Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis

In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 5...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 175; pp. 132 - 145
Main Authors Hu, Kun, Wang, Yijue, Chen, Kewei, Hou, Likun, Zhang, Xiaoqun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 29.01.2016
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2015.10.043

Cover

Abstract In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 549 subjects from the Alzheimer׳s disease Neuroimaging Initiative (ADNI) database are included, and there are 228 Normal controls (NC), 133 MCI patients (71 of them converted to AD within 3 years, referred as MCI converters, or MCIc) and 188 AD patients. The images are preprocessed with the standard voxel-based morphometry method with segmentation of grey matter, white matter and cerebrospinal fluid. Wavelet frame, a multi-scale image representation approach, is applied to extract features of different scales and directions from the processed grey matter image data. The features are extracted for both whole grey matter images and grey matter images of the hippocampus region. The support vector machine is adopted to construct classifiers for MCIc and MCI non-converters (MCInc). The accuracy using a leave-one-out procedure for classification of AD vs. NC and MCIc vs. MCInc is 84.13% and 76.69% respectively, both achieved by local hippocampus data. Our study shows that the proposed multi-scale method is capable of discriminating MCI converters and non-converters, and it can be potentially useful for MCI prognosis in clinical applications.
AbstractList In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 549 subjects from the Alzheimer׳s disease Neuroimaging Initiative (ADNI) database are included, and there are 228 Normal controls (NC), 133 MCI patients (71 of them converted to AD within 3 years, referred as MCI converters, or MCIc) and 188 AD patients. The images are preprocessed with the standard voxel-based morphometry method with segmentation of grey matter, white matter and cerebrospinal fluid. Wavelet frame, a multi-scale image representation approach, is applied to extract features of different scales and directions from the processed grey matter image data. The features are extracted for both whole grey matter images and grey matter images of the hippocampus region. The support vector machine is adopted to construct classifiers for MCIc and MCI non-converters (MCInc). The accuracy using a leave-one-out procedure for classification of AD vs. NC and MCIc vs. MCInc is 84.13% and 76.69% respectively, both achieved by local hippocampus data. Our study shows that the proposed multi-scale method is capable of discriminating MCI converters and non-converters, and it can be potentially useful for MCI prognosis in clinical applications.
Author Hu, Kun
Chen, Kewei
Wang, Yijue
Zhang, Xiaoqun
Hou, Likun
Author_xml – sequence: 1
  givenname: Kun
  surname: Hu
  fullname: Hu, Kun
  organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Yijue
  surname: Wang
  fullname: Wang, Yijue
  organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
  organization: Banner Alzheimer׳s Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA
– sequence: 4
  givenname: Likun
  surname: Hou
  fullname: Hou, Likun
  organization: Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Xiaoqun
  surname: Zhang
  fullname: Zhang, Xiaoqun
  email: xqzhang@sjtu.edu.cn
  organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
BookMark eNqFkMtKAzEUhoNUsFbfwEVeYMZc5upCKPVWaBFE1yGTOZGUaVKTjNi3d6Z15UJXB37O93POd44m1llA6IqSlBJaXG9SC71y25QRmg9RSjJ-gqa0KllSsaqYoCmpWZ4wTtkZOg9hQwgtKaun6GPdd9EkQckOsAYZew8Bw1f0UkXjLNbebXEjA3TGAg7R92rcweuXJdbO4_ViiXcyGrARq06GYLRR8oBK2-L5HQbpuz1ujXy3LphwgU617AJc_swZenu4f108Javnx-VivkoUJ0VMGNVKlSUnAHnBG03yTBVaUslUW-c0bzXUQ8BrKmvKuQadNRWrGS1ZQxrd8Bm6OfYq70LwoIUy8XDY8JvpBCVilCc24ihPjPLGdJA3wNkveOfNVvr9f9jtEYPhsU8DXgQ1mFHQGg8qitaZvwu-AX6KkBU
CitedBy_id crossref_primary_10_1002_ima_22290
crossref_primary_10_3390_make6010024
crossref_primary_10_1016_j_compbiomed_2017_02_011
crossref_primary_10_1016_j_neucom_2019_12_050
crossref_primary_10_3389_fnagi_2021_688926
crossref_primary_10_1038_s41598_018_29295_9
crossref_primary_10_1111_exsy_12566
crossref_primary_10_1002_ima_22458
crossref_primary_10_1007_s13755_024_00333_3
crossref_primary_10_1186_s40708_018_0080_3
crossref_primary_10_3390_app11052187
crossref_primary_10_3233_ADR_210314
crossref_primary_10_3390_app9153063
crossref_primary_10_1016_j_jneumeth_2018_02_014
crossref_primary_10_1049_ipr2_12605
crossref_primary_10_1016_j_compbiomed_2023_106790
crossref_primary_10_1109_TCBB_2021_3053061
crossref_primary_10_1155_2022_1419310
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1016_j_media_2021_102304
crossref_primary_10_3390_s22197661
crossref_primary_10_1002_ima_22685
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1049_joe_2018_9412
crossref_primary_10_3389_fnins_2022_902528
crossref_primary_10_1142_S0129065718500429
crossref_primary_10_1016_j_bspc_2018_08_009
crossref_primary_10_3389_fncel_2021_695738
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1080_23279095_2023_2169886
crossref_primary_10_1016_j_asoc_2023_109991
crossref_primary_10_1016_j_jalz_2019_02_007
crossref_primary_10_1016_j_neucom_2016_08_041
crossref_primary_10_1051_e3sconf_202339101047
crossref_primary_10_1109_JBHI_2016_2608998
crossref_primary_10_1016_j_nicl_2020_102290
crossref_primary_10_1016_j_ijleo_2022_170347
crossref_primary_10_3390_diagnostics12123193
crossref_primary_10_1016_j_nicl_2017_08_014
crossref_primary_10_1007_s12021_019_09418_x
crossref_primary_10_2196_31106
crossref_primary_10_1002_alz_13412
crossref_primary_10_1016_j_bspc_2022_103725
crossref_primary_10_1109_ACCESS_2019_2921538
crossref_primary_10_1016_j_neucom_2019_05_025
crossref_primary_10_1016_j_neucom_2024_129025
crossref_primary_10_4316_AECE_2017_02015
crossref_primary_10_1109_JBHI_2021_3113668
crossref_primary_10_3389_fneur_2019_01097
Cites_doi 10.1016/j.jalz.2013.12.014
10.1016/j.nic.2005.09.008
10.1016/j.neurobiolaging.2013.06.018
10.1016/j.neuroimage.2011.12.071
10.1016/j.neuroimage.2012.05.022
10.1038/nrn1385
10.1016/j.neuroimage.2012.04.056
10.1016/j.neuroimage.2010.04.006
10.1002/brb3.19
10.2307/1165300
10.1007/BF00994018
10.1002/hipo.20626
10.1016/j.neuroimage.2010.10.081
10.1016/j.cortex.2012.08.013
10.1016/j.jalz.2010.03.007
10.1016/j.neuroimage.2011.05.083
10.1006/jfan.1996.3079
10.1007/s00234-013-1193-2
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.neuroimage.2010.12.066
10.1137/1.9781611970104
10.1001/archneur.61.1.59
10.1186/1750-1326-6-85
10.1006/nimg.2001.0978
10.1371/journal.pone.0025074
10.1023/A:1007601015854
10.1007/s00429-015-1059-y
10.1002/hbm.22156
10.1016/j.neuroimage.2011.01.008
10.1016/j.jalz.2012.06.004
10.1016/j.nicl.2013.12.012
10.1016/j.neuroimage.2009.09.069
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2015.10.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 145
ExternalDocumentID 10_1016_j_neucom_2015_10_043
S0925231215015027
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-21fcc7730ee563bf054c6fa1a2cd9515dfe9c6f391a9133fef4b8292172b0bfb3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:06:47 EDT 2025
Wed Oct 01 02:27:24 EDT 2025
Fri Feb 23 02:28:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural MRI
MCI
Tight wavelet frame
Alzheimer׳s disease
Multi-scale
SVM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-21fcc7730ee563bf054c6fa1a2cd9515dfe9c6f391a9133fef4b8292172b0bfb3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2015_10_043
crossref_primary_10_1016_j_neucom_2015_10_043
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-29
PublicationDateYYYYMMDD 2016-01-29
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-29
  day: 29
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib35) 2002; 15
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (bib38) 2012; 8
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Lecture Notes, SIAM, first ed., 1992.
Ron, Shen (bib32) 1997; 148
Mu, Gage (bib26) 2011; 6
Hsu, Chih-Wei, Chih-Chung Chang, Chih-Jen Lin. A practical guide to support vector classification. (2003).
H.-I. Suk, S.-W. Lee, D. Shen, A.D.N. Initiative, et al., Deep sparse multi-task learning for feature selection in Alzheimers disease diagnosis, Brain Struct. Funct. (2015) 1–19.
Nakazawa, McHugh, Wilson, Tonegawa (bib28) 2004; 5
Zhang, Wang, Zhou, Yuan, Shen (bib44) 2011; 55
Clark (bib7) 2011; 1
Prince, Martin, M. Prina, Maëlenn Guerchet. Journey of Caring: an analysis of long-term care for Dementia. Diss. N/A Ed; London: Alzheimer's Disease International, 2013.
R. Wolz, P. Aljabar, J.V. Hajnal, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Leap: learning embeddings for atlas propagation, NeuroImage 49 (2) (2010) 1316–1325.
Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (bib43) 2013; 9
Jones (bib23) 1994; 19
Fawcett (bib14) 2004; 31
Chincarini, Bosco, Calvini, Gemme, Esposito, Olivieri, Rei, Squarcia, Rodriguez, Bellotti (bib5) 2011; 58
Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (bib6) 2009; 19
Mallat (bib25) 1999
Hinrichs, Singh, Xu, Johnson (bib21) 2011; 55
Filipovych, Davatzikos (bib15) 2011; 55
H. Liu, R.H. Chan, Y. Yao, Geometric tight frame based stylometry for art authentication of van gogh paintings, CoRR, abs/1407.0439, 2014.
Westman, Muehlboeck, Simmons (bib39) 2012; 62
Cox (bib9) 1972; 34
Goto, Abe, Aoki, Hayashi, Miyati, Takao, Iwatsubo, Yamashita, Matsuda, Mori, Kunimatsu, Ino, Yano, Ohtomo (bib17) 2013; 55
Provost, Fawcett (bib31) 2001; 42
Fan, Chen, Lin (bib13) 2005; 6
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib27) 2005; 15
Aksu, Miller, Kesidis, Bigler, Yang (bib1) 2011; 6
D. Donoho, S. Mallat, R. von Sachs, et al., Estimating Covariances of Locally Stationary Processes: Rates of Convergence of Best Basis Methods, Technical Report, Department of Statistics, Stanford University, Standford, California, USA, 1998.
Cortes, Vapnik (bib8) 1995; 20
Wimo, Anders, Martin James Prince. World Alzheimer Report 2010: the global economic impact of dementia. Alzheimer's Disease International, 2010.
K.R. Gray, R. Wolz, R.A. Heckemann, P. Aljabar, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer׳s disease, NeuroImage 60 (1) (2012) 221–229.
Burrus, C. Sidney, Ramesh A. Gopinath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer. (1997)
Trzepacz, Yu, Sun, Schuh, Case, Witte, Hochstetler, Hake (bib34) 2014; 35
M.W. Weiner, P.S. Aisen, C.R. Jack Jr., W.J. Jagust, J.Q. Trojanowski, L. Shaw, A.J. Saykin, J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H. Soares, P. Snyder, E. Siemers, W. Potter, P.E. Cole, M. Schmidt, The Alzheimer׳s disease neuroimaging initiative: progress report and future plans, Alzheimer׳s Dement. 6 (3) (2010) 202–211.e7.
Wolz, Heckemann, Aljabar, Hajnal, Hammers, Ltjnen, Rueckert (bib42) 2010; 52
L.G. Apostolova, K.S. Hwang, O. Kohannim, D. Avila, D. Elashoff, C.R.J. Jr., L. Shaw, J.Q. Trojanowski, M.W. Weiner, P.M. Thompson, Apoe4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer׳s disease, NeuroImage: Clinical 4 (0) (2014) 461–472.
Beal, Gracco, Brettschneider, Kroll, Nil (bib4) 2013; 49
C.-Y. Wee, P.-T. Yap, D. Shen, and for the Alzheimers Disease Neuroimaging Initiative, Prediction of Alzheimers disease and mild cognitive impairment using cortical morphological patterns, Hum. Brain Mapp. 34 (12) (2013) 3411-3425.
Grundman, Petersen, Ferris, Thomas, Aisen, Bennett, Foster, Jack, Galasko, Doody (bib19) 2004; 61
B. Dong, Z. Shen, MRA-based wavelet frames and applications, in: IAS Lecture Note Series, vol. 19, Park City Mathematics Institute, Park City, 2010.
Hackmack, Paul, Weygandt, Allefeld, Haynes (bib20) 2012; 62
D.E. Barnes, I.S. Cenzer, K. Yaffe, C.S. Ritchie, S.J. Lee, Alzheimer׳s Disease Neuroimaging Initiative, et al., A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer׳s disease, Alzheimer׳s Dement. 10 (6) (2014) 646–655.
Platt (bib29) 1999; 10
Grundman (10.1016/j.neucom.2015.10.043_bib19) 2004; 61
Clark (10.1016/j.neucom.2015.10.043_bib7) 2011; 1
Fan (10.1016/j.neucom.2015.10.043_bib13) 2005; 6
Provost (10.1016/j.neucom.2015.10.043_bib31) 2001; 42
Beal (10.1016/j.neucom.2015.10.043_bib4) 2013; 49
Hinrichs (10.1016/j.neucom.2015.10.043_bib21) 2011; 55
Platt (10.1016/j.neucom.2015.10.043_bib29) 1999; 10
Weiner (10.1016/j.neucom.2015.10.043_bib38) 2012; 8
10.1016/j.neucom.2015.10.043_bib41
Aksu (10.1016/j.neucom.2015.10.043_bib1) 2011; 6
10.1016/j.neucom.2015.10.043_bib40
Wyman (10.1016/j.neucom.2015.10.043_bib43) 2013; 9
10.1016/j.neucom.2015.10.043_bib24
10.1016/j.neucom.2015.10.043_bib22
10.1016/j.neucom.2015.10.043_bib16
10.1016/j.neucom.2015.10.043_bib37
Wolz (10.1016/j.neucom.2015.10.043_bib42) 2010; 52
Hackmack (10.1016/j.neucom.2015.10.043_bib20) 2012; 62
10.1016/j.neucom.2015.10.043_bib36
Chupin (10.1016/j.neucom.2015.10.043_bib6) 2009; 19
Cortes (10.1016/j.neucom.2015.10.043_bib8) 1995; 20
Filipovych (10.1016/j.neucom.2015.10.043_bib15) 2011; 55
10.1016/j.neucom.2015.10.043_bib18
Tzourio-Mazoyer (10.1016/j.neucom.2015.10.043_bib35) 2002; 15
Fawcett (10.1016/j.neucom.2015.10.043_bib14) 2004; 31
Mallat (10.1016/j.neucom.2015.10.043_bib25) 1999
Goto (10.1016/j.neucom.2015.10.043_bib17) 2013; 55
Westman (10.1016/j.neucom.2015.10.043_bib39) 2012; 62
10.1016/j.neucom.2015.10.043_bib2
Cox (10.1016/j.neucom.2015.10.043_bib9) 1972; 34
10.1016/j.neucom.2015.10.043_bib3
Zhang (10.1016/j.neucom.2015.10.043_bib44) 2011; 55
Nakazawa (10.1016/j.neucom.2015.10.043_bib28) 2004; 5
Ron (10.1016/j.neucom.2015.10.043_bib32) 1997; 148
10.1016/j.neucom.2015.10.043_bib30
10.1016/j.neucom.2015.10.043_bib12
10.1016/j.neucom.2015.10.043_bib11
10.1016/j.neucom.2015.10.043_bib33
10.1016/j.neucom.2015.10.043_bib10
Jones (10.1016/j.neucom.2015.10.043_bib23) 1994; 19
Mu (10.1016/j.neucom.2015.10.043_bib26) 2011; 6
Chincarini (10.1016/j.neucom.2015.10.043_bib5) 2011; 58
Mueller (10.1016/j.neucom.2015.10.043_bib27) 2005; 15
Trzepacz (10.1016/j.neucom.2015.10.043_bib34) 2014; 35
References_xml – volume: 5
  start-page: 361
  year: 2004
  end-page: 372
  ident: bib28
  article-title: Nmda receptors, place cells and hippocampal spatial memory
  publication-title: Nat. Rev. Neurosci.
– volume: 19
  start-page: 579
  year: 2009
  end-page: 587
  ident: bib6
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer׳s disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
– volume: 8
  start-page: S1
  year: 2012
  end-page: S68
  ident: bib38
  article-title: The Alzheimers disease neuroimaging initiative
  publication-title: Alzheimer׳s Dement.
– volume: 31
  start-page: 1
  year: 2004
  end-page: 38
  ident: bib14
  article-title: Roc graphs: notes and practical considerations for researchers
  publication-title: Mach. Learn.
– volume: 52
  start-page: 109
  year: 2010
  end-page: 118
  ident: bib42
  article-title: Measurement of hippocampal atrophy using 4d graph-cut segmentation
  publication-title: NeuroImage
– volume: 42
  start-page: 203
  year: 2001
  end-page: 231
  ident: bib31
  article-title: Robust classification for imprecise environments
  publication-title: Mach. Learn.
– reference: B. Dong, Z. Shen, MRA-based wavelet frames and applications, in: IAS Lecture Note Series, vol. 19, Park City Mathematics Institute, Park City, 2010.
– volume: 62
  start-page: 229
  year: 2012
  end-page: 238
  ident: bib39
  article-title: Combining MRI and CSF measures for classification of Alzheimer׳s disease and prediction of mild cognitive impairment conversion
  publication-title: NeuroImage
– volume: 58
  start-page: 469
  year: 2011
  end-page: 480
  ident: bib5
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer׳s disease
  publication-title: NeuroImage
– volume: 10
  start-page: 61
  year: 1999
  end-page: 74
  ident: bib29
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv. Larg. Margin Classif.
– reference: D. Donoho, S. Mallat, R. von Sachs, et al., Estimating Covariances of Locally Stationary Processes: Rates of Convergence of Best Basis Methods, Technical Report, Department of Statistics, Stanford University, Standford, California, USA, 1998.
– reference: R. Wolz, P. Aljabar, J.V. Hajnal, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Leap: learning embeddings for atlas propagation, NeuroImage 49 (2) (2010) 1316–1325.
– volume: 49
  start-page: 2151
  year: 2013
  end-page: 2161
  ident: bib4
  article-title: A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter
  publication-title: Cortex
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bib27
  article-title: The Alzheimer׳s disease neuroimaging initiative
  publication-title: Neuroimag. Clin. N. Am.
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: bib9
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– reference: I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Lecture Notes, SIAM, first ed., 1992.
– reference: Burrus, C. Sidney, Ramesh A. Gopinath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer. (1997)
– reference: H.-I. Suk, S.-W. Lee, D. Shen, A.D.N. Initiative, et al., Deep sparse multi-task learning for feature selection in Alzheimers disease diagnosis, Brain Struct. Funct. (2015) 1–19.
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib44
  article-title: Alzheimer׳s Disease Neuroimaging Initiative, et al., Multimodal classification of Alzheimer׳s disease and mild cognitive impairment
  publication-title: NeuroImage
– volume: 62
  start-page: 48
  year: 2012
  end-page: 58
  ident: bib20
  article-title: Multi-scale classification of disease using structural MRI and wavelet transform
  publication-title: NeuroImage
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: bib21
  article-title: Predictive markers for AD in a multi-modality framework
  publication-title: NeuroImage
– reference: C.-Y. Wee, P.-T. Yap, D. Shen, and for the Alzheimers Disease Neuroimaging Initiative, Prediction of Alzheimers disease and mild cognitive impairment using cortical morphological patterns, Hum. Brain Mapp. 34 (12) (2013) 3411-3425.
– reference: K.R. Gray, R. Wolz, R.A. Heckemann, P. Aljabar, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer׳s disease, NeuroImage 60 (1) (2012) 221–229.
– reference: Prince, Martin, M. Prina, Maëlenn Guerchet. Journey of Caring: an analysis of long-term care for Dementia. Diss. N/A Ed; London: Alzheimer's Disease International, 2013.
– volume: 55
  start-page: 1109
  year: 2011
  end-page: 1119
  ident: bib15
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: NeuroImage
– reference: D.E. Barnes, I.S. Cenzer, K. Yaffe, C.S. Ritchie, S.J. Lee, Alzheimer׳s Disease Neuroimaging Initiative, et al., A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer׳s disease, Alzheimer׳s Dement. 10 (6) (2014) 646–655.
– volume: 19
  start-page: 304
  year: 1994
  end-page: 307
  ident: bib23
  publication-title: J. Educ. Behav. Stat.
– reference: Wimo, Anders, Martin James Prince. World Alzheimer Report 2010: the global economic impact of dementia. Alzheimer's Disease International, 2010.
– reference: L.G. Apostolova, K.S. Hwang, O. Kohannim, D. Avila, D. Elashoff, C.R.J. Jr., L. Shaw, J.Q. Trojanowski, M.W. Weiner, P.M. Thompson, Apoe4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer׳s disease, NeuroImage: Clinical 4 (0) (2014) 461–472.
– reference: Hsu, Chih-Wei, Chih-Chung Chang, Chih-Jen Lin. A practical guide to support vector classification. (2003).
– reference: M.W. Weiner, P.S. Aisen, C.R. Jack Jr., W.J. Jagust, J.Q. Trojanowski, L. Shaw, A.J. Saykin, J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H. Soares, P. Snyder, E. Siemers, W. Potter, P.E. Cole, M. Schmidt, The Alzheimer׳s disease neuroimaging initiative: progress report and future plans, Alzheimer׳s Dement. 6 (3) (2010) 202–211.e7.
– volume: 1
  start-page: 142
  year: 2011
  end-page: 152
  ident: bib7
  article-title: Residual vectors for Alzheimer disease diagnosis and prognostication
  publication-title: Brain Behav.
– volume: 148
  start-page: 408
  year: 1997
  end-page: 447
  ident: bib32
  article-title: Affine systems in
  publication-title: J. Funct. Anal.
– volume: 9
  start-page: 332
  year: 2013
  end-page: 337
  ident: bib43
  article-title: Standardization of analysis sets for reporting results from ADNI MRI data
  publication-title: Alzheimer׳s Dement.
– year: 1999
  ident: bib25
  publication-title: A Wavelet Tour of Signal Processing
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib35
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib8
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 61
  start-page: 59
  year: 2004
  end-page: 66
  ident: bib19
  article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials
  publication-title: Arch. Neurol.
– volume: 35
  start-page: 143
  year: 2014
  end-page: 151
  ident: bib34
  article-title: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer׳s dementia
  publication-title: Neurobiol. Aging
– volume: 6
  start-page: e25074
  year: 2011
  ident: bib1
  article-title: An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients
  publication-title: PLoS ONE
– reference: H. Liu, R.H. Chan, Y. Yao, Geometric tight frame based stylometry for art authentication of van gogh paintings, CoRR, abs/1407.0439, 2014.
– volume: 55
  start-page: 869
  year: 2013
  end-page: 875
  ident: bib17
  article-title: Diffeomorphic anatomical registration through exponentiated lie algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects
  publication-title: Neuroradiology
– volume: 6
  start-page: 85
  year: 2011
  ident: bib26
  article-title: Adult hippocampal neurogenesis and its role in Alzheimer׳s disease
  publication-title: Mol. Neurodegener.
– volume: 6
  start-page: 1889
  year: 2005
  end-page: 1918
  ident: bib13
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2015.10.043_bib3
  doi: 10.1016/j.jalz.2013.12.014
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 10.1016/j.neucom.2015.10.043_bib27
  article-title: The Alzheimer׳s disease neuroimaging initiative
  publication-title: Neuroimag. Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 35
  start-page: 143
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2015.10.043_bib34
  article-title: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer׳s dementia
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.06.018
– ident: 10.1016/j.neucom.2015.10.043_bib12
– volume: 6
  start-page: 1889
  year: 2005
  ident: 10.1016/j.neucom.2015.10.043_bib13
  article-title: Working set selection using second order information for training support vector machines
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2015.10.043_bib18
  doi: 10.1016/j.neuroimage.2011.12.071
– ident: 10.1016/j.neucom.2015.10.043_bib16
– ident: 10.1016/j.neucom.2015.10.043_bib22
– volume: 31
  start-page: 1
  year: 2004
  ident: 10.1016/j.neucom.2015.10.043_bib14
  article-title: Roc graphs: notes and practical considerations for researchers
  publication-title: Mach. Learn.
– volume: 62
  start-page: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.10.043_bib20
  article-title: Multi-scale classification of disease using structural MRI and wavelet transform
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.05.022
– volume: 5
  start-page: 361
  issue: 5
  year: 2004
  ident: 10.1016/j.neucom.2015.10.043_bib28
  article-title: Nmda receptors, place cells and hippocampal spatial memory
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1385
– volume: 62
  start-page: 229
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.10.043_bib39
  article-title: Combining MRI and CSF measures for classification of Alzheimer׳s disease and prediction of mild cognitive impairment conversion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.04.056
– volume: 52
  start-page: 109
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2015.10.043_bib42
  article-title: Measurement of hippocampal atrophy using 4d graph-cut segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.006
– volume: 1
  start-page: 142
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib7
  article-title: Residual vectors for Alzheimer disease diagnosis and prognostication
  publication-title: Brain Behav.
  doi: 10.1002/brb3.19
– volume: 19
  start-page: 304
  issue: 3
  year: 1994
  ident: 10.1016/j.neucom.2015.10.043_bib23
  publication-title: J. Educ. Behav. Stat.
  doi: 10.2307/1165300
– volume: 8
  start-page: S1
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2015.10.043_bib38
  article-title: The Alzheimers disease neuroimaging initiative
  publication-title: Alzheimer׳s Dement.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neucom.2015.10.043_bib8
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 19
  start-page: 579
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2015.10.043_bib6
  article-title: Fully automatic hippocampus segmentation and classification in Alzheimer׳s disease and mild cognitive impairment applied on data from ADNI
  publication-title: Hippocampus
  doi: 10.1002/hipo.20626
– volume: 55
  start-page: 574
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib21
  article-title: Predictive markers for AD in a multi-modality framework
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 49
  start-page: 2151
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2015.10.043_bib4
  article-title: A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter
  publication-title: Cortex
  doi: 10.1016/j.cortex.2012.08.013
– ident: 10.1016/j.neucom.2015.10.043_bib24
– ident: 10.1016/j.neucom.2015.10.043_bib37
  doi: 10.1016/j.jalz.2010.03.007
– volume: 58
  start-page: 469
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib5
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer׳s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.083
– volume: 148
  start-page: 408
  year: 1997
  ident: 10.1016/j.neucom.2015.10.043_bib32
  article-title: Affine systems in L2 (Rd)
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1996.3079
– volume: 55
  start-page: 869
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2015.10.043_bib17
  article-title: Diffeomorphic anatomical registration through exponentiated lie algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects
  publication-title: Neuroradiology
  doi: 10.1007/s00234-013-1193-2
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.neucom.2015.10.043_bib9
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 55
  start-page: 1109
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib15
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.12.066
– ident: 10.1016/j.neucom.2015.10.043_bib10
  doi: 10.1137/1.9781611970104
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: 10.1016/j.neucom.2015.10.043_bib29
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv. Larg. Margin Classif.
– ident: 10.1016/j.neucom.2015.10.043_bib40
– volume: 61
  start-page: 59
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2015.10.043_bib19
  article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.61.1.59
– volume: 6
  start-page: 85
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib26
  article-title: Adult hippocampal neurogenesis and its role in Alzheimer׳s disease
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-6-85
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neucom.2015.10.043_bib35
  article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 6
  start-page: e25074
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib1
  article-title: An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025074
– volume: 42
  start-page: 203
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2015.10.043_bib31
  article-title: Robust classification for imprecise environments
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007601015854
– ident: 10.1016/j.neucom.2015.10.043_bib33
  doi: 10.1007/s00429-015-1059-y
– year: 1999
  ident: 10.1016/j.neucom.2015.10.043_bib25
– ident: 10.1016/j.neucom.2015.10.043_bib36
  doi: 10.1002/hbm.22156
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2015.10.043_bib44
  article-title: Alzheimer׳s Disease Neuroimaging Initiative, et al., Multimodal classification of Alzheimer׳s disease and mild cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: 10.1016/j.neucom.2015.10.043_bib30
– volume: 9
  start-page: 332
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2015.10.043_bib43
  article-title: Standardization of analysis sets for reporting results from ADNI MRI data
  publication-title: Alzheimer׳s Dement.
  doi: 10.1016/j.jalz.2012.06.004
– ident: 10.1016/j.neucom.2015.10.043_bib11
– ident: 10.1016/j.neucom.2015.10.043_bib2
  doi: 10.1016/j.nicl.2013.12.012
– ident: 10.1016/j.neucom.2015.10.043_bib41
  doi: 10.1016/j.neuroimage.2009.09.069
SSID ssj0017129
Score 2.4234736
Snippet In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 132
SubjectTerms Alzheimer׳s disease
MCI
Multi-scale
Structural MRI
SVM
Tight wavelet frame
Title Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis
URI https://dx.doi.org/10.1016/j.neucom.2015.10.043
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp9lDl7TdrOv5liqpVXag1robdlkE6jIWm29-tud2WSLgih43JCBZTI782X55hvGrixCBhK_5RgxmkdCa45xY7kNrZKpKIpAUIPzZJqMZtHtPJ432KDuhSFapc_9LqdX2dqvdLw3O8vFovPQlQJvUaSOQLd2QR3lUZTSFIP2x4bmEaSBcHp7Iua0u26fqzhepXknzggWwbhNHK8o_Lk8fSk5wz2247Ei9N3r7LOGKQ_Ybj2HAfxnecheqy5avkJ3G7CmkupcAWbdN9e1ANRDAlSvCFOCk4zFPTC5HwOCVpgMxuAFVkETnCb-UHVkkJcF9K_BkA4yFI6Xt1gdsdnw5nEw4n6UAtd4J1hzEVitU_yajYmTUFkEajqxeZALXSDGigtrJC6EMsgl3lqtsZHqCUnTq1RXWRUes2b5UpoTBkWqAxIOEyrG6t_TUgepUdYk0iRoFp6ysPZgpr3OOI27eM5qQtlT5vyekd9ptUtWfGO1dDobf-xP68PJvsVLhqXgV8uzf1ues218qn7ACHnBmnha5hIhyVq1qphrsa3--G40_QQ_WuKb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOMCFN-KND1yzrekjy3EaTBtsO8Am7VY1aSINoTLYuPLbsftAICGQuKaxVDlu_Ln6_JmxK4eQgcRvOUaM4YEwhmPcOO58p5UUaeoJanAejaP-NLidhbMa61a9MESrLO_-4k7Pb-typVl6s7mYz5sPLSWwiiJ1BKrahVxj60EoJFVgjfdPnocnPVEI7omQ0_aqfy4neWX2jUgjmAXDBpG8Av_n_PQl5_R22FYJFqFTvM8uq9lsj21Xgxig_C732UveRsuX6G8LzuZanUvAa_e1aFsAaiIBSlgEKqHQjMU9MLofAKJWGHUHUCqsgiE8TQSi_MwgyVLoXIMlIWRIC2LefHnApr2bSbfPy1kK3GBRsOLCc8ZI_JytDSNfO0RqJnKJlwiTIsgKU2cVLvjKSxSWrc66QLeFovFVuqWd9g9ZPXvO7BGDVBqPlMOEDjH9t40ynrTa2UjZCM38Y-ZXHoxNKTRO8y6e4opR9hgXfo_J77TaIiv-abUohDb-2C-rw4m_BUyMueBXy5N_W16yjf5kNIyHg_HdKdvEJ_nfGKHOWB1Pzp4jPlnpizz-PgCS5eQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+features+extraction+from+baseline+structure+MRI+for+MCI+patient+classification+and+AD+early+diagnosis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hu%2C+Kun&rft.au=Wang%2C+Yijue&rft.au=Chen%2C+Kewei&rft.au=Hou%2C+Likun&rft.date=2016-01-29&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=175&rft.spage=132&rft.epage=145&rft_id=info:doi/10.1016%2Fj.neucom.2015.10.043&rft.externalDocID=S0925231215015027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon