth and a correction factor is applied to the horizontal failure criterion to adjust the propagation speeds. The numerical results for different values of the correction factor are presented for a vertically planar fracture propagating in a homogeneous rock subject to stress contrasts. Fitting the pseudo-3D results to fully-3D results provides a means to determine the correlation factor that is found to be a function of material constants and cell length. The correlation factor obtained is then extended to hydraulic fracture propagation in a layered rock mass. There are two options in choosing material constants for the correlation factor and their results are examined. Both choices demonstrate the same varying trends for fracture height and propagation speed. The existence of softer coal seams retards upward fracture growth, with a stepwise injection pressure associated with the discontinuous upward growth. •Fracture growth in the vertical direction is affected by modulus contrast.•A correction factor produces reasonable fracture length and height predictions.•Injection pressure variation acts as an indicative for fracture growth into different layers.
Author Jeffrey, R.G.
Wu, B.
Zhang, X.
Connell, L.D.
Han, Y.
Author_xml – sequence: 1
  givenname: X.
  surname: Zhang
  fullname: Zhang, X.
  email: xi.zhang@csiro.au
  organization: CSIRO Energy, Melbourne, VIC, Australia
– sequence: 2
  givenname: B.
  surname: Wu
  fullname: Wu, B.
  organization: CSIRO Energy, Melbourne, VIC, Australia
– sequence: 3
  givenname: L.D.
  surname: Connell
  fullname: Connell, L.D.
  organization: CSIRO Energy, Melbourne, VIC, Australia
– sequence: 4
  givenname: Y.
  surname: Han
  fullname: Han, Y.
  organization: Aramco Services, Houston, USA
– sequence: 5
  givenname: R.G.
  surname: Jeffrey
  fullname: Jeffrey, R.G.
  organization: SCT Operations, Wollongong, NSW, Australia
BookMark eNqFkMtOwzAQRS1UJFrgD1j4BxLGj9gJC6SqPKVKbGBtOc6EunKTynFB_XtSyooFrGZzz9WdMyOTru-QkCsGOQOmrtf5FlPsQ86BlTnIHDQ7IVNWapFJzYoJmULFIZMMijMyG4Y1AAgl9JTczemmbzDQto90tW-i3QXvaButS7uI9D32n2lFrYv9MNDNLiS_DUgx2CGNuWD3GIcLctraMODlzz0nbw_3r4unbPny-LyYLzMnQKVMSlEXQmulOSIXSmJdK6kFQFMUsizaprVCyKbilQRRlJUCW3MOVglua6fEObk59n6vidga55NNvu9StD4YBubgw6zN0Yc5-DAgzehjhOUveBv9xsb9f9jtEcPxsQ-P0QzOY-ew8RFdMk3v_y74AlZ1fn0
CitedBy_id crossref_primary_10_1007_s13202_021_01373_1
crossref_primary_10_1016_j_enganabound_2022_03_029
crossref_primary_10_1007_s12182_019_00416_x
crossref_primary_10_1016_j_euromechsol_2024_105383
crossref_primary_10_3390_w16131912
crossref_primary_10_1016_j_ngib_2022_04_004
crossref_primary_10_1002_gj_5101
crossref_primary_10_1016_j_engfracmech_2023_109570
crossref_primary_10_1515_secm_2022_0182
crossref_primary_10_3390_en13030555
crossref_primary_10_3390_en15061967
crossref_primary_10_3390_math11092083
crossref_primary_10_1007_s13202_022_01534_w
crossref_primary_10_1021_acs_energyfuels_9b00673
crossref_primary_10_3390_pr12040839
crossref_primary_10_1016_j_ghm_2024_03_004
crossref_primary_10_1142_S1758825122500181
crossref_primary_10_1016_j_compgeo_2023_105258
crossref_primary_10_1190_geo2023_0660_1
crossref_primary_10_1016_j_engfracmech_2023_109662
crossref_primary_10_1007_s00603_024_03872_z
crossref_primary_10_1080_10916466_2021_2020818
crossref_primary_10_3389_feart_2022_1116492
crossref_primary_10_62486_agmu202314
crossref_primary_10_1080_10916466_2023_2174137
crossref_primary_10_1016_j_petrol_2019_03_049
crossref_primary_10_1155_2019_2624716
crossref_primary_10_2118_206756_PA
Cites_doi 10.1016/j.ijrmms.2010.03.008
10.1016/j.jngse.2017.10.012
10.1016/j.jsg.2006.09.013
10.1115/1.4030172
10.2118/89-PA
10.1016/j.engfracmech.2015.05.043
10.2118/106030-PA
10.1007/s10704-006-0054-y
10.1016/j.cma.2014.08.024
10.1061/(ASCE)1532-3641(2004)4:1(35)
10.2118/8297-PA
10.1016/j.cma.2008.01.013
10.1016/j.energy.2014.05.037
10.2118/10504-PA
10.1016/j.engfracmech.2016.04.023
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.petrol.2018.04.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4715
EndPage 928
ExternalDocumentID 10_1016_j_petrol_2018_04_071
S0920410518303838
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSR
SSZ
T5K
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-443b5377672ee2364ebb647300d55485fdfa334d92940358960ab220a632abc63
IEDL.DBID .~1
ISSN 0920-4105
IngestDate Thu Oct 16 04:40:55 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Multiple layers
Pseudo-3D model
Coal seam gas
Correction factor for toughness
Fracture height growth
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-443b5377672ee2364ebb647300d55485fdfa334d92940358960ab220a632abc63
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_petrol_2018_04_071
crossref_primary_10_1016_j_petrol_2018_04_071
elsevier_sciencedirect_doi_10_1016_j_petrol_2018_04_071
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Journal of petroleum science & engineering
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Crouch, Starfield (bib4) 1990
Peirce, Detournay (bib25) 2008; 197
Dontsov, Peirce (bib6) 2015; 142
Peirce (bib24) 2015; 283
Gu, Siebrits (bib10) 2008
Gu, Siebrits, Sabourov (bib11) 2008
Detournay (bib5) 2004; 4
Lecampion, Bunger, Zhang (bib17) 2018; 49
Zhang, Jeffrey (bib31) 2006; 139
Van Eekelen (bib30) 1980
Adeerogba (bib2) 1977; 35
Jeffrey, Enever, Ferguson, Bride, Phillips, Davidson (bib13) 1993
Palmer, Kutas (bib22) 1991
Zhang, Jeffrey, Thiercelin (bib32) 2007; 29
Elbel, Piggott, Mack (bib8) 1992
Simonson, Abou-Sayed, Clifton (bib29) 1978
Fan, Zhang (bib9) 2014; 74
Sarvaramini, Garagash (bib27) 2015; 82
Kirk-Burnnand, Pandey, Flottmann, Trubshaw (bib16) 2015
Nolte, Smith (bib20) 1981
Settari, Cleary (bib28) 1984
Jeffrey, Settari (bib14) 1998
Jeffrey, Bunger (bib12) 2009; 14
Nordgren (bib21) 1972
Dontsov, Peirce (bib7) 2016; 160
Jeffrey, Zhang (bib15) 2008
Zhang, Wu, Jeffrey, Connell, Zhang (bib33) 2017; 115–116
Chuprakov, Prioul (bib3) 2015
Mack, Elbel, Piggott (bib18) 1992
Pandey, Flottmann (bib23) 2015
Meyer (bib19) 1989
Perkins, Kern (bib26) 1961
Adachi, Detournay, Peirce (bib1) 2010; 47
Lecampion (10.1016/j.petrol.2018.04.071_bib17) 2018; 49
Nordgren (10.1016/j.petrol.2018.04.071_bib21) 1972
Adeerogba (10.1016/j.petrol.2018.04.071_bib2) 1977; 35
Chuprakov (10.1016/j.petrol.2018.04.071_bib3) 2015
Gu (10.1016/j.petrol.2018.04.071_bib10) 2008
Perkins (10.1016/j.petrol.2018.04.071_bib26) 1961
Elbel (10.1016/j.petrol.2018.04.071_bib8) 1992
Jeffrey (10.1016/j.petrol.2018.04.071_bib15) 2008
Jeffrey (10.1016/j.petrol.2018.04.071_bib13) 1993
Mack (10.1016/j.petrol.2018.04.071_bib18) 1992
Sarvaramini (10.1016/j.petrol.2018.04.071_bib27) 2015; 82
Zhang (10.1016/j.petrol.2018.04.071_bib33) 2017; 115–116
Palmer (10.1016/j.petrol.2018.04.071_bib22) 1991
Dontsov (10.1016/j.petrol.2018.04.071_bib7) 2016; 160
Gu (10.1016/j.petrol.2018.04.071_bib11) 2008
Adachi (10.1016/j.petrol.2018.04.071_bib1) 2010; 47
Settari (10.1016/j.petrol.2018.04.071_bib28) 1984
Van Eekelen (10.1016/j.petrol.2018.04.071_bib30) 1980
Peirce (10.1016/j.petrol.2018.04.071_bib25) 2008; 197
Jeffrey (10.1016/j.petrol.2018.04.071_bib12) 2009; 14
Detournay (10.1016/j.petrol.2018.04.071_bib5) 2004; 4
Meyer (10.1016/j.petrol.2018.04.071_bib19) 1989
Simonson (10.1016/j.petrol.2018.04.071_bib29) 1978
Zhang (10.1016/j.petrol.2018.04.071_bib31) 2006; 139
Crouch (10.1016/j.petrol.2018.04.071_bib4) 1990
Jeffrey (10.1016/j.petrol.2018.04.071_bib14) 1998
Fan (10.1016/j.petrol.2018.04.071_bib9) 2014; 74
Nolte (10.1016/j.petrol.2018.04.071_bib20) 1981
Pandey (10.1016/j.petrol.2018.04.071_bib23) 2015
Kirk-Burnnand (10.1016/j.petrol.2018.04.071_bib16) 2015
Peirce (10.1016/j.petrol.2018.04.071_bib24) 2015; 283
Zhang (10.1016/j.petrol.2018.04.071_bib32) 2007; 29
Dontsov (10.1016/j.petrol.2018.04.071_bib6) 2015; 142
References_xml – year: 1990
  ident: bib4
  article-title: Boundary Element Method in Solid Mechanics
– year: 1998
  ident: bib14
  article-title: An instrumented hydraulic fracture experiment in coal
  publication-title: SPE Rocky Mountain Regional/Low Permeability Symposium, 8
– start-page: 71
  year: 1991
  end-page: 88
  ident: bib22
  article-title: Hydraulic fracture height growth in San Juan Basin coalbeds
  publication-title: In Proceedings of SPE Low Permeability Reservoirs Symposium
– volume: 74
  start-page: 164
  year: 2014
  end-page: 173
  ident: bib9
  article-title: Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures
  publication-title: Energy
– volume: 49
  start-page: 66
  year: 2018
  end-page: 83
  ident: bib17
  article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends
  publication-title: J. Nat. Gas Sci. Eng.
– start-page: 1767
  year: 1981
  end-page: 1775
  ident: bib20
  article-title: Interpretation of fracturing pressures
  publication-title: JPT
– volume: 115–116
  start-page: 208
  year: 2017
  end-page: 223
  ident: bib33
  article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock
  publication-title: Int. J. Solids Struct.
– volume: 35
  start-page: 281
  year: 1977
  end-page: 292
  ident: bib2
  article-title: On eigenstresses in dissimilar media. The Philosophical Magazine
  publication-title: A J. Theor. Exp. Appl. Phys.
– year: 2008
  ident: bib11
  article-title: Hydraulic-fracture modeling with bedding plane interfacial slip
  publication-title: In 2008 SPE Eastern Regional/AAPG Eastern Section Joint Meeting, Pittsburgh, Pennsylvania, Number October
– start-page: 335
  year: 1992
  end-page: 344
  ident: bib18
  article-title: Numerical representation of multilayer hydraulic fracturing
  publication-title: Rock Mechanics
– start-page: 1
  year: 1980
  end-page: 10
  ident: bib30
  article-title: Hydraulic fracture geometry: fracture containment in layered formations
  publication-title: Proceedings of the SPE Annual Fall Technical Conference and Exhibition, SPE, Dallas
– volume: 47
  start-page: 625
  year: 2010
  end-page: 639
  ident: bib1
  article-title: Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers
  publication-title: Int. J. Rock Mech. Min. Sci.
– start-page: 27
  year: 1978
  end-page: 32
  ident: bib29
  article-title: Containment of massive hydraulic fractures
  publication-title: SPE J. Febr.
– volume: 29
  start-page: 396
  year: 2007
  end-page: 410
  ident: bib32
  article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation
  publication-title: J. Struct. Geol.
– volume: 142
  start-page: 116
  year: 2015
  end-page: 139
  ident: bib6
  article-title: An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness
  publication-title: Eng. Fract. Mech.
– start-page: 79
  year: 1993
  end-page: 88
  ident: bib13
  article-title: Small-scale hydraulic fracturing and mineback experiments in coal seams
  publication-title: In the 1993 International Coalbed Methane Symposium
– start-page: 1177
  year: 1984
  end-page: 1190
  ident: bib28
  article-title: Three-dimensional simulation of hydraulic fracturing
  publication-title: J. Petrol. Technol.
– start-page: 306
  year: 1972
  end-page: 314
  ident: bib21
  article-title: Propagation of a vertical hydraulic fracture
  publication-title: SPE J.
– year: 2015
  ident: bib3
  article-title: Hydraulic fracture height containment by weak horizontal interfaces
  publication-title: SPE Hydraulic Fracturing Technology Conference, Number 3–5 February
– year: 2015
  ident: bib16
  article-title: Hydraulic fracture design optimization in low permeability coals, Surat Basin, Australia
  publication-title: In the SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia
– volume: 160
  start-page: 238
  year: 2016
  end-page: 247
  ident: bib7
  article-title: Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures
  publication-title: Eng. Fract. Mech.
– start-page: 1
  year: 2015
  end-page: 27
  ident: bib23
  article-title: Applications of geomechanics to hydraulic fracturing - case studies from coal stimulation
  publication-title: In SPE Hydraulic Fracturing Technology Conference, the Woodlands, Texas
– volume: 14
  start-page: 413
  year: 2009
  end-page: 422
  ident: bib12
  article-title: A detailed comparison of experimental and numerical data on hydraulic fracture height growth through stress contrasts
  publication-title: SPE J.
– volume: 197
  start-page: 2858
  year: 2008
  end-page: 2885
  ident: bib25
  article-title: An implicit level set method for modeling hydraulically driven fractures
  publication-title: Comput. Meth. Appl. Mech. Eng
– start-page: 937
  year: 1961
  end-page: 949
  ident: bib26
  article-title: Width of hydraulic fractures
  publication-title: JPT
– start-page: 170
  year: 2008
  end-page: 176
  ident: bib10
  article-title: Effect of formation modulus contrast on hydraulic fracture height containment
  publication-title: SPE Prod. Oper.
– volume: 4
  start-page: 35
  year: 2004
  end-page: 45
  ident: bib5
  article-title: Propagation regimes of fluid-driven fractures in impermeable rocks
  publication-title: Int. J. Geomech.
– start-page: 369
  year: 2008
  end-page: 379
  ident: bib15
  article-title: Hydraulic fracture growth in coal
  publication-title: The 1st Southern Hemisphere International rock mechanics Symposium, in SHIRMS 2008, Perth, Australia, 16-19 September
– volume: 139
  start-page: 477
  year: 2006
  end-page: 493
  ident: bib31
  article-title: Numerical studies on crack problems in three-layered elastic media using an image method
  publication-title: Int. J. Fract.
– volume: 283
  start-page: 881
  year: 2015
  end-page: 908
  ident: bib24
  article-title: Modeling multi-scale processes in hydraulic fracture propagation using the implicit level set algorithm
  publication-title: Comp. Meth. Appl. Mech. Eng.
– year: 1992
  ident: bib8
  article-title: Numerical modeling of multilayer fracture treatments
  publication-title: In the 1992 SPE Permian Basin Oil and Gas Recovery, Number March 18–20, Midland, Texas
– volume: 82
  start-page: 061006
  year: 2015
  ident: bib27
  article-title: Breakdown of a pressurized finger-like crack in a permeable solid
  publication-title: J. Appl. Mech.
– year: 1989
  ident: bib19
  article-title: Three-dimensional hydraulic fracturing simulation on personal computers: theory and comparison studies
  publication-title: Proceedings SPE Eastern Regional Meeting, Morgantown, West Virginia, 24–27 October 1989
– volume: 115–116
  start-page: 208
  year: 2017
  ident: 10.1016/j.petrol.2018.04.071_bib33
  article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock
  publication-title: Int. J. Solids Struct.
– volume: 47
  start-page: 625
  year: 2010
  ident: 10.1016/j.petrol.2018.04.071_bib1
  article-title: Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2010.03.008
– volume: 49
  start-page: 66
  year: 2018
  ident: 10.1016/j.petrol.2018.04.071_bib17
  article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.10.012
– start-page: 27
  year: 1978
  ident: 10.1016/j.petrol.2018.04.071_bib29
  article-title: Containment of massive hydraulic fractures
  publication-title: SPE J. Febr.
– volume: 29
  start-page: 396
  year: 2007
  ident: 10.1016/j.petrol.2018.04.071_bib32
  article-title: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2006.09.013
– start-page: 369
  year: 2008
  ident: 10.1016/j.petrol.2018.04.071_bib15
  article-title: Hydraulic fracture growth in coal
– volume: 82
  start-page: 061006
  issue: 6
  year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib27
  article-title: Breakdown of a pressurized finger-like crack in a permeable solid
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4030172
– start-page: 79
  year: 1993
  ident: 10.1016/j.petrol.2018.04.071_bib13
  article-title: Small-scale hydraulic fracturing and mineback experiments in coal seams
– volume: 35
  start-page: 281
  issue: 2
  year: 1977
  ident: 10.1016/j.petrol.2018.04.071_bib2
  article-title: On eigenstresses in dissimilar media. The Philosophical Magazine
  publication-title: A J. Theor. Exp. Appl. Phys.
– year: 1989
  ident: 10.1016/j.petrol.2018.04.071_bib19
  article-title: Three-dimensional hydraulic fracturing simulation on personal computers: theory and comparison studies
– start-page: 937
  year: 1961
  ident: 10.1016/j.petrol.2018.04.071_bib26
  article-title: Width of hydraulic fractures
  publication-title: JPT
  doi: 10.2118/89-PA
– year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib3
  article-title: Hydraulic fracture height containment by weak horizontal interfaces
– volume: 142
  start-page: 116
  year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib6
  article-title: An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.05.043
– start-page: 1
  year: 1980
  ident: 10.1016/j.petrol.2018.04.071_bib30
  article-title: Hydraulic fracture geometry: fracture containment in layered formations
– volume: 14
  start-page: 413
  year: 2009
  ident: 10.1016/j.petrol.2018.04.071_bib12
  article-title: A detailed comparison of experimental and numerical data on hydraulic fracture height growth through stress contrasts
  publication-title: SPE J.
  doi: 10.2118/106030-PA
– start-page: 71
  year: 1991
  ident: 10.1016/j.petrol.2018.04.071_bib22
  article-title: Hydraulic fracture height growth in San Juan Basin coalbeds
– year: 1998
  ident: 10.1016/j.petrol.2018.04.071_bib14
  article-title: An instrumented hydraulic fracture experiment in coal
– start-page: 335
  year: 1992
  ident: 10.1016/j.petrol.2018.04.071_bib18
  article-title: Numerical representation of multilayer hydraulic fracturing
– volume: 139
  start-page: 477
  year: 2006
  ident: 10.1016/j.petrol.2018.04.071_bib31
  article-title: Numerical studies on crack problems in three-layered elastic media using an image method
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-006-0054-y
– year: 2008
  ident: 10.1016/j.petrol.2018.04.071_bib11
  article-title: Hydraulic-fracture modeling with bedding plane interfacial slip
– year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib16
  article-title: Hydraulic fracture design optimization in low permeability coals, Surat Basin, Australia
– start-page: 170
  year: 2008
  ident: 10.1016/j.petrol.2018.04.071_bib10
  article-title: Effect of formation modulus contrast on hydraulic fracture height containment
  publication-title: SPE Prod. Oper.
– volume: 283
  start-page: 881
  year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib24
  article-title: Modeling multi-scale processes in hydraulic fracture propagation using the implicit level set algorithm
  publication-title: Comp. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.024
– volume: 4
  start-page: 35
  year: 2004
  ident: 10.1016/j.petrol.2018.04.071_bib5
  article-title: Propagation regimes of fluid-driven fractures in impermeable rocks
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2004)4:1(35)
– year: 1992
  ident: 10.1016/j.petrol.2018.04.071_bib8
  article-title: Numerical modeling of multilayer fracture treatments
– year: 1990
  ident: 10.1016/j.petrol.2018.04.071_bib4
– start-page: 1767
  year: 1981
  ident: 10.1016/j.petrol.2018.04.071_bib20
  article-title: Interpretation of fracturing pressures
  publication-title: JPT
  doi: 10.2118/8297-PA
– volume: 197
  start-page: 2858
  year: 2008
  ident: 10.1016/j.petrol.2018.04.071_bib25
  article-title: An implicit level set method for modeling hydraulically driven fractures
  publication-title: Comput. Meth. Appl. Mech. Eng
  doi: 10.1016/j.cma.2008.01.013
– volume: 74
  start-page: 164
  year: 2014
  ident: 10.1016/j.petrol.2018.04.071_bib9
  article-title: Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.037
– start-page: 1
  year: 2015
  ident: 10.1016/j.petrol.2018.04.071_bib23
  article-title: Applications of geomechanics to hydraulic fracturing - case studies from coal stimulation
– start-page: 1177
  year: 1984
  ident: 10.1016/j.petrol.2018.04.071_bib28
  article-title: Three-dimensional simulation of hydraulic fracturing
  publication-title: J. Petrol. Technol.
  doi: 10.2118/10504-PA
– start-page: 306
  year: 1972
  ident: 10.1016/j.petrol.2018.04.071_bib21
  article-title: Propagation of a vertical hydraulic fracture
  publication-title: SPE J.
– volume: 160
  start-page: 238
  year: 2016
  ident: 10.1016/j.petrol.2018.04.071_bib7
  article-title: Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.04.023
SSID ssj0003637
Score 1.9770175
Snippet Typical stress conditions in gas reservoirs consisting of multiple thin coal seams interlayed with shales, tuffs and sandstones, often lead to generation of a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 918
SubjectTerms Coal seam gas
Correction factor for toughness
Fracture height growth
Multiple layers
Pseudo-3D model
Title A model for hydraulic fracture growth across multiple elastic layers
URI https://dx.doi.org/10.1016/j.petrol.2018.04.071
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: AKRWK
  dateStart: 19870801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KRdCDaFWsL_bgdW26jzyOpVqrYi9a6G3ZTTa2UtpS0kMv_nZn89AKouAhh4SZJAyT2W_JN98AXIUsCSI8qLFRRIWUhoZpip97GkQSEbSJuetGfhr4_aF4GMlRDbpVL4yjVZa1v6jpebUur7TKaLYWk0nr2YuY50iKmJQe7rNcw68QgZticP3-RfPgfqGbicbUWVftcznHC4Hpcu5-QLTDXPA0aP-8PG0sOb192CuxIukUr3MANTtrwO6GgmADtu_yybzrQ7jpkHyqDUEUSsbrZKlX00lMUtcFtVpa8or77WxMdP5cUvEIiUX0jLcnU-2w9xEMe7cv3T4tRyTQGLF-RoXgRnKnyMOsdVrw1hhfOA36BHFCKNMk1ZyLBEGQ8LgMcb-iDWOe9jnTJvb5MdRn85k9AWK48OM0CYQUvohSHTFm2nGAAC1BVMF0E3gVGRWX-uFujMVUVUSxN1XEU7l4Kk8ojGcT6KfXotDP-MM-qIKuvuWBwhL_q-fpvz3PYMedFbS-c6hny5W9QKiRmcs8ly5hq3P_2B98ACFC0hs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gxqgHo6gRn3vwWin76ONI8IEKXISE22a33QqGACFw4OJvd7YPxcRo4qGXdrZtJtPZb9JvvgG4Dmjsh3g42oShw4XQTpAk-LknfigQQeuI2W7kTtdr9fnTQAxK0Cx6YSytMs_9WU5Ps3V-ppZ7szYbjWovbkhdS1LEoHSxzgo2YJML6tsK7Ob9i-fBvEw4E60da170z6UkL0Sm86n9A1EPUsVTv_7z_rS259zvw14OFkkje58DKJlJBXbXJAQrsPWQjuZdHcJtg6RjbQjCUDJcxXO1HI8iktg2qOXckFcsuBdDotLnkoJISAzCZ7w9GSsLvo-gf3_Xa7acfEaCEyHYXzicMy2YleShxlgxeKO1x60IfYxAIRBJnCjGeIwoiLtMBFiwKE2pqzxGlY48dgzlyXRiToBoxr0oiX0uuMfDRIWU6nrkI0KLEVZQVQVWeEZGuYC4nWMxlgVT7E1m_pTWn9LlEv1ZBedz1SwT0PjD3i-cLr8FgsQc_-vK03-vvILtVq_Tlu3H7vMZ7NgrGcfvHMqL-dJcIO5Y6Ms0rj4AKiTTsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model+for+hydraulic+fracture+growth+across+multiple+elastic+layers&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Zhang%2C+X.&rft.au=Wu%2C+B.&rft.au=Connell%2C+L.D.&rft.au=Han%2C+Y.&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0920-4105&rft.eissn=1873-4715&rft.volume=167&rft.spage=918&rft.epage=928&rft_id=info:doi/10.1016%2Fj.petrol.2018.04.071&rft.externalDocID=S0920410518303838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon