Small-object detection based on YOLOv5 in autonomous driving systems

•We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 168; pp. 115 - 122
Main Authors Mahaur, Bharat, Mishra, K.K.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2023.03.009

Cover

Abstract •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of small objects.•We perform extensive experimentation over the BDD100K, TT100K, and DTLD datasets.•We further evaluate the generalization ability of the proposed iS-YOLOv5 model in different road weather conditions. With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
AbstractList •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical limitations of the original YOLOv5 structure.•We propose novel architectural refinements to the same for improving its performance in the detection of small objects.•We perform extensive experimentation over the BDD100K, TT100K, and DTLD datasets.•We further evaluate the generalization ability of the proposed iS-YOLOv5 model in different road weather conditions. With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
Author Mahaur, Bharat
Mishra, K.K.
Author_xml – sequence: 1
  givenname: Bharat
  orcidid: 0000-0002-0018-1951
  surname: Mahaur
  fullname: Mahaur, Bharat
  email: bharatmahaur@gmail.com
– sequence: 2
  givenname: K.K.
  surname: Mishra
  fullname: Mishra, K.K.
  email: kkm@mnnit.ac.in
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIw3k_l1IUj9hUIX6sJVyCR3JMPMpCRpoW9vSl25ULhw7uJ8B85ZkNlkJyTkmkHKgJU3fbqVwaFKM8h4CvGgOSNzVldZUvE8n5F5tFVJXRbFBVl43wNAyZt6Th7eRjkMiW17VIFqDFGMnWgrPWoan8_NerMvqJmo3AU72dHuPNXO7M30Rf3BBxz9JTnv5ODx6keX5OPp8X31kqw3z6-r-3WiOJQh4TWqSoLEUjEuVdk0UneqqDTkGeZ5pRsEznnbqjZnGhuNRdmh1MhYrKkyviT5KVc5673DTmydGaU7CAbiuIToxWkJcVxCQDxoInb7C1MmyGPN4KQZ_oPvTjDGYnuDTnhlcFKoTbQGoa35O-AbXHB_3Q
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125476
crossref_primary_10_1016_j_compag_2024_108728
crossref_primary_10_1016_j_dsp_2023_104283
crossref_primary_10_3390_drones9010014
crossref_primary_10_1002_rse2_382
crossref_primary_10_1016_j_patrec_2025_01_022
crossref_primary_10_1115_1_4065122
crossref_primary_10_1109_JSTARS_2024_3523408
crossref_primary_10_1016_j_patrec_2024_01_019
crossref_primary_10_1016_j_patrec_2024_04_002
crossref_primary_10_1016_j_compag_2023_108049
crossref_primary_10_1016_j_eswa_2023_121036
crossref_primary_10_32604_cmes_2024_052759
crossref_primary_10_1109_ACCESS_2024_3435335
crossref_primary_10_1038_s41598_024_53181_2
crossref_primary_10_1109_ACCESS_2024_3481642
crossref_primary_10_3788_IRLA20240253
crossref_primary_10_1016_j_patrec_2024_12_003
crossref_primary_10_1016_j_ecoinf_2024_102543
crossref_primary_10_3390_electronics13010148
crossref_primary_10_1016_j_dsp_2025_105028
crossref_primary_10_3390_electronics12122745
crossref_primary_10_3390_electronics13122250
crossref_primary_10_1109_ACCESS_2024_3507713
crossref_primary_10_3390_electronics13153058
crossref_primary_10_1088_1361_6501_ad633d
crossref_primary_10_1007_s00371_024_03591_0
crossref_primary_10_12677_SEA_2023_125068
crossref_primary_10_3389_fphy_2023_1297828
crossref_primary_10_1016_j_patrec_2024_01_003
crossref_primary_10_3390_agriculture14010124
crossref_primary_10_1038_s41598_025_86981_1
crossref_primary_10_1038_s41598_024_63398_w
crossref_primary_10_1016_j_patcog_2024_111209
crossref_primary_10_3390_app132011118
crossref_primary_10_3390_electronics14061092
crossref_primary_10_3390_app14188150
crossref_primary_10_3390_s24103180
crossref_primary_10_1109_ACCESS_2025_3550947
crossref_primary_10_1109_JSEN_2023_3281585
crossref_primary_10_1016_j_imavis_2024_105054
crossref_primary_10_3758_s13428_023_02177_3
crossref_primary_10_3390_biomimetics9010028
crossref_primary_10_1016_j_patrec_2024_01_016
crossref_primary_10_48001_joipir_2024_1217_23
crossref_primary_10_3390_s24237824
crossref_primary_10_1016_j_dsp_2025_105045
crossref_primary_10_3390_app15020737
crossref_primary_10_1109_ACCESS_2023_3313166
crossref_primary_10_3390_electronics12234719
crossref_primary_10_1016_j_neucom_2023_126655
crossref_primary_10_1007_s43684_024_00080_y
crossref_primary_10_1109_TIM_2024_3449960
crossref_primary_10_32604_cmc_2023_044639
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1109_JPHOT_2024_3426929
crossref_primary_10_3390_app13095802
crossref_primary_10_3390_s25051564
crossref_primary_10_1016_j_aei_2025_103257
crossref_primary_10_48084_etasr_7386
crossref_primary_10_3390_rs16010025
crossref_primary_10_1109_OJCS_2024_3465430
crossref_primary_10_1038_s41598_023_43173_z
crossref_primary_10_1109_ACCESS_2024_3362636
crossref_primary_10_3390_electronics13081557
crossref_primary_10_1002_jsfa_13987
crossref_primary_10_3390_rs16040644
crossref_primary_10_3390_s24196437
crossref_primary_10_1016_j_aej_2025_02_063
crossref_primary_10_3390_agriculture14010030
crossref_primary_10_3390_electronics13234687
crossref_primary_10_3390_buildings14103051
crossref_primary_10_1016_j_engappai_2024_109824
crossref_primary_10_1088_1361_6501_ada4c8
crossref_primary_10_1007_s11227_024_06020_0
crossref_primary_10_1016_j_patrec_2024_11_005
crossref_primary_10_3390_electronics13112149
crossref_primary_10_1109_ACCESS_2024_3439346
crossref_primary_10_3390_agriculture14060899
crossref_primary_10_1016_j_measurement_2024_115990
crossref_primary_10_3390_rs17050913
crossref_primary_10_1016_j_eswa_2025_126941
crossref_primary_10_1007_s11227_025_06944_1
crossref_primary_10_1007_s11760_025_03983_2
crossref_primary_10_1016_j_autcon_2024_105643
crossref_primary_10_48084_etasr_6397
crossref_primary_10_1016_j_patrec_2024_02_012
crossref_primary_10_12720_jait_14_5_907_917
crossref_primary_10_1061_JTEPBS_TEENG_8446
crossref_primary_10_3390_app13179878
crossref_primary_10_1016_j_displa_2024_102913
crossref_primary_10_1080_02726351_2023_2268567
crossref_primary_10_1016_j_heliyon_2024_e33016
crossref_primary_10_3390_electronics12183917
crossref_primary_10_3390_rs16061002
crossref_primary_10_3390_app13137881
crossref_primary_10_1007_s10586_024_04595_0
crossref_primary_10_1007_s10586_023_04156_x
crossref_primary_10_3390_s24227308
crossref_primary_10_3390_rs15235575
crossref_primary_10_36680_j_itcon_2025_006
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1016_j_procs_2023_10_233
crossref_primary_10_1007_s11042_023_17628_4
crossref_primary_10_1364_OE_529655
Cites_doi 10.1016/j.patrec.2021.03.022
10.1016/j.procs.2022.01.135
10.1109/JSEN.2022.3219884
10.1109/TVCG.2020.3030350
10.1016/j.dsp.2022.103514
10.1016/j.neunet.2022.10.023
10.1109/ACCESS.2021.3072211
10.1109/ACCESS.2020.3033289
10.1155/2021/9218137
10.1109/ACCESS.2022.3166923
10.1016/j.patrec.2022.01.004
10.1016/j.imavis.2020.103910
10.1109/ACCESS.2021.3057723
10.1109/ACCESS.2020.2984554
10.1007/s11042-022-12447-5
10.1016/j.procs.2021.02.031
10.1016/j.patrec.2021.11.027
10.1109/TPAMI.2015.2389824
10.1007/s00521-021-06526-1
10.1049/itr2.12212
10.5194/isprs-archives-XLIII-B2-2020-1247-2020
10.3390/s21093031
10.1109/ACCESS.2021.3120870
10.1016/j.patrec.2020.04.004
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2023.03.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 122
ExternalDocumentID 10_1016_j_patrec_2023_03_009
S0167865523000727
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-38ec7a0ae6c13ac699adfc57d042e447d9e0333bbcb41de9de56feade11101c23
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Tue Jul 01 02:40:46 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Fri Feb 23 02:35:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Small object detection
Autonomous driving
Architectural changes
YOLOv5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-38ec7a0ae6c13ac699adfc57d042e447d9e0333bbcb41de9de56feade11101c23
ORCID 0000-0002-0018-1951
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_patrec_2023_03_009
crossref_citationtrail_10_1016_j_patrec_2023_03_009
elsevier_sciencedirect_doi_10_1016_j_patrec_2023_03_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Pattern recognition letters
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References G. Jocher, et al., ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, 2022, doi
Tong, Wu, Zhou (bib0003) 2020; 97
Wang, Xie, Zhang, Chen, Wen, He (bib0023) 2021; 9
Li, Fan, Xie, Qu (bib0013) 2022; 22
Wang, Wang, Xu, Wang, Li, Zhang, Li (bib0014) 2021; 2021
Cheng, Yao, Li, Li, Xie, Wang, Yao, Han (bib0004) 2022; 60
Gou (bib0019) 2020; 27
Zhang, Qin, Li, Guo, Zhou, Zhang, Xu (bib0020) 2020; 8
Jiang, Ergu, Liu, Cai, Ma (bib0010) 2022; 199
Rio-Torto, Fernandes, Teixeira (bib0008) 2020; 133
Ge, Liu, Wang, Li, Sun (bib0033) 2021
He, Zhang, Ren, Sun (bib0035) 2015; 37
Liu, Wang, Zhou, Yang, Gong (bib0025) 2021; volume 769
Benjumea, Teeti, Cuzzolin, Bradley (bib0024) 2021
Li (bib0015) 2020; 8
Jiang, Zhao, Li, Jia (bib0029) 2020
Cai, Vasconcelos (bib0038) 2018
Mahaur, Singh, Mishra (bib0002) 2022; 81
Chen, Jia, Chen, Lv, Zhang (bib0026) 2022; 34
Zhu, Liang, Zhang, Huang, Li, Hu (bib0043) 2016
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0046) 2016
Zaidi, Ansari, Aslam, Kanwal, Asghar, Lee (bib0001) 2022
Ning, Wang (bib0032) 2022
Lin, Li, Sanchez, Maple (bib0039) 2021; 146
Li, Li, Li, Li, Xu (bib0030) 2021; 9
Lin (bib0036) 2017
Xiaolin, Fan, Ming, Tongxin, Ran, Zenghui, Zhiyuan (bib0005) 2022; 153
Omar, Lee, Lee, Park (bib0021) 2020; 43
Singh, Varshney, Namboodiri (bib0041) 2020
Duan, Bai, Xie, Qi, Huang, Tian (bib0040) 2019
Yu, Chen, Wang, Xian, Chen, Liu, Madhavan, Darrell (bib0042) 2020
Du, Zhang, Zhang, Xu (bib0017) 2021; 9
Dai, Li, He, Sun (bib0047) 2016; 29
.
Cheng, Yuan, Yao, Yan, Zeng, Han (bib0006) 2022
Katsamenis (bib0028) 2022
Bochkovskiy, Wang, Liao (bib0018) 2020
Ren, He, Girshick, Sun (bib0045) 2015; 28
Su, Wang, Xie, Song, Ma, Li, Yang, Wang (bib0027) 2022
Han, Chang, Wang (bib0011) 2021; 183
Lian, Yin, Li, Wang, Zhou (bib0022) 2021; 21
Liang (bib0031) 2022; 10
Mahaur, Mishra, Singh (bib0007) 2023; 157
Liu, He, Du, Li, Liu (bib0012) 2022
Cai (bib0016) 2021; 70
Wang, Hu, Chen, Peng (bib0034) 2022; 154
Fregin, Muller, Krebel, Dietmayer (bib0044) 2018
Lin, Goyal, Girshick, He, Dollár (bib0037) 2017
Cai (10.1016/j.patrec.2023.03.009_bib0016) 2021; 70
He (10.1016/j.patrec.2023.03.009_bib0035) 2015; 37
Xiaolin (10.1016/j.patrec.2023.03.009_bib0005) 2022; 153
Liu (10.1016/j.patrec.2023.03.009_bib0046) 2016
Chen (10.1016/j.patrec.2023.03.009_bib0026) 2022; 34
Zaidi (10.1016/j.patrec.2023.03.009_bib0001) 2022
Wang (10.1016/j.patrec.2023.03.009_bib0014) 2021; 2021
Ge (10.1016/j.patrec.2023.03.009_bib0033) 2021
Su (10.1016/j.patrec.2023.03.009_bib0027) 2022
Lin (10.1016/j.patrec.2023.03.009_bib0037) 2017
Duan (10.1016/j.patrec.2023.03.009_bib0040) 2019
Cheng (10.1016/j.patrec.2023.03.009_bib0006) 2022
Han (10.1016/j.patrec.2023.03.009_bib0011) 2021; 183
Jiang (10.1016/j.patrec.2023.03.009_bib0029) 2020
Tong (10.1016/j.patrec.2023.03.009_bib0003) 2020; 97
Li (10.1016/j.patrec.2023.03.009_bib0013) 2022; 22
Du (10.1016/j.patrec.2023.03.009_bib0017) 2021; 9
Liu (10.1016/j.patrec.2023.03.009_bib0025) 2021; volume 769
Cai (10.1016/j.patrec.2023.03.009_bib0038) 2018
Benjumea (10.1016/j.patrec.2023.03.009_bib0024) 2021
Zhu (10.1016/j.patrec.2023.03.009_bib0043) 2016
Cheng (10.1016/j.patrec.2023.03.009_bib0004) 2022; 60
Lian (10.1016/j.patrec.2023.03.009_bib0022) 2021; 21
Li (10.1016/j.patrec.2023.03.009_bib0015) 2020; 8
Zhang (10.1016/j.patrec.2023.03.009_bib0020) 2020; 8
Fregin (10.1016/j.patrec.2023.03.009_bib0044) 2018
Ning (10.1016/j.patrec.2023.03.009_bib0032) 2022
Omar (10.1016/j.patrec.2023.03.009_bib0021) 2020; 43
Yu (10.1016/j.patrec.2023.03.009_bib0042) 2020
Liang (10.1016/j.patrec.2023.03.009_bib0031) 2022; 10
Dai (10.1016/j.patrec.2023.03.009_bib0047) 2016; 29
Mahaur (10.1016/j.patrec.2023.03.009_bib0002) 2022; 81
Mahaur (10.1016/j.patrec.2023.03.009_bib0007) 2023; 157
Rio-Torto (10.1016/j.patrec.2023.03.009_bib0008) 2020; 133
Liu (10.1016/j.patrec.2023.03.009_bib0012) 2022
Katsamenis (10.1016/j.patrec.2023.03.009_bib0028) 2022
Wang (10.1016/j.patrec.2023.03.009_bib0034) 2022; 154
Bochkovskiy (10.1016/j.patrec.2023.03.009_bib0018) 2020
Ren (10.1016/j.patrec.2023.03.009_bib0045) 2015; 28
Li (10.1016/j.patrec.2023.03.009_bib0030) 2021; 9
Jiang (10.1016/j.patrec.2023.03.009_bib0010) 2022; 199
Wang (10.1016/j.patrec.2023.03.009_bib0023) 2021; 9
Lin (10.1016/j.patrec.2023.03.009_bib0036) 2017
Gou (10.1016/j.patrec.2023.03.009_bib0019) 2020; 27
10.1016/j.patrec.2023.03.009_bib0009
Singh (10.1016/j.patrec.2023.03.009_bib0041) 2020
Lin (10.1016/j.patrec.2023.03.009_bib0039) 2021; 146
References_xml – start-page: 2110
  year: 2016
  end-page: 2118
  ident: bib0043
  article-title: Traffic-sign detection and classification in the wild
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 21
  start-page: 3031
  year: 2021
  ident: bib0022
  article-title: Small object detection in traffic scenes based on attention feature fusion
  publication-title: Sensors
– year: 2022
  ident: bib0028
  publication-title: Tracon: a novel dataset for real-time traffic cones detection using deep learning
– volume: 27
  start-page: 261
  year: 2020
  end-page: 271
  ident: bib0019
  article-title: Vatld: a visual analytics system to assess, understand and improve traffic light detection
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: volume 769
  start-page: 042069
  year: 2021
  ident: bib0025
  article-title: Real-time signal light detection based on yolov5
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 97
  start-page: 103910
  year: 2020
  ident: bib0003
  article-title: Recent advances in small object detection based on deep learning: a review
  publication-title: Image Vis. Comput.
– volume: 183
  start-page: 61
  year: 2021
  end-page: 72
  ident: bib0011
  article-title: Real-time object detection based on yolo-v2 for tiny vehicle object
  publication-title: Procedia Comput. Sci.
– year: 2021
  ident: bib0033
  publication-title: Yolox: exceeding yolo series in 2021
– volume: 8
  start-page: 64145
  year: 2020
  end-page: 64156
  ident: bib0020
  article-title: Real-time detection method for small traffic signs based on yolov3
  publication-title: IEEE Access
– volume: 199
  start-page: 1066
  year: 2022
  end-page: 1073
  ident: bib0010
  article-title: A review of yolo algorithm developments
  publication-title: Procedia Comput. Sci.
– start-page: 218
  year: 2022
  end-page: 222
  ident: bib0032
  article-title: Automatic driving scene target detection algorithm based on improved yolov5 network
  publication-title: 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA)
– start-page: 2636
  year: 2020
  end-page: 2645
  ident: bib0042
  article-title: Bdd100k: a diverse driving dataset for heterogeneous multitask learning
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– year: 2022
  ident: bib0012
  publication-title: An advanced yolov3 method for small object detection
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0037
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 9
  start-page: 141861
  year: 2021
  end-page: 141875
  ident: bib0030
  article-title: Yolo-firi: improved yolov5 for infrared image object detection
  publication-title: IEEE Access
– volume: 133
  start-page: 373
  year: 2020
  end-page: 380
  ident: bib0008
  article-title: Understanding the decisions of cnns: an in-model approach
  publication-title: Pattern Recognit. Lett.
– volume: 22
  start-page: 24253
  year: 2022
  end-page: 24263
  ident: bib0013
  article-title: Detection of road objects based on camera sensors for autonomous driving in various traffic situations
  publication-title: IEEE Sens. J.
– volume: 157
  start-page: 305
  year: 2023
  end-page: 322
  ident: bib0007
  article-title: Improved residual network based on norm-preservation for visual recognition
  publication-title: Neural Netw.
– year: 2022
  ident: bib0027
  article-title: Real-time traffic cone detection for autonomous driving based on yolov4
  publication-title: IET Intel. Transport Syst.
– volume: 9
  start-page: 25671
  year: 2021
  end-page: 25680
  ident: bib0017
  article-title: Weak and occluded vehicle detection in complex infrared environment based on improved yolov4
  publication-title: IEEE Access
– volume: 34
  start-page: 2233
  year: 2022
  end-page: 2245
  ident: bib0026
  article-title: A real-time and high-precision method for small traffic-signs recognition
  publication-title: Neural Comput. Appl.
– volume: 10
  start-page: 40701
  year: 2022
  end-page: 40714
  ident: bib0031
  article-title: Alodad: an anchor-free lightweight object detector for autonomous driving
  publication-title: IEEE Access
– volume: 146
  start-page: 200
  year: 2021
  end-page: 207
  ident: bib0039
  article-title: On the detection-to-track association for online multi-object tracking
  publication-title: Pattern Recognit. Lett.
– start-page: 21
  year: 2016
  end-page: 37
  ident: bib0046
  article-title: Ssd: single shot multibox detector
  publication-title: European conference on computer vision
– volume: 29
  year: 2016
  ident: bib0047
  article-title: R-Fcn: object detection via region-based fully convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib0004
  article-title: Dual-aligned oriented detector
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2022
  ident: bib0006
  publication-title: Towards large-scale small object detection: survey and benchmarks
– volume: 9
  start-page: 56416
  year: 2021
  end-page: 56429
  ident: bib0023
  article-title: Small-object detection based on yolo and dense block via image super-resolution
  publication-title: IEEE Access
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0016
  article-title: Yolov4-5d: an effective and efficient object detector for autonomous driving
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2020
  ident: bib0018
  publication-title: Yolov4: optimal speed and accuracy of object detection
– start-page: 3376
  year: 2018
  end-page: 3383
  ident: bib0044
  article-title: The driveu traffic light dataset: introduction and comparison with existing datasets
  publication-title: 2018 IEEE international conference on robotics and automation (ICRA)
– start-page: 1141
  year: 2020
  end-page: 1150
  ident: bib0041
  article-title: Cooperative initialization based deep neural network training
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 81
  start-page: 14247
  year: 2022
  end-page: 14282
  ident: bib0002
  article-title: Road object detection: a comparative study of deep learning-based algorithms
  publication-title: Multimed. Tools Appl.
– reference: .
– volume: 28
  year: 2015
  ident: bib0045
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: G. Jocher, et al., ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, 2022, doi:
– volume: 43
  start-page: 1247
  year: 2020
  end-page: 1252
  ident: bib0021
  article-title: Detection and localization of traffic lights using yolov3 and stereo vision
  publication-title: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: bib0035
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 153
  start-page: 107
  year: 2022
  end-page: 112
  ident: bib0005
  article-title: Small object detection in remote sensing images based on super-resolution
  publication-title: Pattern Recognit. Lett.
– year: 2021
  ident: bib0024
  publication-title: Yolo-z: improving small object detection in yolov5 for autonomous vehicles
– start-page: 6154
  year: 2018
  end-page: 6162
  ident: bib0038
  article-title: Cascade r-cnn: delving into high quality object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2020
  ident: bib0029
  publication-title: Real-time object detection method based on improved yolov4-tiny
– volume: 154
  start-page: 53
  year: 2022
  end-page: 59
  ident: bib0034
  article-title: Regularizing deep networks with label geometry for accurate object localization on small training datasets
  publication-title: Pattern Recognit. Lett.
– start-page: 103514
  year: 2022
  ident: bib0001
  article-title: A survey of modern deep learning based object detection models
  publication-title: Digit. Signal Process.
– start-page: 6569
  year: 2019
  end-page: 6578
  ident: bib0040
  article-title: Centernet: keypoint triplets for object detection
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 2021
  year: 2021
  ident: bib0014
  article-title: A real-time object detector for autonomous vehicles based on yolov4
  publication-title: Comput. Intell. Neurosci.
– volume: 8
  start-page: 194228
  year: 2020
  end-page: 194239
  ident: bib0015
  article-title: A deep learning-based hybrid framework for object detection and recognition in autonomous driving
  publication-title: IEEE Access
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0036
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 218
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0032
  article-title: Automatic driving scene target detection algorithm based on improved yolov5 network
– volume: 146
  start-page: 200
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0039
  article-title: On the detection-to-track association for online multi-object tracking
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.03.022
– volume: 199
  start-page: 1066
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0010
  article-title: A review of yolo algorithm developments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.135
– year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0029
  publication-title: Real-time object detection method based on improved yolov4-tiny
– volume: 22
  start-page: 24253
  issue: 24
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0013
  article-title: Detection of road objects based on camera sensors for autonomous driving in various traffic situations
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3219884
– year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0028
  publication-title: Tracon: a novel dataset for real-time traffic cones detection using deep learning
– start-page: 1141
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0041
  article-title: Cooperative initialization based deep neural network training
– volume: 27
  start-page: 261
  issue: 2
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0019
  article-title: Vatld: a visual analytics system to assess, understand and improve traffic light detection
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2020.3030350
– year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0024
  publication-title: Yolo-z: improving small object detection in yolov5 for autonomous vehicles
– start-page: 6569
  year: 2019
  ident: 10.1016/j.patrec.2023.03.009_bib0040
  article-title: Centernet: keypoint triplets for object detection
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0016
  article-title: Yolov4-5d: an effective and efficient object detector for autonomous driving
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 103514
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0001
  article-title: A survey of modern deep learning based object detection models
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103514
– volume: 157
  start-page: 305
  year: 2023
  ident: 10.1016/j.patrec.2023.03.009_bib0007
  article-title: Improved residual network based on norm-preservation for visual recognition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.10.023
– volume: 9
  start-page: 56416
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0023
  article-title: Small-object detection based on yolo and dense block via image super-resolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3072211
– year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0006
  publication-title: Towards large-scale small object detection: survey and benchmarks
– volume: 8
  start-page: 194228
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0015
  article-title: A deep learning-based hybrid framework for object detection and recognition in autonomous driving
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033289
– volume: 2021
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0014
  article-title: A real-time object detector for autonomous vehicles based on yolov4
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/9218137
– year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0018
  publication-title: Yolov4: optimal speed and accuracy of object detection
– volume: volume 769
  start-page: 042069
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0025
  article-title: Real-time signal light detection based on yolov5
– volume: 10
  start-page: 40701
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0031
  article-title: Alodad: an anchor-free lightweight object detector for autonomous driving
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166923
– volume: 154
  start-page: 53
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0034
  article-title: Regularizing deep networks with label geometry for accurate object localization on small training datasets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.01.004
– start-page: 2636
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0042
  article-title: Bdd100k: a diverse driving dataset for heterogeneous multitask learning
– volume: 28
  year: 2015
  ident: 10.1016/j.patrec.2023.03.009_bib0045
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0004
  article-title: Dual-aligned oriented detector
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  year: 2016
  ident: 10.1016/j.patrec.2023.03.009_bib0047
  article-title: R-Fcn: object detection via region-based fully convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 97
  start-page: 103910
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0003
  article-title: Recent advances in small object detection based on deep learning: a review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103910
– start-page: 2117
  year: 2017
  ident: 10.1016/j.patrec.2023.03.009_bib0036
  article-title: Feature pyramid networks for object detection
– volume: 9
  start-page: 25671
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0017
  article-title: Weak and occluded vehicle detection in complex infrared environment based on improved yolov4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3057723
– volume: 8
  start-page: 64145
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0020
  article-title: Real-time detection method for small traffic signs based on yolov3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984554
– start-page: 21
  year: 2016
  ident: 10.1016/j.patrec.2023.03.009_bib0046
  article-title: Ssd: single shot multibox detector
– start-page: 2110
  year: 2016
  ident: 10.1016/j.patrec.2023.03.009_bib0043
  article-title: Traffic-sign detection and classification in the wild
– volume: 81
  start-page: 14247
  issue: 10
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0002
  article-title: Road object detection: a comparative study of deep learning-based algorithms
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12447-5
– ident: 10.1016/j.patrec.2023.03.009_bib0009
– volume: 183
  start-page: 61
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0011
  article-title: Real-time object detection based on yolo-v2 for tiny vehicle object
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.02.031
– volume: 153
  start-page: 107
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0005
  article-title: Small object detection in remote sensing images based on super-resolution
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.11.027
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.patrec.2023.03.009_bib0035
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 34
  start-page: 2233
  issue: 3
  year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0026
  article-title: A real-time and high-precision method for small traffic-signs recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06526-1
– year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0012
  publication-title: An advanced yolov3 method for small object detection
– year: 2022
  ident: 10.1016/j.patrec.2023.03.009_bib0027
  article-title: Real-time traffic cone detection for autonomous driving based on yolov4
  publication-title: IET Intel. Transport Syst.
  doi: 10.1049/itr2.12212
– start-page: 2980
  year: 2017
  ident: 10.1016/j.patrec.2023.03.009_bib0037
  article-title: Focal loss for dense object detection
– volume: 43
  start-page: 1247
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0021
  article-title: Detection and localization of traffic lights using yolov3 and stereo vision
  publication-title: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLIII-B2-2020-1247-2020
– volume: 21
  start-page: 3031
  issue: 9
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0022
  article-title: Small object detection in traffic scenes based on attention feature fusion
  publication-title: Sensors
  doi: 10.3390/s21093031
– volume: 9
  start-page: 141861
  year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0030
  article-title: Yolo-firi: improved yolov5 for infrared image object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120870
– year: 2021
  ident: 10.1016/j.patrec.2023.03.009_bib0033
  publication-title: Yolox: exceeding yolo series in 2021
– start-page: 6154
  year: 2018
  ident: 10.1016/j.patrec.2023.03.009_bib0038
  article-title: Cascade r-cnn: delving into high quality object detection
– start-page: 3376
  year: 2018
  ident: 10.1016/j.patrec.2023.03.009_bib0044
  article-title: The driveu traffic light dataset: introduction and comparison with existing datasets
– volume: 133
  start-page: 373
  year: 2020
  ident: 10.1016/j.patrec.2023.03.009_bib0008
  article-title: Understanding the decisions of cnns: an in-model approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.04.004
SSID ssj0006398
Score 2.6580648
Snippet •We discuss the benefits of accurate detection of small objects like traffic signs and traffic lights in autonomous driving.•We analyze the practical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Architectural changes
Autonomous driving
Deep learning
Small object detection
YOLOv5
Title Small-object detection based on YOLOv5 in autonomous driving systems
URI https://dx.doi.org/10.1016/j.patrec.2023.03.009
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GDj6pYH2UPXtdussmmeyxVqa96UEFPYbO7gUqNpaYe_e3u5FEUREHIIQkZCMPuNzPLN98AHHvChixIBOWhZDSQilGZ-B5VqSsOlEyZLSj_N2MxegguH8PHBgzrXhikVVbYX2J6gdbVm17lzd5sMundIYEe2ypdEo3619EKtHwuRdiE1uDiajReArILwv1a4hsN6g66guaFR84WtQx9Xqqdyp8j1Jeoc74J61W6SAblH21Bw2Zt2KhHMZBqZ7Zh7Yuu4Dac3r2o6ZS-JnjIQozNC75VRjBkGeJunm6vb99DMsmIWuTY1uDqf2LmEzxdIKW489sOPJyf3Q9HtBqXQLXL-3PK-1ZHiikrtMeVFlIqk-owMm5f2iCIjLSMc54kOgk8Y6WxoUiRL-3gjnna57vQzF4zuwdERToQzhTH9QVJFEq_qLsQPo3oR7YDvHZRrCstcRxpMY1r0thzXDo2RsfGzF1MdoAurWallsYf30e19-NvayJ2cP-r5f6_LQ9gFZ9Kbs4hNPP5wh65tCNPurBy8uF1q8X1CaHK1js
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6qHtSDb7E-c_Aam22ym-Yoaqna1oMW9LRkkxQqdSu69ehvN7MPrSAKwh6WTQaWIZkX33wDcBxELmQiiSgPFaNCaUZV0gyoHvrkQKshcznkv9ePOgNxdR_e1-Cs6oVBWGVp-wubnlvr8kuj1GbjeTRq3CKAHtsqfRCN_NdyDhZEyCXi-k7ev3Ae3gW3KoJv3F71z-UgLyw4O2QybPKC61T97J9mfE57DVbKYJGcFv-zDjWXbsBqNYiBlPdyA5ZnWAU34fz2SY_HdJJgiYVYl-Voq5Sgw7LEvzzcdG_eQjJKiZ5m2NTgs39iX0ZYWyAFtfPrFgzaF3dnHVoOS6DGR_0Z5S1npGbaRSbg2kRKaTs0obT-VjohpFWOcc6TxCQisE5ZF0ZDREt7Y8cC0-TbMJ9OUrcDREsjIi-Kw_pEIkPVzLMuNJ42aklXB16pKDYlkzgOtBjHFWTsMS4UG6NiY-YfpupAP6WeCyaNP_bLSvvxtxMRe2P_q-TuvyWPYLFz1-vG3cv-9R4s4UqB0tmH-exl6g58AJIlh_kB-wBtlNcG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-object+detection+based+on+YOLOv5+in+autonomous+driving+systems&rft.jtitle=Pattern+recognition+letters&rft.au=Mahaur%2C+Bharat&rft.au=Mishra%2C+K.K.&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=168&rft.spage=115&rft.epage=122&rft_id=info:doi/10.1016%2Fj.patrec.2023.03.009&rft.externalDocID=S0167865523000727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon