Small-object detection based on YOLOv5 in autonomous driving systems
•We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of...
Saved in:
Published in | Pattern recognition letters Vol. 168; pp. 115 - 122 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2023.03.009 |
Cover
Abstract | •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of small objects.•We perform extensive experimentation over the BDD100K, TT100K, and DTLD datasets.•We further evaluate the generalization ability of the proposed iS-YOLOv5 model in different road weather conditions.
With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model. |
---|---|
AbstractList | •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of small objects.•We perform extensive experimentation over the BDD100K, TT100K, and DTLD datasets.•We further evaluate the generalization ability of the proposed iS-YOLOv5 model in different road weather conditions.
With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model. |
Author | Mahaur, Bharat Mishra, K.K. |
Author_xml | – sequence: 1 givenname: Bharat orcidid: 0000-0002-0018-1951 surname: Mahaur fullname: Mahaur, Bharat email: bharatmahaur@gmail.com – sequence: 2 givenname: K.K. surname: Mishra fullname: Mishra, K.K. email: kkm@mnnit.ac.in |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wIw3k_l1IUj9hUIX6sJVyCR3JMPMpCRpoW9vSl25ULhw7uJ8B85ZkNlkJyTkmkHKgJU3fbqVwaFKM8h4CvGgOSNzVldZUvE8n5F5tFVJXRbFBVl43wNAyZt6Th7eRjkMiW17VIFqDFGMnWgrPWoan8_NerMvqJmo3AU72dHuPNXO7M30Rf3BBxz9JTnv5ODx6keX5OPp8X31kqw3z6-r-3WiOJQh4TWqSoLEUjEuVdk0UneqqDTkGeZ5pRsEznnbqjZnGhuNRdmh1MhYrKkyviT5KVc5673DTmydGaU7CAbiuIToxWkJcVxCQDxoInb7C1MmyGPN4KQZ_oPvTjDGYnuDTnhlcFKoTbQGoa35O-AbXHB_3Q |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125476 crossref_primary_10_1016_j_compag_2024_108728 crossref_primary_10_1016_j_dsp_2023_104283 crossref_primary_10_3390_drones9010014 crossref_primary_10_1002_rse2_382 crossref_primary_10_1016_j_patrec_2025_01_022 crossref_primary_10_1115_1_4065122 crossref_primary_10_1109_JSTARS_2024_3523408 crossref_primary_10_1016_j_patrec_2024_01_019 crossref_primary_10_1016_j_patrec_2024_04_002 crossref_primary_10_1016_j_compag_2023_108049 crossref_primary_10_1016_j_eswa_2023_121036 crossref_primary_10_32604_cmes_2024_052759 crossref_primary_10_1109_ACCESS_2024_3435335 crossref_primary_10_1038_s41598_024_53181_2 crossref_primary_10_1109_ACCESS_2024_3481642 crossref_primary_10_3788_IRLA20240253 crossref_primary_10_1016_j_patrec_2024_12_003 crossref_primary_10_1016_j_ecoinf_2024_102543 crossref_primary_10_3390_electronics13010148 crossref_primary_10_1016_j_dsp_2025_105028 crossref_primary_10_3390_electronics12122745 crossref_primary_10_3390_electronics13122250 crossref_primary_10_1109_ACCESS_2024_3507713 crossref_primary_10_3390_electronics13153058 crossref_primary_10_1088_1361_6501_ad633d crossref_primary_10_1007_s00371_024_03591_0 crossref_primary_10_12677_SEA_2023_125068 crossref_primary_10_3389_fphy_2023_1297828 crossref_primary_10_1016_j_patrec_2024_01_003 crossref_primary_10_3390_agriculture14010124 crossref_primary_10_1038_s41598_025_86981_1 crossref_primary_10_1038_s41598_024_63398_w crossref_primary_10_1016_j_patcog_2024_111209 crossref_primary_10_3390_app132011118 crossref_primary_10_3390_electronics14061092 crossref_primary_10_3390_app14188150 crossref_primary_10_3390_s24103180 crossref_primary_10_1109_ACCESS_2025_3550947 crossref_primary_10_1109_JSEN_2023_3281585 crossref_primary_10_1016_j_imavis_2024_105054 crossref_primary_10_3758_s13428_023_02177_3 crossref_primary_10_3390_biomimetics9010028 crossref_primary_10_1016_j_patrec_2024_01_016 crossref_primary_10_48001_joipir_2024_1217_23 crossref_primary_10_3390_s24237824 crossref_primary_10_1016_j_dsp_2025_105045 crossref_primary_10_3390_app15020737 crossref_primary_10_1109_ACCESS_2023_3313166 crossref_primary_10_3390_electronics12234719 crossref_primary_10_1016_j_neucom_2023_126655 crossref_primary_10_1007_s43684_024_00080_y crossref_primary_10_1109_TIM_2024_3449960 crossref_primary_10_32604_cmc_2023_044639 crossref_primary_10_1007_s11042_024_18866_w crossref_primary_10_1109_JPHOT_2024_3426929 crossref_primary_10_3390_app13095802 crossref_primary_10_3390_s25051564 crossref_primary_10_1016_j_aei_2025_103257 crossref_primary_10_48084_etasr_7386 crossref_primary_10_3390_rs16010025 crossref_primary_10_1109_OJCS_2024_3465430 crossref_primary_10_1038_s41598_023_43173_z crossref_primary_10_1109_ACCESS_2024_3362636 crossref_primary_10_3390_electronics13081557 crossref_primary_10_1002_jsfa_13987 crossref_primary_10_3390_rs16040644 crossref_primary_10_3390_s24196437 crossref_primary_10_1016_j_aej_2025_02_063 crossref_primary_10_3390_agriculture14010030 crossref_primary_10_3390_electronics13234687 crossref_primary_10_3390_buildings14103051 crossref_primary_10_1016_j_engappai_2024_109824 crossref_primary_10_1088_1361_6501_ada4c8 crossref_primary_10_1007_s11227_024_06020_0 crossref_primary_10_1016_j_patrec_2024_11_005 crossref_primary_10_3390_electronics13112149 crossref_primary_10_1109_ACCESS_2024_3439346 crossref_primary_10_3390_agriculture14060899 crossref_primary_10_1016_j_measurement_2024_115990 crossref_primary_10_3390_rs17050913 crossref_primary_10_1016_j_eswa_2025_126941 crossref_primary_10_1007_s11227_025_06944_1 crossref_primary_10_1007_s11760_025_03983_2 crossref_primary_10_1016_j_autcon_2024_105643 crossref_primary_10_48084_etasr_6397 crossref_primary_10_1016_j_patrec_2024_02_012 crossref_primary_10_12720_jait_14_5_907_917 crossref_primary_10_1061_JTEPBS_TEENG_8446 crossref_primary_10_3390_app13179878 crossref_primary_10_1016_j_displa_2024_102913 crossref_primary_10_1080_02726351_2023_2268567 crossref_primary_10_1016_j_heliyon_2024_e33016 crossref_primary_10_3390_electronics12183917 crossref_primary_10_3390_rs16061002 crossref_primary_10_3390_app13137881 crossref_primary_10_1007_s10586_024_04595_0 crossref_primary_10_1007_s10586_023_04156_x crossref_primary_10_3390_s24227308 crossref_primary_10_3390_rs15235575 crossref_primary_10_36680_j_itcon_2025_006 crossref_primary_10_1016_j_neucom_2024_127685 crossref_primary_10_1016_j_procs_2023_10_233 crossref_primary_10_1007_s11042_023_17628_4 crossref_primary_10_1364_OE_529655 |
Cites_doi | 10.1016/j.patrec.2021.03.022 10.1016/j.procs.2022.01.135 10.1109/JSEN.2022.3219884 10.1109/TVCG.2020.3030350 10.1016/j.dsp.2022.103514 10.1016/j.neunet.2022.10.023 10.1109/ACCESS.2021.3072211 10.1109/ACCESS.2020.3033289 10.1155/2021/9218137 10.1109/ACCESS.2022.3166923 10.1016/j.patrec.2022.01.004 10.1016/j.imavis.2020.103910 10.1109/ACCESS.2021.3057723 10.1109/ACCESS.2020.2984554 10.1007/s11042-022-12447-5 10.1016/j.procs.2021.02.031 10.1016/j.patrec.2021.11.027 10.1109/TPAMI.2015.2389824 10.1007/s00521-021-06526-1 10.1049/itr2.12212 10.5194/isprs-archives-XLIII-B2-2020-1247-2020 10.3390/s21093031 10.1109/ACCESS.2021.3120870 10.1016/j.patrec.2020.04.004 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patrec.2023.03.009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 122 |
ExternalDocumentID | 10_1016_j_patrec_2023_03_009 S0167865523000727 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-38ec7a0ae6c13ac699adfc57d042e447d9e0333bbcb41de9de56feade11101c23 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Tue Jul 01 02:40:46 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Fri Feb 23 02:35:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Small object detection Autonomous driving Architectural changes YOLOv5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-38ec7a0ae6c13ac699adfc57d042e447d9e0333bbcb41de9de56feade11101c23 |
ORCID | 0000-0002-0018-1951 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_patrec_2023_03_009 crossref_citationtrail_10_1016_j_patrec_2023_03_009 elsevier_sciencedirect_doi_10_1016_j_patrec_2023_03_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | G. Jocher, et al., ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, 2022, doi Tong, Wu, Zhou (bib0003) 2020; 97 Wang, Xie, Zhang, Chen, Wen, He (bib0023) 2021; 9 Li, Fan, Xie, Qu (bib0013) 2022; 22 Wang, Wang, Xu, Wang, Li, Zhang, Li (bib0014) 2021; 2021 Cheng, Yao, Li, Li, Xie, Wang, Yao, Han (bib0004) 2022; 60 Gou (bib0019) 2020; 27 Zhang, Qin, Li, Guo, Zhou, Zhang, Xu (bib0020) 2020; 8 Jiang, Ergu, Liu, Cai, Ma (bib0010) 2022; 199 Rio-Torto, Fernandes, Teixeira (bib0008) 2020; 133 Ge, Liu, Wang, Li, Sun (bib0033) 2021 He, Zhang, Ren, Sun (bib0035) 2015; 37 Liu, Wang, Zhou, Yang, Gong (bib0025) 2021; volume 769 Benjumea, Teeti, Cuzzolin, Bradley (bib0024) 2021 Li (bib0015) 2020; 8 Jiang, Zhao, Li, Jia (bib0029) 2020 Cai, Vasconcelos (bib0038) 2018 Mahaur, Singh, Mishra (bib0002) 2022; 81 Chen, Jia, Chen, Lv, Zhang (bib0026) 2022; 34 Zhu, Liang, Zhang, Huang, Li, Hu (bib0043) 2016 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0046) 2016 Zaidi, Ansari, Aslam, Kanwal, Asghar, Lee (bib0001) 2022 Ning, Wang (bib0032) 2022 Lin, Li, Sanchez, Maple (bib0039) 2021; 146 Li, Li, Li, Li, Xu (bib0030) 2021; 9 Lin (bib0036) 2017 Xiaolin, Fan, Ming, Tongxin, Ran, Zenghui, Zhiyuan (bib0005) 2022; 153 Omar, Lee, Lee, Park (bib0021) 2020; 43 Singh, Varshney, Namboodiri (bib0041) 2020 Duan, Bai, Xie, Qi, Huang, Tian (bib0040) 2019 Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, Darrell (bib0042) 2020 Du, Zhang, Zhang, Xu (bib0017) 2021; 9 Dai, Li, He, Sun (bib0047) 2016; 29 . Cheng, Yuan, Yao, Yan, Zeng, Han (bib0006) 2022 Katsamenis (bib0028) 2022 Bochkovskiy, Wang, Liao (bib0018) 2020 Ren, He, Girshick, Sun (bib0045) 2015; 28 Su, Wang, Xie, Song, Ma, Li, Yang, Wang (bib0027) 2022 Han, Chang, Wang (bib0011) 2021; 183 Lian, Yin, Li, Wang, Zhou (bib0022) 2021; 21 Liang (bib0031) 2022; 10 Mahaur, Mishra, Singh (bib0007) 2023; 157 Liu, He, Du, Li, Liu (bib0012) 2022 Cai (bib0016) 2021; 70 Wang, Hu, Chen, Peng (bib0034) 2022; 154 Fregin, Muller, Krebel, Dietmayer (bib0044) 2018 Lin, Goyal, Girshick, He, Dollár (bib0037) 2017 Cai (10.1016/j.patrec.2023.03.009_bib0016) 2021; 70 He (10.1016/j.patrec.2023.03.009_bib0035) 2015; 37 Xiaolin (10.1016/j.patrec.2023.03.009_bib0005) 2022; 153 Liu (10.1016/j.patrec.2023.03.009_bib0046) 2016 Chen (10.1016/j.patrec.2023.03.009_bib0026) 2022; 34 Zaidi (10.1016/j.patrec.2023.03.009_bib0001) 2022 Wang (10.1016/j.patrec.2023.03.009_bib0014) 2021; 2021 Ge (10.1016/j.patrec.2023.03.009_bib0033) 2021 Su (10.1016/j.patrec.2023.03.009_bib0027) 2022 Lin (10.1016/j.patrec.2023.03.009_bib0037) 2017 Duan (10.1016/j.patrec.2023.03.009_bib0040) 2019 Cheng (10.1016/j.patrec.2023.03.009_bib0006) 2022 Han (10.1016/j.patrec.2023.03.009_bib0011) 2021; 183 Jiang (10.1016/j.patrec.2023.03.009_bib0029) 2020 Tong (10.1016/j.patrec.2023.03.009_bib0003) 2020; 97 Li (10.1016/j.patrec.2023.03.009_bib0013) 2022; 22 Du (10.1016/j.patrec.2023.03.009_bib0017) 2021; 9 Liu (10.1016/j.patrec.2023.03.009_bib0025) 2021; volume 769 Cai (10.1016/j.patrec.2023.03.009_bib0038) 2018 Benjumea (10.1016/j.patrec.2023.03.009_bib0024) 2021 Zhu (10.1016/j.patrec.2023.03.009_bib0043) 2016 Cheng (10.1016/j.patrec.2023.03.009_bib0004) 2022; 60 Lian (10.1016/j.patrec.2023.03.009_bib0022) 2021; 21 Li (10.1016/j.patrec.2023.03.009_bib0015) 2020; 8 Zhang (10.1016/j.patrec.2023.03.009_bib0020) 2020; 8 Fregin (10.1016/j.patrec.2023.03.009_bib0044) 2018 Ning (10.1016/j.patrec.2023.03.009_bib0032) 2022 Omar (10.1016/j.patrec.2023.03.009_bib0021) 2020; 43 Yu (10.1016/j.patrec.2023.03.009_bib0042) 2020 Liang (10.1016/j.patrec.2023.03.009_bib0031) 2022; 10 Dai (10.1016/j.patrec.2023.03.009_bib0047) 2016; 29 Mahaur (10.1016/j.patrec.2023.03.009_bib0002) 2022; 81 Mahaur (10.1016/j.patrec.2023.03.009_bib0007) 2023; 157 Rio-Torto (10.1016/j.patrec.2023.03.009_bib0008) 2020; 133 Liu (10.1016/j.patrec.2023.03.009_bib0012) 2022 Katsamenis (10.1016/j.patrec.2023.03.009_bib0028) 2022 Wang (10.1016/j.patrec.2023.03.009_bib0034) 2022; 154 Bochkovskiy (10.1016/j.patrec.2023.03.009_bib0018) 2020 Ren (10.1016/j.patrec.2023.03.009_bib0045) 2015; 28 Li (10.1016/j.patrec.2023.03.009_bib0030) 2021; 9 Jiang (10.1016/j.patrec.2023.03.009_bib0010) 2022; 199 Wang (10.1016/j.patrec.2023.03.009_bib0023) 2021; 9 Lin (10.1016/j.patrec.2023.03.009_bib0036) 2017 Gou (10.1016/j.patrec.2023.03.009_bib0019) 2020; 27 10.1016/j.patrec.2023.03.009_bib0009 Singh (10.1016/j.patrec.2023.03.009_bib0041) 2020 Lin (10.1016/j.patrec.2023.03.009_bib0039) 2021; 146 |
References_xml | – start-page: 2110 year: 2016 end-page: 2118 ident: bib0043 article-title: Traffic-sign detection and classification in the wild publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 21 start-page: 3031 year: 2021 ident: bib0022 article-title: Small object detection in traffic scenes based on attention feature fusion publication-title: Sensors – year: 2022 ident: bib0028 publication-title: Tracon: a novel dataset for real-time traffic cones detection using deep learning – volume: 27 start-page: 261 year: 2020 end-page: 271 ident: bib0019 article-title: Vatld: a visual analytics system to assess, understand and improve traffic light detection publication-title: IEEE Trans. Vis. Comput. Graph. – volume: volume 769 start-page: 042069 year: 2021 ident: bib0025 article-title: Real-time signal light detection based on yolov5 publication-title: IOP Conference Series: Earth and Environmental Science – volume: 97 start-page: 103910 year: 2020 ident: bib0003 article-title: Recent advances in small object detection based on deep learning: a review publication-title: Image Vis. Comput. – volume: 183 start-page: 61 year: 2021 end-page: 72 ident: bib0011 article-title: Real-time object detection based on yolo-v2 for tiny vehicle object publication-title: Procedia Comput. Sci. – year: 2021 ident: bib0033 publication-title: Yolox: exceeding yolo series in 2021 – volume: 8 start-page: 64145 year: 2020 end-page: 64156 ident: bib0020 article-title: Real-time detection method for small traffic signs based on yolov3 publication-title: IEEE Access – volume: 199 start-page: 1066 year: 2022 end-page: 1073 ident: bib0010 article-title: A review of yolo algorithm developments publication-title: Procedia Comput. Sci. – start-page: 218 year: 2022 end-page: 222 ident: bib0032 article-title: Automatic driving scene target detection algorithm based on improved yolov5 network publication-title: 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA) – start-page: 2636 year: 2020 end-page: 2645 ident: bib0042 article-title: Bdd100k: a diverse driving dataset for heterogeneous multitask learning publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – year: 2022 ident: bib0012 publication-title: An advanced yolov3 method for small object detection – start-page: 2980 year: 2017 end-page: 2988 ident: bib0037 article-title: Focal loss for dense object detection publication-title: Proceedings of the IEEE international conference on computer vision – volume: 9 start-page: 141861 year: 2021 end-page: 141875 ident: bib0030 article-title: Yolo-firi: improved yolov5 for infrared image object detection publication-title: IEEE Access – volume: 133 start-page: 373 year: 2020 end-page: 380 ident: bib0008 article-title: Understanding the decisions of cnns: an in-model approach publication-title: Pattern Recognit. Lett. – volume: 22 start-page: 24253 year: 2022 end-page: 24263 ident: bib0013 article-title: Detection of road objects based on camera sensors for autonomous driving in various traffic situations publication-title: IEEE Sens. J. – volume: 157 start-page: 305 year: 2023 end-page: 322 ident: bib0007 article-title: Improved residual network based on norm-preservation for visual recognition publication-title: Neural Netw. – year: 2022 ident: bib0027 article-title: Real-time traffic cone detection for autonomous driving based on yolov4 publication-title: IET Intel. Transport Syst. – volume: 9 start-page: 25671 year: 2021 end-page: 25680 ident: bib0017 article-title: Weak and occluded vehicle detection in complex infrared environment based on improved yolov4 publication-title: IEEE Access – volume: 34 start-page: 2233 year: 2022 end-page: 2245 ident: bib0026 article-title: A real-time and high-precision method for small traffic-signs recognition publication-title: Neural Comput. Appl. – volume: 10 start-page: 40701 year: 2022 end-page: 40714 ident: bib0031 article-title: Alodad: an anchor-free lightweight object detector for autonomous driving publication-title: IEEE Access – volume: 146 start-page: 200 year: 2021 end-page: 207 ident: bib0039 article-title: On the detection-to-track association for online multi-object tracking publication-title: Pattern Recognit. Lett. – start-page: 21 year: 2016 end-page: 37 ident: bib0046 article-title: Ssd: single shot multibox detector publication-title: European conference on computer vision – volume: 29 year: 2016 ident: bib0047 article-title: R-Fcn: object detection via region-based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 60 start-page: 1 year: 2022 end-page: 11 ident: bib0004 article-title: Dual-aligned oriented detector publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2022 ident: bib0006 publication-title: Towards large-scale small object detection: survey and benchmarks – volume: 9 start-page: 56416 year: 2021 end-page: 56429 ident: bib0023 article-title: Small-object detection based on yolo and dense block via image super-resolution publication-title: IEEE Access – volume: 70 start-page: 1 year: 2021 end-page: 13 ident: bib0016 article-title: Yolov4-5d: an effective and efficient object detector for autonomous driving publication-title: IEEE Trans. Instrum. Meas. – year: 2020 ident: bib0018 publication-title: Yolov4: optimal speed and accuracy of object detection – start-page: 3376 year: 2018 end-page: 3383 ident: bib0044 article-title: The driveu traffic light dataset: introduction and comparison with existing datasets publication-title: 2018 IEEE international conference on robotics and automation (ICRA) – start-page: 1141 year: 2020 end-page: 1150 ident: bib0041 article-title: Cooperative initialization based deep neural network training publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – volume: 81 start-page: 14247 year: 2022 end-page: 14282 ident: bib0002 article-title: Road object detection: a comparative study of deep learning-based algorithms publication-title: Multimed. Tools Appl. – reference: . – volume: 28 year: 2015 ident: bib0045 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – reference: G. Jocher, et al., ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, 2022, doi: – volume: 43 start-page: 1247 year: 2020 end-page: 1252 ident: bib0021 article-title: Detection and localization of traffic lights using yolov3 and stereo vision publication-title: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: bib0035 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 153 start-page: 107 year: 2022 end-page: 112 ident: bib0005 article-title: Small object detection in remote sensing images based on super-resolution publication-title: Pattern Recognit. Lett. – year: 2021 ident: bib0024 publication-title: Yolo-z: improving small object detection in yolov5 for autonomous vehicles – start-page: 6154 year: 2018 end-page: 6162 ident: bib0038 article-title: Cascade r-cnn: delving into high quality object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2020 ident: bib0029 publication-title: Real-time object detection method based on improved yolov4-tiny – volume: 154 start-page: 53 year: 2022 end-page: 59 ident: bib0034 article-title: Regularizing deep networks with label geometry for accurate object localization on small training datasets publication-title: Pattern Recognit. Lett. – start-page: 103514 year: 2022 ident: bib0001 article-title: A survey of modern deep learning based object detection models publication-title: Digit. Signal Process. – start-page: 6569 year: 2019 end-page: 6578 ident: bib0040 article-title: Centernet: keypoint triplets for object detection publication-title: Proceedings of the IEEE/CVF international conference on computer vision – volume: 2021 year: 2021 ident: bib0014 article-title: A real-time object detector for autonomous vehicles based on yolov4 publication-title: Comput. Intell. Neurosci. – volume: 8 start-page: 194228 year: 2020 end-page: 194239 ident: bib0015 article-title: A deep learning-based hybrid framework for object detection and recognition in autonomous driving publication-title: IEEE Access – start-page: 2117 year: 2017 end-page: 2125 ident: bib0036 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 218 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0032 article-title: Automatic driving scene target detection algorithm based on improved yolov5 network – volume: 146 start-page: 200 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0039 article-title: On the detection-to-track association for online multi-object tracking publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.03.022 – volume: 199 start-page: 1066 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0010 article-title: A review of yolo algorithm developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 – year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0029 publication-title: Real-time object detection method based on improved yolov4-tiny – volume: 22 start-page: 24253 issue: 24 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0013 article-title: Detection of road objects based on camera sensors for autonomous driving in various traffic situations publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3219884 – year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0028 publication-title: Tracon: a novel dataset for real-time traffic cones detection using deep learning – start-page: 1141 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0041 article-title: Cooperative initialization based deep neural network training – volume: 27 start-page: 261 issue: 2 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0019 article-title: Vatld: a visual analytics system to assess, understand and improve traffic light detection publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2020.3030350 – year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0024 publication-title: Yolo-z: improving small object detection in yolov5 for autonomous vehicles – start-page: 6569 year: 2019 ident: 10.1016/j.patrec.2023.03.009_bib0040 article-title: Centernet: keypoint triplets for object detection – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0016 article-title: Yolov4-5d: an effective and efficient object detector for autonomous driving publication-title: IEEE Trans. Instrum. Meas. – start-page: 103514 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0001 article-title: A survey of modern deep learning based object detection models publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103514 – volume: 157 start-page: 305 year: 2023 ident: 10.1016/j.patrec.2023.03.009_bib0007 article-title: Improved residual network based on norm-preservation for visual recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.10.023 – volume: 9 start-page: 56416 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0023 article-title: Small-object detection based on yolo and dense block via image super-resolution publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3072211 – year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0006 publication-title: Towards large-scale small object detection: survey and benchmarks – volume: 8 start-page: 194228 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0015 article-title: A deep learning-based hybrid framework for object detection and recognition in autonomous driving publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033289 – volume: 2021 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0014 article-title: A real-time object detector for autonomous vehicles based on yolov4 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/9218137 – year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0018 publication-title: Yolov4: optimal speed and accuracy of object detection – volume: volume 769 start-page: 042069 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0025 article-title: Real-time signal light detection based on yolov5 – volume: 10 start-page: 40701 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0031 article-title: Alodad: an anchor-free lightweight object detector for autonomous driving publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166923 – volume: 154 start-page: 53 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0034 article-title: Regularizing deep networks with label geometry for accurate object localization on small training datasets publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.01.004 – start-page: 2636 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0042 article-title: Bdd100k: a diverse driving dataset for heterogeneous multitask learning – volume: 28 year: 2015 ident: 10.1016/j.patrec.2023.03.009_bib0045 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0004 article-title: Dual-aligned oriented detector publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 29 year: 2016 ident: 10.1016/j.patrec.2023.03.009_bib0047 article-title: R-Fcn: object detection via region-based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 97 start-page: 103910 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0003 article-title: Recent advances in small object detection based on deep learning: a review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103910 – start-page: 2117 year: 2017 ident: 10.1016/j.patrec.2023.03.009_bib0036 article-title: Feature pyramid networks for object detection – volume: 9 start-page: 25671 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0017 article-title: Weak and occluded vehicle detection in complex infrared environment based on improved yolov4 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3057723 – volume: 8 start-page: 64145 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0020 article-title: Real-time detection method for small traffic signs based on yolov3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984554 – start-page: 21 year: 2016 ident: 10.1016/j.patrec.2023.03.009_bib0046 article-title: Ssd: single shot multibox detector – start-page: 2110 year: 2016 ident: 10.1016/j.patrec.2023.03.009_bib0043 article-title: Traffic-sign detection and classification in the wild – volume: 81 start-page: 14247 issue: 10 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0002 article-title: Road object detection: a comparative study of deep learning-based algorithms publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12447-5 – ident: 10.1016/j.patrec.2023.03.009_bib0009 – volume: 183 start-page: 61 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0011 article-title: Real-time object detection based on yolo-v2 for tiny vehicle object publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.02.031 – volume: 153 start-page: 107 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0005 article-title: Small object detection in remote sensing images based on super-resolution publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.11.027 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.patrec.2023.03.009_bib0035 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 34 start-page: 2233 issue: 3 year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0026 article-title: A real-time and high-precision method for small traffic-signs recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06526-1 – year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0012 publication-title: An advanced yolov3 method for small object detection – year: 2022 ident: 10.1016/j.patrec.2023.03.009_bib0027 article-title: Real-time traffic cone detection for autonomous driving based on yolov4 publication-title: IET Intel. Transport Syst. doi: 10.1049/itr2.12212 – start-page: 2980 year: 2017 ident: 10.1016/j.patrec.2023.03.009_bib0037 article-title: Focal loss for dense object detection – volume: 43 start-page: 1247 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0021 article-title: Detection and localization of traffic lights using yolov3 and stereo vision publication-title: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLIII-B2-2020-1247-2020 – volume: 21 start-page: 3031 issue: 9 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0022 article-title: Small object detection in traffic scenes based on attention feature fusion publication-title: Sensors doi: 10.3390/s21093031 – volume: 9 start-page: 141861 year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0030 article-title: Yolo-firi: improved yolov5 for infrared image object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120870 – year: 2021 ident: 10.1016/j.patrec.2023.03.009_bib0033 publication-title: Yolox: exceeding yolo series in 2021 – start-page: 6154 year: 2018 ident: 10.1016/j.patrec.2023.03.009_bib0038 article-title: Cascade r-cnn: delving into high quality object detection – start-page: 3376 year: 2018 ident: 10.1016/j.patrec.2023.03.009_bib0044 article-title: The driveu traffic light dataset: introduction and comparison with existing datasets – volume: 133 start-page: 373 year: 2020 ident: 10.1016/j.patrec.2023.03.009_bib0008 article-title: Understanding the decisions of cnns: an in-model approach publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.04.004 |
SSID | ssj0006398 |
Score | 2.6580648 |
Snippet | •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Architectural changes Autonomous driving Deep learning Small object detection YOLOv5 |
Title | Small-object detection based on YOLOv5 in autonomous driving systems |
URI | https://dx.doi.org/10.1016/j.patrec.2023.03.009 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GDj6pYH2UPXtdussmmeyxVqa96UEFPYbO7gUqNpaYe_e3u5FEUREHIIQkZCMPuNzPLN98AHHvChixIBOWhZDSQilGZ-B5VqSsOlEyZLSj_N2MxegguH8PHBgzrXhikVVbYX2J6gdbVm17lzd5sMundIYEe2ypdEo3619EKtHwuRdiE1uDiajReArILwv1a4hsN6g66guaFR84WtQx9Xqqdyp8j1Jeoc74J61W6SAblH21Bw2Zt2KhHMZBqZ7Zh7Yuu4Dac3r2o6ZS-JnjIQozNC75VRjBkGeJunm6vb99DMsmIWuTY1uDqf2LmEzxdIKW489sOPJyf3Q9HtBqXQLXL-3PK-1ZHiikrtMeVFlIqk-owMm5f2iCIjLSMc54kOgk8Y6WxoUiRL-3gjnna57vQzF4zuwdERToQzhTH9QVJFEq_qLsQPo3oR7YDvHZRrCstcRxpMY1r0thzXDo2RsfGzF1MdoAurWallsYf30e19-NvayJ2cP-r5f6_LQ9gFZ9Kbs4hNPP5wh65tCNPurBy8uF1q8X1CaHK1js |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHtSDb7E-c_Aam22ym-Yoaqna1oMW9LRkkxQqdSu69ehvN7MPrSAKwh6WTQaWIZkX33wDcBxELmQiiSgPFaNCaUZV0gyoHvrkQKshcznkv9ePOgNxdR_e1-Cs6oVBWGVp-wubnlvr8kuj1GbjeTRq3CKAHtsqfRCN_NdyDhZEyCXi-k7ev3Ae3gW3KoJv3F71z-UgLyw4O2QybPKC61T97J9mfE57DVbKYJGcFv-zDjWXbsBqNYiBlPdyA5ZnWAU34fz2SY_HdJJgiYVYl-Voq5Sgw7LEvzzcdG_eQjJKiZ5m2NTgs39iX0ZYWyAFtfPrFgzaF3dnHVoOS6DGR_0Z5S1npGbaRSbg2kRKaTs0obT-VjohpFWOcc6TxCQisE5ZF0ZDREt7Y8cC0-TbMJ9OUrcDREsjIi-Kw_pEIkPVzLMuNJ42aklXB16pKDYlkzgOtBjHFWTsMS4UG6NiY-YfpupAP6WeCyaNP_bLSvvxtxMRe2P_q-TuvyWPYLFz1-vG3cv-9R4s4UqB0tmH-exl6g58AJIlh_kB-wBtlNcG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-object+detection+based+on+YOLOv5+in+autonomous+driving+systems&rft.jtitle=Pattern+recognition+letters&rft.au=Mahaur%2C+Bharat&rft.au=Mishra%2C+K.K.&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=168&rft.spage=115&rft.epage=122&rft_id=info:doi/10.1016%2Fj.patrec.2023.03.009&rft.externalDocID=S0167865523000727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |