Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass

•Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model varia...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 205; p. 107621
Main Authors Derraz, Radhwane, Melissa Muharam, Farrah, Nurulhuda, Khairudin, Ahmad Jaafar, Noraini, Keng Yap, Ng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2023.107621

Cover

Abstract •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model variance.•The multicollinearity doesn’t affect the algorithms model confidence. Rice biomass is a biofuel’s source and yield indicator. Conventional sampling methods predict rice biomass accurately. However, these methods are destructive, time-consuming, expensive, and labour-intensive. Instead, unmanned aerial vehicles (UAVs) cover such shortcomings by providing rice-attribute-sensitive vegetation indices (VIs). Nevertheless, VIs are collinear, and their analyses require machine learning algorithms (MLs). The analysis of collinear VIs using base (single) and ensemble MLs is yet to be investigated. Therefore, this study aims to compare the base and ensemble MLs’ model performance, variance, stability (under/overfitting), and confidence for rice biomass prediction in multicollinearity context (MCC) and non-multicollinearity context (NMCC). To that end, a randomised complete block design experiment was held in the IADA KETARA rice granary in Terengganu, Malaysia. The experiment resulted in 360 samples of five biomass traits, five spectral bands, and ninety VIs. The MLs model performance and under/overfitting were better in MCC than in NMCC for predicting all rice biomass traits. The ensemble MLs outperformed the base MLs for predicting all rice biomass traits in MCC and NMCC. All base and ensemble MLs achieved inconsistent patterns of R2 and RMSE variances in MCC and NMCC. Finally, multicollinearity and the base-ensemble MLs concept did not affect the model confidence; rather, the latter was subject to the cross-effects of the ML and dataset characteristics. The present study significantly reveals the level of different base and ensemble MLs' sensitivity to multicollinearity regarding model performance, stability, variance, and confidence.
AbstractList •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and confidence.•The MLs model performance and under/overfitting was better in MCC than in NMCC.•The multicollinearity doesn’t affect the algorithms model variance.•The multicollinearity doesn’t affect the algorithms model confidence. Rice biomass is a biofuel’s source and yield indicator. Conventional sampling methods predict rice biomass accurately. However, these methods are destructive, time-consuming, expensive, and labour-intensive. Instead, unmanned aerial vehicles (UAVs) cover such shortcomings by providing rice-attribute-sensitive vegetation indices (VIs). Nevertheless, VIs are collinear, and their analyses require machine learning algorithms (MLs). The analysis of collinear VIs using base (single) and ensemble MLs is yet to be investigated. Therefore, this study aims to compare the base and ensemble MLs’ model performance, variance, stability (under/overfitting), and confidence for rice biomass prediction in multicollinearity context (MCC) and non-multicollinearity context (NMCC). To that end, a randomised complete block design experiment was held in the IADA KETARA rice granary in Terengganu, Malaysia. The experiment resulted in 360 samples of five biomass traits, five spectral bands, and ninety VIs. The MLs model performance and under/overfitting were better in MCC than in NMCC for predicting all rice biomass traits. The ensemble MLs outperformed the base MLs for predicting all rice biomass traits in MCC and NMCC. All base and ensemble MLs achieved inconsistent patterns of R2 and RMSE variances in MCC and NMCC. Finally, multicollinearity and the base-ensemble MLs concept did not affect the model confidence; rather, the latter was subject to the cross-effects of the ML and dataset characteristics. The present study significantly reveals the level of different base and ensemble MLs' sensitivity to multicollinearity regarding model performance, stability, variance, and confidence.
ArticleNumber 107621
Author Nurulhuda, Khairudin
Keng Yap, Ng
Derraz, Radhwane
Ahmad Jaafar, Noraini
Melissa Muharam, Farrah
Author_xml – sequence: 1
  givenname: Radhwane
  surname: Derraz
  fullname: Derraz, Radhwane
  organization: Departmentof Agriculture Technology, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia
– sequence: 2
  givenname: Farrah
  surname: Melissa Muharam
  fullname: Melissa Muharam, Farrah
  email: farrahm@upm.edu.my
  organization: Departmentof Agriculture Technology, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia
– sequence: 3
  givenname: Khairudin
  surname: Nurulhuda
  fullname: Nurulhuda, Khairudin
  organization: Departmentof Biological and Agricultural Engineering, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia
– sequence: 4
  givenname: Noraini
  surname: Ahmad Jaafar
  fullname: Ahmad Jaafar, Noraini
  organization: Department of Land Management, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia
– sequence: 5
  givenname: Ng
  surname: Keng Yap
  fullname: Keng Yap, Ng
  organization: Department of Software Engineering and Information Systems, Universiti Putra Malaysia, Selangor 43400 UPM, Malaysia
BookMark eNqFkE1qwzAQhUVJoUnaG3ShCziVbMeSuyiEkP5AoJumWyHLY0dBloKkBnL7KrirLtrVzJuZ92C-GZpYZwGhe0oWlNDq4bBQbjjKfpGTvEgjVuX0Ck0pZ3nGkpygaTrjGa3q-gbNQjiQpGvOpui0sQGGxgCWtsVB2_7Smt55HfcDHlwLJuDo8D7t02r4MlErZ4y2INPNGbsO71af-AQ9RBm1s1jbVisIuHMeHz0kEVMu9mmIG-0GGcItuu6kCXD3U-do97z5WL9m2_eXt_Vqm6mCVDErqaJlwRlZyrIhjDLSggRFZVOXjayLmkreKQ6qZHm3pG3Dy2qpOKtkUdCckmKOyjFXeReCh04cvR6kPwtKxIWdOIiRnbiwEyO7ZHv8ZVN6fC56qc1_5qfRnMjBSYMXQWmwKoHwoKJonf474Bt1n5EH
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116752
crossref_primary_10_1080_13467581_2024_2358224
crossref_primary_10_51541_nicel_1371834
crossref_primary_10_3390_rs16152854
crossref_primary_10_1080_13683500_2024_2446410
crossref_primary_10_3390_rs16122183
crossref_primary_10_1080_10106049_2024_2373867
crossref_primary_10_1016_j_conbuildmat_2024_139746
crossref_primary_10_3389_fpls_2024_1445490
crossref_primary_10_3390_rs16050784
crossref_primary_10_1016_j_compag_2024_108653
crossref_primary_10_1016_j_geoderma_2023_116657
crossref_primary_10_1016_j_ejmcr_2024_100148
crossref_primary_10_1007_s11250_024_04145_1
crossref_primary_10_3390_s23135917
crossref_primary_10_3390_atmos16010022
crossref_primary_10_1016_j_foreco_2024_122383
Cites_doi 10.12973/ijem.3.2.75
10.1007/978-3-030-39903-0_301228
10.1007/s11704-019-8208-z
10.3390/agriculture12081267
10.1002/wics.51
10.1016/j.patcog.2005.08.009
10.1016/S0020-7373(87)80053-6
10.1080/10106049.2019.1624988
10.3390/rs12182977
10.3390/technologies10010017
10.1016/j.eswa.2017.01.048
10.13031/aim.201700272
10.1016/j.cj.2016.01.008
10.1080/00380768.2003.10409985
10.1111/j.1442-9993.1992.tb00790.x
10.1007/978-1-4419-9326-7
10.1016/B978-0-12-804250-2.00012-2
10.1177/002224378101800203
10.3390/rs12122028
10.3390/drones3020040
10.1007/BF00117832
10.1007/978-981-16-3728-5_53
10.1023/B:MACH.0000027783.34431.42
10.1109/TKDE.2019.2959988
10.1023/B:MACH.0000035476.95130.99
10.18653/v1/D19-1670
10.1063/1.4954632
10.1016/j.scitotenv.2014.01.001
10.3390/ijerph18084259
10.1016/j.rser.2012.02.051
10.12691/ajams-8-2-1
10.1007/978-0-387-77242-4
10.1007/s11119-016-9433-1
10.1109/ISIT.2019.8849614
10.1002/wics.84
10.17576/jsm-2022-5102-03
10.1002/widm.8
10.1007/s11135-006-9018-6
10.1213/ANE.0000000000002864
10.3390/rs12203403
10.3390/s18082674
10.1109/ICRERA47325.2019.8996629
10.3390/agronomy11050915
10.1080/00401706.1970.10488634
10.1007/978-3-642-38652-7
10.1080/03610918808812681
10.1371/journal.pone.0234703
10.1103/PhysRevD.103.094031
10.1038/sj.bdj.4812743
10.3390/agronomy11112098
10.1016/j.matpr.2021.11.635
10.1137/0905052
10.1109/IJCNN.2006.246837
10.1007/b107408
10.1016/0167-5877(92)90041-D
10.1117/12.2547216
10.1002/sam.11152
10.1016/j.petrol.2021.109463
10.1016/j.compag.2020.105817
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2023.107621
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_107621
S0168169923000091
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
ID FETCH-LOGICAL-c306t-41c1438705a4b07170deaec1ab94ba9391a8fc8ec472f51db8465c876a3312103
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Tue Jul 01 01:58:29 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 23 02:39:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vegetation index
Unmanned aerial vehicle
Algorithm
Multicollinearity
Rice
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-41c1438705a4b07170deaec1ab94ba9391a8fc8ec472f51db8465c876a3312103
ParticipantIDs crossref_primary_10_1016_j_compag_2023_107621
crossref_citationtrail_10_1016_j_compag_2023_107621
elsevier_sciencedirect_doi_10_1016_j_compag_2023_107621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rasheed, Adnan, Saffari (b0260) 2016; 1750
Cheng, Xu, Fei, Li, Chen (b0045) 2022; 12
Park, Ho (b0230) 2021; 33
Putten, Der, Van (b0240) 2004; 57
Zahari, Ramli, Mokhtar (b0385) 2014; 4
Aghbari, Z. Al, Saeed, M.M., 2021. Leveraging Association Rules in Feature Selection to Classify Text, Springer, Singapore. Springer, Singapore. https://doi.org/10.1007/978-981-16-3728-5_53.
Loh (b0180) 2011; 1
Vapnik, V.N., Lerner, A., 1963. Pattern recognition using generalized portrait method. Autom. Remote Control 24, 2 Vapnik, V. N. 3 Lerner, A. 4 1963 5 Autom. Remot.
Xiao, Hua, Dougherty (b0365) 2007; 2007
Shrestha (b0295) 2020; 8
Hashim, Nurulhuda, Haidar, Muharam, Nurulhuda, Berahim, Ismail, Zad, Zulkafli (b0115) 2022; 51
Slinker, B.K., Neilands, T.B., Glantz, S.A., 2016. Primer of Applied Regression & Analysis of Variance Authors. McGraw-Hill Educ. 1216.
Pham, Kumar, Di Nunno, Elbeltagi, Granata, Islam, Talukdar, Nguyen, Ahmed, Anh (b0235) 2022; 7
Mallick, Tripathy, Mishra, Deb, Sahoo (b0195) 2021; 103
Sharma, James (b0290) 1981; 18
Yang, Boubin, Tsai, Tseng, Hsu, Stewart (b0370) 2020; 179
Muharam, Nurulhuda, Zulkafli, Tarmizi, Abdullah, Hashim, Zad, Radhwane, Ismail (b0205) 2021; 11
Wei, J., Zou, K., 2020. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf. 6382–6388. https://doi.org/10.18653/v1/d19-1670.
Catchpole, Wheelert (b0040) 1992; 17
Wang, Zhou, Zhu, Dong, Guo (b0345) 2016; 4
Schober, Schwarte (b0285) 2018; 126
Kushwah, Kumar, Patel, Soni, Gawande, Gupta (b0160) 2021; 56
Sozzi, Kayad, Gobbo, Cogato, Sartori, Marinello (b0315) 2021; 11
Ye, Zhan, Chao (b0375) 2022; 92–102
Rahayu, S., Sugiarto*, T., Madu, L., Holiawati, H., Subagyo, A., 2017. Application of Principal Component Analysis (PCA) to Reduce Multicollinearity Exchange Rate Currency of Some Countries in Asia Period 2004-2014. Int. J. Educ. Methodol. 3, 75–83. https://doi.org/10.12973/ijem.3.2.75.
Wold, Ruhe, Wold, Dunn (b0360) 1984; 5
Christmann, A., Steinwart, I., 2008. Support vector machines, first ed, Springer, New York, NY. https://doi.org/10.1007/978-0-387-77242-4.
Tu, Kellett, Clerehugh, Gilthorpe (b0325) 2005; 199
Munson, Caruana (b0210) 2009; 144–159
Aboneh, Rorissa, Srinivasagan (b0010) 2022; 10
Abdi (b0005) 2010; 2
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017-Decem, 3147–3155.
Al-Hajj, R., Assi, A., Mohamad, M.F., 2019. Stacking-Based Ensemble of Support Vector Regressors for One-Day Ahead Solar Irradiance Prediction. IEEE; 2019 8th Int. Conf. Renew. Energy Res. Appl. 428–433.
Helland (b0120) 1988; 17
Meier (b0200) 2001
Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A., 2006. Pruning in ordered regression bagging ensembles. 2006 IEEE Int. Jt. Conf. Neural Netw. Proc. 1266–1273. https://doi.org/10.1109/ijcnn.2006.246837.
Mallick, Talukdar, Ahmed (b0190) 2022; 12
Rodriguez-Galiano, Mendes, Garcia-Soldado, Chica-Olmo, Ribeiro (b0265) 2014; 476–477
Gregorich, Strohmaier, Dunkler, Heinze (b0095) 2021; 18
Vlascici, Pica, Fagadar-Cosma, Cosma, Bizerea (b0335) 2008; 10
Lafi, Kaneene (b0165) 1992; 13
Kramer (b0155) 2013
Dietterich (b0065) 2002
Maimon, O., Rokach, L., 2005. Data mining and knowledge discovery handbook, Choice Reviews Online. Springer Science+Business Media, Inc. https://doi.org/10.5860/choice.48-5729.
Grandvalet (b0090) 2004; 55
Rudd, J.D., Roberson, G.T., Classen, J.J., 2017. Application of satellite, unmanned aircraft system, and ground-based sensor data for precision agriculture: A review. 2017 ASABE Annu. Int. Meet. 1700272. https://doi.org/10.13031/aim.201700272.
Sapkota, Singh, Neely, Rajan, Bagavathiannan (b0280) 2020; 12
Zhang, C., Ma, Y., 2012. Ensemble Machine Learning, Methods and Applications, 1st ed, Ensemble Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9326-7.
Feng, Zhang, Ma, Du, Williams, Drewry, Luck (b0075) 2020; 12
Quinlan (b0245) 1987; 27
Lim, Abdul Manan, Wan Alwi, Hashim (b0175) 2012; 16
Barbedo (b0030) 2019; 3
Gellman, M.D. (Ed.), 2020. Multiple Regression, in: Encyclopedia of Behavioral Medicine. Springer International Publishing, Cham, p. 1433. https://doi.org/10.1007/978-3-030-39903-0_301228.
Fiorillo, Di Giuseppe, Fontanelli, Maselli (b0080) 2020; 12
Triscowati, D.W., Sartono, B., Kurnia, A., Domiri, D.D., Wijayanto, A.W., 2019. Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest 1131102, https://doi.org/10. 10.1117/12.2547216.
Yoo, Mayberry, Bae, Singh, He, J.w.l. (b0380) 2014; 4
Dhanabal, Chandramathi (b0060) 2011; 31
Kanke, Tubaña, Dalen, Harrell (b0140) 2016; 17
Rostamian, Heidaryan, Ostadhassan (b0270) 2022; 208
O’Brien (b0225) 2007; 41
Wójtowicz, Wójtowicz, Piekarczyk (b0355) 2016; 11
Hang, H., Huang, T., Cai, Y., Yang, H., Lin, Z., 2021. Gradient Boosted Binary Histogram Ensemble for Large-scale Regression. arXiv Prepr. arXiv arXiv-2106. https://doi.org/10.48550/arXiv.2106.01986.
Hoerl, Kennard (b0130) 1970; 12
Rasel, Chang, Ralph, Saintilan, Diti (b0255) 2021; 36
Sipper, Moore (b0305) 2022; 7
Zhang, Han, Dong, Shi, Huang, Han, González-Moreno, Ma, Ye, Sobeih (b0395) 2019; 11
Daoud (b0055) 2018; 949
Grüner, Wachendorf, Astor (b0100) 2020; 15
Siegel, A.F., 2016. Multiple Regression: Predicting One Variable From Several Others, in: Elsevier. Elsevier Inc., pp. 355–418. 10.1016/B978-0-12-804250-2.00012-2.
Muthukumar, V., Vodrahalli, K., Sahai, A., 2019. Harmless interpolation of noisy data in regression. IEEE Int. Symp. Inf. Theory - Proc. 2019-July, 2299–2303. https://doi.org/10.1109/ISIT.2019.8849614.
Breiman (b0035) 1996
Liakos, Busato, Moshou, Pearson, Bochtis (b0170) 2018; 18
Jaya, Ruchjana, Abdulah (b0135) 2020; 15
Alin (b0025) 2010; 2
Han, Yu (b0105) 2012; 5
Katrutsa, Strijov (b0145) 2017; 76
Dong, Yu, Cao, Shi, Ma (b0070) 2020; 14
Nguyen, Mohapatra, Fujita, Nakabayashi, Thompson (b0220) 2003; 49
Wang, Neskovic, Cooper (b0340) 2006; 39
10.1016/j.compag.2023.107621_b0110
10.1016/j.compag.2023.107621_b0275
Park (10.1016/j.compag.2023.107621_b0230) 2021; 33
10.1016/j.compag.2023.107621_b0350
Abdi (10.1016/j.compag.2023.107621_b0005) 2010; 2
10.1016/j.compag.2023.107621_b0150
Hashim (10.1016/j.compag.2023.107621_b0115) 2022; 51
10.1016/j.compag.2023.107621_b0390
Han (10.1016/j.compag.2023.107621_b0105) 2012; 5
Mallick (10.1016/j.compag.2023.107621_b0195) 2021; 103
Aboneh (10.1016/j.compag.2023.107621_b0010) 2022; 10
Katrutsa (10.1016/j.compag.2023.107621_b0145) 2017; 76
Kramer (10.1016/j.compag.2023.107621_b0155) 2013
10.1016/j.compag.2023.107621_b0310
Vlascici (10.1016/j.compag.2023.107621_b0335) 2008; 10
Mallick (10.1016/j.compag.2023.107621_b0190) 2022; 12
Catchpole (10.1016/j.compag.2023.107621_b0040) 1992; 17
Loh (10.1016/j.compag.2023.107621_b0180) 2011; 1
Breiman (10.1016/j.compag.2023.107621_b0035) 1996
Sipper (10.1016/j.compag.2023.107621_b0305) 2022; 7
Sharma (10.1016/j.compag.2023.107621_b0290) 1981; 18
Rasheed (10.1016/j.compag.2023.107621_b0260) 2016; 1750
Dhanabal (10.1016/j.compag.2023.107621_b0060) 2011; 31
10.1016/j.compag.2023.107621_b0020
10.1016/j.compag.2023.107621_b0185
O’Brien (10.1016/j.compag.2023.107621_b0225) 2007; 41
Wang (10.1016/j.compag.2023.107621_b0340) 2006; 39
Pham (10.1016/j.compag.2023.107621_b0235) 2022; 7
Tu (10.1016/j.compag.2023.107621_b0325) 2005; 199
Alin (10.1016/j.compag.2023.107621_b0025) 2010; 2
Kushwah (10.1016/j.compag.2023.107621_b0160) 2021; 56
Xiao (10.1016/j.compag.2023.107621_b0365) 2007; 2007
Grüner (10.1016/j.compag.2023.107621_b0100) 2020; 15
Muharam (10.1016/j.compag.2023.107621_b0205) 2021; 11
Nguyen (10.1016/j.compag.2023.107621_b0220) 2003; 49
Yang (10.1016/j.compag.2023.107621_b0370) 2020; 179
Barbedo (10.1016/j.compag.2023.107621_b0030) 2019; 3
10.1016/j.compag.2023.107621_b0300
Helland (10.1016/j.compag.2023.107621_b0120) 1988; 17
Sozzi (10.1016/j.compag.2023.107621_b0315) 2021; 11
Wójtowicz (10.1016/j.compag.2023.107621_b0355) 2016; 11
Schober (10.1016/j.compag.2023.107621_b0285) 2018; 126
10.1016/j.compag.2023.107621_b0330
Wold (10.1016/j.compag.2023.107621_b0360) 1984; 5
Grandvalet (10.1016/j.compag.2023.107621_b0090) 2004; 55
10.1016/j.compag.2023.107621_b0250
10.1016/j.compag.2023.107621_b0050
Dietterich (10.1016/j.compag.2023.107621_b0065) 2002
Cheng (10.1016/j.compag.2023.107621_b0045) 2022; 12
10.1016/j.compag.2023.107621_b0215
Zhang (10.1016/j.compag.2023.107621_b0395) 2019; 11
Kanke (10.1016/j.compag.2023.107621_b0140) 2016; 17
10.1016/j.compag.2023.107621_b0015
Feng (10.1016/j.compag.2023.107621_b0075) 2020; 12
Lim (10.1016/j.compag.2023.107621_b0175) 2012; 16
Meier (10.1016/j.compag.2023.107621_b0200) 2001
Putten (10.1016/j.compag.2023.107621_b0240) 2004; 57
Rodriguez-Galiano (10.1016/j.compag.2023.107621_b0265) 2014; 476–477
Yoo (10.1016/j.compag.2023.107621_b0380) 2014; 4
Lafi (10.1016/j.compag.2023.107621_b0165) 1992; 13
Gregorich (10.1016/j.compag.2023.107621_b0095) 2021; 18
Quinlan (10.1016/j.compag.2023.107621_b0245) 1987; 27
10.1016/j.compag.2023.107621_b0320
Shrestha (10.1016/j.compag.2023.107621_b0295) 2020; 8
Dong (10.1016/j.compag.2023.107621_b0070) 2020; 14
10.1016/j.compag.2023.107621_b0085
Jaya (10.1016/j.compag.2023.107621_b0135) 2020; 15
Rasel (10.1016/j.compag.2023.107621_b0255) 2021; 36
Liakos (10.1016/j.compag.2023.107621_b0170) 2018; 18
Daoud (10.1016/j.compag.2023.107621_b0055) 2018; 949
10.1016/j.compag.2023.107621_b0125
Wang (10.1016/j.compag.2023.107621_b0345) 2016; 4
Hoerl (10.1016/j.compag.2023.107621_b0130) 1970; 12
Ye (10.1016/j.compag.2023.107621_b0375) 2022; 92–102
Munson (10.1016/j.compag.2023.107621_b0210) 2009; 144–159
Rostamian (10.1016/j.compag.2023.107621_b0270) 2022; 208
Zahari (10.1016/j.compag.2023.107621_b0385) 2014; 4
Fiorillo (10.1016/j.compag.2023.107621_b0080) 2020; 12
Sapkota (10.1016/j.compag.2023.107621_b0280) 2020; 12
References_xml – volume: 15
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0100
  article-title: The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures
  publication-title: PLoS One
– reference: Muthukumar, V., Vodrahalli, K., Sahai, A., 2019. Harmless interpolation of noisy data in regression. IEEE Int. Symp. Inf. Theory - Proc. 2019-July, 2299–2303. https://doi.org/10.1109/ISIT.2019.8849614.
– volume: 49
  start-page: 99
  year: 2003
  end-page: 109
  ident: b0220
  article-title: Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species
  publication-title: Soil Sci. Plant Nutr.
– volume: 12
  start-page: 1267
  year: 2022
  ident: b0045
  article-title: Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments
  publication-title: Agriculture
– volume: 11
  start-page: 915
  year: 2021
  ident: b0205
  article-title: Uav-and random-forest-adaboost (Rfa)-based estimation of rice plant traits
  publication-title: Agronomy
– start-page: 49
  year: 1996
  end-page: 64
  ident: b0035
  article-title: Stacked Regressions
  publication-title: Mach. Learn.
– volume: 3
  start-page: 1
  year: 2019
  end-page: 27
  ident: b0030
  article-title: A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses
  publication-title: Drones
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: b0180
  article-title: Classification and regression trees. Wiley Interdiscip
  publication-title: Rev. Data Min. Knowl. Discov.
– volume: 179
  year: 2020
  ident: b0370
  article-title: Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet
  publication-title: Comput. Electron. Agric.
– start-page: 66
  year: 2001
  end-page: 70
  ident: b0200
  article-title: Growth Stages ofMono- and Dicotyledonous Plants: BBCH Monograph
– volume: 7
  year: 2022
  ident: b0235
  article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area
  publication-title: Neural Comput. Appl.
– volume: 51
  start-page: 359
  year: 2022
  end-page: 368
  ident: b0115
  article-title: Physiological and Yield Responses of Five Rice Varieties to Nitrogen Fertilizer Under Farmer’s Field in IADA Ketara, Terengganu, Malaysia
  publication-title: Sains Malaysiana
– volume: 18
  start-page: 1
  year: 2018
  end-page: 29
  ident: b0170
  article-title: Machine learning in agriculture: A review
  publication-title: Sensors (Switzerland)
– volume: 103
  start-page: 94031
  year: 2021
  ident: b0195
  article-title: Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC energies using machine learning
  publication-title: Phys. Rev. D
– volume: 2007
  year: 2007
  ident: b0365
  article-title: Quantification of the impact of feature selection on the variance of cross-validation error estimation
  publication-title: Eurasip J. Bioinforma. Syst. Biol.
– volume: 17
  start-page: 507
  year: 2016
  end-page: 530
  ident: b0140
  article-title: Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy field
  publication-title: Precis. Agric.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0080
  article-title: Lowland rice mapping in Sédhiou region (Senegal) using sentinel 1 and sentinel 2 data and random forest
  publication-title: Remote Sens.
– volume: 27
  start-page: 221
  year: 1987
  end-page: 234
  ident: b0245
  article-title: Simplifying decision trees
  publication-title: Int. J. Man. Mach. Stud.
– volume: 2
  start-page: 370
  year: 2010
  end-page: 374
  ident: b0025
  article-title: Multicollinearity. Wiley Interdiscip. Rev
  publication-title: Comput. Stat.
– volume: 199
  start-page: 457
  year: 2005
  end-page: 461
  ident: b0325
  article-title: Problems of correlations between explanatory variables in multiple regression analyses in the dental literature
  publication-title: Br. Dent. J.
– volume: 10
  start-page: 2303
  year: 2008
  end-page: 2306
  ident: b0335
  article-title: Thiocyanate and fluoride electrochemical sensors based on nanostructurated metalloporphyrin systems
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 19
  ident: b0190
  article-title: Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed
  publication-title: Saudi Arabia. Appl. Water Sci.
– volume: 4
  start-page: 150
  year: 2014
  end-page: 156
  ident: b0385
  article-title: Bootstrapped Parameter Estimation in Ridge Regression with Multicollinearity and Multiple Outliers
  publication-title: J. Appl. Environ. Biol. Sci
– volume: 476–477
  start-page: 189
  year: 2014
  end-page: 206
  ident: b0265
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 2098
  year: 2021
  ident: b0315
  article-title: Economic comparison of satellite, plane and uav-acquired ndvi images for site-specific nitrogen application: Observations from italy
  publication-title: Agronomy
– volume: 1750
  year: 2016
  ident: b0260
  article-title: Robust PC with wild bootstrap estimation of linear model in the presence of outliers, multicollinearity and heteroscedasticity error variance
  publication-title: AIP Conf. Proc.
– reference: Al-Hajj, R., Assi, A., Mohamad, M.F., 2019. Stacking-Based Ensemble of Support Vector Regressors for One-Day Ahead Solar Irradiance Prediction. IEEE; 2019 8th Int. Conf. Renew. Energy Res. Appl. 428–433.
– volume: 4
  start-page: 9
  year: 2014
  end-page: 19
  ident: b0380
  article-title: A study of effects of multicollinearity in the multivariable analysis
  publication-title: Int. J. Appl. Sci. Technol.
– volume: 949
  year: 2018
  ident: b0055
  article-title: Multicollinearity and regression analysis
  publication-title: J. Phys. Conf. Ser.
– reference: Slinker, B.K., Neilands, T.B., Glantz, S.A., 2016. Primer of Applied Regression & Analysis of Variance Authors. McGraw-Hill Educ. 1216.
– volume: 17
  start-page: 581
  year: 1988
  end-page: 607
  ident: b0120
  article-title: On the structure of partial least squares regression
  publication-title: Commun. Stat. - Simul. Comput.
– volume: 12
  year: 2020
  ident: b0075
  article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning
  publication-title: Remote Sens.
– volume: 5
  start-page: 428
  year: 2012
  end-page: 445
  ident: b0105
  article-title: A variance reduction framework for stable feature selection
  publication-title: Stat. Anal. Data Min.
– reference: Hang, H., Huang, T., Cai, Y., Yang, H., Lin, Z., 2021. Gradient Boosted Binary Histogram Ensemble for Large-scale Regression. arXiv Prepr. arXiv arXiv-2106. https://doi.org/10.48550/arXiv.2106.01986.
– volume: 55
  start-page: 251
  year: 2004
  end-page: 270
  ident: b0090
  article-title: Bagging equalizes influence
  publication-title: Mach. Learn.
– volume: 10
  start-page: 17
  year: 2022
  ident: b0010
  article-title: Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification
  publication-title: Technologies
– reference: Maimon, O., Rokach, L., 2005. Data mining and knowledge discovery handbook, Choice Reviews Online. Springer Science+Business Media, Inc. https://doi.org/10.5860/choice.48-5729.
– volume: 5
  start-page: 735
  year: 1984
  end-page: 743
  ident: b0360
  article-title: The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 16
  start-page: 3084
  year: 2012
  end-page: 3094
  ident: b0175
  article-title: A review on utilisation of biomass from rice industry as a source of renewable energy
  publication-title: Renew. Sustain. Energy Rev.
– volume: 13
  start-page: 261
  year: 1992
  end-page: 275
  ident: b0165
  article-title: An explanation of the use of principal-components analysis to detect and correct for multicollinearity
  publication-title: Prev. Vet. Med.
– reference: Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017-Decem, 3147–3155.
– volume: 144–159
  year: 2009
  ident: b0210
  article-title: On Feature Selection, Bias-Variance, and Bagging
  publication-title: Springer, Berlin, Heidelb.
– volume: 208
  year: 2022
  ident: b0270
  article-title: Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection
  publication-title: J. Pet. Sci. Eng.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: b0130
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
– volume: 18
  start-page: 154
  year: 1981
  ident: b0290
  article-title: Latent Root Regression: An Alternate Procedure for Estimating Parameters in the Presence of Multicollinearity
  publication-title: J. Mark. Res.
– volume: 2
  start-page: 97
  year: 2010
  end-page: 106
  ident: b0005
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– reference: Vapnik, V.N., Lerner, A., 1963. Pattern recognition using generalized portrait method. Autom. Remote Control 24, 2 Vapnik, V. N. 3 Lerner, A. 4 1963 5 Autom. Remot.
– reference: Rahayu, S., Sugiarto*, T., Madu, L., Holiawati, H., Subagyo, A., 2017. Application of Principal Component Analysis (PCA) to Reduce Multicollinearity Exchange Rate Currency of Some Countries in Asia Period 2004-2014. Int. J. Educ. Methodol. 3, 75–83. https://doi.org/10.12973/ijem.3.2.75.
– volume: 18
  year: 2021
  ident: b0095
  article-title: Regression with highly correlated predictors: Variable omission is not the solution
  publication-title: Int. J. Environ. Res. Public Health
– volume: 15
  start-page: 1998
  year: 2020
  end-page: 2011
  ident: b0135
  article-title: Comparison of Different Bayesian and Machine Learning Methods in Handling Multicollinearity Problem: a Monte Carlo Simulation Study
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 126
  start-page: 1763
  year: 2018
  end-page: 1768
  ident: b0285
  article-title: Correlation coefficients: Appropriate use and interpretation
  publication-title: Anesth. Analg.
– volume: 33
  start-page: 2995
  year: 2021
  end-page: 3006
  ident: b0230
  article-title: Tackling Overfitting in Boosting for Noisy Healthcare Data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 31
  year: 2016
  end-page: 50
  ident: b0355
  article-title: Application of remote sensing methods in agriculture
  publication-title: Commun. Biometry Crop Sci.
– year: 2002
  ident: b0065
  article-title: Ensemble learning
– volume: 39
  start-page: 417
  year: 2006
  end-page: 423
  ident: b0340
  article-title: Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence
  publication-title: Pattern Recognit.
– reference: Aghbari, Z. Al, Saeed, M.M., 2021. Leveraging Association Rules in Feature Selection to Classify Text, Springer, Singapore. Springer, Singapore. https://doi.org/10.1007/978-981-16-3728-5_53.
– volume: 7
  year: 2022
  ident: b0305
  article-title: AddGBoost: A gradient boosting-style algorithm based on strong learners
  publication-title: Mach. Learn. with Appl.
– reference: Wei, J., Zou, K., 2020. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf. 6382–6388. https://doi.org/10.18653/v1/d19-1670.
– volume: 56
  start-page: 3571
  year: 2021
  end-page: 3576
  ident: b0160
  article-title: Comparative study of regressor and classifier with decision tree using modern tools
  publication-title: Mater. Today Proc.
– volume: 57
  start-page: 177
  year: 2004
  end-page: 195
  ident: b0240
  article-title: A bias-variance analysis of a real world learning problem: The CoIL challenge 2000
  publication-title: Mach. Learn.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0395
  article-title: A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images
  publication-title: Remote Sens.
– volume: 17
  start-page: 121
  year: 1992
  end-page: 131
  ident: b0040
  article-title: Review Estimating plant biomass : A review of techniques
  publication-title: Aust. J. Ecol.
– reference: Rudd, J.D., Roberson, G.T., Classen, J.J., 2017. Application of satellite, unmanned aircraft system, and ground-based sensor data for precision agriculture: A review. 2017 ASABE Annu. Int. Meet. 1700272. https://doi.org/10.13031/aim.201700272.
– volume: 36
  start-page: 1075
  year: 2021
  end-page: 1099
  ident: b0255
  article-title: Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery
  publication-title: Geocarto Int.
– volume: 8
  start-page: 39
  year: 2020
  end-page: 42
  ident: b0295
  article-title: Detecting Multicollinearity in Regression Analysis
  publication-title: Am. J. Appl. Math. Stat.
– reference: Siegel, A.F., 2016. Multiple Regression: Predicting One Variable From Several Others, in: Elsevier. Elsevier Inc., pp. 355–418. 10.1016/B978-0-12-804250-2.00012-2.
– volume: 31
  start-page: 14
  year: 2011
  end-page: 22
  ident: b0060
  article-title: A Review of various k-Nearest Neighbor Query Processing Techniques
  publication-title: Int. J. Comput. Appl.
– reference: Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A., 2006. Pruning in ordered regression bagging ensembles. 2006 IEEE Int. Jt. Conf. Neural Netw. Proc. 1266–1273. https://doi.org/10.1109/ijcnn.2006.246837.
– year: 2013
  ident: b0155
  article-title: Dimensionality Reduction with Unsupervised Nearest Neighbors
  publication-title: Intelligent Systems Reference Library
– reference: Christmann, A., Steinwart, I., 2008. Support vector machines, first ed, Springer, New York, NY. https://doi.org/10.1007/978-0-387-77242-4.
– volume: 14
  start-page: 241
  year: 2020
  end-page: 258
  ident: b0070
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: b0225
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
– volume: 4
  start-page: 212
  year: 2016
  end-page: 219
  ident: b0345
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
– reference: Triscowati, D.W., Sartono, B., Kurnia, A., Domiri, D.D., Wijayanto, A.W., 2019. Multitemporal remote sensing data for classification of food crops plant phase using supervised random forest 1131102, https://doi.org/10. 10.1117/12.2547216.
– volume: 12
  year: 2020
  ident: b0280
  article-title: Detection of Italian ryegrass in wheat and prediction of competitive interactions using remote-sensing and machine-learning techniques
  publication-title: Remote Sens.
– reference: Zhang, C., Ma, Y., 2012. Ensemble Machine Learning, Methods and Applications, 1st ed, Ensemble Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9326-7.
– reference: Gellman, M.D. (Ed.), 2020. Multiple Regression, in: Encyclopedia of Behavioral Medicine. Springer International Publishing, Cham, p. 1433. https://doi.org/10.1007/978-3-030-39903-0_301228.
– volume: 92–102
  year: 2022
  ident: b0375
  article-title: Procrustean Training for Imbalanced Deep Learning
  publication-title: IEEE/CVF Int. Conf. Comput. Vis.
– volume: 76
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0145
  article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria
  publication-title: Expert Syst. Appl.
– ident: 10.1016/j.compag.2023.107621_b0250
  doi: 10.12973/ijem.3.2.75
– ident: 10.1016/j.compag.2023.107621_b0085
  doi: 10.1007/978-3-030-39903-0_301228
– volume: 14
  start-page: 241
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0070
  article-title: A survey on ensemble learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8208-z
– volume: 12
  start-page: 1267
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0045
  article-title: Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments
  publication-title: Agriculture
  doi: 10.3390/agriculture12081267
– volume: 144–159
  year: 2009
  ident: 10.1016/j.compag.2023.107621_b0210
  article-title: On Feature Selection, Bias-Variance, and Bagging
  publication-title: Springer, Berlin, Heidelb.
– volume: 2007
  year: 2007
  ident: 10.1016/j.compag.2023.107621_b0365
  article-title: Quantification of the impact of feature selection on the variance of cross-validation error estimation
  publication-title: Eurasip J. Bioinforma. Syst. Biol.
– volume: 2
  start-page: 97
  year: 2010
  ident: 10.1016/j.compag.2023.107621_b0005
  article-title: Partial least squares regression and projection on latent structure regression (PLS Regression)
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.51
– volume: 949
  year: 2018
  ident: 10.1016/j.compag.2023.107621_b0055
  article-title: Multicollinearity and regression analysis
  publication-title: J. Phys. Conf. Ser.
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0190
  article-title: Combining high resolution input and stacking ensemble machine learning algorithms for developing robust groundwater potentiality models in Bisha watershed
  publication-title: Saudi Arabia. Appl. Water Sci.
– volume: 39
  start-page: 417
  year: 2006
  ident: 10.1016/j.compag.2023.107621_b0340
  article-title: Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.08.009
– volume: 27
  start-page: 221
  year: 1987
  ident: 10.1016/j.compag.2023.107621_b0245
  article-title: Simplifying decision trees
  publication-title: Int. J. Man. Mach. Stud.
  doi: 10.1016/S0020-7373(87)80053-6
– volume: 7
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0235
  article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area
  publication-title: Neural Comput. Appl.
– volume: 36
  start-page: 1075
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0255
  article-title: Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1624988
– volume: 12
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0280
  article-title: Detection of Italian ryegrass in wheat and prediction of competitive interactions using remote-sensing and machine-learning techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs12182977
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.compag.2023.107621_b0395
  article-title: A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images
  publication-title: Remote Sens.
– volume: 10
  start-page: 17
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0010
  article-title: Stacking-Based Ensemble Learning Method for Multi-Spectral Image Classification
  publication-title: Technologies
  doi: 10.3390/technologies10010017
– volume: 76
  start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2023.107621_b0145
  article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.048
– ident: 10.1016/j.compag.2023.107621_b0275
  doi: 10.13031/aim.201700272
– volume: 4
  start-page: 212
  year: 2016
  ident: 10.1016/j.compag.2023.107621_b0345
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
  doi: 10.1016/j.cj.2016.01.008
– volume: 49
  start-page: 99
  year: 2003
  ident: 10.1016/j.compag.2023.107621_b0220
  article-title: Effect of nitrogen deficiency on biomass production, photosynthesis, carbon partitioning, and nitrogen nutrition status of Melaleuca and Eucalyptus species
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2003.10409985
– volume: 17
  start-page: 121
  year: 1992
  ident: 10.1016/j.compag.2023.107621_b0040
  article-title: Review Estimating plant biomass : A review of techniques
  publication-title: Aust. J. Ecol.
  doi: 10.1111/j.1442-9993.1992.tb00790.x
– ident: 10.1016/j.compag.2023.107621_b0390
  doi: 10.1007/978-1-4419-9326-7
– ident: 10.1016/j.compag.2023.107621_b0300
  doi: 10.1016/B978-0-12-804250-2.00012-2
– volume: 18
  start-page: 154
  year: 1981
  ident: 10.1016/j.compag.2023.107621_b0290
  article-title: Latent Root Regression: An Alternate Procedure for Estimating Parameters in the Presence of Multicollinearity
  publication-title: J. Mark. Res.
  doi: 10.1177/002224378101800203
– volume: 12
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0075
  article-title: Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning
  publication-title: Remote Sens.
  doi: 10.3390/rs12122028
– volume: 3
  start-page: 1
  year: 2019
  ident: 10.1016/j.compag.2023.107621_b0030
  article-title: A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses
  publication-title: Drones
  doi: 10.3390/drones3020040
– start-page: 49
  year: 1996
  ident: 10.1016/j.compag.2023.107621_b0035
  article-title: Stacked Regressions
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– ident: 10.1016/j.compag.2023.107621_b0015
  doi: 10.1007/978-981-16-3728-5_53
– volume: 55
  start-page: 251
  year: 2004
  ident: 10.1016/j.compag.2023.107621_b0090
  article-title: Bagging equalizes influence
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000027783.34431.42
– ident: 10.1016/j.compag.2023.107621_b0330
– year: 2002
  ident: 10.1016/j.compag.2023.107621_b0065
– volume: 33
  start-page: 2995
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0230
  article-title: Tackling Overfitting in Boosting for Noisy Healthcare Data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2959988
– volume: 57
  start-page: 177
  year: 2004
  ident: 10.1016/j.compag.2023.107621_b0240
  article-title: A bias-variance analysis of a real world learning problem: The CoIL challenge 2000
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035476.95130.99
– volume: 11
  start-page: 31
  year: 2016
  ident: 10.1016/j.compag.2023.107621_b0355
  article-title: Application of remote sensing methods in agriculture
  publication-title: Commun. Biometry Crop Sci.
– start-page: 66
  year: 2001
  ident: 10.1016/j.compag.2023.107621_b0200
– ident: 10.1016/j.compag.2023.107621_b0350
  doi: 10.18653/v1/D19-1670
– volume: 1750
  year: 2016
  ident: 10.1016/j.compag.2023.107621_b0260
  article-title: Robust PC with wild bootstrap estimation of linear model in the presence of outliers, multicollinearity and heteroscedasticity error variance
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4954632
– volume: 476–477
  start-page: 189
  year: 2014
  ident: 10.1016/j.compag.2023.107621_b0265
  article-title: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.01.001
– volume: 18
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0095
  article-title: Regression with highly correlated predictors: Variable omission is not the solution
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18084259
– volume: 16
  start-page: 3084
  year: 2012
  ident: 10.1016/j.compag.2023.107621_b0175
  article-title: A review on utilisation of biomass from rice industry as a source of renewable energy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.051
– ident: 10.1016/j.compag.2023.107621_b0150
– volume: 8
  start-page: 39
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0295
  article-title: Detecting Multicollinearity in Regression Analysis
  publication-title: Am. J. Appl. Math. Stat.
  doi: 10.12691/ajams-8-2-1
– volume: 4
  start-page: 9
  year: 2014
  ident: 10.1016/j.compag.2023.107621_b0380
  article-title: A study of effects of multicollinearity in the multivariable analysis
  publication-title: Int. J. Appl. Sci. Technol.
– ident: 10.1016/j.compag.2023.107621_b0310
– ident: 10.1016/j.compag.2023.107621_b0050
  doi: 10.1007/978-0-387-77242-4
– volume: 17
  start-page: 507
  year: 2016
  ident: 10.1016/j.compag.2023.107621_b0140
  article-title: Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy field
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9433-1
– ident: 10.1016/j.compag.2023.107621_b0215
  doi: 10.1109/ISIT.2019.8849614
– volume: 2
  start-page: 370
  year: 2010
  ident: 10.1016/j.compag.2023.107621_b0025
  article-title: Multicollinearity. Wiley Interdiscip. Rev
  publication-title: Comput. Stat.
  doi: 10.1002/wics.84
– volume: 51
  start-page: 359
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0115
  article-title: Physiological and Yield Responses of Five Rice Varieties to Nitrogen Fertilizer Under Farmer’s Field in IADA Ketara, Terengganu, Malaysia
  publication-title: Sains Malaysiana
  doi: 10.17576/jsm-2022-5102-03
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.compag.2023.107621_b0180
  article-title: Classification and regression trees. Wiley Interdiscip
  publication-title: Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.8
– volume: 41
  start-page: 673
  year: 2007
  ident: 10.1016/j.compag.2023.107621_b0225
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-006-9018-6
– volume: 126
  start-page: 1763
  year: 2018
  ident: 10.1016/j.compag.2023.107621_b0285
  article-title: Correlation coefficients: Appropriate use and interpretation
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000002864
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0080
  article-title: Lowland rice mapping in Sédhiou region (Senegal) using sentinel 1 and sentinel 2 data and random forest
  publication-title: Remote Sens.
  doi: 10.3390/rs12203403
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2023.107621_b0170
  article-title: Machine learning in agriculture: A review
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18082674
– volume: 92–102
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0375
  article-title: Procrustean Training for Imbalanced Deep Learning
  publication-title: IEEE/CVF Int. Conf. Comput. Vis.
– ident: 10.1016/j.compag.2023.107621_b0020
  doi: 10.1109/ICRERA47325.2019.8996629
– volume: 11
  start-page: 915
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0205
  article-title: Uav-and random-forest-adaboost (Rfa)-based estimation of rice plant traits
  publication-title: Agronomy
  doi: 10.3390/agronomy11050915
– volume: 4
  start-page: 150
  year: 2014
  ident: 10.1016/j.compag.2023.107621_b0385
  article-title: Bootstrapped Parameter Estimation in Ridge Regression with Multicollinearity and Multiple Outliers
  publication-title: J. Appl. Environ. Biol. Sci
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.compag.2023.107621_b0130
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– year: 2013
  ident: 10.1016/j.compag.2023.107621_b0155
  article-title: Dimensionality Reduction with Unsupervised Nearest Neighbors
  publication-title: Intelligent Systems Reference Library
  doi: 10.1007/978-3-642-38652-7
– volume: 17
  start-page: 581
  year: 1988
  ident: 10.1016/j.compag.2023.107621_b0120
  article-title: On the structure of partial least squares regression
  publication-title: Commun. Stat. - Simul. Comput.
  doi: 10.1080/03610918808812681
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0100
  article-title: The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0234703
– volume: 7
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0305
  article-title: AddGBoost: A gradient boosting-style algorithm based on strong learners
  publication-title: Mach. Learn. with Appl.
– volume: 10
  start-page: 2303
  year: 2008
  ident: 10.1016/j.compag.2023.107621_b0335
  article-title: Thiocyanate and fluoride electrochemical sensors based on nanostructurated metalloporphyrin systems
  publication-title: J. Optoelectron. Adv. Mater.
– volume: 103
  start-page: 94031
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0195
  article-title: Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the LHC energies using machine learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.094031
– volume: 31
  start-page: 14
  year: 2011
  ident: 10.1016/j.compag.2023.107621_b0060
  article-title: A Review of various k-Nearest Neighbor Query Processing Techniques
  publication-title: Int. J. Comput. Appl.
– volume: 199
  start-page: 457
  year: 2005
  ident: 10.1016/j.compag.2023.107621_b0325
  article-title: Problems of correlations between explanatory variables in multiple regression analyses in the dental literature
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.4812743
– volume: 15
  start-page: 1998
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0135
  article-title: Comparison of Different Bayesian and Machine Learning Methods in Handling Multicollinearity Problem: a Monte Carlo Simulation Study
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 11
  start-page: 2098
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0315
  article-title: Economic comparison of satellite, plane and uav-acquired ndvi images for site-specific nitrogen application: Observations from italy
  publication-title: Agronomy
  doi: 10.3390/agronomy11112098
– volume: 56
  start-page: 3571
  year: 2021
  ident: 10.1016/j.compag.2023.107621_b0160
  article-title: Comparative study of regressor and classifier with decision tree using modern tools
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.11.635
– volume: 5
  start-page: 735
  year: 1984
  ident: 10.1016/j.compag.2023.107621_b0360
  article-title: The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0905052
– ident: 10.1016/j.compag.2023.107621_b0125
  doi: 10.1109/IJCNN.2006.246837
– ident: 10.1016/j.compag.2023.107621_b0185
  doi: 10.1007/b107408
– volume: 13
  start-page: 261
  year: 1992
  ident: 10.1016/j.compag.2023.107621_b0165
  article-title: An explanation of the use of principal-components analysis to detect and correct for multicollinearity
  publication-title: Prev. Vet. Med.
  doi: 10.1016/0167-5877(92)90041-D
– ident: 10.1016/j.compag.2023.107621_b0320
  doi: 10.1117/12.2547216
– volume: 5
  start-page: 428
  year: 2012
  ident: 10.1016/j.compag.2023.107621_b0105
  article-title: A variance reduction framework for stable feature selection
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.11152
– volume: 208
  year: 2022
  ident: 10.1016/j.compag.2023.107621_b0270
  article-title: Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109463
– ident: 10.1016/j.compag.2023.107621_b0110
– volume: 179
  year: 2020
  ident: 10.1016/j.compag.2023.107621_b0370
  article-title: Adaptive autonomous UAV scouting for rice lodging assessment using edge computing with deep learning EDANet
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105817
SSID ssj0016987
Score 2.5019999
Snippet •Base and ensemble algorithms were compared to handle VIs multicollinearity.•The comparison includes model performance, variance, stability, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107621
SubjectTerms Algorithm
Multicollinearity
Rice
Unmanned aerial vehicle
Vegetation index
Title Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass
URI https://dx.doi.org/10.1016/j.compag.2023.107621
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZv34xhKS1XsRSu9hd3Nbqy0SWljj_52ZzZJURAFb8myG8LsMvMN-803hNwqO-CpF0lDQTQzXCu1jchkykgjZgc2pHK2Fp5_nPjjqXs_82YtMmhqYZBWWfv-yqdrb12P9Gtr9lfzef8JwEpo-REgFA10dAW76yOtr_exo3nAhLAqmfYhW4LZTfmc5nhpnnfWwxbiMAR-wfo5PH0JOaMjclhjRRpXv3NMWjI_IQdxtq71MuQp2Q7zjVzyhaQsTynm_fi4yArI-V-XVPe52dCyoJWaAtX8QaGFuOGIAwKnhaLT-IVuZVYTDyneYoP3oABn6WqNFzlIjaaoPkSxWh_g9hmZjobPg7FRt1IwBOQEJWyCwD7ngekxl2MKZ6aSSWExHrmcRU5ksVCJUAo3sJVnpRxgiSfAUzLHQYkx55y08yKXF4TyQHgOd5Xvwic5s7GlVcgjU0jPl4FSHeI0FkxErTOO7S4WSUMoe0squydo96Sye4cYu1WrSmfjj_lBsznJt_OSQCj4deXlv1dekX18qzjb16Rdrt_lDUCSknf1meuSvfjuYTz5BE5T4i0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQHNoeqq4qXX3oNSWbk_iIEAjKcilU3CLbsVMqCAgo399x4qBWqlqptyjJRNHYmnkjv3mD0KNyQ54QKi0F2czyncS1qM2UlVDmhi6Ucm4uPD8cBd2J_zwl0wpqlb0wmlZpYn8R0_Nobe40jDcbq9ms8QJgJXICCgglBzpQAtV8AjG5imrNXr872h8mBDQquqYDKJjAoOygy2leOdU7fdJTxOEWhAbn5wz1Jet0TtCxgYu4WfzRKarI7AwdNdO1kcyQ52jXzjZywecSsyzBuvTXl_N0CWX_2wLno242eLvEhaACzimEItfihl0OIBwvFZ40X_FOpoZ7iPVBNgQQDIgWr9b6LEezo7EWIMK6YR8Q9wWadNrjVtcy0xQsAWXBFtZB6FHnoU2Yz3UVZyeSSeEwTn3OqEcdFikRSeGHriJOwgGZEAHBknmeVhnzLlE1W2byCmEeCuJxXwU-fJIzV0-1iji1hSSBDJWqI6_0YCyM1LieeDGPS07Ze1z4PdZ-jwu_15G1t1oVUht_vB-WixN_2zIxZINfLa__bfmADrrj4SAe9Eb9G3SonxQU7ltU3a4_5B0glC2_NzvwEwQb5Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+and+single+algorithm+models+to+handle+multicollinearity+of+UAV+vegetation+indices+for+predicting+rice+biomass&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Derraz%2C+Radhwane&rft.au=Melissa+Muharam%2C+Farrah&rft.au=Nurulhuda%2C+Khairudin&rft.au=Ahmad+Jaafar%2C+Noraini&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=205&rft_id=info:doi/10.1016%2Fj.compag.2023.107621&rft.externalDocID=S0168169923000091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon