Gas-Diffusion Cathodes Integrating Carbon Nanotube Modified-Toray Paper and Bilirubin Oxidase

This research introduces the design of a gas-diffusional cathode employing bilirubin oxidase (BOx) immobilized on a complex matrix composed of carbon nanotube (CNT) modified Toray paper (TP) and, encapsulated in silica-gel. The developed enzymatic cathode consists of two layers. One is the hydrophob...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Electrochemical Society Vol. 161; no. 9; pp. H523 - H528
Main Authors Omar Garcia, S., Narváez Villarrubia, Claudia, Falase, Akinbayowa, Atanassov, Plamen
Format Journal Article
LanguageEnglish
Published The Electrochemical Society 01.01.2014
Online AccessGet full text
ISSN0013-4651
1945-7111
DOI10.1149/2.0561409jes

Cover

Abstract This research introduces the design of a gas-diffusional cathode employing bilirubin oxidase (BOx) immobilized on a complex matrix composed of carbon nanotube (CNT) modified Toray paper (TP) and, encapsulated in silica-gel. The developed enzymatic cathode consists of two layers. One is the hydrophobic gas-diffusional layer (GDL) and the other a hydrophilic catalytic layer (CL) which were combined by pressing at 1000 psi for five minutes. The GDL (35% weight teflonized Vulcan carbon powder (XC35)) that is exposed to air has hydrophobic and porous properties that facilitate oxygen diffusion. The CL consists of a thin, high surface area, 3D CNT/silica-gel matrix where the 3D-enzymatic structure is immobilized and preserved. The nanostructured architecture of the CL was designed to improve conductivity and surface area. Such a design was achieved by modifying the TP surface with CNTs. CNTs are grown on TP by chemical vapor deposition which is possible by electrodepositing Ni seeds via pulse chronoamperometry. Entrapment of BOx was achieved by using tetramethyl orthosilicate (TMOS), a highly volatile compound that results in a polymeric condensation reaction with H2O at room temperature. TMOS polymerization of the cathode surface was performed in a chemical vapor deposition process to form a silica-gel matrix. The gas diffusional cathode was assembled to a capillary driven microfluidic system to be electrochemically characterized. The characterization was performed from electrolyte pH 5 to pH 8 with increments 0.5 in pH. The best performance was observed at pH 5.5 showing a current output of 655.07 ± 146.18 μA.cm−2 and 345.36 ± 30.04 μA.cm−2 at 0 V and 0.3 V, respectively. At a pH of 7.5 the current generated was 287.05 ± 20.37 μA.cm−2 and 205.37 ± 1.57 μA.cm−2 at 0 V and 0.3 V, respectively. The results show the stability of the enzymatic structure, subject to various pH, is maintained within the 3D-CNT silica-gel matrix for pH lower than 8. Future work will focus on storage life and stability over time.
AbstractList This research introduces the design of a gas-diffusional cathode employing bilirubin oxidase (BOx) immobilized on a complex matrix composed of carbon nanotube (CNT) modified Toray paper (TP) and, encapsulated in silica-gel. The developed enzymatic cathode consists of two layers. One is the hydrophobic gas-diffusional layer (GDL) and the other a hydrophilic catalytic layer (CL) which were combined by pressing at 1000 psi for five minutes. The GDL (35% weight teflonized Vulcan carbon powder (XC35)) that is exposed to air has hydrophobic and porous properties that facilitate oxygen diffusion. The CL consists of a thin, high surface area, 3D CNT/silica-gel matrix where the 3D-enzymatic structure is immobilized and preserved. The nanostructured architecture of the CL was designed to improve conductivity and surface area. Such a design was achieved by modifying the TP surface with CNTs. CNTs are grown on TP by chemical vapor deposition which is possible by electrodepositing Ni seeds via pulse chronoamperometry. Entrapment of BOx was achieved by using tetramethyl orthosilicate (TMOS), a highly volatile compound that results in a polymeric condensation reaction with H2O at room temperature. TMOS polymerization of the cathode surface was performed in a chemical vapor deposition process to form a silica-gel matrix. The gas diffusional cathode was assembled to a capillary driven microfluidic system to be electrochemically characterized. The characterization was performed from electrolyte pH 5 to pH 8 with increments 0.5 in pH. The best performance was observed at pH 5.5 showing a current output of 655.07 ± 146.18 μA.cm−2 and 345.36 ± 30.04 μA.cm−2 at 0 V and 0.3 V, respectively. At a pH of 7.5 the current generated was 287.05 ± 20.37 μA.cm−2 and 205.37 ± 1.57 μA.cm−2 at 0 V and 0.3 V, respectively. The results show the stability of the enzymatic structure, subject to various pH, is maintained within the 3D-CNT silica-gel matrix for pH lower than 8. Future work will focus on storage life and stability over time.
Author Omar Garcia, S.
Falase, Akinbayowa
Atanassov, Plamen
Narváez Villarrubia, Claudia
Author_xml – sequence: 1
  givenname: S.
  surname: Omar Garcia
  fullname: Omar Garcia, S.
  organization: University of New Mexico Department of Chemical and Nuclear Engineering, Albuquerque, New Mexico 87131, USA
– sequence: 2
  givenname: Claudia
  surname: Narváez Villarrubia
  fullname: Narváez Villarrubia, Claudia
  organization: University of New Mexico UNM Center for Biomedical Engineering, Albuquerque, New Mexico 87131, USA
– sequence: 3
  givenname: Akinbayowa
  surname: Falase
  fullname: Falase, Akinbayowa
  organization: University of New Mexico Department of Chemical and Nuclear Engineering, Albuquerque, New Mexico 87131, USA
– sequence: 4
  givenname: Plamen
  surname: Atanassov
  fullname: Atanassov, Plamen
  organization: University of New Mexico Department of Chemical and Nuclear Engineering, Albuquerque, New Mexico 87131, USA
BookMark eNp1kE1LAzEQhoNUsK3e_AF79ODWzCb7ddSqtVCth3qUZTYfNaUmJcmC_feuVBBET8PMPO_wzjsiA-usIuQc6ASA11fZhOYFcFpvVDgiQ6h5npYAMCBDSoGlvMjhhIxC2PQtVLwcktcZhvTWaN0F42wyxfjmpArJ3Ea19hiNXfdD3_a7J7Qudq1KHp002iiZrpzHffKMO-UTtDK5MVvju9bYZPlhJAZ1So41boM6-65j8nJ_t5o-pIvlbD69XqSC0SKmjDMKWCEwrStJsWKtKmkuQeWtzlsptWRaUlZz0JwJDXWBbS6gFCXTQmRsTLLDXeFdCF7pRpjYm3c2ejTbBmjzFVCTNT8B9aLLX6KdN-_o9__hFwfcuF2zcZ23_Ud_o5_e1ne9
CitedBy_id crossref_primary_10_1186_s12951_015_0134_0
crossref_primary_10_1016_j_electacta_2017_08_112
crossref_primary_10_1016_j_jpowsour_2020_228615
crossref_primary_10_1016_j_mtener_2023_101418
crossref_primary_10_1016_j_jelechem_2015_10_026
crossref_primary_10_1016_j_jelechem_2020_113820
crossref_primary_10_1021_acs_chemrev_7b00220
Cites_doi 10.1016/j.electacta.2010.07.026
10.1021/jp105498d
10.1016/j.electacta.2012.06.094
10.1016/j.electacta.2011.11.074
10.1016/j.bioelechem.2005.02.004
10.1115/ENIC2007-45038
10.1016/j.bioelechem.2008.05.003
10.1021/la903475d
10.1016/j.electacta.2005.08.017
10.1016/0022-3093(88)90005-1
10.1002/smll.200700725
10.1016/j.elecom.2006.05.024
10.1002/elan.200403010
10.1021/ar0101640
10.1088/0957-4484/13/5/303
10.1166/jnn.2010.2939
10.1002/elan.200703983
10.1149/MA2010-01/6/441
10.1002/elan.200302724
10.1021/cr020719k
10.1016/j.copbio.2007.03.007
10.1149/1.2712049
10.1149/MA2012-01/39/1452
10.1073/pnas.0504499102
10.1149/2.F04072IF
10.1039/b001508n
10.1007/s12678-011-0062-1
ContentType Journal Article
Copyright The Author(s) 2014. Published by ECS.
Copyright_xml – notice: The Author(s) 2014. Published by ECS.
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1149/2.0561409jes
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1945-7111
EndPage H528
ExternalDocumentID 10_1149_2_0561409jes
0561409JES
GroupedDBID -~X
.DC
0R~
29L
5GY
AATNI
ABDNZ
ABJNI
ACBEA
ACHIP
ADNWM
AENEX
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CJUJL
CS3
DU5
EBS
F5P
H13
IOP
JGOPE
KOT
MV1
N5L
NFQFE
NHB
O3W
REC
RHI
RNS
ROL
RPA
TAE
TN5
TSCCA
UPT
WH7
YQT
~02
.-4
41~
6TJ
9M8
AAYXX
ABEFU
ACYGS
ADEQX
AI.
CITATION
EJD
H~9
IZVLO
MVM
VH1
VOH
VQP
XJT
XOL
YXB
ZY4
ID FETCH-LOGICAL-c306t-34301a8a13ff8d0a83be705d1e5bf5bddfd3fd03941f43cf196ab5c17c73fcc23
IEDL.DBID IOP
ISSN 0013-4651
IngestDate Thu Apr 24 23:12:12 EDT 2025
Tue Aug 05 12:11:17 EDT 2025
Wed Aug 21 03:33:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-34301a8a13ff8d0a83be705d1e5bf5bddfd3fd03941f43cf196ab5c17c73fcc23
Notes 0561409JES
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1149/2.0561409jes
PageCount 6
ParticipantIDs crossref_citationtrail_10_1149_2_0561409jes
iop_journals_10_1149_2_0561409jes
crossref_primary_10_1149_2_0561409jes
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of the Electrochemical Society
PublicationTitleAlternate J. Electrochem. Soc
PublicationYear 2014
Publisher The Electrochemical Society
Publisher_xml – name: The Electrochemical Society
References 2018082014495739000_161.9.H523.20
2018082014495739000_161.9.H523.22
2018082014495739000_161.9.H523.21
Atanassov (2018082014495739000_161.9.H523.1) 2007; 16
2018082014495739000_161.9.H523.9
2018082014495739000_161.9.H523.7
2018082014495739000_161.9.H523.8
2018082014495739000_161.9.H523.13
2018082014495739000_161.9.H523.2
2018082014495739000_161.9.H523.12
2018082014495739000_161.9.H523.15
2018082014495739000_161.9.H523.14
2018082014495739000_161.9.H523.5
2018082014495739000_161.9.H523.17
2018082014495739000_161.9.H523.6
2018082014495739000_161.9.H523.3
2018082014495739000_161.9.H523.19
2018082014495739000_161.9.H523.4
2018082014495739000_161.9.H523.18
Kong (2018082014495739000_161.9.H523.24) 1999; 103
2018082014495739000_161.9.H523.30
2018082014495739000_161.9.H523.11
Ivnitski (2018082014495739000_161.9.H523.16) 2009; 54
2018082014495739000_161.9.H523.10
2018082014495739000_161.9.H523.23
2018082014495739000_161.9.H523.26
2018082014495739000_161.9.H523.25
2018082014495739000_161.9.H523.28
2018082014495739000_161.9.H523.27
2018082014495739000_161.9.H523.29
References_xml – ident: 2018082014495739000_161.9.H523.13
  doi: 10.1016/j.electacta.2010.07.026
– ident: 2018082014495739000_161.9.H523.26
  doi: 10.1021/jp105498d
– ident: 2018082014495739000_161.9.H523.19
  doi: 10.1016/j.electacta.2012.06.094
– ident: 2018082014495739000_161.9.H523.29
  doi: 10.1016/j.electacta.2011.11.074
– ident: 2018082014495739000_161.9.H523.6
  doi: 10.1016/j.bioelechem.2005.02.004
– volume: 54
  start-page: xx
  year: 2009
  ident: 2018082014495739000_161.9.H523.16
  publication-title: Preparation Paper-.Am. Chem. Soc. Fuel. Chem.
– ident: 2018082014495739000_161.9.H523.22
  doi: 10.1115/ENIC2007-45038
– ident: 2018082014495739000_161.9.H523.14
– volume: 103
  start-page: 11246
  year: 1999
  ident: 2018082014495739000_161.9.H523.24
  publication-title: Journal of Physical Chemistry B
– ident: 2018082014495739000_161.9.H523.8
  doi: 10.1016/j.bioelechem.2008.05.003
– ident: 2018082014495739000_161.9.H523.17
  doi: 10.1021/la903475d
– ident: 2018082014495739000_161.9.H523.27
  doi: 10.1016/j.electacta.2005.08.017
– ident: 2018082014495739000_161.9.H523.30
  doi: 10.1016/0022-3093(88)90005-1
– ident: 2018082014495739000_161.9.H523.9
  doi: 10.1002/smll.200700725
– ident: 2018082014495739000_161.9.H523.20
  doi: 10.1016/j.elecom.2006.05.024
– ident: 2018082014495739000_161.9.H523.11
  doi: 10.1002/elan.200403010
– ident: 2018082014495739000_161.9.H523.23
  doi: 10.1021/ar0101640
– ident: 2018082014495739000_161.9.H523.5
  doi: 10.1088/0957-4484/13/5/303
– ident: 2018082014495739000_161.9.H523.25
  doi: 10.1166/jnn.2010.2939
– ident: 2018082014495739000_161.9.H523.12
  doi: 10.1002/elan.200703983
– ident: 2018082014495739000_161.9.H523.18
  doi: 10.1149/MA2010-01/6/441
– ident: 2018082014495739000_161.9.H523.10
  doi: 10.1002/elan.200302724
– ident: 2018082014495739000_161.9.H523.2
  doi: 10.1021/cr020719k
– ident: 2018082014495739000_161.9.H523.3
  doi: 10.1016/j.copbio.2007.03.007
– ident: 2018082014495739000_161.9.H523.21
  doi: 10.1149/1.2712049
– ident: 2018082014495739000_161.9.H523.28
  doi: 10.1149/MA2012-01/39/1452
– ident: 2018082014495739000_161.9.H523.7
  doi: 10.1073/pnas.0504499102
– volume: 16
  start-page: 28
  year: 2007
  ident: 2018082014495739000_161.9.H523.1
  publication-title: Electrochemical Society Interface
  doi: 10.1149/2.F04072IF
– ident: 2018082014495739000_161.9.H523.4
  doi: 10.1039/b001508n
– ident: 2018082014495739000_161.9.H523.15
  doi: 10.1007/s12678-011-0062-1
SSID ssj0011847
Score 2.1510506
Snippet This research introduces the design of a gas-diffusional cathode employing bilirubin oxidase (BOx) immobilized on a complex matrix composed of carbon nanotube...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage H523
Title Gas-Diffusion Cathodes Integrating Carbon Nanotube Modified-Toray Paper and Bilirubin Oxidase
URI https://iopscience.iop.org/article/10.1149/2.0561409jes
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1945-7111
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011847
  issn: 0013-4651
  databaseCode: IOP
  dateStart: 19480101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF48HtQHb_FmBX2SrUl206SPXvUAbR8s9kXCXgNRaUqbgPrrnTSJR1EQX0JIJmTZ3dn5ZnbnG0L2XV8FQnDOQhsoJqzwmAwNMIS2dUCXS2kvzx2-ua1fdsR11--WoYtRLkzSL5f-Gt4WRMFFF5bEto0jrzair3Qaj3Y4SaZ5iD5FnrnXan9sH6DbElSlC_Ji39WJ97Gvv9miSfzfF9PSXCDdqlHFiZKnWpaqmn4b42v8R6sXyXwJN-lxIbZEJmxvmcycVlXelsncF0LCFfJwIYfsLAbI8iAazdMDE2OH9KoklUAhfDhQ-A6X5STNlKU3iYkBgSy7w9n0StuybwdU9gw9iZ_jQYaeN229xAat5SrpNM_vTi9ZWYCBafQkUsYFqr8MpcsBQuPIkCsbOL5xra_AV8aA4WAc3hAuCK4BtVkqX7uBDjho7fE1MtVLenadUK6tgLoHPgR1gU6bkh4g1gktdxGSgbNBDquhiHTJTp4XyXiOiszpRuRFnx24QQ4-pPsFK8cvcns4HlGplsMfZTb_ILNFZhEoiSL0sk2m0kFmdxCMpGp3NPHw2uL37xDN2r0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6lReJxoFCKKLRlkegJbWp7d2NHnPoKDdA2h1bqoZW1r5EMVRwltgT8esaxnZaKSoibZY_s1T5mvlnvfB_A-1CZWEoheOJjw6WXEdeJQ07QtoeUchkbVbXDxye9o3P5-UJddODjohYmnzSuv0uXNVFw3YUNsW1_J-rO6SuD_jc_25k4XIIHSqi40m0Yno4WvxAodYlb-YJK8Ls99X7nDX_EoyX65q3wMliBy7Zh9amS792yMF376w5n43-2_Bk8bWAn261Nn0PHj1fh0X6r9rYKT24RE76Aq096xg8yxLLaTGNVmWDu_IwNG3IJMqKbU0PPyD3nRWk8O85dhgRo-RnNqp9spCd-yvTYsb3sOpuWlIGz0x-Zo6i5BueDw7P9I94IMXBLGUXBhSQ3oBMdCsTEBToRxseBcqFXBpVxDp1AF4i-DFEKi7SqtVE2jG0s0NpIvITlcT72r4AJ6yX2IlQY9yQlb0ZHSJgn8SIkaIbBOnxohyO1DUt5JZZxndYV1P00Sm86cR22F9aTmp3jHrt3NCZpszxnf7V5_Q82b-Hh6GCQfh2efHkDjwk7yXo3ZgOWi2npNwmfFGZrPg9_A3uy3y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas-Diffusion+Cathodes+Integrating+Carbon+Nanotube+Modified-Toray+Paper+and+Bilirubin+Oxidase&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.au=Omar+Garcia%2C+S.&rft.au=Narv%C3%A1ez+Villarrubia%2C+Claudia&rft.au=Falase%2C+Akinbayowa&rft.au=Atanassov%2C+Plamen&rft.date=2014-01-01&rft.pub=The+Electrochemical+Society&rft.issn=0013-4651&rft.volume=161&rft.issue=9&rft.spage=H523&rft.epage=H528&rft_id=info:doi/10.1149%2F2.0561409jes&rft.externalDocID=0561409JES
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4651&client=summon