Development of a deep neural network and a PSO algorithm to predict ore hardness using X-ray diffraction and atomic emission spectroscopy
•In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (D...
Saved in:
| Published in | Minerals engineering Vol. 213; p. 108760 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0892-6875 1872-9444 |
| DOI | 10.1016/j.mineng.2024.108760 |
Cover
| Abstract | •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (DWI), with a mean error of 6.8 %.•The DNN model performed better to estimate the Bond Work Index (BWI), with a mean error of 3.8 %.•All four regression models had a coefficient of determination (R2) greater than 0.99 against the reference Geopyörä results.
Mining serves as the initial link in the supply chain for metals in manufacturing, and comminution − the process of reducing ore size through crushing and milling during mineral processing − is notably energy-intensive, accounting for up to 4 % of global power consumption, and its efficient management hinges on the variability within the mineral body, relying heavily on a comprehensive understanding of the ore’s strength and grinding resistance. The assessment of these parameters typically involves comminution tests such as the Geopyörä Breakage Test, the SMC test, and the Bond Ball Mill Grindability test. Additionally, analytical techniques like the X-ray Diffraction (XRD) and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) prove indispensable for the determination of crystalline structures and chemical composition analysis within different segments of the mineral body. This article delves into the application of Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) to predict rock strength and grinding resistance parameters: Drop weight index (DWI) and Bond work index (BWI) of mineral samples using ICP-AES and XRD data in order to develop models capable of unravelling the intricate relationships among material properties, chemical and mineralogical composition, and their collective influence on ore strength and grindability. The current article utilizes a dataset from a real comminution project to evaluate the performance of the DNN and PSO models. The results obtained with both DNN and PSO models are promising and remarkably similar, with the DNN achieving a coefficient of determination (R2) of 99.5 % for DWI and 99.8 % for BWI. Similarly, the PSO model achieving an R2 of 99.4 % for DWI and 99.7 % for BWI when compared directly with reference results, surpassing previous works that employed methodologies based on conventional regression models. Thus, the results found from this study suggest that the use of PSO and DNN is promising in solving this type of problem. |
|---|---|
| AbstractList | •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) models were developed for two comminution parameters.•The PSO algorithm model performed better to estimate the Drop Weight Index (DWI), with a mean error of 6.8 %.•The DNN model performed better to estimate the Bond Work Index (BWI), with a mean error of 3.8 %.•All four regression models had a coefficient of determination (R2) greater than 0.99 against the reference Geopyörä results.
Mining serves as the initial link in the supply chain for metals in manufacturing, and comminution − the process of reducing ore size through crushing and milling during mineral processing − is notably energy-intensive, accounting for up to 4 % of global power consumption, and its efficient management hinges on the variability within the mineral body, relying heavily on a comprehensive understanding of the ore’s strength and grinding resistance. The assessment of these parameters typically involves comminution tests such as the Geopyörä Breakage Test, the SMC test, and the Bond Ball Mill Grindability test. Additionally, analytical techniques like the X-ray Diffraction (XRD) and the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) prove indispensable for the determination of crystalline structures and chemical composition analysis within different segments of the mineral body. This article delves into the application of Deep Neural Network (DNN) and Particle Swarm Optimization (PSO) to predict rock strength and grinding resistance parameters: Drop weight index (DWI) and Bond work index (BWI) of mineral samples using ICP-AES and XRD data in order to develop models capable of unravelling the intricate relationships among material properties, chemical and mineralogical composition, and their collective influence on ore strength and grindability. The current article utilizes a dataset from a real comminution project to evaluate the performance of the DNN and PSO models. The results obtained with both DNN and PSO models are promising and remarkably similar, with the DNN achieving a coefficient of determination (R2) of 99.5 % for DWI and 99.8 % for BWI. Similarly, the PSO model achieving an R2 of 99.4 % for DWI and 99.7 % for BWI when compared directly with reference results, surpassing previous works that employed methodologies based on conventional regression models. Thus, the results found from this study suggest that the use of PSO and DNN is promising in solving this type of problem. |
| ArticleNumber | 108760 |
| Author | Bueno, M. Schirru, R. De Almeida, T. Nicolau, A.S. |
| Author_xml | – sequence: 1 givenname: T. surname: De Almeida fullname: De Almeida, T. email: thalmeida@poli.ufrj.br organization: Department of Nuclear Engineering - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil – sequence: 2 givenname: A.S. surname: Nicolau fullname: Nicolau, A.S. organization: Nuclear Engineering Program, COPPE - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil – sequence: 3 givenname: R. orcidid: 0000-0001-5836-207X surname: Schirru fullname: Schirru, R. organization: Nuclear Engineering Program, COPPE - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil – sequence: 4 givenname: M. surname: Bueno fullname: Bueno, M. organization: Geopyörä - Oulu, North Ostrobothnia, Finland |
| BookMark | eNqFkM1KxDAQx4MouH68gYe8QNck2zatB0H8BkFBBW8hTSZr1jYpSVT2EXxrs9STB53LwAy__zC_PbTtvAOEjiiZU0Lr49V8sA7ccs4IK_Oo4TXZQjPacFa0ZVluoxlpWlbUDa920V6MK0JIxZt2hr4u4AN6Pw7gEvYGS6wBRuzgPcg-t_TpwxuWTufNw-M9lv3SB5teB5w8HgNoqzIXAL_KoB3EiN-jdUv8UgS5xtoaE6RK1rspI_nBKgyDjXEziyOoFHxUflwfoB0j-wiHP30fPV9dPp3fFHf317fnZ3eFWpA6FYy2bd2xxqhWyrqivONUV6SWumsXcmEMrQzvGkoMU7rTmtWKdywXVwCslYt9VE65Kh-OAYwYgx1kWAtKxEanWIlJp9joFJPOjJ38wpRNcvNZCtL2_8GnEwz5sQ8LQURlwamsL2QDQnv7d8A3G6-Yzg |
| CitedBy_id | crossref_primary_10_3390_cryst15010014 |
| Cites_doi | 10.1109/ICNN.1995.488968 10.3390/resources5040036 10.1016/j.mineng.2023.108448 10.1016/j.mineng.2021.107293 10.1016/j.mineng.2003.10.019 10.1016/j.pnucene.2022.104542 10.3390/resources7040088 10.1016/j.mineng.2021.106905 10.1016/0009-2541(84)90025-1 10.1111/j.1530-9290.2011.00334.x 10.1016/j.envdev.2021.100683 10.1038/s41586-020-2649-2 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mineng.2024.108760 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-9444 |
| ExternalDocumentID | 10_1016_j_mineng_2024_108760 S0892687524001894 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ LY3 LY7 M41 R2- SEP SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c306t-21996b28fc9aa6517b71d506adb93a3ff15f7b810f2cdbdd26c7b22227cee29a3 |
| IEDL.DBID | .~1 |
| ISSN | 0892-6875 |
| IngestDate | Thu Apr 24 23:04:50 EDT 2025 Wed Oct 01 01:56:48 EDT 2025 Tue Jun 18 08:52:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spectroscopy Geometallurgy Deep Neural Network Nuclear Engineering Artificial Intelligence X-ray diffraction Comminution Particle Swarm Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-21996b28fc9aa6517b71d506adb93a3ff15f7b810f2cdbdd26c7b22227cee29a3 |
| ORCID | 0000-0001-5836-207X |
| ParticipantIDs | crossref_primary_10_1016_j_mineng_2024_108760 crossref_citationtrail_10_1016_j_mineng_2024_108760 elsevier_sciencedirect_doi_10_1016_j_mineng_2024_108760 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Minerals engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | (accessed on 2023.10.13). Bueno (b0020) 2021 Houshmand (b0080) 2023 Lee (b0100) 2014 Keeney L., Walters, S., 2009. Development of Geometallurgical Comminution Mapping and Modelling, The 41st Annual Canadian Mineral Processors. Ottawa, pp. 641-658. Nicolau (b0120) 2023 Morell (b0110) 2004 Chollet, F., et al., 2015. Keras. Software available from: https://keras.io. Pedregosa (b0130) 2011 Harris (b0075) 2020; 585 Dominy, O’Connor, Parbhakar-Fox (b0055) 2018 European Commission, 2023. Renewable energy targets. Internet site Varoquaux, G., et al., 2020. Joblib: Running Python Functions as Pipeline Jobs. Software available from Hannaker, Haukka, Sen (b0070) 1984; 42 Bond (b0015) 1961 Dos Santos (b0060) 2023 Rötzer, Schmidt (b0135) 2018 Bueno, M., et al., 2023. Applied Geometallurgy at Agnico Eagle's Kittilä Operation using the Geopyörä Breakage Test. 2023 SAG Conference. Michaux, S., 2021. The Mining of Minerals and the Limits to Growth. GTK Geological Survey of Finland. Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T., 1996. Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre: Indooroopilly, Australia. Bueno, M., Foggiato, B., Lane, G., 2015. Geometallurgy Applied in Comminution to Minimize Design Risks. 2015 SAG Conference. Calvo (b0040) 2016 . Nicolau, A.S., De Lima, A., Schirru, R., 2017. Quantum Particle Swarm Approaches Applied to Combinatorial Problems. 2017 INAC. Bhuiyan, M., Esmaeili, K., Ordóñez-Calderón, J., 2022. Evaluation of Characterization Tests as Geometallurgical Predictors of Bond Work Index at the Tasiast Mine, Mauritania. Minerals Engineering. Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp.1942–1948. Abadi, M., et al., 2015. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems. Software available from Calvo, G., Palacios, J., Valero, A., 2022. The Influence of Ore Grade Decline on Energy Consumption and GhG Emissions: The Case of Gold. Environmental Development Journal. Bueno, De Almeida, Powell (b0025) 2023 West (b0145) 2011 West (10.1016/j.mineng.2024.108760_b0145) 2011 Rötzer (10.1016/j.mineng.2024.108760_b0135) 2018 Hannaker (10.1016/j.mineng.2024.108760_b0070) 1984; 42 Morell (10.1016/j.mineng.2024.108760_b0110) 2004 Nicolau (10.1016/j.mineng.2024.108760_b0120) 2023 Lee (10.1016/j.mineng.2024.108760_b0100) 2014 10.1016/j.mineng.2024.108760_b0050 Dominy (10.1016/j.mineng.2024.108760_b0055) 2018 10.1016/j.mineng.2024.108760_b0095 Bueno (10.1016/j.mineng.2024.108760_b0025) 2023 10.1016/j.mineng.2024.108760_b0010 Pedregosa (10.1016/j.mineng.2024.108760_b0130) 2011 10.1016/j.mineng.2024.108760_b0030 Harris (10.1016/j.mineng.2024.108760_b0075) 2020; 585 10.1016/j.mineng.2024.108760_b0035 Bueno (10.1016/j.mineng.2024.108760_b0020) 2021 10.1016/j.mineng.2024.108760_b0115 Bond (10.1016/j.mineng.2024.108760_b0015) 1961 Dos Santos (10.1016/j.mineng.2024.108760_b0060) 2023 10.1016/j.mineng.2024.108760_b0090 Calvo (10.1016/j.mineng.2024.108760_b0040) 2016 10.1016/j.mineng.2024.108760_b0065 10.1016/j.mineng.2024.108760_b0140 Houshmand (10.1016/j.mineng.2024.108760_b0080) 2023 10.1016/j.mineng.2024.108760_b0125 10.1016/j.mineng.2024.108760_b0045 10.1016/j.mineng.2024.108760_b0005 10.1016/j.mineng.2024.108760_b0105 |
| References_xml | – year: 2023 ident: b0120 article-title: Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment publication-title: Prog. Nucl. Energy – year: 2011 ident: b0130 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – reference: Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T., 1996. Mineral Comminution Circuits: Their Operation and Optimisation. Julius Kruttschnitt Mineral Research Centre: Indooroopilly, Australia. – year: 2004 ident: b0110 article-title: Predicting the specific energy of autogenous and semi-autogenous mills from small diameter drill core samples publication-title: Miner. Eng. – reference: Chollet, F., et al., 2015. Keras. Software available from: https://keras.io. – reference: Keeney L., Walters, S., 2009. Development of Geometallurgical Comminution Mapping and Modelling, The 41st Annual Canadian Mineral Processors. Ottawa, pp. 641-658. – reference: European Commission, 2023. Renewable energy targets. Internet site: – reference: Calvo, G., Palacios, J., Valero, A., 2022. The Influence of Ore Grade Decline on Energy Consumption and GhG Emissions: The Case of Gold. Environmental Development Journal. – year: 2023 ident: b0060 article-title: System Based on Convolutional, Recurrent and Autoencoder Neural Networks for Classification of Postulated Accidents in Nuclear Power Plants with Anomaly Detection and “Don't Know” Response Capability – year: 2014 ident: b0100 article-title: Pyswarm. Particle Swarm Optimization (PSO) With Constraint Support publication-title: Pyswarm. Internet Site – reference: Varoquaux, G., et al., 2020. Joblib: Running Python Functions as Pipeline Jobs. Software available from: – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b0075 article-title: Array programming with NumPy publication-title: Nature – reference: Michaux, S., 2021. The Mining of Minerals and the Limits to Growth. GTK Geological Survey of Finland. – reference: Nicolau, A.S., De Lima, A., Schirru, R., 2017. Quantum Particle Swarm Approaches Applied to Combinatorial Problems. 2017 INAC. – reference: (accessed on 2023.10.13). – year: 1961 ident: b0015 article-title: Crushing and grinding calculations publication-title: Br. Chem. Eng. – year: 2016 ident: b0040 article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? publication-title: Resources Journal – year: 2023 ident: b0080 article-title: Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning publication-title: Miner. Eng. – volume: 42 start-page: 319 year: 1984 end-page: 324 ident: b0070 article-title: Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials publication-title: Chem. Geol. – year: 2018 ident: b0055 article-title: Geometallurgy – a rout to more resilient mine operations publication-title: Minerals Journal – reference: Abadi, M., et al., 2015. TensorFlow: Large-scale Machine Learning on Heterogeneous Systems. Software available from: – reference: . – year: 2023 ident: b0025 article-title: Extensive validation of a new rock breakage test publication-title: Minerals Journal – year: 2021 ident: b0020 article-title: The double wheel breakage test publication-title: Miner. Eng. – reference: Bhuiyan, M., Esmaeili, K., Ordóñez-Calderón, J., 2022. Evaluation of Characterization Tests as Geometallurgical Predictors of Bond Work Index at the Tasiast Mine, Mauritania. Minerals Engineering. – reference: Bueno, M., et al., 2023. Applied Geometallurgy at Agnico Eagle's Kittilä Operation using the Geopyörä Breakage Test. 2023 SAG Conference. – reference: Bueno, M., Foggiato, B., Lane, G., 2015. Geometallurgy Applied in Comminution to Minimize Design Risks. 2015 SAG Conference. – year: 2011 ident: b0145 article-title: Decreasing metal ore grades publication-title: J. Ind. Ecol. – reference: Kennedy, J., Eberhart, R.C., 1995. Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, Vol. 4, pp.1942–1948. – year: 2018 ident: b0135 article-title: Decreasing metal ore grades—is the fear of resource depletion justified? publication-title: Resources Journal – ident: 10.1016/j.mineng.2024.108760_b0095 doi: 10.1109/ICNN.1995.488968 – year: 2023 ident: 10.1016/j.mineng.2024.108760_b0060 – ident: 10.1016/j.mineng.2024.108760_b0050 – year: 2016 ident: 10.1016/j.mineng.2024.108760_b0040 article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? publication-title: Resources Journal doi: 10.3390/resources5040036 – year: 2023 ident: 10.1016/j.mineng.2024.108760_b0080 article-title: Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning publication-title: Miner. Eng. doi: 10.1016/j.mineng.2023.108448 – ident: 10.1016/j.mineng.2024.108760_b0115 – ident: 10.1016/j.mineng.2024.108760_b0090 – year: 2011 ident: 10.1016/j.mineng.2024.108760_b0130 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.mineng.2024.108760_b0010 doi: 10.1016/j.mineng.2021.107293 – ident: 10.1016/j.mineng.2024.108760_b0035 – year: 2023 ident: 10.1016/j.mineng.2024.108760_b0025 article-title: Extensive validation of a new rock breakage test publication-title: Minerals Journal – year: 2004 ident: 10.1016/j.mineng.2024.108760_b0110 article-title: Predicting the specific energy of autogenous and semi-autogenous mills from small diameter drill core samples publication-title: Miner. Eng. doi: 10.1016/j.mineng.2003.10.019 – ident: 10.1016/j.mineng.2024.108760_b0140 – ident: 10.1016/j.mineng.2024.108760_b0125 – year: 2023 ident: 10.1016/j.mineng.2024.108760_b0120 article-title: Deep neural networks for estimation of temperature values for thermal ageing evaluation of nuclear power plant equipment publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2022.104542 – year: 1961 ident: 10.1016/j.mineng.2024.108760_b0015 article-title: Crushing and grinding calculations publication-title: Br. Chem. Eng. – year: 2018 ident: 10.1016/j.mineng.2024.108760_b0135 article-title: Decreasing metal ore grades—is the fear of resource depletion justified? publication-title: Resources Journal doi: 10.3390/resources7040088 – year: 2021 ident: 10.1016/j.mineng.2024.108760_b0020 article-title: The double wheel breakage test publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106905 – ident: 10.1016/j.mineng.2024.108760_b0005 – year: 2014 ident: 10.1016/j.mineng.2024.108760_b0100 article-title: Pyswarm. Particle Swarm Optimization (PSO) With Constraint Support publication-title: Pyswarm. Internet Site – volume: 42 start-page: 319 year: 1984 ident: 10.1016/j.mineng.2024.108760_b0070 article-title: Comparative study of ICP-AES and XRF analysis of major and minor constituents on geological materials publication-title: Chem. Geol. doi: 10.1016/0009-2541(84)90025-1 – year: 2011 ident: 10.1016/j.mineng.2024.108760_b0145 article-title: Decreasing metal ore grades publication-title: J. Ind. Ecol. doi: 10.1111/j.1530-9290.2011.00334.x – year: 2018 ident: 10.1016/j.mineng.2024.108760_b0055 article-title: Geometallurgy – a rout to more resilient mine operations publication-title: Minerals Journal – ident: 10.1016/j.mineng.2024.108760_b0030 – ident: 10.1016/j.mineng.2024.108760_b0045 doi: 10.1016/j.envdev.2021.100683 – ident: 10.1016/j.mineng.2024.108760_b0065 – volume: 585 start-page: 357 year: 2020 ident: 10.1016/j.mineng.2024.108760_b0075 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: 10.1016/j.mineng.2024.108760_b0105 |
| SSID | ssj0005789 |
| Score | 2.4204218 |
| Snippet | •In the present work, nuclear analytical techniques (XRD and ICP-AES) are used to evaluate ore hardness.•Deep Neural Network (DNN) and Particle Swarm... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108760 |
| SubjectTerms | Artificial Intelligence Comminution Deep Neural Network Geometallurgy Nuclear Engineering Particle Swarm Optimization Spectroscopy X-ray diffraction |
| Title | Development of a deep neural network and a PSO algorithm to predict ore hardness using X-ray diffraction and atomic emission spectroscopy |
| URI | https://dx.doi.org/10.1016/j.mineng.2024.108760 |
| Volume | 213 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-9444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-9444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005789 issn: 0892-6875 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvQgPvFNDl7jNukjzVHEZVVcBRX2VpImXVd221LqYS_e_ddmmlZWEAWPbWdKyYR5pN98g9CZEoYyL_KIjd6CBMbWrIKqkCiqfK19Wwc1RwN3o2j4HNyMw_EKuux6YQBW2fp-59Mbb93e6ber2S-n0_6jFwsW2XQbUJA0FsAJGgQcphicvy_BPHgzBg-ECUh37XMNxmtuM7l8YqtEFgDYjjdElT-Ep6WQM9hEG22uiC_c52yhFZNvo_UlBsEd9LEE-sFFhiXWxpQYWCqtZu4w3ljm2j55eLzHcjYpqmn9Msd1gcsK_tJYvcpgaL4Cr4cBCD_BY1LJBYbpKZXrfHDvqKGHGcOIODhkw02bJtBhFuViFz0Prp4uh6SdrkBSWybUhAH-WLE4S4WUUUi54lSHXiS1Er70s4yGGVcx9TKWaqU1i1KuGLTO2rjKhPT3UC8vcrOPsB_FNg2JjaS-LbhooAIRC81TpZSn4jQ7QH63qEnaUo_DBIxZ0mHMXhNnigRMkThTHCDypVU66o0_5Hlnr-TbFkpsdPhV8_DfmkdoDa4cIvAY9erqzZzYLKVWp802PEWrF9e3w9EnCezoww |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MS3OXiN26SPNEdZlPUtqLC3kjTpuqJtKfXgxbv_2kzTygqi4LWZKSUT5pF-3wxCh0oYyrzIIzZ6CxIYW7MKqkKiqPK19m0d1FwNXF1Hw4fgfBSOZtCg48IArLL1_c6nN966fdJvd7NfTib9Oy8WLLLpNqAgaSyCWTQXhIxDBXb0PoXz4M0cPJAmIN7x5xqQ14tN5fKxLRNZAGg73nSq_CE-TcWc02W01CaL-Nh9zwqaMfkqWpxqIbiGPqZQP7jIsMTamBJDm0qrmTuQN5a5tiu3dzdYPo-LalI_vuC6wGUFv2msXmUwsK_A7WFAwo_xiFTyDcP4lMpRH9w7aiAxY5gRB7dsuOFpQj_MonxbRw-nJ_eDIWnHK5DU1gk1YQBAVizOUiFlFFKuONWhF0mthC_9LKNhxlVMvYylWmnNopQrBtxZG1iZkP4G6uVFbjYR9qPY5iGxkdS3FRcNVCBioXmqlPJUnGZbyO82NUnb3uMwAuM56UBmT4kzRQKmSJwpthD50ipd740_5Hlnr-TbGUpsePhVc_vfmgdofnh_dZlcnl1f7KAFWHHwwF3Uq6tXs2dTllrtN0fyE3oL6lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+neural+network+and+a+PSO+algorithm+to+predict+ore+hardness+using+X-ray+diffraction+and+atomic+emission+spectroscopy&rft.jtitle=Minerals+engineering&rft.au=De+Almeida%2C+T.&rft.au=Nicolau%2C+A.S.&rft.au=Schirru%2C+R.&rft.au=Bueno%2C+M.&rft.date=2024-08-01&rft.issn=0892-6875&rft.volume=213&rft.spage=108760&rft_id=info:doi/10.1016%2Fj.mineng.2024.108760&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2024_108760 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |