metaNet: Interpretable unknown mobile malware identification with a novel meta-features mining algorithm
The continuous emergence of malware has threatened to the Android platform and user privacy. With the evolution of the Android system and malware, it is challenging to design a method that can accurately identify the categories of sophisticated malware, including known and unknown families, as well...
Saved in:
| Published in | Computer networks (Amsterdam, Netherlands : 1999) Vol. 250; p. 110563 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1389-1286 1872-7069 |
| DOI | 10.1016/j.comnet.2024.110563 |
Cover
| Abstract | The continuous emergence of malware has threatened to the Android platform and user privacy. With the evolution of the Android system and malware, it is challenging to design a method that can accurately identify the categories of sophisticated malware, including known and unknown families, as well as their obfuscated variants, given that they may be newly emerging and lack available detection knowledge. Although some methods try to use anomaly detection and zero-shot technology to identify unseen applications, they are limited to binary classification or lack the robustness, stability, universality, and interpretability in multi-class identification. To this end, we first propose a generic meta-features mining algorithm, which can discover the potential relationships between samples belonging to the same category. Then we present metaNet, a novel method leveraging meta-features to identify sophisticated Android malware. Specifically, metaNet is mainly powered by four components: (i) mExtractor is a feature collector to obtain the static and dynamic features. (ii) mProcessor is taking unique meta-features of each category from extracted features. (iii) mLearner is a machine learning suite that leverages features and meta-features to design and train a classifier called HSU-Net. (iv) mEnforcer is a flexible deployer that identifies categories of malware families in the real world. We implement a prototype of metaNet with 15K lines of Python code and compare it with state-of-the-art (SOTA) methods. The results show that it can not only achieve superior performance in terms of known families (99.52% of accuracy) and unknown families (99.31% of accuracy trained with 80% known families) for binary classification, but also perform well in multi-class identification, i.e., 99.05% and 93.45% of accuracy for known and unknown families, respectively. Furthermore, we deploy and evaluate metaNet in the real world. It can identify applications over an acceptable time and memory overheads, i.e., average of 11.8 s and 56 MB per sample with a size of 8 MB. Also, the few-shot detection and feature perturbation experiments reflect its robustness and stability benefiting from meta-features. Finally, we collect the traffic of 112 decentralized applications (DApps) belonging to 16 categories, such as finance and health, and evaluated metaNet in DApp identification. The results illustrate its applicability across various tasks. That is, it can accurately classify 94.6% and 81.36% of DApp flows in all-known and 80%-known DApp scenarios, respectively, outperforming the SOTA methods. |
|---|---|
| AbstractList | The continuous emergence of malware has threatened to the Android platform and user privacy. With the evolution of the Android system and malware, it is challenging to design a method that can accurately identify the categories of sophisticated malware, including known and unknown families, as well as their obfuscated variants, given that they may be newly emerging and lack available detection knowledge. Although some methods try to use anomaly detection and zero-shot technology to identify unseen applications, they are limited to binary classification or lack the robustness, stability, universality, and interpretability in multi-class identification. To this end, we first propose a generic meta-features mining algorithm, which can discover the potential relationships between samples belonging to the same category. Then we present metaNet, a novel method leveraging meta-features to identify sophisticated Android malware. Specifically, metaNet is mainly powered by four components: (i) mExtractor is a feature collector to obtain the static and dynamic features. (ii) mProcessor is taking unique meta-features of each category from extracted features. (iii) mLearner is a machine learning suite that leverages features and meta-features to design and train a classifier called HSU-Net. (iv) mEnforcer is a flexible deployer that identifies categories of malware families in the real world. We implement a prototype of metaNet with 15K lines of Python code and compare it with state-of-the-art (SOTA) methods. The results show that it can not only achieve superior performance in terms of known families (99.52% of accuracy) and unknown families (99.31% of accuracy trained with 80% known families) for binary classification, but also perform well in multi-class identification, i.e., 99.05% and 93.45% of accuracy for known and unknown families, respectively. Furthermore, we deploy and evaluate metaNet in the real world. It can identify applications over an acceptable time and memory overheads, i.e., average of 11.8 s and 56 MB per sample with a size of 8 MB. Also, the few-shot detection and feature perturbation experiments reflect its robustness and stability benefiting from meta-features. Finally, we collect the traffic of 112 decentralized applications (DApps) belonging to 16 categories, such as finance and health, and evaluated metaNet in DApp identification. The results illustrate its applicability across various tasks. That is, it can accurately classify 94.6% and 81.36% of DApp flows in all-known and 80%-known DApp scenarios, respectively, outperforming the SOTA methods. |
| ArticleNumber | 110563 |
| Author | Zhao, Ziming Li, Zhaoxuan Lu, Haoyang Li, Wenhao Lu, Siqi Zhang, Rui Zhang, Fan Xue, Rui |
| Author_xml | – sequence: 1 givenname: Zhaoxuan orcidid: 0000-0002-2195-0799 surname: Li fullname: Li, Zhaoxuan email: lizhaoxuan@iie.ac.cn organization: State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China – sequence: 2 givenname: Ziming orcidid: 0000-0003-1455-4330 surname: Zhao fullname: Zhao, Ziming email: zhaoziming@zju.edu.cn organization: Zhejiang University, Hangzhou, 310027, China – sequence: 3 givenname: Rui surname: Zhang fullname: Zhang, Rui email: zhangrui@iie.ac.cn organization: State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China – sequence: 4 givenname: Haoyang orcidid: 0009-0001-8745-0957 surname: Lu fullname: Lu, Haoyang email: luhaoyang@iie.ac.cn organization: State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China – sequence: 5 givenname: Wenhao orcidid: 0000-0003-2268-7416 surname: Li fullname: Li, Wenhao email: liwenhao@iie.ac.cn organization: State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China – sequence: 6 givenname: Fan surname: Zhang fullname: Zhang, Fan email: fanzhang@zju.edu.cn organization: Zhejiang University, Hangzhou, 310027, China – sequence: 7 givenname: Siqi surname: Lu fullname: Lu, Siqi email: 080lusiqi@sina.com organization: Information Engineering University, Zhengzhou, 450001, China – sequence: 8 givenname: Rui orcidid: 0000-0001-6024-3635 surname: Xue fullname: Xue, Rui email: xuerui@iie.ac.cn organization: State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China |
| BookMark | eNqFkM1OwzAQhC1UJNrCG3DwC6TYjus4PSChip9KFVzgbDnOunVJ7MoxrXh7UsKJA5x2R9oZ7XwTNPLBA0LXlMwooeJmNzOh9ZBmjDA-o5TMRX6GxlQWLCuIKEf9nssyo0yKCzTpuh0hhHMmx2jbQtLPkBZ45RPEfexl1QD-8O8-HD1uQ-V62ermqCNgV4NPzjqjkwseH13aYo19OECDT0mZBZ0-InS4dd75DdbNJsT-qr1E51Y3HVz9zCl6e7h_XT5l65fH1fJunZmciJQxqEhtCVT9v9KQkopcCk4tt3MuJOTcliwvKy3mRljLippoMBZYIW1dE1LlU8SHXBND10Wwah9dq-OnokSdaKmdGmipEy010Opti18249J3yRS1a_4z3w5m6IsdHETVGQfeQO0imKTq4P4O-ALXgo1W |
| CitedBy_id | crossref_primary_10_1109_TCAD_2024_3444712 crossref_primary_10_1109_TNET_2024_3413789 |
| Cites_doi | 10.1109/TSE.2018.2834344 10.1109/TIFS.2020.3025436 10.1109/TIFS.2022.3226572 10.1109/TDSC.2017.2739145 10.1016/j.jpdc.2016.10.012 10.1109/TIFS.2017.2771228 10.1109/TIFS.2021.3050608 10.1016/j.cose.2022.102887 10.1016/j.cose.2021.102198 10.1109/TSE.2021.3067061 10.1016/j.cose.2023.103663 10.1016/j.cose.2021.102273 10.1016/j.cose.2018.04.005 10.1016/j.cose.2018.01.001 10.1016/j.cose.2015.04.001 10.1109/TDSC.2017.2745575 10.1016/j.jnca.2012.10.004 10.1016/j.ins.2017.04.044 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comnet.2024.110563 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7069 |
| ExternalDocumentID | 10_1016_j_comnet_2024_110563 S1389128624003955 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 77K 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 ZMT ZY4 ~G- 77I AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-2eb0df0eb3898c091638641f4f5468e34f9239ba65c6ff27d0aecfe278fdd00b3 |
| IEDL.DBID | .~1 |
| ISSN | 1389-1286 |
| IngestDate | Wed Oct 01 04:06:59 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Sat Jul 13 15:32:09 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Android malware Decentralized applications Meta-features U-net Unknown families |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-2eb0df0eb3898c091638641f4f5468e34f9239ba65c6ff27d0aecfe278fdd00b3 |
| ORCID | 0000-0002-2195-0799 0009-0001-8745-0957 0000-0003-1455-4330 0000-0003-2268-7416 0000-0001-6024-3635 |
| ParticipantIDs | crossref_primary_10_1016_j_comnet_2024_110563 crossref_citationtrail_10_1016_j_comnet_2024_110563 elsevier_sciencedirect_doi_10_1016_j_comnet_2024_110563 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer networks (Amsterdam, Netherlands : 1999) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Arp, Spreitzenbarth, Hubner, Gascon, Rieck (b5) 2014 Shen, Wei, Zhu (b23) 2017; 12 Mohaisen, Alrawi, Mohaisen (b64) 2015; 52 Enck, Gilbert, Chun, Cox, Jung, McDaniel, Sheth (b17) 2010 Zhao (b60) 2023 Shen, Zhang, Zhu, Xu, Du, Liu (b89) 2019 Yamaguchi, Golde, Arp (b16) 2014 Shen (b40) 2016 Wang, Tang, Wang (b48) 2021; 106 Comar, Liu, Saha (b33) 2013 Alfs, Caragea, Albin, Poggi-Corradini (b78) 2019 Zhao, Li, Jiang, Yu, Zhang, Xu, Zhao, Zhang, Guo (b24) 2023 Wang, Xiong, Liu, Li, Cui, Gou (b90) 2021; vol. 12978 Shen, Zhang, Zhu, Xu, Du (b88) 2021; 16 Zhao, Li, Zhang, Yang, Luo, Li, Zhang, Ren (b93) 2023; 18 Zhang, Yao, Ramakrishnan (b39) 2016 Tong, Yan (b46) 2017; 103 The Tcpdump Group (b80) 2023 Fredrikson, Jha, Christodorescu, Sailer, Yan (b15) 2010 Rong, Gou, Hou, Li, Xiong, Guo (b71) 2021 Liang (b83) 2015 Wang (b34) 2020 Sun, Lin, Wu (b70) 2006; vol. 4058 Krügel, Robertson, Valeur, Vigna (b66) 2004 Enck, Ongtang (b3) 2009 Chakraborty, Pierazzi, Subrahmanian (b27) 2020; 17 Mercaldo, Santone (b37) 2022; 48 Fu, Liu, Qin, Zhang, Zou, Yin, Li, Duan (b44) 2022 Androguard (b73) 2023 Lindorfer, Kolbitsch, Comparetti (b65) 2011; vol. 6961 Yan, Yin (b19) 2012 Tian, Yao, Ryder, Tan, Peng (b32) 2020; 17 Rasthofer, Arzt, Miltenberger, Bodden (b52) 2016 Feng, Chen, Xie, Meng, Lin, Liu (b35) 2021; 16 Cormen, Leiserson (b77) 1989 Chen, Yan, Han, Wang, Peng, Wang, Yang (b43) 2018; 433–434 Liu, Cao, Xiong (b41) 2018 Tam, Khan, Fattori, Cavallaro (b9) 2015 Zhao, Li, Zhou, Yu, Song, Xie, Zhang, Zhang (b94) 2024; 138 Canfora, Martinelli, Mercaldo, Nardone, Santone, Visaggio (b38) 2019; 45 Biondi (b81) 2022 Hu, Chiueh (b13) 2009 Zhao, Li, Song, Zhang (b63) 2023 VirusTotal (b86) 2021 Kolbitsch, Comparetti, Kruegel, Kirda, Zhou, Wang (b14) 2009 Arora, Peddoju, Chouhan (b22) 2018 Islam, Tian, Batten, Versteeg (b25) 2013; 36 Zhang, Reeves (b67) 2007 Bartos, Sofka, Franc (b21) 2016 Pendlebury, Pierazzi, Jordaney, Kinder, Cavallaro (b30) 2019 Maaten, Hinton (b87) 2008; 9 Dapps (b91) 2022 Zhao (b62) 2024 Bailey, Oberheide, Andersen (b45) 2007; vol. 4637 Conti, Khandhar, P. (b49) 2022; 122 Martignoni, Christodorescu, Jha (b69) 2007 Bai, Xing, Li, Feng, Ma (b50) 2020 Pascanu, Stokes, Sanossian, Marinescu, Thomas (b57) 2015 McAfee Lab (b74) 2021 AV-ATLAS (b28) 2024 Gu (b31) 2008 Ni, Qian, Zhang (b55) 2018; 77 SonicWall (b2) 2023 Huang, Liu, van der Maaten, Weinberger (b84) 2017 Canadian Institute for Cybersecurity (b85) 2018 Al-rimy, Maarof (b72) 2018; 74 Iadarola, Martinelli, Mercaldo, Santone (b36) 2021; 105 Liu, He, Xiong, Cao, Li (b42) 2019 Christodorescu, Jha, Kruegel (b68) 2007 Qiao, Jiang, Jiang, Gu (b56) 2019 Ren, Liu, Cheng, Feng, Chen (b7) 2017 Paola (b26) 2018 Mariconti, Onwuzurike, Andriotis (b10) 2017 Y. (b11) 2016 Christodorescu, Jha (b51) 2003 Korczynski, Duda (b61) 2014 Wang, Yan, Chen, Yang, Zhao, Conti (b47) 2018; 13 Rastogi, Chen, Jiang (b53) 2013 Felt, Chin, Hanna (b4) 2011 StatCounter (b1) 2021 Google for developers (b79) 2023 Ronneberger, Fischer, Brox (b82) 2015; vol. 9351 Zhang, Zhang, Zhong (b12) 2020 Zhou, Wang, Zhou, Jiang (b18) 2012 Peng, Gates, Sarma, Li, Qi, Potharaju, Nita-Rotaru, Molloy (b6) 2012 Yuan, Lu (b20) 2014 Song, Zhao (b59) 2023 Christodorescu, Jha, Seshia, Song, Bryant (b54) 2005 Zhang, Duan, Yin, Zhao (b8) 2014 Sathyanarayan, Kohli, Bruhadeshwar (b29) 2008; vol. 5107 Chuang, Wang (b58) 2015 García (b75) 2020 Nguyen, Epps, Bailey (b76) 2010; 11 Selenium (b92) 2022 Lindorfer (10.1016/j.comnet.2024.110563_b65) 2011; vol. 6961 Christodorescu (10.1016/j.comnet.2024.110563_b68) 2007 Cormen (10.1016/j.comnet.2024.110563_b77) 1989 Zhao (10.1016/j.comnet.2024.110563_b94) 2024; 138 Zhao (10.1016/j.comnet.2024.110563_b24) 2023 Christodorescu (10.1016/j.comnet.2024.110563_b51) 2003 Arp (10.1016/j.comnet.2024.110563_b5) 2014 Pascanu (10.1016/j.comnet.2024.110563_b57) 2015 Liu (10.1016/j.comnet.2024.110563_b42) 2019 Yan (10.1016/j.comnet.2024.110563_b19) 2012 Gu (10.1016/j.comnet.2024.110563_b31) 2008 Shen (10.1016/j.comnet.2024.110563_b89) 2019 Pendlebury (10.1016/j.comnet.2024.110563_b30) 2019 Tam (10.1016/j.comnet.2024.110563_b9) 2015 Enck (10.1016/j.comnet.2024.110563_b17) 2010 Tian (10.1016/j.comnet.2024.110563_b32) 2020; 17 Qiao (10.1016/j.comnet.2024.110563_b56) 2019 Fu (10.1016/j.comnet.2024.110563_b44) 2022 Wang (10.1016/j.comnet.2024.110563_b48) 2021; 106 Song (10.1016/j.comnet.2024.110563_b59) 2023 The Tcpdump Group (10.1016/j.comnet.2024.110563_b80) 2023 Peng (10.1016/j.comnet.2024.110563_b6) 2012 Islam (10.1016/j.comnet.2024.110563_b25) 2013; 36 SonicWall (10.1016/j.comnet.2024.110563_b2) 2023 Rastogi (10.1016/j.comnet.2024.110563_b53) 2013 Christodorescu (10.1016/j.comnet.2024.110563_b54) 2005 Dapps (10.1016/j.comnet.2024.110563_b91) 2022 Mariconti (10.1016/j.comnet.2024.110563_b10) 2017 Wang (10.1016/j.comnet.2024.110563_b47) 2018; 13 Tong (10.1016/j.comnet.2024.110563_b46) 2017; 103 StatCounter (10.1016/j.comnet.2024.110563_b1) 2021 Zhao (10.1016/j.comnet.2024.110563_b60) 2023 Zhao (10.1016/j.comnet.2024.110563_b93) 2023; 18 Korczynski (10.1016/j.comnet.2024.110563_b61) 2014 Zhao (10.1016/j.comnet.2024.110563_b63) 2023 Felt (10.1016/j.comnet.2024.110563_b4) 2011 Mercaldo (10.1016/j.comnet.2024.110563_b37) 2022; 48 Mohaisen (10.1016/j.comnet.2024.110563_b64) 2015; 52 Sun (10.1016/j.comnet.2024.110563_b70) 2006; vol. 4058 Hu (10.1016/j.comnet.2024.110563_b13) 2009 Ni (10.1016/j.comnet.2024.110563_b55) 2018; 77 Androguard (10.1016/j.comnet.2024.110563_b73) 2023 Biondi (10.1016/j.comnet.2024.110563_b81) 2022 Sathyanarayan (10.1016/j.comnet.2024.110563_b29) 2008; vol. 5107 Liang (10.1016/j.comnet.2024.110563_b83) 2015 Wang (10.1016/j.comnet.2024.110563_b90) 2021; vol. 12978 Zhou (10.1016/j.comnet.2024.110563_b18) 2012 VirusTotal (10.1016/j.comnet.2024.110563_b86) 2021 Paola (10.1016/j.comnet.2024.110563_b26) 2018 Arora (10.1016/j.comnet.2024.110563_b22) 2018 Shen (10.1016/j.comnet.2024.110563_b88) 2021; 16 Martignoni (10.1016/j.comnet.2024.110563_b69) 2007 Canadian Institute for Cybersecurity (10.1016/j.comnet.2024.110563_b85) 2018 Comar (10.1016/j.comnet.2024.110563_b33) 2013 Zhao (10.1016/j.comnet.2024.110563_b62) 2024 García (10.1016/j.comnet.2024.110563_b75) 2020 Feng (10.1016/j.comnet.2024.110563_b35) 2021; 16 Nguyen (10.1016/j.comnet.2024.110563_b76) 2010; 11 AV-ATLAS (10.1016/j.comnet.2024.110563_b28) 2024 Zhang (10.1016/j.comnet.2024.110563_b67) 2007 Chuang (10.1016/j.comnet.2024.110563_b58) 2015 Ronneberger (10.1016/j.comnet.2024.110563_b82) 2015; vol. 9351 Rong (10.1016/j.comnet.2024.110563_b71) 2021 Shen (10.1016/j.comnet.2024.110563_b23) 2017; 12 Bailey (10.1016/j.comnet.2024.110563_b45) 2007; vol. 4637 Conti (10.1016/j.comnet.2024.110563_b49) 2022; 122 Al-rimy (10.1016/j.comnet.2024.110563_b72) 2018; 74 Shen (10.1016/j.comnet.2024.110563_b40) 2016 Y. (10.1016/j.comnet.2024.110563_b11) 2016 Enck (10.1016/j.comnet.2024.110563_b3) 2009 Rasthofer (10.1016/j.comnet.2024.110563_b52) 2016 Krügel (10.1016/j.comnet.2024.110563_b66) 2004 Yuan (10.1016/j.comnet.2024.110563_b20) 2014 Zhang (10.1016/j.comnet.2024.110563_b8) 2014 Fredrikson (10.1016/j.comnet.2024.110563_b15) 2010 Ren (10.1016/j.comnet.2024.110563_b7) 2017 Canfora (10.1016/j.comnet.2024.110563_b38) 2019; 45 Huang (10.1016/j.comnet.2024.110563_b84) 2017 Selenium (10.1016/j.comnet.2024.110563_b92) 2022 Bartos (10.1016/j.comnet.2024.110563_b21) 2016 Iadarola (10.1016/j.comnet.2024.110563_b36) 2021; 105 Chen (10.1016/j.comnet.2024.110563_b43) 2018; 433–434 Liu (10.1016/j.comnet.2024.110563_b41) 2018 Maaten (10.1016/j.comnet.2024.110563_b87) 2008; 9 Yamaguchi (10.1016/j.comnet.2024.110563_b16) 2014 Chakraborty (10.1016/j.comnet.2024.110563_b27) 2020; 17 Zhang (10.1016/j.comnet.2024.110563_b12) 2020 Wang (10.1016/j.comnet.2024.110563_b34) 2020 Bai (10.1016/j.comnet.2024.110563_b50) 2020 Google for developers (10.1016/j.comnet.2024.110563_b79) 2023 Alfs (10.1016/j.comnet.2024.110563_b78) 2019 Kolbitsch (10.1016/j.comnet.2024.110563_b14) 2009 Zhang (10.1016/j.comnet.2024.110563_b39) 2016 McAfee Lab (10.1016/j.comnet.2024.110563_b74) 2021 |
| References_xml | – start-page: 5 year: 2007 end-page: 14 ident: b68 article-title: Mining specifications of malicious behavior publication-title: ESEC/SIGSOFT FSE – year: 2022 ident: b92 article-title: Selenium automates browsers – volume: 45 start-page: 1230 year: 2019 end-page: 1252 ident: b38 article-title: LEILA: Formal tool for identifying mobile malicious behaviour publication-title: IEEE Trans. Software Eng. – year: 2023 ident: b2 article-title: 2023 SonicWall cyber threat report – year: 2012 ident: b19 article-title: DroidScope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic Android malware analysis publication-title: USENIX Security Symposium – start-page: 45 year: 2018 end-page: 50 ident: b26 article-title: A hybrid system for malware detection on big data publication-title: INFOCOM Workshops – start-page: 2022 year: 2013 end-page: 2030 ident: b33 article-title: Combining supervised and unsupervised learning for zero-day malware detection publication-title: INFOCOM – year: 2016 ident: b11 article-title: IntelliDroid: A targeted input generator for the dynamic analysis of Android malware publication-title: NDSS – volume: 106 year: 2021 ident: b48 article-title: A novel few-shot malware classification approach for unknown family recognition with multi-prototype modeling publication-title: Comput. Secur. – start-page: 32 year: 2005 end-page: 46 ident: b54 article-title: Semantics-aware malware detection publication-title: S&P – year: 2014 ident: b5 article-title: DREBIN: Effective and explainable detection of Android malware in your pocket publication-title: NDSS – volume: 138 year: 2024 ident: b94 article-title: DDoS family: A novel perspective for massive types of DDoS attacks publication-title: Comput. Secur. – volume: vol. 6961 start-page: 338 year: 2011 end-page: 357 ident: b65 article-title: Detecting environment-sensitive malware publication-title: RAID – year: 2020 ident: b34 article-title: You are what you do: Hunting stealthy malware via data provenance analysis publication-title: NDSS – start-page: 139 year: 2008 end-page: 154 ident: b31 article-title: BotMiner: Clustering analysis of network traffic for protocol- and structure-independent botnet detection publication-title: USENIX Security Symposium – start-page: 611 year: 2009 end-page: 620 ident: b13 article-title: Large-scale malware indexing using function-call graphs publication-title: CCS – year: 2015 ident: b9 article-title: CopperDroid: Automatic reconstruction of Android malware behaviors publication-title: NDSS – volume: 105 year: 2021 ident: b36 article-title: Towards an interpretable deep learning model for mobile malware detection and family identification publication-title: Comput. Secur. – volume: 13 start-page: 1096 year: 2018 end-page: 1109 ident: b47 article-title: Detecting Android malware leveraging text semantics of network flows publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2003 ident: b51 article-title: Static analysis of executables to detect malicious patterns publication-title: USENIX Security Symposium – year: 2021 ident: b74 article-title: ‘FakeInstaller’ leads the attack on Android phones – volume: 103 start-page: 22 year: 2017 end-page: 31 ident: b46 article-title: A hybrid approach of mobile malware detection in Android publication-title: J. Parallel Distrib. Comput. – volume: 433–434 start-page: 346 year: 2018 end-page: 364 ident: b43 article-title: Machine learning based mobile malware detection using highly imbalanced network traffic publication-title: Inform. Sci. – start-page: 1105 year: 2014 end-page: 1116 ident: b8 article-title: Semantics-aware Android malware classification using weighted contextual API dependency graphs publication-title: CCS – start-page: 9911 year: 2019 end-page: 9912 ident: b78 article-title: Identifying Android malware using network-based approaches publication-title: AAAI – start-page: 241 year: 2012 end-page: 252 ident: b6 article-title: Using probabilistic generative models for ranking risks of Android apps publication-title: CCS – start-page: 781 year: 2014 end-page: 789 ident: b61 article-title: Markov chain fingerprinting to classify encrypted traffic publication-title: INFOCOM – volume: vol. 4058 start-page: 159 year: 2006 end-page: 170 ident: b70 article-title: API monitoring system for defeating worms and exploits in MS-windows system publication-title: ACISP – start-page: 351 year: 2009 end-page: 366 ident: b14 article-title: Effective and efficient malware detection at the end host publication-title: USENIX Security Symposium – year: 1989 ident: b77 article-title: Introduction to Algorithms – volume: 16 start-page: 2367 year: 2021 end-page: 2380 ident: b88 article-title: Accurate decentralized application identification via encrypted traffic analysis using graph neural networks publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2012 ident: b18 article-title: Hey, you, get off of my market: Detecting malicious apps in official and alternative Android markets publication-title: NDSS – year: 2016 ident: b21 article-title: Optimized invariant representation of network traffic for detecting unseen malware variants publication-title: USENIX Security Symposium – start-page: 431 year: 2007 end-page: 441 ident: b69 article-title: OmniUnpack: Fast, generic, and safe unpacking of malware publication-title: ACSAC – volume: 17 start-page: 262 year: 2020 end-page: 277 ident: b27 article-title: EC2: Ensemble clustering and classification for predicting Android malware families publication-title: IEEE Trans. Dependable Secur. Comput. – year: 2017 ident: b10 article-title: MaMaDroid: Detecting Android malware by building Markov chains of behavioral models publication-title: NDSS – year: 2018 ident: b85 article-title: Android malware dataset (CIC-AndMal2017) – volume: 12 start-page: 1830 year: 2017 end-page: 1843 ident: b23 article-title: Classification of encrypted traffic with second-order Markov chains and application attribute bigrams publication-title: IEEE TIFS – start-page: 18:1 year: 2019 end-page: 18:10 ident: b89 article-title: Encrypted traffic classification of decentralized applications on ethereum using feature fusion publication-title: IWQoS – start-page: 729 year: 2019 end-page: 746 ident: b30 article-title: TESSERACT: Eliminating experimental bias in malware classification across space and time publication-title: USENIX Security Symposium – volume: 18 start-page: 789 year: 2023 end-page: 803 ident: b93 article-title: SAGE: Steering the adversarial generation of examples with accelerations publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 47 year: 2016 end-page: 58 ident: b39 article-title: Causality-based sensemaking of network traffic for Android application security publication-title: AISec@CCS – start-page: 495 year: 2022 end-page: 509 ident: b44 article-title: Encrypted malware traffic detection via graph-based network analysis publication-title: RAID – start-page: 2261 year: 2017 end-page: 2269 ident: b84 article-title: Densely connected convolutional networks publication-title: CVPR – start-page: 255 year: 2004 end-page: 270 ident: b66 article-title: Static disassembly of obfuscated binaries publication-title: USENIX Security Symposium – start-page: 798 year: 2018 end-page: 800 ident: b22 article-title: Poster: Hybrid Android malware detection by combining supervised and unsupervised learning publication-title: MobiCom – volume: 122 year: 2022 ident: b49 article-title: A few-shot malware classification approach for unknown family recognition using malware feature visualization publication-title: Comput. Secur. – year: 2024 ident: b28 article-title: Total amount of malware and PUA – start-page: 627 year: 2011 end-page: 638 ident: b4 article-title: Android permissions demystified publication-title: CCS – volume: 77 start-page: 871 year: 2018 end-page: 885 ident: b55 article-title: Malware identification using visualization images and deep learning publication-title: Comput. Secur. – year: 2023 ident: b79 article-title: Android studio – year: 2021 ident: b86 article-title: VirusTotal – start-page: 201 year: 2015 end-page: 206 ident: b58 article-title: Machine learning based hybrid behavior models for Android malware analysis publication-title: QRS – year: 2020 ident: b75 article-title: AndroPyTool – volume: vol. 9351 start-page: 234 year: 2015 end-page: 241 ident: b82 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: MICCAI – start-page: 329 year: 2013 end-page: 334 ident: b53 article-title: DroidChameleon: Evaluating Android anti-malware against transformation attacks publication-title: AsiaCCS – start-page: 1916 year: 2015 end-page: 1920 ident: b57 article-title: Malware classification with recurrent networks publication-title: ICASSP – year: 2021 ident: b1 article-title: Mobile operating system market share worldwide – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b87 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 251 year: 2015 end-page: 266 ident: b64 article-title: AMAL: High-fidelity, behavior-based automated malware analysis and classification publication-title: Comput. Secur. – start-page: 3367 year: 2015 end-page: 3375 ident: b83 article-title: Recurrent convolutional neural network for object recognition publication-title: CVPR – start-page: 590 year: 2014 end-page: 604 ident: b16 article-title: Modeling and discovering vulnerabilities with code property graphs publication-title: IEEE Symposium on Security and Privacy – start-page: 371 year: 2014 end-page: 372 ident: b20 article-title: Droid-sec: Deep learning in Android malware detection publication-title: SIGCOMM – volume: 48 start-page: 2643 year: 2022 end-page: 2657 ident: b37 article-title: Formal equivalence checking for mobile malware detection and family classification publication-title: IEEE Trans. Software Eng. – start-page: 757 year: 2019 end-page: 762 ident: b56 article-title: A multi-channel visualization method for malware classification based on deep learning publication-title: TrustCom/BigDataSE – year: 2023 ident: b73 article-title: Reverse engineering and pentesting for Android applications – start-page: 45 year: 2010 end-page: 60 ident: b15 article-title: Synthesizing near-optimal malware specifications from suspicious behaviors publication-title: IEEE Symposium on Security and Privacy – volume: vol. 5107 start-page: 336 year: 2008 end-page: 349 ident: b29 article-title: Signature generation and detection of malware families publication-title: ACISP – year: 2023 ident: b60 article-title: CMD: Co-analyzed IoT Malware Detection Beyond the Network Traffic Domain publication-title: IEEE Trans. Mob. Comput. – year: 2022 ident: b91 article-title: State of the dapps – volume: 36 start-page: 646 year: 2013 end-page: 656 ident: b25 article-title: Classification of malware based on integrated static and dynamic features publication-title: J. Netw. Comput. Appl. – start-page: 431 year: 2023 end-page: 434 ident: b63 article-title: Work-in-progress: Towards real-time IDS via RNN and programmable switches co-designed approach publication-title: RTSS – volume: 74 start-page: 144 year: 2018 end-page: 166 ident: b72 article-title: Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions publication-title: Comput. Secur. – year: 2023 ident: b80 article-title: Tcpdump&libpcap – start-page: 1 year: 2018 end-page: 10 ident: b41 article-title: MaMPF: Encrypted traffic classification based on multi-attribute Markov probability fingerprints publication-title: IWQoS – start-page: 411 year: 2007 end-page: 420 ident: b67 article-title: MetaAware: Identifying metamorphic malware publication-title: ACSAC – year: 2024 ident: b62 article-title: Effective DDoS Mitigation via ML-Driven In-network Traffic Shaping publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 1 year: 2016 end-page: 10 ident: b40 article-title: Certificate-aware encrypted traffic classification using second-order Markov chain publication-title: IWQoS – start-page: 1171 year: 2019 end-page: 1179 ident: b42 article-title: FS-Net: A flow sequence network for encrypted traffic classification publication-title: INFOCOM – start-page: 235 year: 2009 end-page: 245 ident: b3 article-title: On lightweight mobile phone application certification publication-title: CCS – start-page: 393 year: 2010 end-page: 407 ident: b17 article-title: TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones publication-title: OSDI – start-page: 757 year: 2020 end-page: 770 ident: b12 article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved Android malware publication-title: CCS – year: 2016 ident: b52 article-title: Harvesting runtime values in Android applications that feature anti-analysis techniques publication-title: NDSS – volume: vol. 4637 start-page: 178 year: 2007 end-page: 197 ident: b45 article-title: Automated classification and analysis of internet malware publication-title: RAID – year: 2022 ident: b81 article-title: Scapy – start-page: 570 year: 2017 end-page: 572 ident: b7 article-title: Poster: EasyDefense: Towards easy and effective protection against malware for smartphones publication-title: MobiCom – volume: 11 start-page: 2837 year: 2010 end-page: 2854 ident: b76 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 1563 year: 2021 end-page: 1578 ident: b35 article-title: A performance-sensitive malware detection system using deep learning on mobile devices publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 1560 year: 2020 end-page: 1571 ident: b50 article-title: Unsuccessful story about few shot malware family classification and siamese network to the rescue publication-title: ICSE – year: 2023 ident: b59 article-title: I2RNN: An Incremental and Interpretable Recurrent Neural Network for Encrypted Traffic Classification publication-title: IEEE Trans. Dependable Secure Comput. – volume: 17 start-page: 64 year: 2020 end-page: 77 ident: b32 article-title: Detection of repackaged Android malware with code-heterogeneity features publication-title: IEEE Trans. Dependable Secur. Comput. – volume: vol. 12978 start-page: 518 year: 2021 end-page: 534 ident: b90 article-title: CQNet: A clustering-based quadruplet network for decentralized application classification via encrypted traffic publication-title: ECML/PKDD (4) – start-page: 1 year: 2021 end-page: 8 ident: b71 article-title: UMVD-FSL: Unseen malware variants detection using few-shot learning publication-title: IJCNN – start-page: 1 year: 2023 end-page: 18 ident: b24 article-title: ERNN: Error-resilient RNN for encrypted traffic detection towards network-induced phenomena publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 371 year: 2014 ident: 10.1016/j.comnet.2024.110563_b20 article-title: Droid-sec: Deep learning in Android malware detection – year: 2016 ident: 10.1016/j.comnet.2024.110563_b52 article-title: Harvesting runtime values in Android applications that feature anti-analysis techniques – start-page: 45 year: 2010 ident: 10.1016/j.comnet.2024.110563_b15 article-title: Synthesizing near-optimal malware specifications from suspicious behaviors – year: 2020 ident: 10.1016/j.comnet.2024.110563_b34 article-title: You are what you do: Hunting stealthy malware via data provenance analysis – start-page: 757 year: 2020 ident: 10.1016/j.comnet.2024.110563_b12 article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved Android malware – volume: vol. 4058 start-page: 159 year: 2006 ident: 10.1016/j.comnet.2024.110563_b70 article-title: API monitoring system for defeating worms and exploits in MS-windows system – year: 2016 ident: 10.1016/j.comnet.2024.110563_b21 article-title: Optimized invariant representation of network traffic for detecting unseen malware variants – year: 2022 ident: 10.1016/j.comnet.2024.110563_b91 – volume: 45 start-page: 1230 issue: 12 year: 2019 ident: 10.1016/j.comnet.2024.110563_b38 article-title: LEILA: Formal tool for identifying mobile malicious behaviour publication-title: IEEE Trans. Software Eng. doi: 10.1109/TSE.2018.2834344 – start-page: 757 year: 2019 ident: 10.1016/j.comnet.2024.110563_b56 article-title: A multi-channel visualization method for malware classification based on deep learning – start-page: 590 year: 2014 ident: 10.1016/j.comnet.2024.110563_b16 article-title: Modeling and discovering vulnerabilities with code property graphs – volume: vol. 5107 start-page: 336 year: 2008 ident: 10.1016/j.comnet.2024.110563_b29 article-title: Signature generation and detection of malware families – volume: 16 start-page: 1563 year: 2021 ident: 10.1016/j.comnet.2024.110563_b35 article-title: A performance-sensitive malware detection system using deep learning on mobile devices publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3025436 – start-page: 1916 year: 2015 ident: 10.1016/j.comnet.2024.110563_b57 article-title: Malware classification with recurrent networks – volume: 18 start-page: 789 year: 2023 ident: 10.1016/j.comnet.2024.110563_b93 article-title: SAGE: Steering the adversarial generation of examples with accelerations publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2022.3226572 – volume: 17 start-page: 262 issue: 2 year: 2020 ident: 10.1016/j.comnet.2024.110563_b27 article-title: EC2: Ensemble clustering and classification for predicting Android malware families publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2017.2739145 – start-page: 1560 year: 2020 ident: 10.1016/j.comnet.2024.110563_b50 article-title: Unsuccessful story about few shot malware family classification and siamese network to the rescue – volume: 103 start-page: 22 year: 2017 ident: 10.1016/j.comnet.2024.110563_b46 article-title: A hybrid approach of mobile malware detection in Android publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2016.10.012 – volume: 13 start-page: 1096 issue: 5 year: 2018 ident: 10.1016/j.comnet.2024.110563_b47 article-title: Detecting Android malware leveraging text semantics of network flows publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2771228 – start-page: 47 year: 2016 ident: 10.1016/j.comnet.2024.110563_b39 article-title: Causality-based sensemaking of network traffic for Android application security – start-page: 411 year: 2007 ident: 10.1016/j.comnet.2024.110563_b67 article-title: MetaAware: Identifying metamorphic malware – start-page: 495 year: 2022 ident: 10.1016/j.comnet.2024.110563_b44 article-title: Encrypted malware traffic detection via graph-based network analysis – start-page: 431 year: 2007 ident: 10.1016/j.comnet.2024.110563_b69 article-title: OmniUnpack: Fast, generic, and safe unpacking of malware – start-page: 1 year: 2018 ident: 10.1016/j.comnet.2024.110563_b41 article-title: MaMPF: Encrypted traffic classification based on multi-attribute Markov probability fingerprints – volume: vol. 9351 start-page: 234 year: 2015 ident: 10.1016/j.comnet.2024.110563_b82 article-title: U-Net: Convolutional networks for biomedical image segmentation – volume: 16 start-page: 2367 year: 2021 ident: 10.1016/j.comnet.2024.110563_b88 article-title: Accurate decentralized application identification via encrypted traffic analysis using graph neural networks publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2021.3050608 – start-page: 5 year: 2007 ident: 10.1016/j.comnet.2024.110563_b68 article-title: Mining specifications of malicious behavior – start-page: 431 year: 2023 ident: 10.1016/j.comnet.2024.110563_b63 article-title: Work-in-progress: Towards real-time IDS via RNN and programmable switches co-designed approach – volume: 122 year: 2022 ident: 10.1016/j.comnet.2024.110563_b49 article-title: A few-shot malware classification approach for unknown family recognition using malware feature visualization publication-title: Comput. Secur. doi: 10.1016/j.cose.2022.102887 – year: 2021 ident: 10.1016/j.comnet.2024.110563_b1 – start-page: 45 year: 2018 ident: 10.1016/j.comnet.2024.110563_b26 article-title: A hybrid system for malware detection on big data – volume: 11 start-page: 2837 year: 2010 ident: 10.1016/j.comnet.2024.110563_b76 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – volume: 105 year: 2021 ident: 10.1016/j.comnet.2024.110563_b36 article-title: Towards an interpretable deep learning model for mobile malware detection and family identification publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102198 – volume: 48 start-page: 2643 issue: 7 year: 2022 ident: 10.1016/j.comnet.2024.110563_b37 article-title: Formal equivalence checking for mobile malware detection and family classification publication-title: IEEE Trans. Software Eng. doi: 10.1109/TSE.2021.3067061 – start-page: 1 year: 2023 ident: 10.1016/j.comnet.2024.110563_b24 article-title: ERNN: Error-resilient RNN for encrypted traffic detection towards network-induced phenomena publication-title: IEEE Trans. Dependable Secure Comput. – year: 2014 ident: 10.1016/j.comnet.2024.110563_b5 article-title: DREBIN: Effective and explainable detection of Android malware in your pocket – start-page: 1 year: 2016 ident: 10.1016/j.comnet.2024.110563_b40 article-title: Certificate-aware encrypted traffic classification using second-order Markov chain – volume: 138 year: 2024 ident: 10.1016/j.comnet.2024.110563_b94 article-title: DDoS family: A novel perspective for massive types of DDoS attacks publication-title: Comput. Secur. doi: 10.1016/j.cose.2023.103663 – start-page: 627 year: 2011 ident: 10.1016/j.comnet.2024.110563_b4 article-title: Android permissions demystified – start-page: 3367 year: 2015 ident: 10.1016/j.comnet.2024.110563_b83 article-title: Recurrent convolutional neural network for object recognition – start-page: 241 year: 2012 ident: 10.1016/j.comnet.2024.110563_b6 article-title: Using probabilistic generative models for ranking risks of Android apps – year: 2017 ident: 10.1016/j.comnet.2024.110563_b10 article-title: MaMaDroid: Detecting Android malware by building Markov chains of behavioral models – start-page: 393 year: 2010 ident: 10.1016/j.comnet.2024.110563_b17 article-title: TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones – volume: 106 year: 2021 ident: 10.1016/j.comnet.2024.110563_b48 article-title: A novel few-shot malware classification approach for unknown family recognition with multi-prototype modeling publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102273 – start-page: 18:1 year: 2019 ident: 10.1016/j.comnet.2024.110563_b89 article-title: Encrypted traffic classification of decentralized applications on ethereum using feature fusion – start-page: 2261 year: 2017 ident: 10.1016/j.comnet.2024.110563_b84 article-title: Densely connected convolutional networks – start-page: 329 year: 2013 ident: 10.1016/j.comnet.2024.110563_b53 article-title: DroidChameleon: Evaluating Android anti-malware against transformation attacks – year: 2023 ident: 10.1016/j.comnet.2024.110563_b80 – volume: 77 start-page: 871 year: 2018 ident: 10.1016/j.comnet.2024.110563_b55 article-title: Malware identification using visualization images and deep learning publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.04.005 – year: 2016 ident: 10.1016/j.comnet.2024.110563_b11 article-title: IntelliDroid: A targeted input generator for the dynamic analysis of Android malware – start-page: 2022 year: 2013 ident: 10.1016/j.comnet.2024.110563_b33 article-title: Combining supervised and unsupervised learning for zero-day malware detection – start-page: 611 year: 2009 ident: 10.1016/j.comnet.2024.110563_b13 article-title: Large-scale malware indexing using function-call graphs – year: 2021 ident: 10.1016/j.comnet.2024.110563_b86 – volume: vol. 4637 start-page: 178 year: 2007 ident: 10.1016/j.comnet.2024.110563_b45 article-title: Automated classification and analysis of internet malware – start-page: 729 year: 2019 ident: 10.1016/j.comnet.2024.110563_b30 article-title: TESSERACT: Eliminating experimental bias in malware classification across space and time – year: 2021 ident: 10.1016/j.comnet.2024.110563_b74 – year: 2022 ident: 10.1016/j.comnet.2024.110563_b92 – volume: 74 start-page: 144 year: 2018 ident: 10.1016/j.comnet.2024.110563_b72 article-title: Ransomware threat success factors, taxonomy, and countermeasures: A survey and research directions publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.01.001 – year: 2023 ident: 10.1016/j.comnet.2024.110563_b79 – year: 2023 ident: 10.1016/j.comnet.2024.110563_b2 – start-page: 139 year: 2008 ident: 10.1016/j.comnet.2024.110563_b31 article-title: BotMiner: Clustering analysis of network traffic for protocol- and structure-independent botnet detection – year: 2024 ident: 10.1016/j.comnet.2024.110563_b28 – year: 2023 ident: 10.1016/j.comnet.2024.110563_b59 article-title: I2RNN: An Incremental and Interpretable Recurrent Neural Network for Encrypted Traffic Classification publication-title: IEEE Trans. Dependable Secure Comput. – volume: 52 start-page: 251 year: 2015 ident: 10.1016/j.comnet.2024.110563_b64 article-title: AMAL: High-fidelity, behavior-based automated malware analysis and classification publication-title: Comput. Secur. doi: 10.1016/j.cose.2015.04.001 – start-page: 570 year: 2017 ident: 10.1016/j.comnet.2024.110563_b7 article-title: Poster: EasyDefense: Towards easy and effective protection against malware for smartphones – year: 2023 ident: 10.1016/j.comnet.2024.110563_b60 article-title: CMD: Co-analyzed IoT Malware Detection Beyond the Network Traffic Domain publication-title: IEEE Trans. Mob. Comput. – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.comnet.2024.110563_b87 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: vol. 12978 start-page: 518 year: 2021 ident: 10.1016/j.comnet.2024.110563_b90 article-title: CQNet: A clustering-based quadruplet network for decentralized application classification via encrypted traffic – start-page: 255 year: 2004 ident: 10.1016/j.comnet.2024.110563_b66 article-title: Static disassembly of obfuscated binaries – year: 2015 ident: 10.1016/j.comnet.2024.110563_b9 article-title: CopperDroid: Automatic reconstruction of Android malware behaviors – year: 2023 ident: 10.1016/j.comnet.2024.110563_b73 – start-page: 1105 year: 2014 ident: 10.1016/j.comnet.2024.110563_b8 article-title: Semantics-aware Android malware classification using weighted contextual API dependency graphs – volume: 17 start-page: 64 issue: 1 year: 2020 ident: 10.1016/j.comnet.2024.110563_b32 article-title: Detection of repackaged Android malware with code-heterogeneity features publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2017.2745575 – start-page: 32 year: 2005 ident: 10.1016/j.comnet.2024.110563_b54 article-title: Semantics-aware malware detection – start-page: 351 year: 2009 ident: 10.1016/j.comnet.2024.110563_b14 article-title: Effective and efficient malware detection at the end host – year: 2003 ident: 10.1016/j.comnet.2024.110563_b51 article-title: Static analysis of executables to detect malicious patterns – start-page: 235 year: 2009 ident: 10.1016/j.comnet.2024.110563_b3 article-title: On lightweight mobile phone application certification – volume: 36 start-page: 646 issue: 2 year: 2013 ident: 10.1016/j.comnet.2024.110563_b25 article-title: Classification of malware based on integrated static and dynamic features publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.10.004 – year: 2012 ident: 10.1016/j.comnet.2024.110563_b19 article-title: DroidScope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic Android malware analysis – start-page: 1 year: 2021 ident: 10.1016/j.comnet.2024.110563_b71 article-title: UMVD-FSL: Unseen malware variants detection using few-shot learning – volume: vol. 6961 start-page: 338 year: 2011 ident: 10.1016/j.comnet.2024.110563_b65 article-title: Detecting environment-sensitive malware – start-page: 1171 year: 2019 ident: 10.1016/j.comnet.2024.110563_b42 article-title: FS-Net: A flow sequence network for encrypted traffic classification – year: 2024 ident: 10.1016/j.comnet.2024.110563_b62 article-title: Effective DDoS Mitigation via ML-Driven In-network Traffic Shaping publication-title: IEEE Trans. Dependable Secure Comput. – year: 2020 ident: 10.1016/j.comnet.2024.110563_b75 – year: 2018 ident: 10.1016/j.comnet.2024.110563_b85 – start-page: 201 year: 2015 ident: 10.1016/j.comnet.2024.110563_b58 article-title: Machine learning based hybrid behavior models for Android malware analysis – start-page: 9911 year: 2019 ident: 10.1016/j.comnet.2024.110563_b78 article-title: Identifying Android malware using network-based approaches – start-page: 781 year: 2014 ident: 10.1016/j.comnet.2024.110563_b61 article-title: Markov chain fingerprinting to classify encrypted traffic – year: 2022 ident: 10.1016/j.comnet.2024.110563_b81 – year: 1989 ident: 10.1016/j.comnet.2024.110563_b77 – year: 2012 ident: 10.1016/j.comnet.2024.110563_b18 article-title: Hey, you, get off of my market: Detecting malicious apps in official and alternative Android markets – volume: 433–434 start-page: 346 year: 2018 ident: 10.1016/j.comnet.2024.110563_b43 article-title: Machine learning based mobile malware detection using highly imbalanced network traffic publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.04.044 – start-page: 798 year: 2018 ident: 10.1016/j.comnet.2024.110563_b22 article-title: Poster: Hybrid Android malware detection by combining supervised and unsupervised learning – volume: 12 start-page: 1830 issue: 8 year: 2017 ident: 10.1016/j.comnet.2024.110563_b23 article-title: Classification of encrypted traffic with second-order Markov chains and application attribute bigrams publication-title: IEEE TIFS |
| SSID | ssj0004428 |
| Score | 2.4660542 |
| Snippet | The continuous emergence of malware has threatened to the Android platform and user privacy. With the evolution of the Android system and malware, it is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110563 |
| SubjectTerms | Android malware Decentralized applications Meta-features U-net Unknown families |
| Title | metaNet: Interpretable unknown mobile malware identification with a novel meta-features mining algorithm |
| URI | https://dx.doi.org/10.1016/j.comnet.2024.110563 |
| Volume | 250 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AIKHN dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: ACRLP dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: .~1 dateStart: 19990114 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004428 issn: 1389-1286 databaseCode: AKRWK dateStart: 19990114 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI4Qe4ED2uUhYBeUA9cwnTZJM9wQAs0yYg48BLcqDwcGtZ3RUODGb9-4jwUkBBKXRo3sqHISx04_24Ts6cRFTkKfgQuPoP0sUxIkM9b6VKfCCoOO4tlYDq_46Y24WSBHXSwMwipb3d_o9Fpbtz29Vpq92WTSu6h_scUY4IABpgIDzTlPsYrB_ssrzIPzur4qEjOk7sLnaoxXGLsERFTGHPHwQiYfH09vjpyTn2SltRXpYfM5v8gClKtk-U0GwTVyV0Clx1Ad0Ff0oMmBPpZ4WVbSYmrCtqeFzp_1HOjEteCgej4oXsJSTcvpE-QUR2Ie6kSfD7SoC0dQnd9O54GqWCdXJ8eXR0PWFk9gNngBFYvBRM5HwVdWA2WDVRA2muR9z73gUkHCfTDtBkZLYaX3ceoiDdZDnCrvXBSZZIMsltMSNgmVPsGsXV70FXAnI21AgRJg9aAPsYq2SNLJLLNtZnEscJFnHYTsPmsknaGks0bSW4T955o1mTW-oE-76cjerZAsKP9PObe_zfmbLOFbA_j7Qxar-SPsBCOkMrv1KtslPw7_joZjbEfn16N_EFDgqA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3HlhN08R2XDaEQAVKF6jULfLjDEVJikqAjd-OnQcPCYHEksG5s6yzfb6zv7tD6FBGJjAcOgSM-zjtp4ngwInS2sYyZpop7yheD3hvSC9HbNRCp00sjIdV1rq_0umltq5b2rU024_jcfumfGILfYCDDzBlbAbNURbG3gM7evvEeVBaFlj11MSTN_FzJcjLdZ6Dh1SG1APiGY9-Pp--nDnny2ipNhbxSTWeFdSCfBUtfkkhuIbuMyjkAIpj_AkfVCng59zfluU4myi373Em01c5BTw2NTqonBDsb2GxxPnkBVLseyIWykyfTzgrK0dgmd5Npo4qW0fD87Pb0x6pqycQ7dyAgoSgAmMD5yyLrtDOLHA7jdOOpZZRLiCi1tl2XSU509zaMDaBBG0hjIU1JghUtIFm80kOmwhzG_m0XZZ1BFDDA6lAgGCgZbcDoQi2UNTILNF1anFf4SJNGgzZQ1JJOvGSTipJbyHywfVYpdb4gz5upiP5tkQSp_1_5dz-N-cBmu_dXveT_sXgagct-D8V-m8XzRbTZ9hzFkmh9ssV9w5VoOCa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=metaNet%3A+Interpretable+unknown+mobile+malware+identification+with+a+novel+meta-features+mining+algorithm&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Li%2C+Zhaoxuan&rft.au=Zhao%2C+Ziming&rft.au=Zhang%2C+Rui&rft.au=Lu%2C+Haoyang&rft.date=2024-08-01&rft.issn=1389-1286&rft.volume=250&rft.spage=110563&rft_id=info:doi/10.1016%2Fj.comnet.2024.110563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comnet_2024_110563 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon |