Analysis of unsupervised template update in biometric recognition systems

•Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms. Performance of mono- and multi-modal biomet...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 37; pp. 151 - 160
Main Authors Didaci, Luca, Marcialis, Gian Luca, Roli, Fabio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2014
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2013.05.021

Cover

Abstract •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms. Performance of mono- and multi-modal biometric systems depends on the representativeness of enrolled templates. Unfortunately, error rate values estimated during the system design are subject to variations due to several aspects: intra-class variations arising on small-medium time-window, and ageing, which is the natural process involving any biometrics. This causes the increase of the False Rejection Rate (genuine users are no more recognized) or the False Acceptance Rate (impostors are misclassified as genuine users), or both. In fact, several vendors strongly suggest to repeat enrolment sessions in order to collect, over time, a set of templates representative enough. As alternative, automatic template update algorithms, which exploit the own-knowledge of the mono- or multi-modal biometric system, on a batch of samples collected during system operations without the human supervision, have been proposed. Preliminary experimental results have shown that these algorithms are promising, but the motivation of their behaviour has not yet been explained. This paper is aimed to fill such gap, by showing that behaviour of self- and co-update may be explained by exploiting the concept of path-based clustering. Therefore, problems as ‘intra-class’ variations and ageing are dependent on the path-based cluster followed by each algorithm. Moreover, we show that the performance of co-update is superior than that of self-update, by a simulative model. The path-based clustering theory applied to self- and co-update algorithms, as well as the proposed model, are experimentally validated on the large DIEE Multimodal data set, the only one publicly available and explicitly conceived for comparing template update algorithms.
AbstractList •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and self-update algorithms.•Analytical comparison of performance between co-update and self-update algorithms. Performance of mono- and multi-modal biometric systems depends on the representativeness of enrolled templates. Unfortunately, error rate values estimated during the system design are subject to variations due to several aspects: intra-class variations arising on small-medium time-window, and ageing, which is the natural process involving any biometrics. This causes the increase of the False Rejection Rate (genuine users are no more recognized) or the False Acceptance Rate (impostors are misclassified as genuine users), or both. In fact, several vendors strongly suggest to repeat enrolment sessions in order to collect, over time, a set of templates representative enough. As alternative, automatic template update algorithms, which exploit the own-knowledge of the mono- or multi-modal biometric system, on a batch of samples collected during system operations without the human supervision, have been proposed. Preliminary experimental results have shown that these algorithms are promising, but the motivation of their behaviour has not yet been explained. This paper is aimed to fill such gap, by showing that behaviour of self- and co-update may be explained by exploiting the concept of path-based clustering. Therefore, problems as ‘intra-class’ variations and ageing are dependent on the path-based cluster followed by each algorithm. Moreover, we show that the performance of co-update is superior than that of self-update, by a simulative model. The path-based clustering theory applied to self- and co-update algorithms, as well as the proposed model, are experimentally validated on the large DIEE Multimodal data set, the only one publicly available and explicitly conceived for comparing template update algorithms.
Author Marcialis, Gian Luca
Didaci, Luca
Roli, Fabio
Author_xml – sequence: 1
  givenname: Luca
  surname: Didaci
  fullname: Didaci, Luca
  email: luca.didaci@diee.unica.it
– sequence: 2
  givenname: Gian Luca
  surname: Marcialis
  fullname: Marcialis, Gian Luca
  email: marcialis@diee.unica.it
– sequence: 3
  givenname: Fabio
  surname: Roli
  fullname: Roli, Fabio
  email: roli@diee.unica.it
BookMark eNqFkM1OwzAQhC1UJNrCG3DICyT4J7ZTDkhVxU-lSlzgbLn2BrlKnch2K-XtcVROHOA0e5hvdncWaOZ7DwjdE1wRTMTDoRp0CmAqigmrMK8wJVdoThpJS8nqeobm2SbLRnB-gxYxHjDGgq2aOdquve7G6GLRt8XJx9MA4ewi2CLBceh0guI02EmcL_auP0IKzhR5Wf_lXXK9L-IYszfeoutWdxHufnSJPl-ePzZv5e79dbtZ70rDsEglM5wSDvVKrGxDwIoWUy31HlrWEmAtSCmJoKSmTS0Bs2aPLSVUiqZmeeJsiR4vuSb0MQZolXFJT5ekoF2nCFZTKeqgLqWoqRSFucqlZLj-BQ_BHXUY_8OeLhjkx84OgorGgTdgXbYmZXv3d8A3UM6A5Q
CitedBy_id crossref_primary_10_1109_ACCESS_2017_2694050
crossref_primary_10_1145_3507901
crossref_primary_10_1016_j_neucom_2015_01_111
crossref_primary_10_1016_j_eswa_2021_114734
crossref_primary_10_1016_j_future_2019_02_039
crossref_primary_10_1109_TIFS_2017_2778010
crossref_primary_10_1145_3344255
Cites_doi 10.21437/ICSLP.1998-244
10.1155/2008/579416
10.1145/279943.279962
10.1109/TKDE.2010.158
10.1109/34.587996
10.1017/CBO9780511921056.009
10.1109/34.598235
10.1109/TPAMI.2003.1190577
10.1109/CVPRW.2008.4563116
10.1109/CIBIM.2011.5949222
10.1162/jocn.1991.3.1.71
10.1109/TIT.1966.1053864
10.1006/rtim.2000.0208
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2013.05.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 160
ExternalDocumentID 10_1016_j_patrec_2013_05_021
S0167865513002195
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
ID FETCH-LOGICAL-c306t-3c5215e4969d81ed6f02a7abef3f1e3fe777162142847e038b0d212768430d253
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Mon Oct 27 04:16:44 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Path-based clustering
Adaptive systems
Fingerprint
Multi-modal biometrics
Face
Biometrics recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3c5215e4969d81ed6f02a7abef3f1e3fe777162142847e038b0d212768430d253
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_patrec_2013_05_021
crossref_primary_10_1016_j_patrec_2013_05_021
elsevier_sciencedirect_doi_10_1016_j_patrec_2013_05_021
PublicationCentury 2000
PublicationDate 2014-02-01
2014-2-00
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Didaci, L., Marcialis, G.L., Roli, F., 2009. Modelling FRR of biometric verification systems using the template co-update algorithm. In: Tistarelli, M. & Nixon, M. (Eds.). 3rd IAPR/IEEE Int. Conference on Biometrics ICB 2009. Springer LNCS, vol. 5558, Springer Berlin Heidelberg, pp. 765–774.
Wiskott, Fellous, Kruger, von der Malsburg (b0150) 1997; 19
Ziliani, Cavallaro (b0165) 2001; 7
Didaci, L., Marcialis, G.L., Roli, F., 2008. A Theoretical and Experimental Analysis of Template Co-update in Biometric Verification Systems, In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J., Georgiopoulos, M., Anagnostopoulos, G. & Loog, M. (Eds.). S+SSPR08, Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 775–784.
Zhou, Z.-H., Zhan, D.-C. and Yang, Q., 2007. Semi-supervised learning with very few labeled training examples. In: Proc. AAAI, pp. 675–680.
Jain, Hong, Bolle (b0070) 1997; 19
Didaci, Marcialis, Roli (b0025) 2011
Zhu, X., 2006. Semi-supervised learning literature survey, Technical report, Computer Sciences TR 1530. Univ. Wisconsin, Madison, USA.
Roli, F., Marcialis, G.L., 2006. Semi-supervised PCA-based face recognition using self-training. S+SSPR06. Springer LNCS, vol. 4109, Springer Berlin Heidelberg, pp. 560–568.
Rattani, A., Marcialis, G.L., Roli, F., 2011. Self adaptive systems: an experimental analysis of the performance over time. In: Proc. of CIBIM 2011, pp. 36–43.
Doddington G., Liggett W., Martin A., Przybocki M. and Reynolds D., Sheep, goats, lambs and wolves: A statistical analysis of speaker performance, NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLP-98.
Nagy G., Shelton G.L., 1966. Self-corrective character recognition systems. IEEE Transactions On Information Theory, 12(2), 215–222.
Maltoni, Maio, Jain, Prabhakar (b0090) 2003
Fischer, Buhmann (b0050) 2003; 25
Turk, Pentland (b0140) 1991; 3
NIST, 2012.
Rattani, A., Marcialis, G.L., Roli, F., 2009. An experimental analysis of the relationship between biometric template update and the Doddington?s Zoo in face verification, Proc. Of IEEE/IAPR ICIAP 2009. In: Springer LNCS, vol. 5716, Springer Berlin Heidelberg, pp. 429–437.
Didaci, Fumera, Roli (b0030) 2012
Du, Ling, Zhou (b0045) 2011; 23
Infosecurity, 2008.
.
Blum, A., Mitchell, T., 1998. Combining labeled and unlabeled data with co-training. In: Proc. of the Workshop on Computational Learning Theory, pp. 92–100.
Rattani, A., Marcialis, G.L., Roli, F., 2008. Capturing large intra-class variations of biometric data by template co-updating. In: IEEE CVPR08, pp. 1–6.
Roli, Didaci, Marcialis (b0135) 2008
Roli, F., Didaci, L., Marcialis, G.L., 2007. Template co-update in multimodal biometric systems. In: IEEE/IAPR ICB 2007, Springer LNCS, vol. 4642, Springer Berlin Heidelberg, pp. 1194–1202.
Marcialis, G.L., Rattani, A., Roli, F., 2008. Biometric template update: an experimental investigation on the relationship between update errors and performance degradation in face verification. S+SSPR08. Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 694–703.
Jain, A.K., Nandakumar, K., Nagar, A., 2008. Biometric template security, EURASIP Journal on Advances in Signal Processing (2008), 1–17.
Didaci, Roli (b0035) 2012
Li, Jain (b0080) 2005
Jain (10.1016/j.patrec.2013.05.021_b0070) 1997; 19
Du (10.1016/j.patrec.2013.05.021_b0045) 2011; 23
10.1016/j.patrec.2013.05.021_b0155
10.1016/j.patrec.2013.05.021_b0110
Ziliani (10.1016/j.patrec.2013.05.021_b0165) 2001; 7
10.1016/j.patrec.2013.05.021_b0010
10.1016/j.patrec.2013.05.021_b0075
10.1016/j.patrec.2013.05.021_b0130
10.1016/j.patrec.2013.05.021_b0095
Roli (10.1016/j.patrec.2013.05.021_b0135) 2008
10.1016/j.patrec.2013.05.021_b0115
10.1016/j.patrec.2013.05.021_b0015
Didaci (10.1016/j.patrec.2013.05.021_b0030) 2012
Fischer (10.1016/j.patrec.2013.05.021_b0050) 2003; 25
Didaci (10.1016/j.patrec.2013.05.021_b0035) 2012
Didaci (10.1016/j.patrec.2013.05.021_b0025) 2011
Maltoni (10.1016/j.patrec.2013.05.021_b0090) 2003
10.1016/j.patrec.2013.05.021_b0100
10.1016/j.patrec.2013.05.021_b0065
10.1016/j.patrec.2013.05.021_b0120
10.1016/j.patrec.2013.05.021_b0020
Turk (10.1016/j.patrec.2013.05.021_b0140) 1991; 3
10.1016/j.patrec.2013.05.021_b0040
Li (10.1016/j.patrec.2013.05.021_b0080) 2005
10.1016/j.patrec.2013.05.021_b0160
Wiskott (10.1016/j.patrec.2013.05.021_b0150) 1997; 19
10.1016/j.patrec.2013.05.021_b0105
10.1016/j.patrec.2013.05.021_b0125
References_xml – reference: NIST, 2012.
– start-page: 719
  year: 2012
  end-page: 726
  ident: b0030
  article-title: Analysis of Co-training Algorithm with Very Small Training Sets
  publication-title: Proc. of S+SSPR2012
– year: 2005
  ident: b0080
  article-title: Handbook of Face Recognition
– start-page: 1141
  year: 2012
  end-page: 1145
  ident: b0035
  article-title: A Bayesian analysis of co-training algorithm with insufficient views
  publication-title: Proc. 11th International Conference on Information Science, Signal Processing and their Applications
– reference: Jain, A.K., Nandakumar, K., Nagar, A., 2008. Biometric template security, EURASIP Journal on Advances in Signal Processing (2008), 1–17.
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  ident: b0140
  article-title: Eigenfaces for face recognition
  publication-title: Journal of Cognitive Neuroscience
– volume: 23
  start-page: 788
  year: 2011
  end-page: 799
  ident: b0045
  article-title: When does co-trainingwork in real data?
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Didaci, L., Marcialis, G.L., Roli, F., 2009. Modelling FRR of biometric verification systems using the template co-update algorithm. In: Tistarelli, M. & Nixon, M. (Eds.). 3rd IAPR/IEEE Int. Conference on Biometrics ICB 2009. Springer LNCS, vol. 5558, Springer Berlin Heidelberg, pp. 765–774.
– reference: Marcialis, G.L., Rattani, A., Roli, F., 2008. Biometric template update: an experimental investigation on the relationship between update errors and performance degradation in face verification. S+SSPR08. Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 694–703.
– reference: Roli, F., Marcialis, G.L., 2006. Semi-supervised PCA-based face recognition using self-training. S+SSPR06. Springer LNCS, vol. 4109, Springer Berlin Heidelberg, pp. 560–568.
– volume: 19
  start-page: 775
  year: 1997
  end-page: 779
  ident: b0150
  article-title: Face recognition by elastic bunch graph matching
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 19
  start-page: 302
  year: 1997
  end-page: 314
  ident: b0070
  article-title: On-line fingerprint verification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Zhou, Z.-H., Zhan, D.-C. and Yang, Q., 2007. Semi-supervised learning with very few labeled training examples. In: Proc. AAAI, pp. 675–680.
– reference: Doddington G., Liggett W., Martin A., Przybocki M. and Reynolds D., Sheep, goats, lambs and wolves: A statistical analysis of speaker performance, NIST 1998 speaker recognition evaluation. In: Proceedings of ICSLP-98.
– reference: Infosecurity, 2008.
– volume: 7
  start-page: 389
  year: 2001
  end-page: 399
  ident: b0165
  article-title: Image analysis for video surveillance based on spatial regularization of a statistical model-based change detection
  publication-title: Real-time Imaging
– reference: Zhu, X., 2006. Semi-supervised learning literature survey, Technical report, Computer Sciences TR 1530. Univ. Wisconsin, Madison, USA.
– reference: Didaci, L., Marcialis, G.L., Roli, F., 2008. A Theoretical and Experimental Analysis of Template Co-update in Biometric Verification Systems, In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J., Georgiopoulos, M., Anagnostopoulos, G. & Loog, M. (Eds.). S+SSPR08, Springer LNCS, vol. 5342, Springer Berlin Heidelberg, pp. 775–784.
– reference: .
– reference: Rattani, A., Marcialis, G.L., Roli, F., 2009. An experimental analysis of the relationship between biometric template update and the Doddington?s Zoo in face verification, Proc. Of IEEE/IAPR ICIAP 2009. In: Springer LNCS, vol. 5716, Springer Berlin Heidelberg, pp. 429–437.
– start-page: 447
  year: 2008
  end-page: 471
  ident: b0135
  article-title: Adaptive biometric systems that can improve with use
  publication-title: Advances in Biometrics: Sensors, Systems and Algorithms
– volume: 25
  start-page: 1
  year: 2003
  end-page: 6
  ident: b0050
  article-title: Path-based clustering for grouping of smooth curves and texture segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2003
  ident: b0090
  article-title: Handbook of Fingerprint Recognition
– year: 2011
  ident: b0025
  article-title: Adaptive multibiometric systems
  publication-title: Multibiometrics for Human Identification
– reference: Blum, A., Mitchell, T., 1998. Combining labeled and unlabeled data with co-training. In: Proc. of the Workshop on Computational Learning Theory, pp. 92–100.
– reference: Roli, F., Didaci, L., Marcialis, G.L., 2007. Template co-update in multimodal biometric systems. In: IEEE/IAPR ICB 2007, Springer LNCS, vol. 4642, Springer Berlin Heidelberg, pp. 1194–1202.
– reference: Nagy G., Shelton G.L., 1966. Self-corrective character recognition systems. IEEE Transactions On Information Theory, 12(2), 215–222.
– reference: Rattani, A., Marcialis, G.L., Roli, F., 2011. Self adaptive systems: an experimental analysis of the performance over time. In: Proc. of CIBIM 2011, pp. 36–43.
– reference: Rattani, A., Marcialis, G.L., Roli, F., 2008. Capturing large intra-class variations of biometric data by template co-updating. In: IEEE CVPR08, pp. 1–6.
– ident: 10.1016/j.patrec.2013.05.021_b0040
  doi: 10.21437/ICSLP.1998-244
– ident: 10.1016/j.patrec.2013.05.021_b0125
– ident: 10.1016/j.patrec.2013.05.021_b0075
  doi: 10.1155/2008/579416
– ident: 10.1016/j.patrec.2013.05.021_b0105
– ident: 10.1016/j.patrec.2013.05.021_b0130
– ident: 10.1016/j.patrec.2013.05.021_b0155
– start-page: 1141
  year: 2012
  ident: 10.1016/j.patrec.2013.05.021_b0035
  article-title: A Bayesian analysis of co-training algorithm with insufficient views
– ident: 10.1016/j.patrec.2013.05.021_b0010
  doi: 10.1145/279943.279962
– ident: 10.1016/j.patrec.2013.05.021_b0065
– volume: 23
  start-page: 788
  issue: 35
  year: 2011
  ident: 10.1016/j.patrec.2013.05.021_b0045
  article-title: When does co-trainingwork in real data?
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.158
– ident: 10.1016/j.patrec.2013.05.021_b0115
– volume: 19
  start-page: 302
  issue: 4
  year: 1997
  ident: 10.1016/j.patrec.2013.05.021_b0070
  article-title: On-line fingerprint verification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.587996
– year: 2005
  ident: 10.1016/j.patrec.2013.05.021_b0080
– year: 2011
  ident: 10.1016/j.patrec.2013.05.021_b0025
  article-title: Adaptive multibiometric systems
  doi: 10.1017/CBO9780511921056.009
– volume: 19
  start-page: 775
  issue: 7
  year: 1997
  ident: 10.1016/j.patrec.2013.05.021_b0150
  article-title: Face recognition by elastic bunch graph matching
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.598235
– ident: 10.1016/j.patrec.2013.05.021_b0015
– volume: 25
  start-page: 1
  issue: 4
  year: 2003
  ident: 10.1016/j.patrec.2013.05.021_b0050
  article-title: Path-based clustering for grouping of smooth curves and texture segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1190577
– ident: 10.1016/j.patrec.2013.05.021_b0160
– ident: 10.1016/j.patrec.2013.05.021_b0110
  doi: 10.1109/CVPRW.2008.4563116
– ident: 10.1016/j.patrec.2013.05.021_b0095
– ident: 10.1016/j.patrec.2013.05.021_b0120
  doi: 10.1109/CIBIM.2011.5949222
– year: 2003
  ident: 10.1016/j.patrec.2013.05.021_b0090
– start-page: 719
  year: 2012
  ident: 10.1016/j.patrec.2013.05.021_b0030
  article-title: Analysis of Co-training Algorithm with Very Small Training Sets
– start-page: 447
  year: 2008
  ident: 10.1016/j.patrec.2013.05.021_b0135
  article-title: Adaptive biometric systems that can improve with use
– volume: 3
  start-page: 71
  issue: 1
  year: 1991
  ident: 10.1016/j.patrec.2013.05.021_b0140
  article-title: Eigenfaces for face recognition
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.1991.3.1.71
– ident: 10.1016/j.patrec.2013.05.021_b0100
  doi: 10.1109/TIT.1966.1053864
– volume: 7
  start-page: 389
  issue: 5
  year: 2001
  ident: 10.1016/j.patrec.2013.05.021_b0165
  article-title: Image analysis for video surveillance based on spatial regularization of a statistical model-based change detection
  publication-title: Real-time Imaging
  doi: 10.1006/rtim.2000.0208
– ident: 10.1016/j.patrec.2013.05.021_b0020
SSID ssj0006398
Score 2.1865191
Snippet •Conceptual explanation of the behavior of both co-update and self-update algorithms in biometric systems.•An analytical model for both co-update and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Adaptive systems
Biometrics recognition
Face
Fingerprint
Multi-modal biometrics
Path-based clustering
Title Analysis of unsupervised template update in biometric recognition systems
URI https://dx.doi.org/10.1016/j.patrec.2013.05.021
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AKRWK
  dateStart: 19821001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvTgx1ScHyMHr3HtkjbtcQzHpriLDnYLzRdMRlfcevVvN69tpoIoeGtLHpRfkvde2t_7PYRurcpSF9c5kSZLCZM6I1IaS1RAE8lTTnXVJeJpFk_m7GERLVpo5GthgFbZ-P7ap1feunnSb9DsF8tl_xkI9FBWCT9k3L6DQnPGOHQxuHv_pHm4CJx4fW8Y7cvnKo4XfG82IGQY0kq_cxD-HJ6-hJzxMTpsckU8rF_nBLVM3kFHvg8DbrZlBx18ERU8RVOvM4LXFpf5pizAHWyMxiBDtXK5JS4LOOfjZY6r6nsQ6cc7JtE6x7W88-YMzcf3L6MJaRomEOUy_y2hygXjyLA0TnUSGh3bYJDxzGFPbWioNZyDYBSIrDFuYDYCDQrvccKou4roOWrn69xcICwDGytrpJbUMqV0NpBxolJ3vNLU-YS4i6jHSahGTRyaWqyEp429ihpdAeiKIBIO3S4iO6uiVtP4Yzz3UyC-rQrhHP6vlpf_trxC--6O1czsa9TevpXmxiUeW9mrVlYP7Q2nj5PZB3UG2ac
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSDD9SIzz14XSlsn0dDJKDARUi4bbqvBENKI_Tqb3enD8TEaOKtaXfSZnZ3HttvvgG4NzKOrF8PqNBxRF2hYiqENlQ6LBRBFDCVd4kYjf3-1H2eebMadKtaGIRVlra_sOm5tS7vtEptttL5vPWKAHosq8QfMnbfeTuw69q3Ygb28PGF87AuOKwIvnF4VT-Xg7zwwFkjk2Gb5QSenfbP_mnL5_SO4bAMFslj8T0nUNNJA46qRgyk3JcNONhiFTyFQUU0QpaGZMkqS9EerLQiyEO1sMElyVJM9Mk8IXn5PbL0kw2UaJmQgt95dQbT3tOk26dlxwQqbei_pkxab-xpN_IjFba18o3TiYPYKp-ZtmZGBwEyRiHLmhtonA5HIcW7H7rMXnnsHOrJMtEXQIRjfGm0UIIZV0oVd4QfysjmV4pZo-A3gVV64rKkE8euFgte4cbeeKFdjtrljsetdptAN1JpQafxx_igmgL-bVlwa_F_lbz8t-Qd7PUnoyEfDsYvV7Bvn7gFTPsa6uv3TN_YKGQtbvNV9gmghts8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+unsupervised+template+update+in+biometric+recognition+systems&rft.jtitle=Pattern+recognition+letters&rft.au=Didaci%2C+Luca&rft.au=Marcialis%2C+Gian+Luca&rft.au=Roli%2C+Fabio&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=37&rft.spage=151&rft.epage=160&rft_id=info:doi/10.1016%2Fj.patrec.2013.05.021&rft.externalDocID=S0167865513002195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon