Analysis of unsupervised template update in biometric recognition systems
•Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms. Performance of mono- and multi-modal biomet...
        Saved in:
      
    
          | Published in | Pattern recognition letters Vol. 37; pp. 151 - 160 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.02.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-8655 1872-7344  | 
| DOI | 10.1016/j.patrec.2013.05.021 | 
Cover
| Abstract | •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms.
Performance of mono- and multi-modal biometric systems depends on the representativeness of enrolled templates. Unfortunately, error rate values estimated during the system design are subject to variations due to several aspects: intra-class variations arising on small-medium time-window, and ageing, which is the natural process involving any biometrics. This causes the increase of the False Rejection Rate (genuine users are no more recognized) or the False Acceptance Rate (impostors are misclassified as genuine users), or both. In fact, several vendors strongly suggest to repeat enrolment sessions in order to collect, over time, a set of templates representative enough. As alternative, automatic template update algorithms, which exploit the own-knowledge of the mono- or multi-modal biometric system, on a batch of samples collected during system operations without the human supervision, have been proposed.
Preliminary experimental results have shown that these algorithms are promising, but the motivation of their behaviour has not yet been explained. This paper is aimed to fill such gap, by showing that behaviour of self- and co-update may be explained by exploiting the concept of path-based clustering. Therefore, problems as ‘intra-class’ variations and ageing are dependent on the path-based cluster followed by each algorithm. Moreover, we show that the performance of co-update is superior than that of self-update, by a simulative model. The path-based clustering theory applied to self- and co-update algorithms, as well as the proposed model, are experimentally validated on the large DIEE Multimodal data set, the only one publicly available and explicitly conceived for comparing template update algorithms. | 
    
|---|---|
| AbstractList | •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms.
Performance of mono- and multi-modal biometric systems depends on the representativeness of enrolled templates. Unfortunately, error rate values estimated during the system design are subject to variations due to several aspects: intra-class variations arising on small-medium time-window, and ageing, which is the natural process involving any biometrics. This causes the increase of the False Rejection Rate (genuine users are no more recognized) or the False Acceptance Rate (impostors are misclassified as genuine users), or both. In fact, several vendors strongly suggest to repeat enrolment sessions in order to collect, over time, a set of templates representative enough. As alternative, automatic template update algorithms, which exploit the own-knowledge of the mono- or multi-modal biometric system, on a batch of samples collected during system operations without the human supervision, have been proposed.
Preliminary experimental results have shown that these algorithms are promising, but the motivation of their behaviour has not yet been explained. This paper is aimed to fill such gap, by showing that behaviour of self- and co-update may be explained by exploiting the concept of path-based clustering. Therefore, problems as ‘intra-class’ variations and ageing are dependent on the path-based cluster followed by each algorithm. Moreover, we show that the performance of co-update is superior than that of self-update, by a simulative model. The path-based clustering theory applied to self- and co-update algorithms, as well as the proposed model, are experimentally validated on the large DIEE Multimodal data set, the only one publicly available and explicitly conceived for comparing template update algorithms. | 
    
| Author | Marcialis, Gian Luca Didaci, Luca Roli, Fabio  | 
    
| Author_xml | – sequence: 1 givenname: Luca surname: Didaci fullname: Didaci, Luca email: luca.didaci@diee.unica.it – sequence: 2 givenname: Gian Luca surname: Marcialis fullname: Marcialis, Gian Luca email: marcialis@diee.unica.it – sequence: 3 givenname: Fabio surname: Roli fullname: Roli, Fabio email: roli@diee.unica.it  | 
    
| BookMark | eNqFkM1OwzAQhC1UJNrCG3DICyT4J7ZTDkhVxU-lSlzgbLn2BrlKnch2K-XtcVROHOA0e5hvdncWaOZ7DwjdE1wRTMTDoRp0CmAqigmrMK8wJVdoThpJS8nqeobm2SbLRnB-gxYxHjDGgq2aOdquve7G6GLRt8XJx9MA4ewi2CLBceh0guI02EmcL_auP0IKzhR5Wf_lXXK9L-IYszfeoutWdxHufnSJPl-ePzZv5e79dbtZ70rDsEglM5wSDvVKrGxDwIoWUy31HlrWEmAtSCmJoKSmTS0Bs2aPLSVUiqZmeeJsiR4vuSb0MQZolXFJT5ekoF2nCFZTKeqgLqWoqRSFucqlZLj-BQ_BHXUY_8OeLhjkx84OgorGgTdgXbYmZXv3d8A3UM6A5Q | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2017_2694050 crossref_primary_10_1145_3507901 crossref_primary_10_1016_j_neucom_2015_01_111 crossref_primary_10_1016_j_eswa_2021_114734 crossref_primary_10_1016_j_future_2019_02_039 crossref_primary_10_1109_TIFS_2017_2778010 crossref_primary_10_1145_3344255  | 
    
| Cites_doi | 10.21437/ICSLP.1998-244 10.1155/2008/579416 10.1145/279943.279962 10.1109/TKDE.2010.158 10.1109/34.587996 10.1017/CBO9780511921056.009 10.1109/34.598235 10.1109/TPAMI.2003.1190577 10.1109/CVPRW.2008.4563116 10.1109/CIBIM.2011.5949222 10.1162/jocn.1991.3.1.71 10.1109/TIT.1966.1053864 10.1006/rtim.2000.0208  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2013 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.patrec.2013.05.021 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1872-7344 | 
    
| EndPage | 160 | 
    
| ExternalDocumentID | 10_1016_j_patrec_2013_05_021 S0167865513002195  | 
    
| GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW VOH WUQ Y6R ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-3c5215e4969d81ed6f02a7abef3f1e3fe777162142847e038b0d212768430d253 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-8655 | 
    
| IngestDate | Mon Oct 27 04:16:44 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Fri Feb 23 02:26:35 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Path-based clustering Adaptive systems Fingerprint Multi-modal biometrics Face Biometrics recognition  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-3c5215e4969d81ed6f02a7abef3f1e3fe777162142847e038b0d212768430d253 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_patrec_2013_05_021 crossref_primary_10_1016_j_patrec_2013_05_021 elsevier_sciencedirect_doi_10_1016_j_patrec_2013_05_021  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-02-01 2014-2-00  | 
    
| PublicationDateYYYYMMDD | 2014-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Pattern recognition letters | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Didaci, L., Marcialis, G.L., Roli, F., 2009. Modelling FRR of biometric verification systems using the template co-update algorithm. In: Tistarelli, M. & Nixon, M. (Eds.). 3rd IAPR/IEEE Int. Conference on Biometrics ICB 2009. Springer LNCS, vol. 5558, Springer Berlin Heidelberg, pp. 765–774. Wiskott, Fellous, Kruger, von der Malsburg (b0150) 1997; 19 Ziliani, Cavallaro (b0165) 2001; 7 Didaci, L., Marcialis, G.L., Roli, F., 2008. A Theoretical and Experimental Analysis of Template Co-update in Biometric Verification Systems, In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J., Georgiopoulos, M., Anagnostopoulos, G. & Loog, M. (Eds.). S+SSPR08, Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 775–784. Zhou, Z.-H., Zhan, D.-C. and Yang, Q., 2007. Semi-supervised learning with very few labeled training examples. In: Proc. AAAI, pp. 675–680. Jain, Hong, Bolle (b0070) 1997; 19 Didaci, Marcialis, Roli (b0025) 2011 Zhu, X., 2006. Semi-supervised learning literature survey, Technical report, Computer Sciences TR 1530. Univ. Wisconsin, Madison, USA. Roli, F., Marcialis, G.L., 2006. Semi-supervised PCA-based face recognition using self-training. S+SSPR06. Springer LNCS, vol. 4109, Springer Berlin Heidelberg, pp. 560–568. Rattani, A., Marcialis, G.L., Roli, F., 2011. Self adaptive systems: an experimental analysis of the performance over time. In: Proc. of CIBIM 2011, pp. 36–43. Doddington G., Liggett W., Martin A., Przybocki M. and Reynolds D., Sheep, goats, lambs and wolves: A statistical analysis of speaker performance, NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLP-98. Nagy G., Shelton G.L., 1966. Self-corrective character recognition systems. IEEE Transactions On Information Theory, 12(2), 215–222. Maltoni, Maio, Jain, Prabhakar (b0090) 2003 Fischer, Buhmann (b0050) 2003; 25 Turk, Pentland (b0140) 1991; 3 NIST, 2012. Rattani, A., Marcialis, G.L., Roli, F., 2009. An experimental analysis of the relationship between biometric template update and the Doddington?s Zoo in face verification, Proc. Of IEEE/IAPR ICIAP 2009. In: Springer LNCS, vol. 5716, Springer Berlin Heidelberg, pp. 429–437. Didaci, Fumera, Roli (b0030) 2012 Du, Ling, Zhou (b0045) 2011; 23 Infosecurity, 2008. . Blum, A., Mitchell, T., 1998. Combining labeled and unlabeled data with co-training. In: Proc. of the Workshop on Computational Learning Theory, pp. 92–100. Rattani, A., Marcialis, G.L., Roli, F., 2008. Capturing large intra-class variations of biometric data by template co-updating. In: IEEE CVPR08, pp. 1–6. Roli, Didaci, Marcialis (b0135) 2008 Roli, F., Didaci, L., Marcialis, G.L., 2007. Template co-update in multimodal biometric systems. In: IEEE/IAPR ICB 2007, Springer LNCS, vol. 4642, Springer Berlin Heidelberg, pp. 1194–1202. Marcialis, G.L., Rattani, A., Roli, F., 2008. Biometric template update: an experimental investigation on the relationship between update errors and performance degradation in face verification. S+SSPR08. Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 694–703. Jain, A.K., Nandakumar, K., Nagar, A., 2008. Biometric template security, EURASIP Journal on Advances in Signal Processing (2008), 1–17. Didaci, Roli (b0035) 2012 Li, Jain (b0080) 2005 Jain (10.1016/j.patrec.2013.05.021_b0070) 1997; 19 Du (10.1016/j.patrec.2013.05.021_b0045) 2011; 23 10.1016/j.patrec.2013.05.021_b0155 10.1016/j.patrec.2013.05.021_b0110 Ziliani (10.1016/j.patrec.2013.05.021_b0165) 2001; 7 10.1016/j.patrec.2013.05.021_b0010 10.1016/j.patrec.2013.05.021_b0075 10.1016/j.patrec.2013.05.021_b0130 10.1016/j.patrec.2013.05.021_b0095 Roli (10.1016/j.patrec.2013.05.021_b0135) 2008 10.1016/j.patrec.2013.05.021_b0115 10.1016/j.patrec.2013.05.021_b0015 Didaci (10.1016/j.patrec.2013.05.021_b0030) 2012 Fischer (10.1016/j.patrec.2013.05.021_b0050) 2003; 25 Didaci (10.1016/j.patrec.2013.05.021_b0035) 2012 Didaci (10.1016/j.patrec.2013.05.021_b0025) 2011 Maltoni (10.1016/j.patrec.2013.05.021_b0090) 2003 10.1016/j.patrec.2013.05.021_b0100 10.1016/j.patrec.2013.05.021_b0065 10.1016/j.patrec.2013.05.021_b0120 10.1016/j.patrec.2013.05.021_b0020 Turk (10.1016/j.patrec.2013.05.021_b0140) 1991; 3 10.1016/j.patrec.2013.05.021_b0040 Li (10.1016/j.patrec.2013.05.021_b0080) 2005 10.1016/j.patrec.2013.05.021_b0160 Wiskott (10.1016/j.patrec.2013.05.021_b0150) 1997; 19 10.1016/j.patrec.2013.05.021_b0105 10.1016/j.patrec.2013.05.021_b0125  | 
    
| References_xml | – reference: NIST, 2012. – start-page: 719 year: 2012 end-page: 726 ident: b0030 article-title: Analysis of Co-training Algorithm with Very Small Training Sets publication-title: Proc. of S+SSPR2012 – year: 2005 ident: b0080 article-title: Handbook of Face Recognition – start-page: 1141 year: 2012 end-page: 1145 ident: b0035 article-title: A Bayesian analysis of co-training algorithm with insufficient views publication-title: Proc. 11th International Conference on Information Science, Signal Processing and their Applications – reference: Jain, A.K., Nandakumar, K., Nagar, A., 2008. Biometric template security, EURASIP Journal on Advances in Signal Processing (2008), 1–17. – volume: 3 start-page: 71 year: 1991 end-page: 86 ident: b0140 article-title: Eigenfaces for face recognition publication-title: Journal of Cognitive Neuroscience – volume: 23 start-page: 788 year: 2011 end-page: 799 ident: b0045 article-title: When does co-trainingwork in real data? publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Didaci, L., Marcialis, G.L., Roli, F., 2009. Modelling FRR of biometric verification systems using the template co-update algorithm. In: Tistarelli, M. & Nixon, M. (Eds.). 3rd IAPR/IEEE Int. Conference on Biometrics ICB 2009. Springer LNCS, vol. 5558, Springer Berlin Heidelberg, pp. 765–774. – reference: Marcialis, G.L., Rattani, A., Roli, F., 2008. Biometric template update: an experimental investigation on the relationship between update errors and performance degradation in face verification. S+SSPR08. Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 694–703. – reference: Roli, F., Marcialis, G.L., 2006. Semi-supervised PCA-based face recognition using self-training. S+SSPR06. Springer LNCS, vol. 4109, Springer Berlin Heidelberg, pp. 560–568. – volume: 19 start-page: 775 year: 1997 end-page: 779 ident: b0150 article-title: Face recognition by elastic bunch graph matching publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 19 start-page: 302 year: 1997 end-page: 314 ident: b0070 article-title: On-line fingerprint verification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Zhou, Z.-H., Zhan, D.-C. and Yang, Q., 2007. Semi-supervised learning with very few labeled training examples. In: Proc. AAAI, pp. 675–680. – reference: Doddington G., Liggett W., Martin A., Przybocki M. and Reynolds D., Sheep, goats, lambs and wolves: A statistical analysis of speaker performance, NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLP-98. – reference: Infosecurity, 2008. – volume: 7 start-page: 389 year: 2001 end-page: 399 ident: b0165 article-title: Image analysis for video surveillance based on spatial regularization of a statistical model-based change detection publication-title: Real-time Imaging – reference: Zhu, X., 2006. Semi-supervised learning literature survey, Technical report, Computer Sciences TR 1530. Univ. Wisconsin, Madison, USA. – reference: Didaci, L., Marcialis, G.L., Roli, F., 2008. A Theoretical and Experimental Analysis of Template Co-update in Biometric Verification Systems, In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J., Georgiopoulos, M., Anagnostopoulos, G. & Loog, M. (Eds.). S+SSPR08, Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 775–784. – reference: . – reference: Rattani, A., Marcialis, G.L., Roli, F., 2009. An experimental analysis of the relationship between biometric template update and the Doddington?s Zoo in face verification, Proc. Of IEEE/IAPR ICIAP 2009. In: Springer LNCS, vol. 5716, Springer Berlin Heidelberg, pp. 429–437. – start-page: 447 year: 2008 end-page: 471 ident: b0135 article-title: Adaptive biometric systems that can improve with use publication-title: Advances in Biometrics: Sensors, Systems and Algorithms – volume: 25 start-page: 1 year: 2003 end-page: 6 ident: b0050 article-title: Path-based clustering for grouping of smooth curves and texture segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2003 ident: b0090 article-title: Handbook of Fingerprint Recognition – year: 2011 ident: b0025 article-title: Adaptive multibiometric systems publication-title: Multibiometrics for Human Identification – reference: Blum, A., Mitchell, T., 1998. Combining labeled and unlabeled data with co-training. In: Proc. of the Workshop on Computational Learning Theory, pp. 92–100. – reference: Roli, F., Didaci, L., Marcialis, G.L., 2007. Template co-update in multimodal biometric systems. In: IEEE/IAPR ICB 2007, Springer LNCS, vol. 4642, Springer Berlin Heidelberg, pp. 1194–1202. – reference: Nagy G., Shelton G.L., 1966. Self-corrective character recognition systems. IEEE Transactions On Information Theory, 12(2), 215–222. – reference: Rattani, A., Marcialis, G.L., Roli, F., 2011. Self adaptive systems: an experimental analysis of the performance over time. In: Proc. of CIBIM 2011, pp. 36–43. – reference: Rattani, A., Marcialis, G.L., Roli, F., 2008. Capturing large intra-class variations of biometric data by template co-updating. In: IEEE CVPR08, pp. 1–6. – ident: 10.1016/j.patrec.2013.05.021_b0040 doi: 10.21437/ICSLP.1998-244 – ident: 10.1016/j.patrec.2013.05.021_b0125 – ident: 10.1016/j.patrec.2013.05.021_b0075 doi: 10.1155/2008/579416 – ident: 10.1016/j.patrec.2013.05.021_b0105 – ident: 10.1016/j.patrec.2013.05.021_b0130 – ident: 10.1016/j.patrec.2013.05.021_b0155 – start-page: 1141 year: 2012 ident: 10.1016/j.patrec.2013.05.021_b0035 article-title: A Bayesian analysis of co-training algorithm with insufficient views – ident: 10.1016/j.patrec.2013.05.021_b0010 doi: 10.1145/279943.279962 – ident: 10.1016/j.patrec.2013.05.021_b0065 – volume: 23 start-page: 788 issue: 35 year: 2011 ident: 10.1016/j.patrec.2013.05.021_b0045 article-title: When does co-trainingwork in real data? publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.158 – ident: 10.1016/j.patrec.2013.05.021_b0115 – volume: 19 start-page: 302 issue: 4 year: 1997 ident: 10.1016/j.patrec.2013.05.021_b0070 article-title: On-line fingerprint verification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.587996 – year: 2005 ident: 10.1016/j.patrec.2013.05.021_b0080 – year: 2011 ident: 10.1016/j.patrec.2013.05.021_b0025 article-title: Adaptive multibiometric systems doi: 10.1017/CBO9780511921056.009 – volume: 19 start-page: 775 issue: 7 year: 1997 ident: 10.1016/j.patrec.2013.05.021_b0150 article-title: Face recognition by elastic bunch graph matching publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.598235 – ident: 10.1016/j.patrec.2013.05.021_b0015 – volume: 25 start-page: 1 issue: 4 year: 2003 ident: 10.1016/j.patrec.2013.05.021_b0050 article-title: Path-based clustering for grouping of smooth curves and texture segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1190577 – ident: 10.1016/j.patrec.2013.05.021_b0160 – ident: 10.1016/j.patrec.2013.05.021_b0110 doi: 10.1109/CVPRW.2008.4563116 – ident: 10.1016/j.patrec.2013.05.021_b0095 – ident: 10.1016/j.patrec.2013.05.021_b0120 doi: 10.1109/CIBIM.2011.5949222 – year: 2003 ident: 10.1016/j.patrec.2013.05.021_b0090 – start-page: 719 year: 2012 ident: 10.1016/j.patrec.2013.05.021_b0030 article-title: Analysis of Co-training Algorithm with Very Small Training Sets – start-page: 447 year: 2008 ident: 10.1016/j.patrec.2013.05.021_b0135 article-title: Adaptive biometric systems that can improve with use – volume: 3 start-page: 71 issue: 1 year: 1991 ident: 10.1016/j.patrec.2013.05.021_b0140 article-title: Eigenfaces for face recognition publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1991.3.1.71 – ident: 10.1016/j.patrec.2013.05.021_b0100 doi: 10.1109/TIT.1966.1053864 – volume: 7 start-page: 389 issue: 5 year: 2001 ident: 10.1016/j.patrec.2013.05.021_b0165 article-title: Image analysis for video surveillance based on spatial regularization of a statistical model-based change detection publication-title: Real-time Imaging doi: 10.1006/rtim.2000.0208 – ident: 10.1016/j.patrec.2013.05.021_b0020  | 
    
| SSID | ssj0006398 | 
    
| Score | 2.1865191 | 
    
| Snippet | •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 151 | 
    
| SubjectTerms | Adaptive systems Biometrics recognition Face Fingerprint Multi-modal biometrics Path-based clustering  | 
    
| Title | Analysis of unsupervised template update in biometric recognition systems | 
    
| URI | https://dx.doi.org/10.1016/j.patrec.2013.05.021 | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AKRWK dateStart: 19821001 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvTgx1ScHyMHr3HtkjbtcQzHpriLDnYLzRdMRlfcevVvN69tpoIoeGtLHpRfkvde2t_7PYRurcpSF9c5kSZLCZM6I1IaS1RAE8lTTnXVJeJpFk_m7GERLVpo5GthgFbZ-P7ap1feunnSb9DsF8tl_xkI9FBWCT9k3L6DQnPGOHQxuHv_pHm4CJx4fW8Y7cvnKo4XfG82IGQY0kq_cxD-HJ6-hJzxMTpsckU8rF_nBLVM3kFHvg8DbrZlBx18ERU8RVOvM4LXFpf5pizAHWyMxiBDtXK5JS4LOOfjZY6r6nsQ6cc7JtE6x7W88-YMzcf3L6MJaRomEOUy_y2hygXjyLA0TnUSGh3bYJDxzGFPbWioNZyDYBSIrDFuYDYCDQrvccKou4roOWrn69xcICwDGytrpJbUMqV0NpBxolJ3vNLU-YS4i6jHSahGTRyaWqyEp429ihpdAeiKIBIO3S4iO6uiVtP4Yzz3UyC-rQrhHP6vlpf_trxC--6O1czsa9TevpXmxiUeW9mrVlYP7Q2nj5PZB3UG2ac | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDD9SIzz14XSlsn0dDJKDARUi4bbqvBENKI_Tqb3enD8TEaOKtaXfSZnZ3HttvvgG4NzKOrF8PqNBxRF2hYiqENlQ6LBRBFDCVd4kYjf3-1H2eebMadKtaGIRVlra_sOm5tS7vtEptttL5vPWKAHosq8QfMnbfeTuw69q3Ygb28PGF87AuOKwIvnF4VT-Xg7zwwFkjk2Gb5QSenfbP_mnL5_SO4bAMFslj8T0nUNNJA46qRgyk3JcNONhiFTyFQUU0QpaGZMkqS9EerLQiyEO1sMElyVJM9Mk8IXn5PbL0kw2UaJmQgt95dQbT3tOk26dlxwQqbei_pkxab-xpN_IjFba18o3TiYPYKp-ZtmZGBwEyRiHLmhtonA5HIcW7H7rMXnnsHOrJMtEXQIRjfGm0UIIZV0oVd4QfysjmV4pZo-A3gVV64rKkE8euFgte4cbeeKFdjtrljsetdptAN1JpQafxx_igmgL-bVlwa_F_lbz8t-Qd7PUnoyEfDsYvV7Bvn7gFTPsa6uv3TN_YKGQtbvNV9gmghts8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+unsupervised+template+update+in+biometric+recognition+systems&rft.jtitle=Pattern+recognition+letters&rft.au=Didaci%2C+Luca&rft.au=Marcialis%2C+Gian+Luca&rft.au=Roli%2C+Fabio&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=37&rft.spage=151&rft.epage=160&rft_id=info:doi/10.1016%2Fj.patrec.2013.05.021&rft.externalDocID=S0167865513002195 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |