Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis
In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 5...
        Saved in:
      
    
          | Published in | Neurocomputing (Amsterdam) Vol. 175; pp. 132 - 145 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        29.01.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-2312 1872-8286  | 
| DOI | 10.1016/j.neucom.2015.10.043 | 
Cover
| Abstract | In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 549 subjects from the Alzheimer׳s disease Neuroimaging Initiative (ADNI) database are included, and there are 228 Normal controls (NC), 133 MCI patients (71 of them converted to AD within 3 years, referred as MCI converters, or MCIc) and 188 AD patients. The images are preprocessed with the standard voxel-based morphometry method with segmentation of grey matter, white matter and cerebrospinal fluid. Wavelet frame, a multi-scale image representation approach, is applied to extract features of different scales and directions from the processed grey matter image data. The features are extracted for both whole grey matter images and grey matter images of the hippocampus region. The support vector machine is adopted to construct classifiers for MCIc and MCI non-converters (MCInc). The accuracy using a leave-one-out procedure for classification of AD vs. NC and MCIc vs. MCInc is 84.13% and 76.69% respectively, both achieved by local hippocampus data. Our study shows that the proposed multi-scale method is capable of discriminating MCI converters and non-converters, and it can be potentially useful for MCI prognosis in clinical applications. | 
    
|---|---|
| AbstractList | In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild cognitive impairment (MCI), who have either converted or not converted to Alzheimer׳s disease (AD) three years after their baseline visit. Total 549 subjects from the Alzheimer׳s disease Neuroimaging Initiative (ADNI) database are included, and there are 228 Normal controls (NC), 133 MCI patients (71 of them converted to AD within 3 years, referred as MCI converters, or MCIc) and 188 AD patients. The images are preprocessed with the standard voxel-based morphometry method with segmentation of grey matter, white matter and cerebrospinal fluid. Wavelet frame, a multi-scale image representation approach, is applied to extract features of different scales and directions from the processed grey matter image data. The features are extracted for both whole grey matter images and grey matter images of the hippocampus region. The support vector machine is adopted to construct classifiers for MCIc and MCI non-converters (MCInc). The accuracy using a leave-one-out procedure for classification of AD vs. NC and MCIc vs. MCInc is 84.13% and 76.69% respectively, both achieved by local hippocampus data. Our study shows that the proposed multi-scale method is capable of discriminating MCI converters and non-converters, and it can be potentially useful for MCI prognosis in clinical applications. | 
    
| Author | Hu, Kun Chen, Kewei Wang, Yijue Zhang, Xiaoqun Hou, Likun  | 
    
| Author_xml | – sequence: 1 givenname: Kun surname: Hu fullname: Hu, Kun organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Yijue surname: Wang fullname: Wang, Yijue organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Kewei surname: Chen fullname: Chen, Kewei organization: Banner Alzheimer׳s Institute and Banner Good Samaritan PET Center, Phoenix, AZ, USA – sequence: 4 givenname: Likun surname: Hou fullname: Hou, Likun organization: Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Xiaoqun surname: Zhang fullname: Zhang, Xiaoqun email: xqzhang@sjtu.edu.cn organization: Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China  | 
    
| BookMark | eNqFkMtKAzEUhoNUsFbfwEVeYMZc5upCKPVWaBFE1yGTOZGUaVKTjNi3d6Z15UJXB37O93POd44m1llA6IqSlBJaXG9SC71y25QRmg9RSjJ-gqa0KllSsaqYoCmpWZ4wTtkZOg9hQwgtKaun6GPdd9EkQckOsAYZew8Bw1f0UkXjLNbebXEjA3TGAg7R92rcweuXJdbO4_ViiXcyGrARq06GYLRR8oBK2-L5HQbpuz1ujXy3LphwgU617AJc_swZenu4f108Javnx-VivkoUJ0VMGNVKlSUnAHnBG03yTBVaUslUW-c0bzXUQ8BrKmvKuQadNRWrGS1ZQxrd8Bm6OfYq70LwoIUy8XDY8JvpBCVilCc24ihPjPLGdJA3wNkveOfNVvr9f9jtEYPhsU8DXgQ1mFHQGg8qitaZvwu-AX6KkBU | 
    
| CitedBy_id | crossref_primary_10_1002_ima_22290 crossref_primary_10_3390_make6010024 crossref_primary_10_1016_j_compbiomed_2017_02_011 crossref_primary_10_1016_j_neucom_2019_12_050 crossref_primary_10_3389_fnagi_2021_688926 crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1111_exsy_12566 crossref_primary_10_1002_ima_22458 crossref_primary_10_1007_s13755_024_00333_3 crossref_primary_10_1186_s40708_018_0080_3 crossref_primary_10_3390_app11052187 crossref_primary_10_3233_ADR_210314 crossref_primary_10_3390_app9153063 crossref_primary_10_1016_j_jneumeth_2018_02_014 crossref_primary_10_1049_ipr2_12605 crossref_primary_10_1016_j_compbiomed_2023_106790 crossref_primary_10_1109_TCBB_2021_3053061 crossref_primary_10_1155_2022_1419310 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1016_j_media_2021_102304 crossref_primary_10_3390_s22197661 crossref_primary_10_1002_ima_22685 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1049_joe_2018_9412 crossref_primary_10_3389_fnins_2022_902528 crossref_primary_10_1142_S0129065718500429 crossref_primary_10_1016_j_bspc_2018_08_009 crossref_primary_10_3389_fncel_2021_695738 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1080_23279095_2023_2169886 crossref_primary_10_1016_j_asoc_2023_109991 crossref_primary_10_1016_j_jalz_2019_02_007 crossref_primary_10_1016_j_neucom_2016_08_041 crossref_primary_10_1051_e3sconf_202339101047 crossref_primary_10_1109_JBHI_2016_2608998 crossref_primary_10_1016_j_nicl_2020_102290 crossref_primary_10_1016_j_ijleo_2022_170347 crossref_primary_10_3390_diagnostics12123193 crossref_primary_10_1016_j_nicl_2017_08_014 crossref_primary_10_1007_s12021_019_09418_x crossref_primary_10_2196_31106 crossref_primary_10_1002_alz_13412 crossref_primary_10_1016_j_bspc_2022_103725 crossref_primary_10_1109_ACCESS_2019_2921538 crossref_primary_10_1016_j_neucom_2019_05_025 crossref_primary_10_1016_j_neucom_2024_129025 crossref_primary_10_4316_AECE_2017_02015 crossref_primary_10_1109_JBHI_2021_3113668 crossref_primary_10_3389_fneur_2019_01097  | 
    
| Cites_doi | 10.1016/j.jalz.2013.12.014 10.1016/j.nic.2005.09.008 10.1016/j.neurobiolaging.2013.06.018 10.1016/j.neuroimage.2011.12.071 10.1016/j.neuroimage.2012.05.022 10.1038/nrn1385 10.1016/j.neuroimage.2012.04.056 10.1016/j.neuroimage.2010.04.006 10.1002/brb3.19 10.2307/1165300 10.1007/BF00994018 10.1002/hipo.20626 10.1016/j.neuroimage.2010.10.081 10.1016/j.cortex.2012.08.013 10.1016/j.jalz.2010.03.007 10.1016/j.neuroimage.2011.05.083 10.1006/jfan.1996.3079 10.1007/s00234-013-1193-2 10.1111/j.2517-6161.1972.tb00899.x 10.1016/j.neuroimage.2010.12.066 10.1137/1.9781611970104 10.1001/archneur.61.1.59 10.1186/1750-1326-6-85 10.1006/nimg.2001.0978 10.1371/journal.pone.0025074 10.1023/A:1007601015854 10.1007/s00429-015-1059-y 10.1002/hbm.22156 10.1016/j.neuroimage.2011.01.008 10.1016/j.jalz.2012.06.004 10.1016/j.nicl.2013.12.012 10.1016/j.neuroimage.2009.09.069  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2015 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.neucom.2015.10.043 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-8286 | 
    
| EndPage | 145 | 
    
| ExternalDocumentID | 10_1016_j_neucom_2015_10_043 S0925231215015027  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-21fcc7730ee563bf054c6fa1a2cd9515dfe9c6f391a9133fef4b8292172b0bfb3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0925-2312 | 
    
| IngestDate | Thu Apr 24 23:06:47 EDT 2025 Wed Oct 01 02:27:24 EDT 2025 Fri Feb 23 02:28:28 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Structural MRI MCI Tight wavelet frame Alzheimer׳s disease Multi-scale SVM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-21fcc7730ee563bf054c6fa1a2cd9515dfe9c6f391a9133fef4b8292172b0bfb3 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2015_10_043 crossref_primary_10_1016_j_neucom_2015_10_043 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_10_043  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-01-29 | 
    
| PublicationDateYYYYMMDD | 2016-01-29 | 
    
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-29 day: 29  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Neurocomputing (Amsterdam) | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib35) 2002; 15 Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu (bib38) 2012; 8 I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Lecture Notes, SIAM, first ed., 1992. Ron, Shen (bib32) 1997; 148 Mu, Gage (bib26) 2011; 6 Hsu, Chih-Wei, Chih-Chung Chang, Chih-Jen Lin. A practical guide to support vector classification. (2003). H.-I. Suk, S.-W. Lee, D. Shen, A.D.N. Initiative, et al., Deep sparse multi-task learning for feature selection in Alzheimers disease diagnosis, Brain Struct. Funct. (2015) 1–19. Nakazawa, McHugh, Wilson, Tonegawa (bib28) 2004; 5 Zhang, Wang, Zhou, Yuan, Shen (bib44) 2011; 55 Clark (bib7) 2011; 1 Prince, Martin, M. Prina, Maëlenn Guerchet. Journey of Caring: an analysis of long-term care for Dementia. Diss. N/A Ed; London: Alzheimer's Disease International, 2013. R. Wolz, P. Aljabar, J.V. Hajnal, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Leap: learning embeddings for atlas propagation, NeuroImage 49 (2) (2010) 1316–1325. Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (bib43) 2013; 9 Jones (bib23) 1994; 19 Fawcett (bib14) 2004; 31 Chincarini, Bosco, Calvini, Gemme, Esposito, Olivieri, Rei, Squarcia, Rodriguez, Bellotti (bib5) 2011; 58 Chupin, Gérardin, Cuingnet, Boutet, Lemieux, Lehéricy, Benali, Garnero, Colliot (bib6) 2009; 19 Mallat (bib25) 1999 Hinrichs, Singh, Xu, Johnson (bib21) 2011; 55 Filipovych, Davatzikos (bib15) 2011; 55 H. Liu, R.H. Chan, Y. Yao, Geometric tight frame based stylometry for art authentication of van gogh paintings, CoRR, abs/1407.0439, 2014. Westman, Muehlboeck, Simmons (bib39) 2012; 62 Cox (bib9) 1972; 34 Goto, Abe, Aoki, Hayashi, Miyati, Takao, Iwatsubo, Yamashita, Matsuda, Mori, Kunimatsu, Ino, Yano, Ohtomo (bib17) 2013; 55 Provost, Fawcett (bib31) 2001; 42 Fan, Chen, Lin (bib13) 2005; 6 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib27) 2005; 15 Aksu, Miller, Kesidis, Bigler, Yang (bib1) 2011; 6 D. Donoho, S. Mallat, R. von Sachs, et al., Estimating Covariances of Locally Stationary Processes: Rates of Convergence of Best Basis Methods, Technical Report, Department of Statistics, Stanford University, Standford, California, USA, 1998. Cortes, Vapnik (bib8) 1995; 20 Wimo, Anders, Martin James Prince. World Alzheimer Report 2010: the global economic impact of dementia. Alzheimer's Disease International, 2010. K.R. Gray, R. Wolz, R.A. Heckemann, P. Aljabar, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer׳s disease, NeuroImage 60 (1) (2012) 221–229. Burrus, C. Sidney, Ramesh A. Gopinath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer. (1997) Trzepacz, Yu, Sun, Schuh, Case, Witte, Hochstetler, Hake (bib34) 2014; 35 M.W. Weiner, P.S. Aisen, C.R. Jack Jr., W.J. Jagust, J.Q. Trojanowski, L. Shaw, A.J. Saykin, J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H. Soares, P. Snyder, E. Siemers, W. Potter, P.E. Cole, M. Schmidt, The Alzheimer׳s disease neuroimaging initiative: progress report and future plans, Alzheimer׳s Dement. 6 (3) (2010) 202–211.e7. Wolz, Heckemann, Aljabar, Hajnal, Hammers, Ltjnen, Rueckert (bib42) 2010; 52 L.G. Apostolova, K.S. Hwang, O. Kohannim, D. Avila, D. Elashoff, C.R.J. Jr., L. Shaw, J.Q. Trojanowski, M.W. Weiner, P.M. Thompson, Apoe4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer׳s disease, NeuroImage: Clinical 4 (0) (2014) 461–472. Beal, Gracco, Brettschneider, Kroll, Nil (bib4) 2013; 49 C.-Y. Wee, P.-T. Yap, D. Shen, and for the Alzheimers Disease Neuroimaging Initiative, Prediction of Alzheimers disease and mild cognitive impairment using cortical morphological patterns, Hum. Brain Mapp. 34 (12) (2013) 3411-3425. Grundman, Petersen, Ferris, Thomas, Aisen, Bennett, Foster, Jack, Galasko, Doody (bib19) 2004; 61 B. Dong, Z. Shen, MRA-based wavelet frames and applications, in: IAS Lecture Note Series, vol. 19, Park City Mathematics Institute, Park City, 2010. Hackmack, Paul, Weygandt, Allefeld, Haynes (bib20) 2012; 62 D.E. Barnes, I.S. Cenzer, K. Yaffe, C.S. Ritchie, S.J. Lee, Alzheimer׳s Disease Neuroimaging Initiative, et al., A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer׳s disease, Alzheimer׳s Dement. 10 (6) (2014) 646–655. Platt (bib29) 1999; 10 Grundman (10.1016/j.neucom.2015.10.043_bib19) 2004; 61 Clark (10.1016/j.neucom.2015.10.043_bib7) 2011; 1 Fan (10.1016/j.neucom.2015.10.043_bib13) 2005; 6 Provost (10.1016/j.neucom.2015.10.043_bib31) 2001; 42 Beal (10.1016/j.neucom.2015.10.043_bib4) 2013; 49 Hinrichs (10.1016/j.neucom.2015.10.043_bib21) 2011; 55 Platt (10.1016/j.neucom.2015.10.043_bib29) 1999; 10 Weiner (10.1016/j.neucom.2015.10.043_bib38) 2012; 8 10.1016/j.neucom.2015.10.043_bib41 Aksu (10.1016/j.neucom.2015.10.043_bib1) 2011; 6 10.1016/j.neucom.2015.10.043_bib40 Wyman (10.1016/j.neucom.2015.10.043_bib43) 2013; 9 10.1016/j.neucom.2015.10.043_bib24 10.1016/j.neucom.2015.10.043_bib22 10.1016/j.neucom.2015.10.043_bib16 10.1016/j.neucom.2015.10.043_bib37 Wolz (10.1016/j.neucom.2015.10.043_bib42) 2010; 52 Hackmack (10.1016/j.neucom.2015.10.043_bib20) 2012; 62 10.1016/j.neucom.2015.10.043_bib36 Chupin (10.1016/j.neucom.2015.10.043_bib6) 2009; 19 Cortes (10.1016/j.neucom.2015.10.043_bib8) 1995; 20 Filipovych (10.1016/j.neucom.2015.10.043_bib15) 2011; 55 10.1016/j.neucom.2015.10.043_bib18 Tzourio-Mazoyer (10.1016/j.neucom.2015.10.043_bib35) 2002; 15 Fawcett (10.1016/j.neucom.2015.10.043_bib14) 2004; 31 Mallat (10.1016/j.neucom.2015.10.043_bib25) 1999 Goto (10.1016/j.neucom.2015.10.043_bib17) 2013; 55 Westman (10.1016/j.neucom.2015.10.043_bib39) 2012; 62 10.1016/j.neucom.2015.10.043_bib2 Cox (10.1016/j.neucom.2015.10.043_bib9) 1972; 34 10.1016/j.neucom.2015.10.043_bib3 Zhang (10.1016/j.neucom.2015.10.043_bib44) 2011; 55 Nakazawa (10.1016/j.neucom.2015.10.043_bib28) 2004; 5 Ron (10.1016/j.neucom.2015.10.043_bib32) 1997; 148 10.1016/j.neucom.2015.10.043_bib30 10.1016/j.neucom.2015.10.043_bib12 10.1016/j.neucom.2015.10.043_bib11 10.1016/j.neucom.2015.10.043_bib33 10.1016/j.neucom.2015.10.043_bib10 Jones (10.1016/j.neucom.2015.10.043_bib23) 1994; 19 Mu (10.1016/j.neucom.2015.10.043_bib26) 2011; 6 Chincarini (10.1016/j.neucom.2015.10.043_bib5) 2011; 58 Mueller (10.1016/j.neucom.2015.10.043_bib27) 2005; 15 Trzepacz (10.1016/j.neucom.2015.10.043_bib34) 2014; 35  | 
    
| References_xml | – volume: 5 start-page: 361 year: 2004 end-page: 372 ident: bib28 article-title: Nmda receptors, place cells and hippocampal spatial memory publication-title: Nat. Rev. Neurosci. – volume: 19 start-page: 579 year: 2009 end-page: 587 ident: bib6 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer׳s disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus – volume: 8 start-page: S1 year: 2012 end-page: S68 ident: bib38 article-title: The Alzheimers disease neuroimaging initiative publication-title: Alzheimer׳s Dement. – volume: 31 start-page: 1 year: 2004 end-page: 38 ident: bib14 article-title: Roc graphs: notes and practical considerations for researchers publication-title: Mach. Learn. – volume: 52 start-page: 109 year: 2010 end-page: 118 ident: bib42 article-title: Measurement of hippocampal atrophy using 4d graph-cut segmentation publication-title: NeuroImage – volume: 42 start-page: 203 year: 2001 end-page: 231 ident: bib31 article-title: Robust classification for imprecise environments publication-title: Mach. Learn. – reference: B. Dong, Z. Shen, MRA-based wavelet frames and applications, in: IAS Lecture Note Series, vol. 19, Park City Mathematics Institute, Park City, 2010. – volume: 62 start-page: 229 year: 2012 end-page: 238 ident: bib39 article-title: Combining MRI and CSF measures for classification of Alzheimer׳s disease and prediction of mild cognitive impairment conversion publication-title: NeuroImage – volume: 58 start-page: 469 year: 2011 end-page: 480 ident: bib5 article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer׳s disease publication-title: NeuroImage – volume: 10 start-page: 61 year: 1999 end-page: 74 ident: bib29 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv. Larg. Margin Classif. – reference: D. Donoho, S. Mallat, R. von Sachs, et al., Estimating Covariances of Locally Stationary Processes: Rates of Convergence of Best Basis Methods, Technical Report, Department of Statistics, Stanford University, Standford, California, USA, 1998. – reference: R. Wolz, P. Aljabar, J.V. Hajnal, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Leap: learning embeddings for atlas propagation, NeuroImage 49 (2) (2010) 1316–1325. – volume: 49 start-page: 2151 year: 2013 end-page: 2161 ident: bib4 article-title: A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter publication-title: Cortex – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bib27 article-title: The Alzheimer׳s disease neuroimaging initiative publication-title: Neuroimag. Clin. N. Am. – volume: 34 start-page: 187 year: 1972 end-page: 220 ident: bib9 article-title: Regression models and life-tables publication-title: J. R. Stat. Soc. Ser. B (Methodol.) – reference: I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Lecture Notes, SIAM, first ed., 1992. – reference: Burrus, C. Sidney, Ramesh A. Gopinath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer. (1997) – reference: H.-I. Suk, S.-W. Lee, D. Shen, A.D.N. Initiative, et al., Deep sparse multi-task learning for feature selection in Alzheimers disease diagnosis, Brain Struct. Funct. (2015) 1–19. – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib44 article-title: Alzheimer׳s Disease Neuroimaging Initiative, et al., Multimodal classification of Alzheimer׳s disease and mild cognitive impairment publication-title: NeuroImage – volume: 62 start-page: 48 year: 2012 end-page: 58 ident: bib20 article-title: Multi-scale classification of disease using structural MRI and wavelet transform publication-title: NeuroImage – volume: 55 start-page: 574 year: 2011 end-page: 589 ident: bib21 article-title: Predictive markers for AD in a multi-modality framework publication-title: NeuroImage – reference: C.-Y. Wee, P.-T. Yap, D. Shen, and for the Alzheimers Disease Neuroimaging Initiative, Prediction of Alzheimers disease and mild cognitive impairment using cortical morphological patterns, Hum. Brain Mapp. 34 (12) (2013) 3411-3425. – reference: K.R. Gray, R. Wolz, R.A. Heckemann, P. Aljabar, A. Hammers, D. Rueckert, Alzheimer׳s Disease Neuroimaging Initiative, et al., Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer׳s disease, NeuroImage 60 (1) (2012) 221–229. – reference: Prince, Martin, M. Prina, Maëlenn Guerchet. Journey of Caring: an analysis of long-term care for Dementia. Diss. N/A Ed; London: Alzheimer's Disease International, 2013. – volume: 55 start-page: 1109 year: 2011 end-page: 1119 ident: bib15 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: NeuroImage – reference: D.E. Barnes, I.S. Cenzer, K. Yaffe, C.S. Ritchie, S.J. Lee, Alzheimer׳s Disease Neuroimaging Initiative, et al., A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer׳s disease, Alzheimer׳s Dement. 10 (6) (2014) 646–655. – volume: 19 start-page: 304 year: 1994 end-page: 307 ident: bib23 publication-title: J. Educ. Behav. Stat. – reference: Wimo, Anders, Martin James Prince. World Alzheimer Report 2010: the global economic impact of dementia. Alzheimer's Disease International, 2010. – reference: L.G. Apostolova, K.S. Hwang, O. Kohannim, D. Avila, D. Elashoff, C.R.J. Jr., L. Shaw, J.Q. Trojanowski, M.W. Weiner, P.M. Thompson, Apoe4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer׳s disease, NeuroImage: Clinical 4 (0) (2014) 461–472. – reference: Hsu, Chih-Wei, Chih-Chung Chang, Chih-Jen Lin. A practical guide to support vector classification. (2003). – reference: M.W. Weiner, P.S. Aisen, C.R. Jack Jr., W.J. Jagust, J.Q. Trojanowski, L. Shaw, A.J. Saykin, J.C. Morris, N. Cairns, L.A. Beckett, A. Toga, R. Green, S. Walter, H. Soares, P. Snyder, E. Siemers, W. Potter, P.E. Cole, M. Schmidt, The Alzheimer׳s disease neuroimaging initiative: progress report and future plans, Alzheimer׳s Dement. 6 (3) (2010) 202–211.e7. – volume: 1 start-page: 142 year: 2011 end-page: 152 ident: bib7 article-title: Residual vectors for Alzheimer disease diagnosis and prognostication publication-title: Brain Behav. – volume: 148 start-page: 408 year: 1997 end-page: 447 ident: bib32 article-title: Affine systems in publication-title: J. Funct. Anal. – volume: 9 start-page: 332 year: 2013 end-page: 337 ident: bib43 article-title: Standardization of analysis sets for reporting results from ADNI MRI data publication-title: Alzheimer׳s Dement. – year: 1999 ident: bib25 publication-title: A Wavelet Tour of Signal Processing – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib35 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib8 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 61 start-page: 59 year: 2004 end-page: 66 ident: bib19 article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials publication-title: Arch. Neurol. – volume: 35 start-page: 143 year: 2014 end-page: 151 ident: bib34 article-title: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer׳s dementia publication-title: Neurobiol. Aging – volume: 6 start-page: e25074 year: 2011 ident: bib1 article-title: An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients publication-title: PLoS ONE – reference: H. Liu, R.H. Chan, Y. Yao, Geometric tight frame based stylometry for art authentication of van gogh paintings, CoRR, abs/1407.0439, 2014. – volume: 55 start-page: 869 year: 2013 end-page: 875 ident: bib17 article-title: Diffeomorphic anatomical registration through exponentiated lie algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects publication-title: Neuroradiology – volume: 6 start-page: 85 year: 2011 ident: bib26 article-title: Adult hippocampal neurogenesis and its role in Alzheimer׳s disease publication-title: Mol. Neurodegener. – volume: 6 start-page: 1889 year: 2005 end-page: 1918 ident: bib13 article-title: Working set selection using second order information for training support vector machines publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2015.10.043_bib3 doi: 10.1016/j.jalz.2013.12.014 – volume: 15 start-page: 869 issue: 4 year: 2005 ident: 10.1016/j.neucom.2015.10.043_bib27 article-title: The Alzheimer׳s disease neuroimaging initiative publication-title: Neuroimag. Clin. N. Am. doi: 10.1016/j.nic.2005.09.008 – volume: 35 start-page: 143 issue: 1 year: 2014 ident: 10.1016/j.neucom.2015.10.043_bib34 article-title: Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer׳s dementia publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.06.018 – ident: 10.1016/j.neucom.2015.10.043_bib12 – volume: 6 start-page: 1889 year: 2005 ident: 10.1016/j.neucom.2015.10.043_bib13 article-title: Working set selection using second order information for training support vector machines publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2015.10.043_bib18 doi: 10.1016/j.neuroimage.2011.12.071 – ident: 10.1016/j.neucom.2015.10.043_bib16 – ident: 10.1016/j.neucom.2015.10.043_bib22 – volume: 31 start-page: 1 year: 2004 ident: 10.1016/j.neucom.2015.10.043_bib14 article-title: Roc graphs: notes and practical considerations for researchers publication-title: Mach. Learn. – volume: 62 start-page: 48 issue: 1 year: 2012 ident: 10.1016/j.neucom.2015.10.043_bib20 article-title: Multi-scale classification of disease using structural MRI and wavelet transform publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.05.022 – volume: 5 start-page: 361 issue: 5 year: 2004 ident: 10.1016/j.neucom.2015.10.043_bib28 article-title: Nmda receptors, place cells and hippocampal spatial memory publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1385 – volume: 62 start-page: 229 issue: 1 year: 2012 ident: 10.1016/j.neucom.2015.10.043_bib39 article-title: Combining MRI and CSF measures for classification of Alzheimer׳s disease and prediction of mild cognitive impairment conversion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 52 start-page: 109 issue: 1 year: 2010 ident: 10.1016/j.neucom.2015.10.043_bib42 article-title: Measurement of hippocampal atrophy using 4d graph-cut segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.006 – volume: 1 start-page: 142 issue: 2 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib7 article-title: Residual vectors for Alzheimer disease diagnosis and prognostication publication-title: Brain Behav. doi: 10.1002/brb3.19 – volume: 19 start-page: 304 issue: 3 year: 1994 ident: 10.1016/j.neucom.2015.10.043_bib23 publication-title: J. Educ. Behav. Stat. doi: 10.2307/1165300 – volume: 8 start-page: S1 issue: 1 year: 2012 ident: 10.1016/j.neucom.2015.10.043_bib38 article-title: The Alzheimers disease neuroimaging initiative publication-title: Alzheimer׳s Dement. – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.neucom.2015.10.043_bib8 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 19 start-page: 579 issue: 6 year: 2009 ident: 10.1016/j.neucom.2015.10.043_bib6 article-title: Fully automatic hippocampus segmentation and classification in Alzheimer׳s disease and mild cognitive impairment applied on data from ADNI publication-title: Hippocampus doi: 10.1002/hipo.20626 – volume: 55 start-page: 574 issue: 2 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib21 article-title: Predictive markers for AD in a multi-modality framework publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 49 start-page: 2151 issue: 8 year: 2013 ident: 10.1016/j.neucom.2015.10.043_bib4 article-title: A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter publication-title: Cortex doi: 10.1016/j.cortex.2012.08.013 – ident: 10.1016/j.neucom.2015.10.043_bib24 – ident: 10.1016/j.neucom.2015.10.043_bib37 doi: 10.1016/j.jalz.2010.03.007 – volume: 58 start-page: 469 issue: 2 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib5 article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer׳s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.083 – volume: 148 start-page: 408 year: 1997 ident: 10.1016/j.neucom.2015.10.043_bib32 article-title: Affine systems in L2 (Rd) publication-title: J. Funct. Anal. doi: 10.1006/jfan.1996.3079 – volume: 55 start-page: 869 issue: 7 year: 2013 ident: 10.1016/j.neucom.2015.10.043_bib17 article-title: Diffeomorphic anatomical registration through exponentiated lie algebra provides reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects publication-title: Neuroradiology doi: 10.1007/s00234-013-1193-2 – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 10.1016/j.neucom.2015.10.043_bib9 article-title: Regression models and life-tables publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 55 start-page: 1109 issue: 3 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib15 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.066 – ident: 10.1016/j.neucom.2015.10.043_bib10 doi: 10.1137/1.9781611970104 – volume: 10 start-page: 61 issue: 3 year: 1999 ident: 10.1016/j.neucom.2015.10.043_bib29 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv. Larg. Margin Classif. – ident: 10.1016/j.neucom.2015.10.043_bib40 – volume: 61 start-page: 59 issue: 1 year: 2004 ident: 10.1016/j.neucom.2015.10.043_bib19 article-title: Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials publication-title: Arch. Neurol. doi: 10.1001/archneur.61.1.59 – volume: 6 start-page: 85 issue: 1 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib26 article-title: Adult hippocampal neurogenesis and its role in Alzheimer׳s disease publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-6-85 – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neucom.2015.10.043_bib35 article-title: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 6 start-page: e25074 issue: 10 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib1 article-title: An MRI-derived definition of MCI-to-AD conversion for long-term, automatic prognosis of MCI patients publication-title: PLoS ONE doi: 10.1371/journal.pone.0025074 – volume: 42 start-page: 203 issue: 3 year: 2001 ident: 10.1016/j.neucom.2015.10.043_bib31 article-title: Robust classification for imprecise environments publication-title: Mach. Learn. doi: 10.1023/A:1007601015854 – ident: 10.1016/j.neucom.2015.10.043_bib33 doi: 10.1007/s00429-015-1059-y – year: 1999 ident: 10.1016/j.neucom.2015.10.043_bib25 – ident: 10.1016/j.neucom.2015.10.043_bib36 doi: 10.1002/hbm.22156 – volume: 55 start-page: 856 issue: 3 year: 2011 ident: 10.1016/j.neucom.2015.10.043_bib44 article-title: Alzheimer׳s Disease Neuroimaging Initiative, et al., Multimodal classification of Alzheimer׳s disease and mild cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.008 – ident: 10.1016/j.neucom.2015.10.043_bib30 – volume: 9 start-page: 332 issue: 3 year: 2013 ident: 10.1016/j.neucom.2015.10.043_bib43 article-title: Standardization of analysis sets for reporting results from ADNI MRI data publication-title: Alzheimer׳s Dement. doi: 10.1016/j.jalz.2012.06.004 – ident: 10.1016/j.neucom.2015.10.043_bib11 – ident: 10.1016/j.neucom.2015.10.043_bib2 doi: 10.1016/j.nicl.2013.12.012 – ident: 10.1016/j.neucom.2015.10.043_bib41 doi: 10.1016/j.neuroimage.2009.09.069  | 
    
| SSID | ssj0017129 | 
    
| Score | 2.4234736 | 
    
| Snippet | In this study, we investigate multi-scale features extracted from baseline structural magnetic resonance imaging (MRI) for classifying patients with mild... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 132 | 
    
| SubjectTerms | Alzheimer׳s disease MCI Multi-scale Structural MRI SVM Tight wavelet frame  | 
    
| Title | Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis | 
    
| URI | https://dx.doi.org/10.1016/j.neucom.2015.10.043 | 
    
| Volume | 175 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp9lDl7TdrOv5liqpVXag1robdlkE6jIWm29-tud2WSLgih43JCBZTI782X55hvGrixCBhK_5RgxmkdCa45xY7kNrZKpKIpAUIPzZJqMZtHtPJ432KDuhSFapc_9LqdX2dqvdLw3O8vFovPQlQJvUaSOQLd2QR3lUZTSFIP2x4bmEaSBcHp7Iua0u26fqzhepXknzggWwbhNHK8o_Lk8fSk5wz2247Ei9N3r7LOGKQ_Ybj2HAfxnecheqy5avkJ3G7CmkupcAWbdN9e1ANRDAlSvCFOCk4zFPTC5HwOCVpgMxuAFVkETnCb-UHVkkJcF9K_BkA4yFI6Xt1gdsdnw5nEw4n6UAtd4J1hzEVitU_yajYmTUFkEajqxeZALXSDGigtrJC6EMsgl3lqtsZHqCUnTq1RXWRUes2b5UpoTBkWqAxIOEyrG6t_TUgepUdYk0iRoFp6ysPZgpr3OOI27eM5qQtlT5vyekd9ptUtWfGO1dDobf-xP68PJvsVLhqXgV8uzf1ues218qn7ACHnBmnha5hIhyVq1qphrsa3--G40_QQ_WuKb | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOMCFN-KND1yzrekjy3EaTBtsO8Am7VY1aSINoTLYuPLbsftAICGQuKaxVDlu_Ln6_JmxK4eQgcRvOUaM4YEwhmPcOO58p5UUaeoJanAejaP-NLidhbMa61a9MESrLO_-4k7Pb-typVl6s7mYz5sPLSWwiiJ1BKrahVxj60EoJFVgjfdPnocnPVEI7omQ0_aqfy4neWX2jUgjmAXDBpG8Av_n_PQl5_R22FYJFqFTvM8uq9lsj21Xgxig_C732UveRsuX6G8LzuZanUvAa_e1aFsAaiIBSlgEKqHQjMU9MLofAKJWGHUHUCqsgiE8TQSi_MwgyVLoXIMlIWRIC2LefHnApr2bSbfPy1kK3GBRsOLCc8ZI_JytDSNfO0RqJnKJlwiTIsgKU2cVLvjKSxSWrc66QLeFovFVuqWd9g9ZPXvO7BGDVBqPlMOEDjH9t40ynrTa2UjZCM38Y-ZXHoxNKTRO8y6e4opR9hgXfo_J77TaIiv-abUohDb-2C-rw4m_BUyMueBXy5N_W16yjf5kNIyHg_HdKdvEJ_nfGKHOWB1Pzp4jPlnpizz-PgCS5eQw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+features+extraction+from+baseline+structure+MRI+for+MCI+patient+classification+and+AD+early+diagnosis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hu%2C+Kun&rft.au=Wang%2C+Yijue&rft.au=Chen%2C+Kewei&rft.au=Hou%2C+Likun&rft.date=2016-01-29&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=175&rft.spage=132&rft.epage=145&rft_id=info:doi/10.1016%2Fj.neucom.2015.10.043&rft.externalDocID=S0925231215015027 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |