Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass
•Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model varia...
Saved in:
Published in | Computers and electronics in agriculture Vol. 205; p. 107621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-1699 1872-7107 |
DOI | 10.1016/j.compag.2023.107621 |
Cover
Abstract | •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model variance.•The multicollinearity doesn’t affect the algorithms model confidence.
Rice biomass is a biofuel’s source and yield indicator. Conventional sampling methods predict rice biomass accurately. However, these methods are destructive, time-consuming, expensive, and labour-intensive. Instead, unmanned aerial vehicles (UAVs) cover such shortcomings by providing rice-attribute-sensitive vegetation indices (VIs). Nevertheless, VIs are collinear, and their analyses require machine learning algorithms (MLs). The analysis of collinear VIs using base (single) and ensemble MLs is yet to be investigated. Therefore, this study aims to compare the base and ensemble MLs’ model performance, variance, stability (under/overfitting), and confidence for rice biomass prediction in multicollinearity context (MCC) and non-multicollinearity context (NMCC). To that end, a randomised complete block design experiment was held in the IADA KETARA rice granary in Terengganu, Malaysia. The experiment resulted in 360 samples of five biomass traits, five spectral bands, and ninety VIs. The MLs model performance and under/overfitting were better in MCC than in NMCC for predicting all rice biomass traits. The ensemble MLs outperformed the base MLs for predicting all rice biomass traits in MCC and NMCC. All base and ensemble MLs achieved inconsistent patterns of R2 and RMSE variances in MCC and NMCC. Finally, multicollinearity and the base-ensemble MLs concept did not affect the model confidence; rather, the latter was subject to the cross-effects of the ML and dataset characteristics. The present study significantly reveals the level of different base and ensemble MLs' sensitivity to multicollinearity regarding model performance, stability, variance, and confidence. |
---|---|
AbstractList | •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model variance.•The multicollinearity doesn’t affect the algorithms model confidence.
Rice biomass is a biofuel’s source and yield indicator. Conventional sampling methods predict rice biomass accurately. However, these methods are destructive, time-consuming, expensive, and labour-intensive. Instead, unmanned aerial vehicles (UAVs) cover such shortcomings by providing rice-attribute-sensitive vegetation indices (VIs). Nevertheless, VIs are collinear, and their analyses require machine learning algorithms (MLs). The analysis of collinear VIs using base (single) and ensemble MLs is yet to be investigated. Therefore, this study aims to compare the base and ensemble MLs’ model performance, variance, stability (under/overfitting), and confidence for rice biomass prediction in multicollinearity context (MCC) and non-multicollinearity context (NMCC). To that end, a randomised complete block design experiment was held in the IADA KETARA rice granary in Terengganu, Malaysia. The experiment resulted in 360 samples of five biomass traits, five spectral bands, and ninety VIs. The MLs model performance and under/overfitting were better in MCC than in NMCC for predicting all rice biomass traits. The ensemble MLs outperformed the base MLs for predicting all rice biomass traits in MCC and NMCC. All base and ensemble MLs achieved inconsistent patterns of R2 and RMSE variances in MCC and NMCC. Finally, multicollinearity and the base-ensemble MLs concept did not affect the model confidence; rather, the latter was subject to the cross-effects of the ML and dataset characteristics. The present study significantly reveals the level of different base and ensemble MLs' sensitivity to multicollinearity regarding model performance, stability, variance, and confidence. |
ArticleNumber | 107621 |
Author | Nurulhuda, Khairudin Keng Yap, Ng Derraz, Radhwane Ahmad Jaafar, Noraini Melissa Muharam, Farrah |
Author_xml | – sequence: 1 givenname: Radhwane surname: Derraz fullname: Derraz, Radhwane organization: Departmentof Agriculture Technology, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia – sequence: 2 givenname: Farrah surname: Melissa Muharam fullname: Melissa Muharam, Farrah email: farrahm@upm.edu.my organization: Departmentof Agriculture Technology, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia – sequence: 3 givenname: Khairudin surname: Nurulhuda fullname: Nurulhuda, Khairudin organization: Departmentof Biological and Agricultural Engineering, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia – sequence: 4 givenname: Noraini surname: Ahmad Jaafar fullname: Ahmad Jaafar, Noraini organization: Department of Land Management, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia – sequence: 5 givenname: Ng surname: Keng Yap fullname: Keng Yap, Ng organization: Department of Software Engineering and Information Systems, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia |
BookMark | eNqFkE1qwzAQhUVJoUnaG3ShCziVbMeSuyiEkP5AoJumWyHLY0dBloKkBnL7KrirLtrVzJuZ92C-GZpYZwGhe0oWlNDq4bBQbjjKfpGTvEgjVuX0Ck0pZ3nGkpygaTrjGa3q-gbNQjiQpGvOpui0sQGGxgCWtsVB2_7Smt55HfcDHlwLJuDo8D7t02r4MlErZ4y2INPNGbsO71af-AQ9RBm1s1jbVisIuHMeHz0kEVMu9mmIG-0GGcItuu6kCXD3U-do97z5WL9m2_eXt_Vqm6mCVDErqaJlwRlZyrIhjDLSggRFZVOXjayLmkreKQ6qZHm3pG3Dy2qpOKtkUdCckmKOyjFXeReCh04cvR6kPwtKxIWdOIiRnbiwEyO7ZHv8ZVN6fC56qc1_5qfRnMjBSYMXQWmwKoHwoKJonf474Bt1n5EH |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116752 crossref_primary_10_1080_13467581_2024_2358224 crossref_primary_10_51541_nicel_1371834 crossref_primary_10_3390_rs16152854 crossref_primary_10_1080_13683500_2024_2446410 crossref_primary_10_3390_rs16122183 crossref_primary_10_1080_10106049_2024_2373867 crossref_primary_10_1016_j_conbuildmat_2024_139746 crossref_primary_10_3389_fpls_2024_1445490 crossref_primary_10_3390_rs16050784 crossref_primary_10_1016_j_compag_2024_108653 crossref_primary_10_1016_j_geoderma_2023_116657 crossref_primary_10_1016_j_ejmcr_2024_100148 crossref_primary_10_1007_s11250_024_04145_1 crossref_primary_10_3390_s23135917 crossref_primary_10_3390_atmos16010022 crossref_primary_10_1016_j_foreco_2024_122383 |
Cites_doi | 10.12973/ijem.3.2.75 10.1007/978-3-030-39903-0_301228 10.1007/s11704-019-8208-z 10.3390/agriculture12081267 10.1002/wics.51 10.1016/j.patcog.2005.08.009 10.1016/S0020-7373(87)80053-6 10.1080/10106049.2019.1624988 10.3390/rs12182977 10.3390/technologies10010017 10.1016/j.eswa.2017.01.048 10.13031/aim.201700272 10.1016/j.cj.2016.01.008 10.1080/00380768.2003.10409985 10.1111/j.1442-9993.1992.tb00790.x 10.1007/978-1-4419-9326-7 10.1016/B978-0-12-804250-2.00012-2 10.1177/002224378101800203 10.3390/rs12122028 10.3390/drones3020040 10.1007/BF00117832 10.1007/978-981-16-3728-5_53 10.1023/B:MACH.0000027783.34431.42 10.1109/TKDE.2019.2959988 10.1023/B:MACH.0000035476.95130.99 10.18653/v1/D19-1670 10.1063/1.4954632 10.1016/j.scitotenv.2014.01.001 10.3390/ijerph18084259 10.1016/j.rser.2012.02.051 10.12691/ajams-8-2-1 10.1007/978-0-387-77242-4 10.1007/s11119-016-9433-1 10.1109/ISIT.2019.8849614 10.1002/wics.84 10.17576/jsm-2022-5102-03 10.1002/widm.8 10.1007/s11135-006-9018-6 10.1213/ANE.0000000000002864 10.3390/rs12203403 10.3390/s18082674 10.1109/ICRERA47325.2019.8996629 10.3390/agronomy11050915 10.1080/00401706.1970.10488634 10.1007/978-3-642-38652-7 10.1080/03610918808812681 10.1371/journal.pone.0234703 10.1103/PhysRevD.103.094031 10.1038/sj.bdj.4812743 10.3390/agronomy11112098 10.1016/j.matpr.2021.11.635 10.1137/0905052 10.1109/IJCNN.2006.246837 10.1007/b107408 10.1016/0167-5877(92)90041-D 10.1117/12.2547216 10.1002/sam.11152 10.1016/j.petrol.2021.109463 10.1016/j.compag.2020.105817 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compag.2023.107621 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2023_107621 S0168169923000091 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION |
ID | FETCH-LOGICAL-c306t-41c1438705a4b07170deaec1ab94ba9391a8fc8ec472f51db8465c876a3312103 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Tue Jul 01 01:58:29 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Fri Feb 23 02:39:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vegetation index Unmanned aerial vehicle Algorithm Multicollinearity Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-41c1438705a4b07170deaec1ab94ba9391a8fc8ec472f51db8465c876a3312103 |
ParticipantIDs | crossref_primary_10_1016_j_compag_2023_107621 crossref_citationtrail_10_1016_j_compag_2023_107621 elsevier_sciencedirect_doi_10_1016_j_compag_2023_107621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rasheed, Adnan, Saffari (b0260) 2016; 1750 Cheng, Xu, Fei, Li, Chen (b0045) 2022; 12 Park, Ho (b0230) 2021; 33 Putten, Der, Van (b0240) 2004; 57 Zahari, Ramli, Mokhtar (b0385) 2014; 4 Aghbari, Z. Al, Saeed, M.M., 2021. Leveraging Association Rules in Feature Selection to Classify Text, Springer, Singapore. Springer, Singapore. https://doi.org/10.1007/978-981-16-3728-5_53. Loh (b0180) 2011; 1 Vapnik, V.N., Lerner, A., 1963. Pattern recognition using generalized portrait method. Autom. Remote Control 24, 2 Vapnik, V. N. 3 Lerner, A. 4 1963 5 Autom. Remot. Xiao, Hua, Dougherty (b0365) 2007; 2007 Shrestha (b0295) 2020; 8 Hashim, Nurulhuda, Haidar, Muharam, Nurulhuda, Berahim, Ismail, Zad, Zulkafli (b0115) 2022; 51 Slinker, B.K., Neilands, T.B., Glantz, S.A., 2016. Primer of Applied Regression & Analysis of Variance Authors. McGraw-Hill Educ. 1216. Pham, Kumar, Di Nunno, Elbeltagi, Granata, Islam, Talukdar, Nguyen, Ahmed, Anh (b0235) 2022; 7 Mallick, Tripathy, Mishra, Deb, Sahoo (b0195) 2021; 103 Sharma, James (b0290) 1981; 18 Yang, Boubin, Tsai, Tseng, Hsu, Stewart (b0370) 2020; 179 Muharam, Nurulhuda, Zulkafli, Tarmizi, Abdullah, Hashim, Zad, Radhwane, Ismail (b0205) 2021; 11 Wei, J., Zou, K., 2020. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf. 6382–6388. https://doi.org/10.18653/v1/d19-1670. Catchpole, Wheelert (b0040) 1992; 17 Wang, Zhou, Zhu, Dong, Guo (b0345) 2016; 4 Schober, Schwarte (b0285) 2018; 126 Kushwah, Kumar, Patel, Soni, Gawande, Gupta (b0160) 2021; 56 Sozzi, Kayad, Gobbo, Cogato, Sartori, Marinello (b0315) 2021; 11 Ye, Zhan, Chao (b0375) 2022; 92–102 Rahayu, S., Sugiarto*, T., Madu, L., Holiawati, H., Subagyo, A., 2017. Application of Principal Component Analysis (PCA) to Reduce Multicollinearity Exchange Rate Currency of Some Countries in Asia Period 2004-2014. Int. J. Educ. Methodol. 3, 75–83. https://doi.org/10.12973/ijem.3.2.75. Wold, Ruhe, Wold, Dunn (b0360) 1984; 5 Christmann, A., Steinwart, I., 2008. Support vector machines, first ed, Springer, New York, NY. https://doi.org/10.1007/978-0-387-77242-4. Tu, Kellett, Clerehugh, Gilthorpe (b0325) 2005; 199 Munson, Caruana (b0210) 2009; 144–159 Aboneh, Rorissa, Srinivasagan (b0010) 2022; 10 Abdi (b0005) 2010; 2 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017-Decem, 3147–3155. Al-Hajj, R., Assi, A., Mohamad, M.F., 2019. Stacking-Based Ensemble of Support Vector Regressors for One-Day Ahead Solar Irradiance Prediction. IEEE; 2019 8th Int. Conf. Renew. Energy Res. Appl. 428–433. Helland (b0120) 1988; 17 Meier (b0200) 2001 Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A., 2006. Pruning in ordered regression bagging ensembles. 2006 IEEE Int. Jt. Conf. Neural Netw. Proc. 1266–1273. https://doi.org/10.1109/ijcnn.2006.246837. Mallick, Talukdar, Ahmed (b0190) 2022; 12 Rodriguez-Galiano, Mendes, Garcia-Soldado, Chica-Olmo, Ribeiro (b0265) 2014; 476–477 Gregorich, Strohmaier, Dunkler, Heinze (b0095) 2021; 18 Vlascici, Pica, Fagadar-Cosma, Cosma, Bizerea (b0335) 2008; 10 Lafi, Kaneene (b0165) 1992; 13 Kramer (b0155) 2013 Dietterich (b0065) 2002 Maimon, O., Rokach, L., 2005. Data mining and knowledge discovery handbook, Choice Reviews Online. Springer Science+Business Media, Inc. https://doi.org/10.5860/choice.48-5729. Grandvalet (b0090) 2004; 55 Rudd, J.D., Roberson, G.T., Classen, J.J., 2017. Application of satellite, unmanned aircraft system, and ground-based sensor data for precision agriculture: A review. 2017 ASABE Annu. Int. Meet. 1700272. https://doi.org/10.13031/aim.201700272. Sapkota, Singh, Neely, Rajan, Bagavathiannan (b0280) 2020; 12 Zhang, C., Ma, Y., 2012. Ensemble Machine Learning, Methods and Applications, 1st ed, Ensemble Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9326-7. Feng, Zhang, Ma, Du, Williams, Drewry, Luck (b0075) 2020; 12 Quinlan (b0245) 1987; 27 Lim, Abdul Manan, Wan Alwi, Hashim (b0175) 2012; 16 Barbedo (b0030) 2019; 3 Gellman, M.D. (Ed.), 2020. Multiple Regression, in: Encyclopedia of Behavioral Medicine. Springer International Publishing, Cham, p. 1433. https://doi.org/10.1007/978-3-030-39903-0_301228. Fiorillo, Di Giuseppe, Fontanelli, Maselli (b0080) 2020; 12 Triscowati, D.W., Sartono, B., Kurnia, A., Domiri, D.D., Wijayanto, A.W., 2019. Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest 1131102, https://doi.org/10. 10.1117/12.2547216. Yoo, Mayberry, Bae, Singh, He, J.w.l. (b0380) 2014; 4 Dhanabal, Chandramathi (b0060) 2011; 31 Kanke, Tubaña, Dalen, Harrell (b0140) 2016; 17 Rostamian, Heidaryan, Ostadhassan (b0270) 2022; 208 O’Brien (b0225) 2007; 41 Wójtowicz, Wójtowicz, Piekarczyk (b0355) 2016; 11 Hang, H., Huang, T., Cai, Y., Yang, H., Lin, Z., 2021. Gradient Boosted Binary Histogram Ensemble for Large-scale Regression. arXiv Prepr. arXiv arXiv-2106. https://doi.org/10.48550/arXiv.2106.01986. Hoerl, Kennard (b0130) 1970; 12 Rasel, Chang, Ralph, Saintilan, Diti (b0255) 2021; 36 Sipper, Moore (b0305) 2022; 7 Zhang, Han, Dong, Shi, Huang, Han, González-Moreno, Ma, Ye, Sobeih (b0395) 2019; 11 Daoud (b0055) 2018; 949 Grüner, Wachendorf, Astor (b0100) 2020; 15 Siegel, A.F., 2016. Multiple Regression: Predicting One Variable From Several Others, in: Elsevier. Elsevier Inc., pp. 355–418. 10.1016/B978-0-12-804250-2.00012-2. Muthukumar, V., Vodrahalli, K., Sahai, A., 2019. Harmless interpolation of noisy data in regression. IEEE Int. Symp. Inf. Theory - Proc. 2019-July, 2299–2303. https://doi.org/10.1109/ISIT.2019.8849614. Breiman (b0035) 1996 Liakos, Busato, Moshou, Pearson, Bochtis (b0170) 2018; 18 Jaya, Ruchjana, Abdulah (b0135) 2020; 15 Alin (b0025) 2010; 2 Han, Yu (b0105) 2012; 5 Katrutsa, Strijov (b0145) 2017; 76 Dong, Yu, Cao, Shi, Ma (b0070) 2020; 14 Nguyen, Mohapatra, Fujita, Nakabayashi, Thompson (b0220) 2003; 49 Wang, Neskovic, Cooper (b0340) 2006; 39 10.1016/j.compag.2023.107621_b0110 10.1016/j.compag.2023.107621_b0275 Park (10.1016/j.compag.2023.107621_b0230) 2021; 33 10.1016/j.compag.2023.107621_b0350 Abdi (10.1016/j.compag.2023.107621_b0005) 2010; 2 10.1016/j.compag.2023.107621_b0150 Hashim (10.1016/j.compag.2023.107621_b0115) 2022; 51 10.1016/j.compag.2023.107621_b0390 Han (10.1016/j.compag.2023.107621_b0105) 2012; 5 Mallick (10.1016/j.compag.2023.107621_b0195) 2021; 103 Aboneh (10.1016/j.compag.2023.107621_b0010) 2022; 10 Katrutsa (10.1016/j.compag.2023.107621_b0145) 2017; 76 Kramer (10.1016/j.compag.2023.107621_b0155) 2013 10.1016/j.compag.2023.107621_b0310 Vlascici (10.1016/j.compag.2023.107621_b0335) 2008; 10 Mallick (10.1016/j.compag.2023.107621_b0190) 2022; 12 Catchpole (10.1016/j.compag.2023.107621_b0040) 1992; 17 Loh (10.1016/j.compag.2023.107621_b0180) 2011; 1 Breiman (10.1016/j.compag.2023.107621_b0035) 1996 Sipper (10.1016/j.compag.2023.107621_b0305) 2022; 7 Sharma (10.1016/j.compag.2023.107621_b0290) 1981; 18 Rasheed (10.1016/j.compag.2023.107621_b0260) 2016; 1750 Dhanabal (10.1016/j.compag.2023.107621_b0060) 2011; 31 10.1016/j.compag.2023.107621_b0020 10.1016/j.compag.2023.107621_b0185 O’Brien (10.1016/j.compag.2023.107621_b0225) 2007; 41 Wang (10.1016/j.compag.2023.107621_b0340) 2006; 39 Pham (10.1016/j.compag.2023.107621_b0235) 2022; 7 Tu (10.1016/j.compag.2023.107621_b0325) 2005; 199 Alin (10.1016/j.compag.2023.107621_b0025) 2010; 2 Kushwah (10.1016/j.compag.2023.107621_b0160) 2021; 56 Xiao (10.1016/j.compag.2023.107621_b0365) 2007; 2007 Grüner (10.1016/j.compag.2023.107621_b0100) 2020; 15 Muharam (10.1016/j.compag.2023.107621_b0205) 2021; 11 Nguyen (10.1016/j.compag.2023.107621_b0220) 2003; 49 Yang (10.1016/j.compag.2023.107621_b0370) 2020; 179 Barbedo (10.1016/j.compag.2023.107621_b0030) 2019; 3 10.1016/j.compag.2023.107621_b0300 Helland (10.1016/j.compag.2023.107621_b0120) 1988; 17 Sozzi (10.1016/j.compag.2023.107621_b0315) 2021; 11 Wójtowicz (10.1016/j.compag.2023.107621_b0355) 2016; 11 Schober (10.1016/j.compag.2023.107621_b0285) 2018; 126 10.1016/j.compag.2023.107621_b0330 Wold (10.1016/j.compag.2023.107621_b0360) 1984; 5 Grandvalet (10.1016/j.compag.2023.107621_b0090) 2004; 55 10.1016/j.compag.2023.107621_b0250 10.1016/j.compag.2023.107621_b0050 Dietterich (10.1016/j.compag.2023.107621_b0065) 2002 Cheng (10.1016/j.compag.2023.107621_b0045) 2022; 12 10.1016/j.compag.2023.107621_b0215 Zhang (10.1016/j.compag.2023.107621_b0395) 2019; 11 Kanke (10.1016/j.compag.2023.107621_b0140) 2016; 17 10.1016/j.compag.2023.107621_b0015 Feng (10.1016/j.compag.2023.107621_b0075) 2020; 12 Lim (10.1016/j.compag.2023.107621_b0175) 2012; 16 Meier (10.1016/j.compag.2023.107621_b0200) 2001 Putten (10.1016/j.compag.2023.107621_b0240) 2004; 57 Rodriguez-Galiano (10.1016/j.compag.2023.107621_b0265) 2014; 476–477 Yoo (10.1016/j.compag.2023.107621_b0380) 2014; 4 Lafi (10.1016/j.compag.2023.107621_b0165) 1992; 13 Gregorich (10.1016/j.compag.2023.107621_b0095) 2021; 18 Quinlan (10.1016/j.compag.2023.107621_b0245) 1987; 27 10.1016/j.compag.2023.107621_b0320 Shrestha (10.1016/j.compag.2023.107621_b0295) 2020; 8 Dong (10.1016/j.compag.2023.107621_b0070) 2020; 14 10.1016/j.compag.2023.107621_b0085 Jaya (10.1016/j.compag.2023.107621_b0135) 2020; 15 Rasel (10.1016/j.compag.2023.107621_b0255) 2021; 36 Liakos (10.1016/j.compag.2023.107621_b0170) 2018; 18 Daoud (10.1016/j.compag.2023.107621_b0055) 2018; 949 10.1016/j.compag.2023.107621_b0125 Wang (10.1016/j.compag.2023.107621_b0345) 2016; 4 Hoerl (10.1016/j.compag.2023.107621_b0130) 1970; 12 Ye (10.1016/j.compag.2023.107621_b0375) 2022; 92–102 Munson (10.1016/j.compag.2023.107621_b0210) 2009; 144–159 Rostamian (10.1016/j.compag.2023.107621_b0270) 2022; 208 Zahari (10.1016/j.compag.2023.107621_b0385) 2014; 4 Fiorillo (10.1016/j.compag.2023.107621_b0080) 2020; 12 Sapkota (10.1016/j.compag.2023.107621_b0280) 2020; 12 |
References_xml | – volume: 15 start-page: 1 year: 2020 end-page: 21 ident: b0100 article-title: The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures publication-title: PLoS One – reference: Muthukumar, V., Vodrahalli, K., Sahai, A., 2019. Harmless interpolation of noisy data in regression. IEEE Int. Symp. Inf. Theory - Proc. 2019-July, 2299–2303. https://doi.org/10.1109/ISIT.2019.8849614. – volume: 49 start-page: 99 year: 2003 end-page: 109 ident: b0220 article-title: Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species publication-title: Soil Sci. Plant Nutr. – volume: 12 start-page: 1267 year: 2022 ident: b0045 article-title: Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments publication-title: Agriculture – volume: 11 start-page: 915 year: 2021 ident: b0205 article-title: Uav-and random-forest-adaboost (Rfa)-based estimation of rice plant traits publication-title: Agronomy – start-page: 49 year: 1996 end-page: 64 ident: b0035 article-title: Stacked Regressions publication-title: Mach. Learn. – volume: 3 start-page: 1 year: 2019 end-page: 27 ident: b0030 article-title: A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses publication-title: Drones – volume: 1 start-page: 14 year: 2011 end-page: 23 ident: b0180 article-title: Classification and regression trees. Wiley Interdiscip publication-title: Rev. Data Min. Knowl. Discov. – volume: 179 year: 2020 ident: b0370 article-title: Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet publication-title: Comput. Electron. Agric. – start-page: 66 year: 2001 end-page: 70 ident: b0200 article-title: Growth Stages ofMono- and Dicotyledonous Plants: BBCH Monograph – volume: 7 year: 2022 ident: b0235 article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area publication-title: Neural Comput. Appl. – volume: 51 start-page: 359 year: 2022 end-page: 368 ident: b0115 article-title: Physiological and Yield Responses of Five Rice Varieties to Nitrogen Fertilizer Under Farmer’s Field in IADA Ketara, Terengganu, Malaysia publication-title: Sains Malaysiana – volume: 18 start-page: 1 year: 2018 end-page: 29 ident: b0170 article-title: Machine learning in agriculture: A review publication-title: Sensors (Switzerland) – volume: 103 start-page: 94031 year: 2021 ident: b0195 article-title: Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC energies using machine learning publication-title: Phys. Rev. D – volume: 2007 year: 2007 ident: b0365 article-title: Quantification of the impact of feature selection on the variance of cross-validation error estimation publication-title: Eurasip J. Bioinforma. Syst. Biol. – volume: 17 start-page: 507 year: 2016 end-page: 530 ident: b0140 article-title: Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy field publication-title: Precis. Agric. – volume: 12 start-page: 1 year: 2020 end-page: 23 ident: b0080 article-title: Lowland rice mapping in Sédhiou region (Senegal) using sentinel 1 and sentinel 2 data and random forest publication-title: Remote Sens. – volume: 27 start-page: 221 year: 1987 end-page: 234 ident: b0245 article-title: Simplifying decision trees publication-title: Int. J. Man. Mach. Stud. – volume: 2 start-page: 370 year: 2010 end-page: 374 ident: b0025 article-title: Multicollinearity. Wiley Interdiscip. Rev publication-title: Comput. Stat. – volume: 199 start-page: 457 year: 2005 end-page: 461 ident: b0325 article-title: Problems of correlations between explanatory variables in multiple regression analyses in the dental literature publication-title: Br. Dent. J. – volume: 10 start-page: 2303 year: 2008 end-page: 2306 ident: b0335 article-title: Thiocyanate and fluoride electrochemical sensors based on nanostructurated metalloporphyrin systems publication-title: J. Optoelectron. Adv. Mater. – volume: 12 start-page: 1 year: 2022 end-page: 19 ident: b0190 article-title: Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed publication-title: Saudi Arabia. Appl. Water Sci. – volume: 4 start-page: 150 year: 2014 end-page: 156 ident: b0385 article-title: Bootstrapped Parameter Estimation in Ridge Regression with Multicollinearity and Multiple Outliers publication-title: J. Appl. Environ. Biol. Sci – volume: 476–477 start-page: 189 year: 2014 end-page: 206 ident: b0265 article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain) publication-title: Sci. Total Environ. – volume: 11 start-page: 2098 year: 2021 ident: b0315 article-title: Economic comparison of satellite, plane and uav-acquired ndvi images for site-specific nitrogen application: Observations from italy publication-title: Agronomy – volume: 1750 year: 2016 ident: b0260 article-title: Robust PC with wild bootstrap estimation of linear model in the presence of outliers, multicollinearity and heteroscedasticity error variance publication-title: AIP Conf. Proc. – reference: Al-Hajj, R., Assi, A., Mohamad, M.F., 2019. Stacking-Based Ensemble of Support Vector Regressors for One-Day Ahead Solar Irradiance Prediction. IEEE; 2019 8th Int. Conf. Renew. Energy Res. Appl. 428–433. – volume: 4 start-page: 9 year: 2014 end-page: 19 ident: b0380 article-title: A study of effects of multicollinearity in the multivariable analysis publication-title: Int. J. Appl. Sci. Technol. – volume: 949 year: 2018 ident: b0055 article-title: Multicollinearity and regression analysis publication-title: J. Phys. Conf. Ser. – reference: Slinker, B.K., Neilands, T.B., Glantz, S.A., 2016. Primer of Applied Regression & Analysis of Variance Authors. McGraw-Hill Educ. 1216. – volume: 17 start-page: 581 year: 1988 end-page: 607 ident: b0120 article-title: On the structure of partial least squares regression publication-title: Commun. Stat. - Simul. Comput. – volume: 12 year: 2020 ident: b0075 article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning publication-title: Remote Sens. – volume: 5 start-page: 428 year: 2012 end-page: 445 ident: b0105 article-title: A variance reduction framework for stable feature selection publication-title: Stat. Anal. Data Min. – reference: Hang, H., Huang, T., Cai, Y., Yang, H., Lin, Z., 2021. Gradient Boosted Binary Histogram Ensemble for Large-scale Regression. arXiv Prepr. arXiv arXiv-2106. https://doi.org/10.48550/arXiv.2106.01986. – volume: 55 start-page: 251 year: 2004 end-page: 270 ident: b0090 article-title: Bagging equalizes influence publication-title: Mach. Learn. – volume: 10 start-page: 17 year: 2022 ident: b0010 article-title: Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification publication-title: Technologies – reference: Maimon, O., Rokach, L., 2005. Data mining and knowledge discovery handbook, Choice Reviews Online. Springer Science+Business Media, Inc. https://doi.org/10.5860/choice.48-5729. – volume: 5 start-page: 735 year: 1984 end-page: 743 ident: b0360 article-title: The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses publication-title: SIAM J. Sci. Stat. Comput. – volume: 16 start-page: 3084 year: 2012 end-page: 3094 ident: b0175 article-title: A review on utilisation of biomass from rice industry as a source of renewable energy publication-title: Renew. Sustain. Energy Rev. – volume: 13 start-page: 261 year: 1992 end-page: 275 ident: b0165 article-title: An explanation of the use of principal-components analysis to detect and correct for multicollinearity publication-title: Prev. Vet. Med. – reference: Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017-Decem, 3147–3155. – volume: 144–159 year: 2009 ident: b0210 article-title: On Feature Selection, Bias-Variance, and Bagging publication-title: Springer, Berlin, Heidelb. – volume: 208 year: 2022 ident: b0270 article-title: Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection publication-title: J. Pet. Sci. Eng. – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: b0130 article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems publication-title: Technometrics – volume: 18 start-page: 154 year: 1981 ident: b0290 article-title: Latent Root Regression: An Alternate Procedure for Estimating Parameters in the Presence of Multicollinearity publication-title: J. Mark. Res. – volume: 2 start-page: 97 year: 2010 end-page: 106 ident: b0005 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. – reference: Vapnik, V.N., Lerner, A., 1963. Pattern recognition using generalized portrait method. Autom. Remote Control 24, 2 Vapnik, V. N. 3 Lerner, A. 4 1963 5 Autom. Remot. – reference: Rahayu, S., Sugiarto*, T., Madu, L., Holiawati, H., Subagyo, A., 2017. Application of Principal Component Analysis (PCA) to Reduce Multicollinearity Exchange Rate Currency of Some Countries in Asia Period 2004-2014. Int. J. Educ. Methodol. 3, 75–83. https://doi.org/10.12973/ijem.3.2.75. – volume: 18 year: 2021 ident: b0095 article-title: Regression with highly correlated predictors: Variable omission is not the solution publication-title: Int. J. Environ. Res. Public Health – volume: 15 start-page: 1998 year: 2020 end-page: 2011 ident: b0135 article-title: Comparison of Different Bayesian and Machine Learning Methods in Handling Multicollinearity Problem: a Monte Carlo Simulation Study publication-title: ARPN J. Eng. Appl. Sci. – volume: 126 start-page: 1763 year: 2018 end-page: 1768 ident: b0285 article-title: Correlation coefficients: Appropriate use and interpretation publication-title: Anesth. Analg. – volume: 33 start-page: 2995 year: 2021 end-page: 3006 ident: b0230 article-title: Tackling Overfitting in Boosting for Noisy Healthcare Data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 11 start-page: 31 year: 2016 end-page: 50 ident: b0355 article-title: Application of remote sensing methods in agriculture publication-title: Commun. Biometry Crop Sci. – year: 2002 ident: b0065 article-title: Ensemble learning – volume: 39 start-page: 417 year: 2006 end-page: 423 ident: b0340 article-title: Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence publication-title: Pattern Recognit. – reference: Aghbari, Z. Al, Saeed, M.M., 2021. Leveraging Association Rules in Feature Selection to Classify Text, Springer, Singapore. Springer, Singapore. https://doi.org/10.1007/978-981-16-3728-5_53. – volume: 7 year: 2022 ident: b0305 article-title: AddGBoost: A gradient boosting-style algorithm based on strong learners publication-title: Mach. Learn. with Appl. – reference: Wei, J., Zou, K., 2020. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf. 6382–6388. https://doi.org/10.18653/v1/d19-1670. – volume: 56 start-page: 3571 year: 2021 end-page: 3576 ident: b0160 article-title: Comparative study of regressor and classifier with decision tree using modern tools publication-title: Mater. Today Proc. – volume: 57 start-page: 177 year: 2004 end-page: 195 ident: b0240 article-title: A bias-variance analysis of a real world learning problem: The CoIL challenge 2000 publication-title: Mach. Learn. – volume: 11 start-page: 1 year: 2019 end-page: 16 ident: b0395 article-title: A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images publication-title: Remote Sens. – volume: 17 start-page: 121 year: 1992 end-page: 131 ident: b0040 article-title: Review Estimating plant biomass : A review of techniques publication-title: Aust. J. Ecol. – reference: Rudd, J.D., Roberson, G.T., Classen, J.J., 2017. Application of satellite, unmanned aircraft system, and ground-based sensor data for precision agriculture: A review. 2017 ASABE Annu. Int. Meet. 1700272. https://doi.org/10.13031/aim.201700272. – volume: 36 start-page: 1075 year: 2021 end-page: 1099 ident: b0255 article-title: Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery publication-title: Geocarto Int. – volume: 8 start-page: 39 year: 2020 end-page: 42 ident: b0295 article-title: Detecting Multicollinearity in Regression Analysis publication-title: Am. J. Appl. Math. Stat. – reference: Siegel, A.F., 2016. Multiple Regression: Predicting One Variable From Several Others, in: Elsevier. Elsevier Inc., pp. 355–418. 10.1016/B978-0-12-804250-2.00012-2. – volume: 31 start-page: 14 year: 2011 end-page: 22 ident: b0060 article-title: A Review of various k-Nearest Neighbor Query Processing Techniques publication-title: Int. J. Comput. Appl. – reference: Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A., 2006. Pruning in ordered regression bagging ensembles. 2006 IEEE Int. Jt. Conf. Neural Netw. Proc. 1266–1273. https://doi.org/10.1109/ijcnn.2006.246837. – year: 2013 ident: b0155 article-title: Dimensionality Reduction with Unsupervised Nearest Neighbors publication-title: Intelligent Systems Reference Library – reference: Christmann, A., Steinwart, I., 2008. Support vector machines, first ed, Springer, New York, NY. https://doi.org/10.1007/978-0-387-77242-4. – volume: 14 start-page: 241 year: 2020 end-page: 258 ident: b0070 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. – volume: 41 start-page: 673 year: 2007 end-page: 690 ident: b0225 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. – volume: 4 start-page: 212 year: 2016 end-page: 219 ident: b0345 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. – reference: Triscowati, D.W., Sartono, B., Kurnia, A., Domiri, D.D., Wijayanto, A.W., 2019. Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest 1131102, https://doi.org/10. 10.1117/12.2547216. – volume: 12 year: 2020 ident: b0280 article-title: Detection of Italian ryegrass in wheat and prediction of competitive interactions using remote-sensing and machine-learning techniques publication-title: Remote Sens. – reference: Zhang, C., Ma, Y., 2012. Ensemble Machine Learning, Methods and Applications, 1st ed, Ensemble Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9326-7. – reference: Gellman, M.D. (Ed.), 2020. Multiple Regression, in: Encyclopedia of Behavioral Medicine. Springer International Publishing, Cham, p. 1433. https://doi.org/10.1007/978-3-030-39903-0_301228. – volume: 92–102 year: 2022 ident: b0375 article-title: Procrustean Training for Imbalanced Deep Learning publication-title: IEEE/CVF Int. Conf. Comput. Vis. – volume: 76 start-page: 1 year: 2017 end-page: 11 ident: b0145 article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria publication-title: Expert Syst. Appl. – ident: 10.1016/j.compag.2023.107621_b0250 doi: 10.12973/ijem.3.2.75 – ident: 10.1016/j.compag.2023.107621_b0085 doi: 10.1007/978-3-030-39903-0_301228 – volume: 14 start-page: 241 year: 2020 ident: 10.1016/j.compag.2023.107621_b0070 article-title: A survey on ensemble learning publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8208-z – volume: 12 start-page: 1267 year: 2022 ident: 10.1016/j.compag.2023.107621_b0045 article-title: Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments publication-title: Agriculture doi: 10.3390/agriculture12081267 – volume: 144–159 year: 2009 ident: 10.1016/j.compag.2023.107621_b0210 article-title: On Feature Selection, Bias-Variance, and Bagging publication-title: Springer, Berlin, Heidelb. – volume: 2007 year: 2007 ident: 10.1016/j.compag.2023.107621_b0365 article-title: Quantification of the impact of feature selection on the variance of cross-validation error estimation publication-title: Eurasip J. Bioinforma. Syst. Biol. – volume: 2 start-page: 97 year: 2010 ident: 10.1016/j.compag.2023.107621_b0005 article-title: Partial least squares regression and projection on latent structure regression (PLS Regression) publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.51 – volume: 949 year: 2018 ident: 10.1016/j.compag.2023.107621_b0055 article-title: Multicollinearity and regression analysis publication-title: J. Phys. Conf. Ser. – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.compag.2023.107621_b0190 article-title: Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed publication-title: Saudi Arabia. Appl. Water Sci. – volume: 39 start-page: 417 year: 2006 ident: 10.1016/j.compag.2023.107621_b0340 article-title: Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.08.009 – volume: 27 start-page: 221 year: 1987 ident: 10.1016/j.compag.2023.107621_b0245 article-title: Simplifying decision trees publication-title: Int. J. Man. Mach. Stud. doi: 10.1016/S0020-7373(87)80053-6 – volume: 7 year: 2022 ident: 10.1016/j.compag.2023.107621_b0235 article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area publication-title: Neural Comput. Appl. – volume: 36 start-page: 1075 year: 2021 ident: 10.1016/j.compag.2023.107621_b0255 article-title: Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1624988 – volume: 12 year: 2020 ident: 10.1016/j.compag.2023.107621_b0280 article-title: Detection of Italian ryegrass in wheat and prediction of competitive interactions using remote-sensing and machine-learning techniques publication-title: Remote Sens. doi: 10.3390/rs12182977 – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.compag.2023.107621_b0395 article-title: A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images publication-title: Remote Sens. – volume: 10 start-page: 17 year: 2022 ident: 10.1016/j.compag.2023.107621_b0010 article-title: Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification publication-title: Technologies doi: 10.3390/technologies10010017 – volume: 76 start-page: 1 year: 2017 ident: 10.1016/j.compag.2023.107621_b0145 article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.048 – ident: 10.1016/j.compag.2023.107621_b0275 doi: 10.13031/aim.201700272 – volume: 4 start-page: 212 year: 2016 ident: 10.1016/j.compag.2023.107621_b0345 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. doi: 10.1016/j.cj.2016.01.008 – volume: 49 start-page: 99 year: 2003 ident: 10.1016/j.compag.2023.107621_b0220 article-title: Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2003.10409985 – volume: 17 start-page: 121 year: 1992 ident: 10.1016/j.compag.2023.107621_b0040 article-title: Review Estimating plant biomass : A review of techniques publication-title: Aust. J. Ecol. doi: 10.1111/j.1442-9993.1992.tb00790.x – ident: 10.1016/j.compag.2023.107621_b0390 doi: 10.1007/978-1-4419-9326-7 – ident: 10.1016/j.compag.2023.107621_b0300 doi: 10.1016/B978-0-12-804250-2.00012-2 – volume: 18 start-page: 154 year: 1981 ident: 10.1016/j.compag.2023.107621_b0290 article-title: Latent Root Regression: An Alternate Procedure for Estimating Parameters in the Presence of Multicollinearity publication-title: J. Mark. Res. doi: 10.1177/002224378101800203 – volume: 12 year: 2020 ident: 10.1016/j.compag.2023.107621_b0075 article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning publication-title: Remote Sens. doi: 10.3390/rs12122028 – volume: 3 start-page: 1 year: 2019 ident: 10.1016/j.compag.2023.107621_b0030 article-title: A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses publication-title: Drones doi: 10.3390/drones3020040 – start-page: 49 year: 1996 ident: 10.1016/j.compag.2023.107621_b0035 article-title: Stacked Regressions publication-title: Mach. Learn. doi: 10.1007/BF00117832 – ident: 10.1016/j.compag.2023.107621_b0015 doi: 10.1007/978-981-16-3728-5_53 – volume: 55 start-page: 251 year: 2004 ident: 10.1016/j.compag.2023.107621_b0090 article-title: Bagging equalizes influence publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000027783.34431.42 – ident: 10.1016/j.compag.2023.107621_b0330 – year: 2002 ident: 10.1016/j.compag.2023.107621_b0065 – volume: 33 start-page: 2995 year: 2021 ident: 10.1016/j.compag.2023.107621_b0230 article-title: Tackling Overfitting in Boosting for Noisy Healthcare Data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2959988 – volume: 57 start-page: 177 year: 2004 ident: 10.1016/j.compag.2023.107621_b0240 article-title: A bias-variance analysis of a real world learning problem: The CoIL challenge 2000 publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035476.95130.99 – volume: 11 start-page: 31 year: 2016 ident: 10.1016/j.compag.2023.107621_b0355 article-title: Application of remote sensing methods in agriculture publication-title: Commun. Biometry Crop Sci. – start-page: 66 year: 2001 ident: 10.1016/j.compag.2023.107621_b0200 – ident: 10.1016/j.compag.2023.107621_b0350 doi: 10.18653/v1/D19-1670 – volume: 1750 year: 2016 ident: 10.1016/j.compag.2023.107621_b0260 article-title: Robust PC with wild bootstrap estimation of linear model in the presence of outliers, multicollinearity and heteroscedasticity error variance publication-title: AIP Conf. Proc. doi: 10.1063/1.4954632 – volume: 476–477 start-page: 189 year: 2014 ident: 10.1016/j.compag.2023.107621_b0265 article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.01.001 – volume: 18 year: 2021 ident: 10.1016/j.compag.2023.107621_b0095 article-title: Regression with highly correlated predictors: Variable omission is not the solution publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph18084259 – volume: 16 start-page: 3084 year: 2012 ident: 10.1016/j.compag.2023.107621_b0175 article-title: A review on utilisation of biomass from rice industry as a source of renewable energy publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.051 – ident: 10.1016/j.compag.2023.107621_b0150 – volume: 8 start-page: 39 year: 2020 ident: 10.1016/j.compag.2023.107621_b0295 article-title: Detecting Multicollinearity in Regression Analysis publication-title: Am. J. Appl. Math. Stat. doi: 10.12691/ajams-8-2-1 – volume: 4 start-page: 9 year: 2014 ident: 10.1016/j.compag.2023.107621_b0380 article-title: A study of effects of multicollinearity in the multivariable analysis publication-title: Int. J. Appl. Sci. Technol. – ident: 10.1016/j.compag.2023.107621_b0310 – ident: 10.1016/j.compag.2023.107621_b0050 doi: 10.1007/978-0-387-77242-4 – volume: 17 start-page: 507 year: 2016 ident: 10.1016/j.compag.2023.107621_b0140 article-title: Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy field publication-title: Precis. Agric. doi: 10.1007/s11119-016-9433-1 – ident: 10.1016/j.compag.2023.107621_b0215 doi: 10.1109/ISIT.2019.8849614 – volume: 2 start-page: 370 year: 2010 ident: 10.1016/j.compag.2023.107621_b0025 article-title: Multicollinearity. Wiley Interdiscip. Rev publication-title: Comput. Stat. doi: 10.1002/wics.84 – volume: 51 start-page: 359 year: 2022 ident: 10.1016/j.compag.2023.107621_b0115 article-title: Physiological and Yield Responses of Five Rice Varieties to Nitrogen Fertilizer Under Farmer’s Field in IADA Ketara, Terengganu, Malaysia publication-title: Sains Malaysiana doi: 10.17576/jsm-2022-5102-03 – volume: 1 start-page: 14 year: 2011 ident: 10.1016/j.compag.2023.107621_b0180 article-title: Classification and regression trees. Wiley Interdiscip publication-title: Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.8 – volume: 41 start-page: 673 year: 2007 ident: 10.1016/j.compag.2023.107621_b0225 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. doi: 10.1007/s11135-006-9018-6 – volume: 126 start-page: 1763 year: 2018 ident: 10.1016/j.compag.2023.107621_b0285 article-title: Correlation coefficients: Appropriate use and interpretation publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000002864 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.compag.2023.107621_b0080 article-title: Lowland rice mapping in Sédhiou region (Senegal) using sentinel 1 and sentinel 2 data and random forest publication-title: Remote Sens. doi: 10.3390/rs12203403 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.compag.2023.107621_b0170 article-title: Machine learning in agriculture: A review publication-title: Sensors (Switzerland) doi: 10.3390/s18082674 – volume: 92–102 year: 2022 ident: 10.1016/j.compag.2023.107621_b0375 article-title: Procrustean Training for Imbalanced Deep Learning publication-title: IEEE/CVF Int. Conf. Comput. Vis. – ident: 10.1016/j.compag.2023.107621_b0020 doi: 10.1109/ICRERA47325.2019.8996629 – volume: 11 start-page: 915 year: 2021 ident: 10.1016/j.compag.2023.107621_b0205 article-title: Uav-and random-forest-adaboost (Rfa)-based estimation of rice plant traits publication-title: Agronomy doi: 10.3390/agronomy11050915 – volume: 4 start-page: 150 year: 2014 ident: 10.1016/j.compag.2023.107621_b0385 article-title: Bootstrapped Parameter Estimation in Ridge Regression with Multicollinearity and Multiple Outliers publication-title: J. Appl. Environ. Biol. Sci – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.compag.2023.107621_b0130 article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – year: 2013 ident: 10.1016/j.compag.2023.107621_b0155 article-title: Dimensionality Reduction with Unsupervised Nearest Neighbors publication-title: Intelligent Systems Reference Library doi: 10.1007/978-3-642-38652-7 – volume: 17 start-page: 581 year: 1988 ident: 10.1016/j.compag.2023.107621_b0120 article-title: On the structure of partial least squares regression publication-title: Commun. Stat. - Simul. Comput. doi: 10.1080/03610918808812681 – volume: 15 start-page: 1 year: 2020 ident: 10.1016/j.compag.2023.107621_b0100 article-title: The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures publication-title: PLoS One doi: 10.1371/journal.pone.0234703 – volume: 7 year: 2022 ident: 10.1016/j.compag.2023.107621_b0305 article-title: AddGBoost: A gradient boosting-style algorithm based on strong learners publication-title: Mach. Learn. with Appl. – volume: 10 start-page: 2303 year: 2008 ident: 10.1016/j.compag.2023.107621_b0335 article-title: Thiocyanate and fluoride electrochemical sensors based on nanostructurated metalloporphyrin systems publication-title: J. Optoelectron. Adv. Mater. – volume: 103 start-page: 94031 year: 2021 ident: 10.1016/j.compag.2023.107621_b0195 article-title: Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC energies using machine learning publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.094031 – volume: 31 start-page: 14 year: 2011 ident: 10.1016/j.compag.2023.107621_b0060 article-title: A Review of various k-Nearest Neighbor Query Processing Techniques publication-title: Int. J. Comput. Appl. – volume: 199 start-page: 457 year: 2005 ident: 10.1016/j.compag.2023.107621_b0325 article-title: Problems of correlations between explanatory variables in multiple regression analyses in the dental literature publication-title: Br. Dent. J. doi: 10.1038/sj.bdj.4812743 – volume: 15 start-page: 1998 year: 2020 ident: 10.1016/j.compag.2023.107621_b0135 article-title: Comparison of Different Bayesian and Machine Learning Methods in Handling Multicollinearity Problem: a Monte Carlo Simulation Study publication-title: ARPN J. Eng. Appl. Sci. – volume: 11 start-page: 2098 year: 2021 ident: 10.1016/j.compag.2023.107621_b0315 article-title: Economic comparison of satellite, plane and uav-acquired ndvi images for site-specific nitrogen application: Observations from italy publication-title: Agronomy doi: 10.3390/agronomy11112098 – volume: 56 start-page: 3571 year: 2021 ident: 10.1016/j.compag.2023.107621_b0160 article-title: Comparative study of regressor and classifier with decision tree using modern tools publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.11.635 – volume: 5 start-page: 735 year: 1984 ident: 10.1016/j.compag.2023.107621_b0360 article-title: The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0905052 – ident: 10.1016/j.compag.2023.107621_b0125 doi: 10.1109/IJCNN.2006.246837 – ident: 10.1016/j.compag.2023.107621_b0185 doi: 10.1007/b107408 – volume: 13 start-page: 261 year: 1992 ident: 10.1016/j.compag.2023.107621_b0165 article-title: An explanation of the use of principal-components analysis to detect and correct for multicollinearity publication-title: Prev. Vet. Med. doi: 10.1016/0167-5877(92)90041-D – ident: 10.1016/j.compag.2023.107621_b0320 doi: 10.1117/12.2547216 – volume: 5 start-page: 428 year: 2012 ident: 10.1016/j.compag.2023.107621_b0105 article-title: A variance reduction framework for stable feature selection publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.11152 – volume: 208 year: 2022 ident: 10.1016/j.compag.2023.107621_b0270 article-title: Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109463 – ident: 10.1016/j.compag.2023.107621_b0110 – volume: 179 year: 2020 ident: 10.1016/j.compag.2023.107621_b0370 article-title: Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105817 |
SSID | ssj0016987 |
Score | 2.5019999 |
Snippet | •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107621 |
SubjectTerms | Algorithm Multicollinearity Rice Unmanned aerial vehicle Vegetation index |
Title | Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass |
URI | https://dx.doi.org/10.1016/j.compag.2023.107621 |
Volume | 205 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZv34xhKS1XsRSu9hd3Nbqy0SWljj_52ZzZJURAFb8myG8LsMvMN-803hNwqO-CpF0lDQTQzXCu1jchkykgjZgc2pHK2Fp5_nPjjqXs_82YtMmhqYZBWWfv-yqdrb12P9Gtr9lfzef8JwEpo-REgFA10dAW76yOtr_exo3nAhLAqmfYhW4LZTfmc5nhpnnfWwxbiMAR-wfo5PH0JOaMjclhjRRpXv3NMWjI_IQdxtq71MuQp2Q7zjVzyhaQsTynm_fi4yArI-V-XVPe52dCyoJWaAtX8QaGFuOGIAwKnhaLT-IVuZVYTDyneYoP3oABn6WqNFzlIjaaoPkSxWh_g9hmZjobPg7FRt1IwBOQEJWyCwD7ngekxl2MKZ6aSSWExHrmcRU5ksVCJUAo3sJVnpRxgiSfAUzLHQYkx55y08yKXF4TyQHgOd5Xvwic5s7GlVcgjU0jPl4FSHeI0FkxErTOO7S4WSUMoe0squydo96Sye4cYu1WrSmfjj_lBsznJt_OSQCj4deXlv1dekX18qzjb16Rdrt_lDUCSknf1meuSvfjuYTz5BE5T4i0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQHNoeqq4qXX3oNSWbk_iIEAjKcilU3CLbsVMqCAgo399x4qBWqlqptyjJRNHYmnkjv3mD0KNyQ54QKi0F2czyncS1qM2UlVDmhi6Ucm4uPD8cBd2J_zwl0wpqlb0wmlZpYn8R0_Nobe40jDcbq9ms8QJgJXICCgglBzpQAtV8AjG5imrNXr872h8mBDQquqYDKJjAoOygy2leOdU7fdJTxOEWhAbn5wz1Jet0TtCxgYu4WfzRKarI7AwdNdO1kcyQ52jXzjZywecSsyzBuvTXl_N0CWX_2wLno242eLvEhaACzimEItfihl0OIBwvFZ40X_FOpoZ7iPVBNgQQDIgWr9b6LEezo7EWIMK6YR8Q9wWadNrjVtcy0xQsAWXBFtZB6FHnoU2Yz3UVZyeSSeEwTn3OqEcdFikRSeGHriJOwgGZEAHBknmeVhnzLlE1W2byCmEeCuJxXwU-fJIzV0-1iji1hSSBDJWqI6_0YCyM1LieeDGPS07Ze1z4PdZ-jwu_15G1t1oVUht_vB-WixN_2zIxZINfLa__bfmADrrj4SAe9Eb9G3SonxQU7ltU3a4_5B0glC2_NzvwEwQb5Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+and+single+algorithm+models+to+handle+multicollinearity+of+UAV+vegetation+indices+for+predicting+rice+biomass&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Derraz%2C+Radhwane&rft.au=Melissa+Muharam%2C+Farrah&rft.au=Nurulhuda%2C+Khairudin&rft.au=Ahmad+Jaafar%2C+Noraini&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=205&rft_id=info:doi/10.1016%2Fj.compag.2023.107621&rft.externalDocID=S0168169923000091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |