Development of a deep neural network and a PSO algorithm to predict ore hardness using X-ray diffraction and atomic emission spectroscopy

•In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (D...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 213; p. 108760
Main Authors De Almeida, T., Nicolau, A.S., Schirru, R., Bueno, M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN0892-6875
1872-9444
DOI10.1016/j.mineng.2024.108760

Cover

Abstract •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (DWI), with a mean error of 6.8 %.•The DNN model performed better to estimate the Bond Work Index (BWI), with a mean error of 3.8 %.•All four regression models had a coefficient of determination (R2) greater than 0.99 against the reference Geopyörä results. Mining serves as the initial link in the supply chain for metals in manufacturing, and comminution − the process of reducing ore size through crushing and milling during mineral processing − is notably energy-intensive, accounting for up to 4 % of global power consumption, and its efficient management hinges on the variability within the mineral body, relying heavily on a comprehensive understanding of the ore’s strength and grinding resistance. The assessment of these parameters typically involves comminution tests such as the Geopyörä Breakage Test, the SMC test, and the Bond Ball Mill Grindability test. Additionally, analytical techniques like the X-ray Diffraction (XRD) and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) prove indispensable for the determination of crystalline structures and chemical composition analysis within different segments of the mineral body. This article delves into the application of Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) to predict rock strength and grinding resistance parameters: Drop weight index (DWI) and Bond work index (BWI) of mineral samples using ICP-AES and XRD data in order to develop models capable of unravelling the intricate relationships among material properties, chemical and mineralogical composition, and their collective influence on ore strength and grindability. The current article utilizes a dataset from a real comminution project to evaluate the performance of the DNN and PSO models. The results obtained with both DNN and PSO models are promising and remarkably similar, with the DNN achieving a coefficient of determination (R2) of 99.5 % for DWI and 99.8 % for BWI. Similarly, the PSO model achieving an R2 of 99.4 % for DWI and 99.7 % for BWI when compared directly with reference results, surpassing previous works that employed methodologies based on conventional regression models. Thus, the results found from this study suggest that the use of PSO and DNN is promising in solving this type of problem.
AbstractList •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (DWI), with a mean error of 6.8 %.•The DNN model performed better to estimate the Bond Work Index (BWI), with a mean error of 3.8 %.•All four regression models had a coefficient of determination (R2) greater than 0.99 against the reference Geopyörä results. Mining serves as the initial link in the supply chain for metals in manufacturing, and comminution − the process of reducing ore size through crushing and milling during mineral processing − is notably energy-intensive, accounting for up to 4 % of global power consumption, and its efficient management hinges on the variability within the mineral body, relying heavily on a comprehensive understanding of the ore’s strength and grinding resistance. The assessment of these parameters typically involves comminution tests such as the Geopyörä Breakage Test, the SMC test, and the Bond Ball Mill Grindability test. Additionally, analytical techniques like the X-ray Diffraction (XRD) and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) prove indispensable for the determination of crystalline structures and chemical composition analysis within different segments of the mineral body. This article delves into the application of Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) to predict rock strength and grinding resistance parameters: Drop weight index (DWI) and Bond work index (BWI) of mineral samples using ICP-AES and XRD data in order to develop models capable of unravelling the intricate relationships among material properties, chemical and mineralogical composition, and their collective influence on ore strength and grindability. The current article utilizes a dataset from a real comminution project to evaluate the performance of the DNN and PSO models. The results obtained with both DNN and PSO models are promising and remarkably similar, with the DNN achieving a coefficient of determination (R2) of 99.5 % for DWI and 99.8 % for BWI. Similarly, the PSO model achieving an R2 of 99.4 % for DWI and 99.7 % for BWI when compared directly with reference results, surpassing previous works that employed methodologies based on conventional regression models. Thus, the results found from this study suggest that the use of PSO and DNN is promising in solving this type of problem.
ArticleNumber 108760
Author Bueno, M.
Schirru, R.
De Almeida, T.
Nicolau, A.S.
Author_xml – sequence: 1
  givenname: T.
  surname: De Almeida
  fullname: De Almeida, T.
  email: thalmeida@poli.ufrj.br
  organization: Department of Nuclear Engineering - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
– sequence: 2
  givenname: A.S.
  surname: Nicolau
  fullname: Nicolau, A.S.
  organization: Nuclear Engineering Program, COPPE - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
– sequence: 3
  givenname: R.
  orcidid: 0000-0001-5836-207X
  surname: Schirru
  fullname: Schirru, R.
  organization: Nuclear Engineering Program, COPPE - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
– sequence: 4
  givenname: M.
  surname: Bueno
  fullname: Bueno, M.
  organization: Geopyörä - Oulu, North Ostrobothnia, Finland
BookMark eNqFkM1KxDAQx4MouH68gYe8QNck2zatB0H8BkFBBW8hTSZr1jYpSVT2EXxrs9STB53LwAy__zC_PbTtvAOEjiiZU0Lr49V8sA7ccs4IK_Oo4TXZQjPacFa0ZVluoxlpWlbUDa920V6MK0JIxZt2hr4u4AN6Pw7gEvYGS6wBRuzgPcg-t_TpwxuWTufNw-M9lv3SB5teB5w8HgNoqzIXAL_KoB3EiN-jdUv8UgS5xtoaE6RK1rspI_nBKgyDjXEziyOoFHxUflwfoB0j-wiHP30fPV9dPp3fFHf317fnZ3eFWpA6FYy2bd2xxqhWyrqivONUV6SWumsXcmEMrQzvGkoMU7rTmtWKdywXVwCslYt9VE65Kh-OAYwYgx1kWAtKxEanWIlJp9joFJPOjJ38wpRNcvNZCtL2_8GnEwz5sQ8LQURlwamsL2QDQnv7d8A3G6-Yzg
CitedBy_id crossref_primary_10_3390_cryst15010014
Cites_doi 10.1109/ICNN.1995.488968
10.3390/resources5040036
10.1016/j.mineng.2023.108448
10.1016/j.mineng.2021.107293
10.1016/j.mineng.2003.10.019
10.1016/j.pnucene.2022.104542
10.3390/resources7040088
10.1016/j.mineng.2021.106905
10.1016/0009-2541(84)90025-1
10.1111/j.1530-9290.2011.00334.x
10.1016/j.envdev.2021.100683
10.1038/s41586-020-2649-2
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2024.108760
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2024_108760
S0892687524001894
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
LY3
LY7
M41
R2-
SEP
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c306t-21996b28fc9aa6517b71d506adb93a3ff15f7b810f2cdbdd26c7b22227cee29a3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Thu Apr 24 23:04:50 EDT 2025
Wed Oct 01 01:56:48 EDT 2025
Tue Jun 18 08:52:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectroscopy
Geometallurgy
Deep Neural Network
Nuclear Engineering
Artificial Intelligence
X-ray diffraction
Comminution
Particle Swarm Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-21996b28fc9aa6517b71d506adb93a3ff15f7b810f2cdbdd26c7b22227cee29a3
ORCID 0000-0001-5836-207X
ParticipantIDs crossref_primary_10_1016_j_mineng_2024_108760
crossref_citationtrail_10_1016_j_mineng_2024_108760
elsevier_sciencedirect_doi_10_1016_j_mineng_2024_108760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (accessed on 2023.10.13).
Bueno (b0020) 2021
Houshmand (b0080) 2023
Lee (b0100) 2014
Keeney L., Walters, S., 2009. Development of Geometallurgical Comminution Mapping and Modelling, The 41st Annual Canadian Mineral Processors. Ottawa, pp. 641-658.
Nicolau (b0120) 2023
Morell (b0110) 2004
Chollet, F., et al., 2015. Keras. Software available from: https://keras.io.
Pedregosa (b0130) 2011
Harris (b0075) 2020; 585
Dominy, O’Connor, Parbhakar-Fox (b0055) 2018
European Commission, 2023. Renewable energy targets. Internet site
Varoquaux, G., et al., 2020. Joblib: Running Python Functions as Pipeline Jobs. Software available from
Hannaker, Haukka, Sen (b0070) 1984; 42
Bond (b0015) 1961
Dos Santos (b0060) 2023
Rötzer, Schmidt (b0135) 2018
Bueno, M., et al., 2023. Applied Geometallurgy at Agnico Eagle's Kittilä Operation using the Geopyörä Breakage Test. 2023 SAG Conference.
Michaux, S., 2021. The Mining of Minerals and the Limits to Growth. GTK Geological Survey of Finland.
Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T., 1996. Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre: Indooroopilly, Australia.
Bueno, M., Foggiato, B., Lane, G., 2015. Geometallurgy Applied in Comminution to Minimize Design Risks. 2015 SAG Conference.
Calvo (b0040) 2016
.
Nicolau, A.S., De Lima, A., Schirru, R., 2017. Quantum Particle Swarm Approaches Applied to Combinatorial Problems. 2017 INAC.
Bhuiyan, M., Esmaeili, K., Ordóñez-Calderón, J., 2022. Evaluation of Characterization Tests as Geometallurgical Predictors of Bond Work Index at the Tasiast Mine, Mauritania. Minerals Engineering.
Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp.1942–1948.
Abadi, M., et al., 2015. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems. Software available from
Calvo, G., Palacios, J., Valero, A., 2022. The Influence of Ore Grade Decline on Energy Consumption and GhG Emissions: The Case of Gold. Environmental Development Journal.
Bueno, De Almeida, Powell (b0025) 2023
West (b0145) 2011
West (10.1016/j.mineng.2024.108760_b0145) 2011
Rötzer (10.1016/j.mineng.2024.108760_b0135) 2018
Hannaker (10.1016/j.mineng.2024.108760_b0070) 1984; 42
Morell (10.1016/j.mineng.2024.108760_b0110) 2004
Nicolau (10.1016/j.mineng.2024.108760_b0120) 2023
Lee (10.1016/j.mineng.2024.108760_b0100) 2014
10.1016/j.mineng.2024.108760_b0050
Dominy (10.1016/j.mineng.2024.108760_b0055) 2018
10.1016/j.mineng.2024.108760_b0095
Bueno (10.1016/j.mineng.2024.108760_b0025) 2023
10.1016/j.mineng.2024.108760_b0010
Pedregosa (10.1016/j.mineng.2024.108760_b0130) 2011
10.1016/j.mineng.2024.108760_b0030
Harris (10.1016/j.mineng.2024.108760_b0075) 2020; 585
10.1016/j.mineng.2024.108760_b0035
Bueno (10.1016/j.mineng.2024.108760_b0020) 2021
10.1016/j.mineng.2024.108760_b0115
Bond (10.1016/j.mineng.2024.108760_b0015) 1961
Dos Santos (10.1016/j.mineng.2024.108760_b0060) 2023
10.1016/j.mineng.2024.108760_b0090
Calvo (10.1016/j.mineng.2024.108760_b0040) 2016
10.1016/j.mineng.2024.108760_b0065
10.1016/j.mineng.2024.108760_b0140
Houshmand (10.1016/j.mineng.2024.108760_b0080) 2023
10.1016/j.mineng.2024.108760_b0125
10.1016/j.mineng.2024.108760_b0045
10.1016/j.mineng.2024.108760_b0005
10.1016/j.mineng.2024.108760_b0105
References_xml – year: 2023
  ident: b0120
  article-title: Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment
  publication-title: Prog. Nucl. Energy
– year: 2011
  ident: b0130
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– reference: Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T., 1996. Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre: Indooroopilly, Australia.
– year: 2004
  ident: b0110
  article-title: Predicting the specific energy of autogenous and semi-autogenous mills from small diameter drill core samples
  publication-title: Miner. Eng.
– reference: Chollet, F., et al., 2015. Keras. Software available from: https://keras.io.
– reference: Keeney L., Walters, S., 2009. Development of Geometallurgical Comminution Mapping and Modelling, The 41st Annual Canadian Mineral Processors. Ottawa, pp. 641-658.
– reference: European Commission, 2023. Renewable energy targets. Internet site:
– reference: Calvo, G., Palacios, J., Valero, A., 2022. The Influence of Ore Grade Decline on Energy Consumption and GhG Emissions: The Case of Gold. Environmental Development Journal.
– year: 2023
  ident: b0060
  article-title: System Based on Convolutional, Recurrent and Autoencoder Neural Networks for Classification of Postulated Accidents in Nuclear Power Plants with Anomaly Detection and “Don't Know” Response Capability
– year: 2014
  ident: b0100
  article-title: Pyswarm. Particle Swarm Optimization (PSO) With Constraint Support
  publication-title: Pyswarm. Internet Site
– reference: Varoquaux, G., et al., 2020. Joblib: Running Python Functions as Pipeline Jobs. Software available from:
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b0075
  article-title: Array programming with NumPy
  publication-title: Nature
– reference: Michaux, S., 2021. The Mining of Minerals and the Limits to Growth. GTK Geological Survey of Finland.
– reference: Nicolau, A.S., De Lima, A., Schirru, R., 2017. Quantum Particle Swarm Approaches Applied to Combinatorial Problems. 2017 INAC.
– reference: (accessed on 2023.10.13).
– year: 1961
  ident: b0015
  article-title: Crushing and grinding calculations
  publication-title: Br. Chem. Eng.
– year: 2016
  ident: b0040
  article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?
  publication-title: Resources Journal
– year: 2023
  ident: b0080
  article-title: Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning
  publication-title: Miner. Eng.
– volume: 42
  start-page: 319
  year: 1984
  end-page: 324
  ident: b0070
  article-title: Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials
  publication-title: Chem. Geol.
– year: 2018
  ident: b0055
  article-title: Geometallurgy – a rout to more resilient mine operations
  publication-title: Minerals Journal
– reference: Abadi, M., et al., 2015. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems. Software available from:
– reference: .
– year: 2023
  ident: b0025
  article-title: Extensive validation of a new rock breakage test
  publication-title: Minerals Journal
– year: 2021
  ident: b0020
  article-title: The double wheel breakage test
  publication-title: Miner. Eng.
– reference: Bhuiyan, M., Esmaeili, K., Ordóñez-Calderón, J., 2022. Evaluation of Characterization Tests as Geometallurgical Predictors of Bond Work Index at the Tasiast Mine, Mauritania. Minerals Engineering.
– reference: Bueno, M., et al., 2023. Applied Geometallurgy at Agnico Eagle's Kittilä Operation using the Geopyörä Breakage Test. 2023 SAG Conference.
– reference: Bueno, M., Foggiato, B., Lane, G., 2015. Geometallurgy Applied in Comminution to Minimize Design Risks. 2015 SAG Conference.
– year: 2011
  ident: b0145
  article-title: Decreasing metal ore grades
  publication-title: J. Ind. Ecol.
– reference: Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp.1942–1948.
– year: 2018
  ident: b0135
  article-title: Decreasing metal ore grades—is the fear of resource depletion justified?
  publication-title: Resources Journal
– ident: 10.1016/j.mineng.2024.108760_b0095
  doi: 10.1109/ICNN.1995.488968
– year: 2023
  ident: 10.1016/j.mineng.2024.108760_b0060
– ident: 10.1016/j.mineng.2024.108760_b0050
– year: 2016
  ident: 10.1016/j.mineng.2024.108760_b0040
  article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?
  publication-title: Resources Journal
  doi: 10.3390/resources5040036
– year: 2023
  ident: 10.1016/j.mineng.2024.108760_b0080
  article-title: Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2023.108448
– ident: 10.1016/j.mineng.2024.108760_b0115
– ident: 10.1016/j.mineng.2024.108760_b0090
– year: 2011
  ident: 10.1016/j.mineng.2024.108760_b0130
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.mineng.2024.108760_b0010
  doi: 10.1016/j.mineng.2021.107293
– ident: 10.1016/j.mineng.2024.108760_b0035
– year: 2023
  ident: 10.1016/j.mineng.2024.108760_b0025
  article-title: Extensive validation of a new rock breakage test
  publication-title: Minerals Journal
– year: 2004
  ident: 10.1016/j.mineng.2024.108760_b0110
  article-title: Predicting the specific energy of autogenous and semi-autogenous mills from small diameter drill core samples
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2003.10.019
– ident: 10.1016/j.mineng.2024.108760_b0140
– ident: 10.1016/j.mineng.2024.108760_b0125
– year: 2023
  ident: 10.1016/j.mineng.2024.108760_b0120
  article-title: Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2022.104542
– year: 1961
  ident: 10.1016/j.mineng.2024.108760_b0015
  article-title: Crushing and grinding calculations
  publication-title: Br. Chem. Eng.
– year: 2018
  ident: 10.1016/j.mineng.2024.108760_b0135
  article-title: Decreasing metal ore grades—is the fear of resource depletion justified?
  publication-title: Resources Journal
  doi: 10.3390/resources7040088
– year: 2021
  ident: 10.1016/j.mineng.2024.108760_b0020
  article-title: The double wheel breakage test
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106905
– ident: 10.1016/j.mineng.2024.108760_b0005
– year: 2014
  ident: 10.1016/j.mineng.2024.108760_b0100
  article-title: Pyswarm. Particle Swarm Optimization (PSO) With Constraint Support
  publication-title: Pyswarm. Internet Site
– volume: 42
  start-page: 319
  year: 1984
  ident: 10.1016/j.mineng.2024.108760_b0070
  article-title: Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials
  publication-title: Chem. Geol.
  doi: 10.1016/0009-2541(84)90025-1
– year: 2011
  ident: 10.1016/j.mineng.2024.108760_b0145
  article-title: Decreasing metal ore grades
  publication-title: J. Ind. Ecol.
  doi: 10.1111/j.1530-9290.2011.00334.x
– year: 2018
  ident: 10.1016/j.mineng.2024.108760_b0055
  article-title: Geometallurgy – a rout to more resilient mine operations
  publication-title: Minerals Journal
– ident: 10.1016/j.mineng.2024.108760_b0030
– ident: 10.1016/j.mineng.2024.108760_b0045
  doi: 10.1016/j.envdev.2021.100683
– ident: 10.1016/j.mineng.2024.108760_b0065
– volume: 585
  start-page: 357
  year: 2020
  ident: 10.1016/j.mineng.2024.108760_b0075
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 10.1016/j.mineng.2024.108760_b0105
SSID ssj0005789
Score 2.4204218
Snippet •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108760
SubjectTerms Artificial Intelligence
Comminution
Deep Neural Network
Geometallurgy
Nuclear Engineering
Particle Swarm Optimization
Spectroscopy
X-ray diffraction
Title Development of a deep neural network and a PSO algorithm to predict ore hardness using X-ray diffraction and atomic emission spectroscopy
URI https://dx.doi.org/10.1016/j.mineng.2024.108760
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNDl7jNukjzVHEZVVcBRX2VpImXVd221LqYS_e_ddmmlZWEAWPbWdKyYR5pN98g9CZEoYyL_KIjd6CBMbWrIKqkCiqfK19Wwc1RwN3o2j4HNyMw_EKuux6YQBW2fp-59Mbb93e6ber2S-n0_6jFwsW2XQbUJA0FsAJGgQcphicvy_BPHgzBg-ECUh37XMNxmtuM7l8YqtEFgDYjjdElT-Ep6WQM9hEG22uiC_c52yhFZNvo_UlBsEd9LEE-sFFhiXWxpQYWCqtZu4w3ljm2j55eLzHcjYpqmn9Msd1gcsK_tJYvcpgaL4Cr4cBCD_BY1LJBYbpKZXrfHDvqKGHGcOIODhkw02bJtBhFuViFz0Prp4uh6SdrkBSWybUhAH-WLE4S4WUUUi54lSHXiS1Er70s4yGGVcx9TKWaqU1i1KuGLTO2rjKhPT3UC8vcrOPsB_FNg2JjaS-LbhooAIRC81TpZSn4jQ7QH63qEnaUo_DBIxZ0mHMXhNnigRMkThTHCDypVU66o0_5Hlnr-TbFkpsdPhV8_DfmkdoDa4cIvAY9erqzZzYLKVWp802PEWrF9e3w9EnCezoww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3OXiN26SPNEdZlPUtqLC3kjTpuqJtKfXgxbv_2kzTygqi4LWZKSUT5pF-3wxCh0oYyrzIIzZ6CxIYW7MKqkKiqPK19m0d1FwNXF1Hw4fgfBSOZtCg48IArLL1_c6nN966fdJvd7NfTib9Oy8WLLLpNqAgaSyCWTQXhIxDBXb0PoXz4M0cPJAmIN7x5xqQ14tN5fKxLRNZAGg73nSq_CE-TcWc02W01CaL-Nh9zwqaMfkqWpxqIbiGPqZQP7jIsMTamBJDm0qrmTuQN5a5tiu3dzdYPo-LalI_vuC6wGUFv2msXmUwsK_A7WFAwo_xiFTyDcP4lMpRH9w7aiAxY5gRB7dsuOFpQj_MonxbRw-nJ_eDIWnHK5DU1gk1YQBAVizOUiFlFFKuONWhF0mthC_9LKNhxlVMvYylWmnNopQrBtxZG1iZkP4G6uVFbjYR9qPY5iGxkdS3FRcNVCBioXmqlPJUnGZbyO82NUnb3uMwAuM56UBmT4kzRQKmSJwpthD50ipd740_5Hlnr-TbGUpsePhVc_vfmgdofnh_dZlcnl1f7KAFWHHwwF3Uq6tXs2dTllrtN0fyE3oL6lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+neural+network+and+a+PSO+algorithm+to+predict+ore+hardness+using+X-ray+diffraction+and+atomic+emission+spectroscopy&rft.jtitle=Minerals+engineering&rft.au=De+Almeida%2C+T.&rft.au=Nicolau%2C+A.S.&rft.au=Schirru%2C+R.&rft.au=Bueno%2C+M.&rft.date=2024-08-01&rft.issn=0892-6875&rft.volume=213&rft.spage=108760&rft_id=info:doi/10.1016%2Fj.mineng.2024.108760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2024_108760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon