Meta-learning in spiking neural networks with reward-modulated STDP
The human brain constantly learns and rapidly adapts to new situations by integrating acquired knowledge and experiences into memory. Developing this capability in machine learning models is considered an important goal of AI research since deep neural networks perform poorly when there is limited d...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 600; p. 128173 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 |
DOI | 10.1016/j.neucom.2024.128173 |
Cover
Abstract | The human brain constantly learns and rapidly adapts to new situations by integrating acquired knowledge and experiences into memory. Developing this capability in machine learning models is considered an important goal of AI research since deep neural networks perform poorly when there is limited data or when they need to adapt quickly to new unseen tasks. Meta-learning models are proposed to facilitate quick learning in low-data regimes by employing absorbed information from the past. Although some models have recently been introduced that reached high-performance levels, they are not biologically plausible. In our research, we have proposed a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex using spiking neural networks with a reward-based learning system. The major contribution of our work lies in the design of a bio-plausible meta-learning framework that incorporates learning rules such as Spike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP (R-STDP). This framework not only reflects biological learning mechanisms more accurately but also attains competitive results comparable to those achieved by traditional gradient descent-based approaches in meta-learning. Our proposed model includes a memory designed to prevent catastrophic forgetting, a phenomenon that occurs when meta-learning models forget what they have learned so far as learning the new task begins. Furthermore, our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware. The implications and predictions of various models for solving few-shot classification tasks are extensively analyzed. Base on the results, our model has demonstrated the ability to compete with the existing state-of-the-art meta-learning techniques, representing a significant step towards creating AI systems that emulate the human brain’s ability to learn quickly and efficiently from limited data.
•“Higher accuracy & generalization w.r.t SOTA methods in few-shot classification tasks.”•“Improved the generalization of meta-SNNs by simulating an efficient episodic memory.”•“Demonstrating the potential of using reward-modulated STDP in SNNS for meta-learning.” |
---|---|
AbstractList | The human brain constantly learns and rapidly adapts to new situations by integrating acquired knowledge and experiences into memory. Developing this capability in machine learning models is considered an important goal of AI research since deep neural networks perform poorly when there is limited data or when they need to adapt quickly to new unseen tasks. Meta-learning models are proposed to facilitate quick learning in low-data regimes by employing absorbed information from the past. Although some models have recently been introduced that reached high-performance levels, they are not biologically plausible. In our research, we have proposed a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex using spiking neural networks with a reward-based learning system. The major contribution of our work lies in the design of a bio-plausible meta-learning framework that incorporates learning rules such as Spike-Timing-Dependent Plasticity (STDP) and Reward-Modulated STDP (R-STDP). This framework not only reflects biological learning mechanisms more accurately but also attains competitive results comparable to those achieved by traditional gradient descent-based approaches in meta-learning. Our proposed model includes a memory designed to prevent catastrophic forgetting, a phenomenon that occurs when meta-learning models forget what they have learned so far as learning the new task begins. Furthermore, our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware. The implications and predictions of various models for solving few-shot classification tasks are extensively analyzed. Base on the results, our model has demonstrated the ability to compete with the existing state-of-the-art meta-learning techniques, representing a significant step towards creating AI systems that emulate the human brain’s ability to learn quickly and efficiently from limited data.
•“Higher accuracy & generalization w.r.t SOTA methods in few-shot classification tasks.”•“Improved the generalization of meta-SNNs by simulating an efficient episodic memory.”•“Demonstrating the potential of using reward-modulated STDP in SNNS for meta-learning.” |
ArticleNumber | 128173 |
Author | Kheradpisheh, Saeed Reza Ganjtabesh, Mohammad Javaheri, Alireza Gholamzadeh Khoee, Arsham |
Author_xml | – sequence: 1 givenname: Arsham orcidid: 0000-0002-5130-5520 surname: Gholamzadeh Khoee fullname: Gholamzadeh Khoee, Arsham organization: Department of Computer Science, School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran – sequence: 2 givenname: Alireza surname: Javaheri fullname: Javaheri, Alireza organization: Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran – sequence: 3 givenname: Saeed Reza orcidid: 0000-0001-6168-4379 surname: Kheradpisheh fullname: Kheradpisheh, Saeed Reza email: s_kheradpisheh@sbu.ac.ir organization: Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran – sequence: 4 givenname: Mohammad surname: Ganjtabesh fullname: Ganjtabesh, Mohammad organization: Department of Computer Science, School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran |
BookMark | eNqFkM1OwzAQBn0oEm3hDTjkBRLWm38OSKhAQSoCiXK2HGcLblO7sl0q3p5U4cQBTt9eZqSdCRsZa4ixCw4JB15crhNDe2W3CQJmCceKl-mIjaHGPMaU4ymbeL8G4CXHesxmTxRk3JF0Rpv3SJvI7_TmePYaJ7t-wsG6jY8OOnxEjg7StfHWtvtOBmqj1-Xtyxk7WcnO0_nPTtnb_d1y9hAvnuePs5tFrFIoQoxQ5ByqGhFX1ADliJmqyrpKG9mghLSsy6qhslZYAhSQ1XlOFbSFzAGJq3TKrgavctZ7RyuhdJBBWxOc1J3gII4JxFoMCcQxgRgS9HD2C945vZXu6z_sesCof-xTkxNeaTKKWu1IBdFa_bfgG8pSewQ |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c02281 crossref_primary_10_1007_s10462_024_10922_z |
Cites_doi | 10.1126/science.1174519 10.1371/journal.pcbi.1003024 10.1016/j.neunet.2017.12.005 10.1016/j.conb.2006.10.012 10.1109/MSP.2019.2931595 10.1016/j.neunet.2020.08.001 10.3389/fnins.2011.00073 10.1038/381520a0 10.1146/annurev.neuro.27.070203.144130 10.1038/s41593-018-0147-8 10.1037/0033-295X.94.2.115 10.1038/383076a0 10.1016/j.neunet.2018.12.002 10.1093/cercor/bhm064 10.1038/s42256-019-0097-1 10.1016/j.bbr.2009.08.031 10.1037/0033-295X.114.3.784 10.1109/TSMC.2023.3300318 10.1364/JOSAA.22.002013 10.1038/s41467-021-24269-4 10.1109/CVPR.2018.00131 10.1088/2634-4386/ac8828 10.1523/JNEUROSCI.18-24-10464.1998 10.7554/eLife.27756 10.1098/rstb.2008.0158 10.3389/fncir.2015.00085 10.1016/j.neunet.2019.09.007 10.1038/nn1209 10.1016/j.neubiorev.2011.07.006 10.1016/j.neunet.2014.09.003 10.1109/ICCKE57176.2022.9960005 10.1111/j.1460-9568.2009.06743.x 10.1152/jn.1991.66.1.170 10.3389/fnins.2022.850932 10.1016/j.neuron.2012.03.037 10.1016/j.neuron.2013.04.016 10.1038/ncomms12554 10.1016/j.neucom.2023.126240 10.1038/5739 10.1016/j.patcog.2019.05.015 10.1016/j.neuron.2012.08.001 10.1016/j.neuron.2012.01.010 10.1016/j.cub.2012.01.003 10.1016/j.cobeha.2019.04.007 10.1109/5.58356 10.1038/nature04676 10.1007/s10827-006-7074-5 10.1038/nn1890 10.1126/science.282.5392.1335 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2024.128173 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_neucom_2024_128173 S0925231224009445 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP ~HD |
ID | FETCH-LOGICAL-c306t-20651089222feb0e5224c87983bab2a037978be79c2700604955e80d6a502e1c3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 23:10:24 EDT 2025 Wed Oct 01 05:03:39 EDT 2025 Sat Aug 17 15:42:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reward-modulated STDP Learning to learn Spiking neurons Meta-learning Few-shot learning STDP PFC Hippocampus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-20651089222feb0e5224c87983bab2a037978be79c2700604955e80d6a502e1c3 |
ORCID | 0000-0002-5130-5520 0000-0001-6168-4379 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2024_128173 crossref_primary_10_1016_j_neucom_2024_128173 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mishra, Rohaninejad, Chen, Abbeel (b11) 2017 C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, 2017, pp. 1126–1135. Subramoney, Bellec, Scherr, Legenstein, Maass (b28) 2021 Shima, Tanji (b56) 1998; 282 Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b33) 2019; 111 Lake, Salakhutdinov, Tenenbaum (b63) 2019; 29 Vuorio, Sun, Hu, Lim (b72) 2019; 32 Padoa-Schioppa, Assad (b58) 2006; 441 Vinyals, Blundell, Lillicrap, Wierstra (b4) 2016; 29 Squire, Stark, Clark (b13) 2004; 27 Maji, Rahtu, Kannala, Blaschko, Vedaldi (b64) 2013 S. Ritter, J. Wang, Z. Kurth-Nelson, S. Jayakumar, C. Blundell, R. Pascanu, M. Botvinick, Been there, done that: Meta-learning with episodic recall, in: International Conference on Machine Learning, 2018, pp. 4354–4363. Nandy, Sharpee, Reynolds, Mitchell (b44) 2013; 78 H. Yao, Y. Wei, J. Huang, Z. Li, Hierarchically structured meta-learning, in: International Conference on Machine Learning, 2019, pp. 7045–7054. Neftci, Mostafa, Zenke (b34) 2019; 36 Davachi (b12) 2006; 16 Eichenbaum, Sauvage, Fortin, Komorowski, Lipton (b14) 2012; 36 Seo, Barraclough, Lee (b57) 2007; 17 Lennie, Movshon (b43) 2005; 22 Finn, Levine (b68) 2017 Bi, Poo (b19) 1998; 18 Silva, Zhou, Rogerson, Shobe, Balaji (b52) 2009; 326 Schmidhuber (b1) 2015; 61 Yang, Pang, Wang, Lei, Pan, Wang, Jin (b17) 2023; 542 Kaiser, Nachum, Roy, Bengio (b25) 2017 Biederman (b42) 1987; 94 Tanaka, Saito, Fukada, Moriya (b45) 1991; 66 Jolivet, Rauch, Lüscher, Gerstner (b53) 2006; 21 Indiveri, Linares-Barranco, Hamilton, Schaik, Etienne-Cummings, Delbruck, Liu, Dudek, Häfliger, Renaud (b36) 2011; 5 Kim, Shadlen (b55) 1999; 2 Kennerley, Wallis (b32) 2009; 29 A. Pritzel, B. Uria, S. Srinivasan, A. Badia, O. Vinyals, D. Hassabis, D. Wierstra, C. Blundell, Neural episodic control, in: International Conference on Machine Learning, 2017, pp. 2827–2836. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. Torr, T. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208. Brzosko, Zannone, Schultz, Clopath, Paulsen (b21) 2017; 6 T. Munkhdalai, H. Yu, Meta networks, in: International Conference on Machine Learning, 2017, pp. 2554–2563. He, Wu, Deng, Li, Wang, Tian, Ding, Wang, Xie (b26) 2020; 132 Feldman (b48) 2012; 75 Kheradpisheh, Ganjtabesh, Thorpe, Masquelier (b49) 2018; 99 Thrun, Pratt (b3) 1998 Graves, Wayne, Danihelka (b69) 2014 Davies (b37) 2019; 1 Seo, Lee, Averbeck (b60) 2012; 74 Tsutsui, Grabenhorst, Kobayashi, Schultz (b59) 2016; 7 Yoon, Kim, Dia, Kim, Bengio, Ahn (b71) 2018; 31 Scherr, Stöckl, Maass (b29) 2020 A. Javaheri, A. Gholamzadeh Khoee, S. Kheradpisheh, H. Farahani, M. Ganjtabesh, Avid: A Variational Inference Deliberation For Meta-Learning, in: 2022 12th International Conference on Computer and Knowledge Engineering, ICCKE, 2022, pp. 268–273. Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick (b22) 2018; 21 Hao, Huang, Dong, Xu (b73) 2020; 121 Yang, Chen (b16) 2023 Snell, Swersky, Zemel (b5) 2017; 30 Braun, Mehring, Wolpert (b2) 2010; 206 Jeong, Cho, Kim, Oh, Kang, Yoo, Lee, Han (b51) 2021; 12 Mozafari, Ganjtabesh, Nowzari-Dalini, Thorpe, Masquelier (b50) 2019; 94 Stewart, Neftci (b27) 2022; 2 Gerstner, Kistler, Naud, Paninski (b46) 2014 Li, Long, Yang (b39) 2015; 2015 A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, T. Lillicrap, Meta-learning with memory-augmented neural networks, in: International Conference on Machine Learning, 2016, pp. 1842–1850. Frémaux, Sprekeler, Gerstner (b54) 2013; 9 Li, Zhou, Chen, Li (b8) 2017 Frémaux, Gerstner (b20) 2016; 9 Bellec, Salaj, Subramoney, Legenstein, Maass (b38) 2018; 31 McMahon, Leopold (b47) 2012; 22 G. Koch, R. Zemel, R. Salakhutdinov, et al., Siamese neural networks for one-shot image recognition, in: ICML Deep Learning Workshop, Vol. 2, 2015. Mead (b35) 1990; 78 Barraclough, Conroy, Lee (b61) 2004; 7 Yang, Linares-Barranco, Chen (b15) 2022; 16 Gerstner, Kempter, Van Hemmen, Wagner (b18) 1996; 383 Seo, Lee (b62) 2008; 363 DiCarlo, Zoccolan, Rust (b41) 2012; 73 Y. Lee, S. Choi, Gradient-based meta-learning with learned layerwise metric and subspace, in: International Conference on Machine Learning, 2018, pp. 2927–2936. Matsumoto, Matsumoto, Abe, Tanaka (b30) 2007; 10 Redish, Jensen, Johnson, Kurth-Nelson (b31) 2007; 114 Thorpe, Fize, Marlot (b40) 1996; 381 Li (10.1016/j.neucom.2024.128173_b39) 2015; 2015 Yang (10.1016/j.neucom.2024.128173_b16) 2023 Yang (10.1016/j.neucom.2024.128173_b17) 2023; 542 Davies (10.1016/j.neucom.2024.128173_b37) 2019; 1 Frémaux (10.1016/j.neucom.2024.128173_b54) 2013; 9 Schmidhuber (10.1016/j.neucom.2024.128173_b1) 2015; 61 Wang (10.1016/j.neucom.2024.128173_b22) 2018; 21 Gerstner (10.1016/j.neucom.2024.128173_b46) 2014 10.1016/j.neucom.2024.128173_b10 Kheradpisheh (10.1016/j.neucom.2024.128173_b49) 2018; 99 Mozafari (10.1016/j.neucom.2024.128173_b50) 2019; 94 Hao (10.1016/j.neucom.2024.128173_b73) 2020; 121 Redish (10.1016/j.neucom.2024.128173_b31) 2007; 114 Biederman (10.1016/j.neucom.2024.128173_b42) 1987; 94 Thorpe (10.1016/j.neucom.2024.128173_b40) 1996; 381 Stewart (10.1016/j.neucom.2024.128173_b27) 2022; 2 Bellec (10.1016/j.neucom.2024.128173_b38) 2018; 31 Eichenbaum (10.1016/j.neucom.2024.128173_b14) 2012; 36 Seo (10.1016/j.neucom.2024.128173_b62) 2008; 363 Vinyals (10.1016/j.neucom.2024.128173_b4) 2016; 29 Silva (10.1016/j.neucom.2024.128173_b52) 2009; 326 Squire (10.1016/j.neucom.2024.128173_b13) 2004; 27 Yang (10.1016/j.neucom.2024.128173_b15) 2022; 16 Jolivet (10.1016/j.neucom.2024.128173_b53) 2006; 21 Kim (10.1016/j.neucom.2024.128173_b55) 1999; 2 Seo (10.1016/j.neucom.2024.128173_b60) 2012; 74 Nandy (10.1016/j.neucom.2024.128173_b44) 2013; 78 Mead (10.1016/j.neucom.2024.128173_b35) 1990; 78 Mishra (10.1016/j.neucom.2024.128173_b11) 2017 He (10.1016/j.neucom.2024.128173_b26) 2020; 132 Lake (10.1016/j.neucom.2024.128173_b63) 2019; 29 Tavanaei (10.1016/j.neucom.2024.128173_b33) 2019; 111 Matsumoto (10.1016/j.neucom.2024.128173_b30) 2007; 10 Padoa-Schioppa (10.1016/j.neucom.2024.128173_b58) 2006; 441 Graves (10.1016/j.neucom.2024.128173_b69) 2014 10.1016/j.neucom.2024.128173_b6 Barraclough (10.1016/j.neucom.2024.128173_b61) 2004; 7 10.1016/j.neucom.2024.128173_b7 Lennie (10.1016/j.neucom.2024.128173_b43) 2005; 22 10.1016/j.neucom.2024.128173_b9 Braun (10.1016/j.neucom.2024.128173_b2) 2010; 206 DiCarlo (10.1016/j.neucom.2024.128173_b41) 2012; 73 Vuorio (10.1016/j.neucom.2024.128173_b72) 2019; 32 Kaiser (10.1016/j.neucom.2024.128173_b25) 2017 Shima (10.1016/j.neucom.2024.128173_b56) 1998; 282 Finn (10.1016/j.neucom.2024.128173_b68) 2017 Brzosko (10.1016/j.neucom.2024.128173_b21) 2017; 6 Neftci (10.1016/j.neucom.2024.128173_b34) 2019; 36 Snell (10.1016/j.neucom.2024.128173_b5) 2017; 30 10.1016/j.neucom.2024.128173_b70 Tanaka (10.1016/j.neucom.2024.128173_b45) 1991; 66 Indiveri (10.1016/j.neucom.2024.128173_b36) 2011; 5 Li (10.1016/j.neucom.2024.128173_b8) 2017 Frémaux (10.1016/j.neucom.2024.128173_b20) 2016; 9 Seo (10.1016/j.neucom.2024.128173_b57) 2007; 17 Tsutsui (10.1016/j.neucom.2024.128173_b59) 2016; 7 Davachi (10.1016/j.neucom.2024.128173_b12) 2006; 16 Subramoney (10.1016/j.neucom.2024.128173_b28) 2021 Gerstner (10.1016/j.neucom.2024.128173_b18) 1996; 383 10.1016/j.neucom.2024.128173_b66 10.1016/j.neucom.2024.128173_b23 Scherr (10.1016/j.neucom.2024.128173_b29) 2020 10.1016/j.neucom.2024.128173_b67 10.1016/j.neucom.2024.128173_b24 McMahon (10.1016/j.neucom.2024.128173_b47) 2012; 22 Bi (10.1016/j.neucom.2024.128173_b19) 1998; 18 Kennerley (10.1016/j.neucom.2024.128173_b32) 2009; 29 Yoon (10.1016/j.neucom.2024.128173_b71) 2018; 31 10.1016/j.neucom.2024.128173_b65 Jeong (10.1016/j.neucom.2024.128173_b51) 2021; 12 Thrun (10.1016/j.neucom.2024.128173_b3) 1998 Maji (10.1016/j.neucom.2024.128173_b64) 2013 Feldman (10.1016/j.neucom.2024.128173_b48) 2012; 75 |
References_xml | – reference: A. Pritzel, B. Uria, S. Srinivasan, A. Badia, O. Vinyals, D. Hassabis, D. Wierstra, C. Blundell, Neural episodic control, in: International Conference on Machine Learning, 2017, pp. 2827–2836. – volume: 7 start-page: 12554 year: 2016 ident: b59 article-title: A dynamic code for economic object valuation in prefrontal cortex neurons publication-title: Nature Commun.. – volume: 1 start-page: 386 year: 2019 end-page: 388 ident: b37 article-title: Benchmarks for progress in neuromorphic computing publication-title: Nat. Mach. Intell. – volume: 31 year: 2018 ident: b38 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons publication-title: Adv. Neural Inf. Process. Syst. – volume: 326 start-page: 391 year: 2009 end-page: 395 ident: b52 article-title: Molecular and cellular approaches to memory allocation in neural circuits publication-title: Science – volume: 542 year: 2023 ident: b17 article-title: Spike-driven multi-scale learning with hybrid mechanisms of spiking dendrites publication-title: Neurocomputing – volume: 94 start-page: 87 year: 2019 end-page: 95 ident: b50 article-title: Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks publication-title: Pattern Recognit. – volume: 9 start-page: 85 year: 2016 ident: b20 article-title: Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules publication-title: Front. Neural Circuits – volume: 31 year: 2018 ident: b71 article-title: Bayesian model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: b8 article-title: Meta-sgd: Learning to learn quickly for few-shot learning – volume: 6 year: 2017 ident: b21 article-title: Sequential neuromodulation of hebbian plasticity offers mechanism for effective reward-based navigation publication-title: Elife – volume: 2 start-page: 176 year: 1999 end-page: 185 ident: b55 article-title: Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque publication-title: Nature Neurosci. – volume: 2015 year: 2015 ident: b39 article-title: Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders publication-title: BioMed Res. Int. – volume: 29 year: 2016 ident: b4 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 73 start-page: 415 year: 2012 end-page: 434 ident: b41 article-title: How does the brain solve visual object recognition? publication-title: Neuron – volume: 22 start-page: 2013 year: 2005 end-page: 2033 ident: b43 article-title: Coding of color and form in the geniculostriate visual pathway (invited review) publication-title: J. Opt. Soc. Am. A – volume: 94 start-page: 115 year: 1987 ident: b42 article-title: Recognition-by-components: a theory of human image understanding. publication-title: Psychol. Rev. – year: 2020 ident: b29 article-title: One-shot learning with spiking neural networks – volume: 99 start-page: 56 year: 2018 end-page: 67 ident: b49 article-title: STDP-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw. – year: 2014 ident: b69 article-title: Neural turing machines – volume: 9 year: 2013 ident: b54 article-title: Reinforcement learning using a continuous time actor-critic framework with spiking neurons publication-title: PLoS Comput. Biol. – reference: G. Koch, R. Zemel, R. Salakhutdinov, et al., Siamese neural networks for one-shot image recognition, in: ICML Deep Learning Workshop, Vol. 2, 2015. – reference: A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, T. Lillicrap, Meta-learning with memory-augmented neural networks, in: International Conference on Machine Learning, 2016, pp. 1842–1850. – volume: 282 start-page: 1335 year: 1998 end-page: 1338 ident: b56 article-title: Role for cingulate motor area cells in voluntary movement selection based on reward publication-title: Science – volume: 66 start-page: 170 year: 1991 end-page: 189 ident: b45 article-title: Coding visual images of objects in the inferotemporal cortex of the macaque monkey publication-title: J. Neurophysiol. – volume: 78 start-page: 1102 year: 2013 end-page: 1115 ident: b44 article-title: The fine structure of shape tuning in area V4 publication-title: Neuron – volume: 17 start-page: i110 year: 2007 end-page: i117 ident: b57 article-title: Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex publication-title: Cerebral Cortex – volume: 121 start-page: 387 year: 2020 end-page: 395 ident: b73 article-title: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule publication-title: Neural Netw. – volume: 111 start-page: 47 year: 2019 end-page: 63 ident: b33 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. – volume: 18 start-page: 10464 year: 1998 end-page: 10472 ident: b19 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J. Neurosci. – volume: 21 start-page: 860 year: 2018 end-page: 868 ident: b22 article-title: Prefrontal cortex as a meta-reinforcement learning system publication-title: Nature Neurosci. – reference: Y. Lee, S. Choi, Gradient-based meta-learning with learned layerwise metric and subspace, in: International Conference on Machine Learning, 2018, pp. 2927–2936. – year: 2021 ident: b28 article-title: Revisiting the role of synaptic plasticity and network dynamics for fast learning in spiking neural networks – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b1 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – start-page: 3 year: 1998 end-page: 17 ident: b3 article-title: Learning to learn: Introduction and overview publication-title: Learning To Learn – year: 2014 ident: b46 article-title: Neuronal Dynamics: From Single Neurons To Networks and Models of Cognition – volume: 21 start-page: 35 year: 2006 end-page: 49 ident: b53 article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models publication-title: J. Comput. Neurosci. – volume: 36 start-page: 1597 year: 2012 end-page: 1608 ident: b14 article-title: Towards a functional organization of episodic memory in the medial temporal lobe publication-title: Neurosci. Biobehav. Rev. – volume: 206 start-page: 157 year: 2010 end-page: 165 ident: b2 article-title: Structure learning in action publication-title: Behav. Brain Res. – reference: A. Javaheri, A. Gholamzadeh Khoee, S. Kheradpisheh, H. Farahani, M. Ganjtabesh, Avid: A Variational Inference Deliberation For Meta-Learning, in: 2022 12th International Conference on Computer and Knowledge Engineering, ICCKE, 2022, pp. 268–273. – year: 2017 ident: b25 article-title: Learning to remember rare events – year: 2017 ident: b68 article-title: Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm – volume: 32 year: 2019 ident: b72 article-title: Multimodal model-agnostic meta-learning via task-aware modulation publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 647 year: 2007 end-page: 656 ident: b30 article-title: Medial prefrontal cell activity signaling prediction errors of action values publication-title: Nature Neurosci. – volume: 363 start-page: 3845 year: 2008 end-page: 3857 ident: b62 article-title: Cortical mechanisms for reinforcement learning in competitive games publication-title: Philos. Trans. R. Soc. B – volume: 2 year: 2022 ident: b27 article-title: Meta-learning spiking neural networks with surrogate gradient descent publication-title: Neuromorphic Comput. Eng. – reference: F. Sung, Y. Yang, L. Zhang, T. Xiang, P. Torr, T. Hospedales, Learning to compare: Relation network for few-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208. – volume: 132 start-page: 108 year: 2020 end-page: 120 ident: b26 article-title: Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences publication-title: Neural Netw. – volume: 5 start-page: 73 year: 2011 ident: b36 article-title: Neuromorphic silicon neuron circuits publication-title: Front. Neurosci. – volume: 7 start-page: 404 year: 2004 end-page: 410 ident: b61 article-title: Prefrontal cortex and decision making in a mixed-strategy game publication-title: Nature Neurosci. – volume: 74 start-page: 947 year: 2012 end-page: 960 ident: b60 article-title: Action selection and action value in frontal-striatal circuits publication-title: Neuron – reference: H. Yao, Y. Wei, J. Huang, Z. Li, Hierarchically structured meta-learning, in: International Conference on Machine Learning, 2019, pp. 7045–7054. – volume: 75 start-page: 556 year: 2012 end-page: 571 ident: b48 article-title: The spike-timing dependence of plasticity publication-title: Neuron – volume: 381 start-page: 520 year: 1996 end-page: 522 ident: b40 article-title: Speed of processing in the human visual system publication-title: Nature – volume: 30 year: 2017 ident: b5 article-title: Prototypical networks for few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 22 start-page: 332 year: 2012 end-page: 337 ident: b47 article-title: Stimulus timing-dependent plasticity in high-level vision publication-title: Curr. Biol. – volume: 383 start-page: 76 year: 1996 end-page: 78 ident: b18 article-title: A neuronal learning rule for sub-millisecond temporal coding publication-title: Nature – volume: 27 start-page: 279 year: 2004 end-page: 306 ident: b13 article-title: The medial temporal lobe publication-title: Annu. Rev. Neurosci. – year: 2017 ident: b11 article-title: A simple neural attentive meta-learner – volume: 114 start-page: 784 year: 2007 ident: b31 article-title: Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling publication-title: Psychol. Rev. – volume: 16 year: 2022 ident: b15 article-title: Heterogeneous ensemble-based spike-driven few-shot online learning publication-title: Front. Neurosci. – reference: C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, 2017, pp. 1126–1135. – volume: 16 start-page: 693 year: 2006 end-page: 700 ident: b12 article-title: Item, context and relational episodic encoding in humans publication-title: Curr. Opin. Neurobiol. – volume: 12 start-page: 3915 year: 2021 ident: b51 article-title: Synaptic plasticity-dependent competition rule influences memory formation publication-title: Nat. Commun. – year: 2013 ident: b64 article-title: Fine-grained visual classification of aircraft – volume: 29 start-page: 2061 year: 2009 end-page: 2073 ident: b32 article-title: Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables publication-title: Eur. J. Neurosci. – volume: 441 start-page: 223 year: 2006 end-page: 226 ident: b58 article-title: Neurons in the orbitofrontal cortex encode economic value publication-title: Nature – reference: S. Ritter, J. Wang, Z. Kurth-Nelson, S. Jayakumar, C. Blundell, R. Pascanu, M. Botvinick, Been there, done that: Meta-learning with episodic recall, in: International Conference on Machine Learning, 2018, pp. 4354–4363. – volume: 36 start-page: 51 year: 2019 end-page: 63 ident: b34 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Process. Mag. – year: 2023 ident: b16 article-title: SNIB: improving spike-based machine learning using nonlinear information bottleneck publication-title: IEEE Trans. Syst Man Cybern.: Syst. – volume: 29 start-page: 97 year: 2019 end-page: 104 ident: b63 article-title: The omniglot challenge: a 3-year progress report publication-title: Curr. Opin. Behav. Sci. – volume: 78 start-page: 1629 year: 1990 end-page: 1636 ident: b35 article-title: Neuromorphic electronic systems publication-title: Proc. IEEE – reference: T. Munkhdalai, H. Yu, Meta networks, in: International Conference on Machine Learning, 2017, pp. 2554–2563. – volume: 326 start-page: 391 year: 2009 ident: 10.1016/j.neucom.2024.128173_b52 article-title: Molecular and cellular approaches to memory allocation in neural circuits publication-title: Science doi: 10.1126/science.1174519 – volume: 9 year: 2013 ident: 10.1016/j.neucom.2024.128173_b54 article-title: Reinforcement learning using a continuous time actor-critic framework with spiking neurons publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003024 – ident: 10.1016/j.neucom.2024.128173_b24 – year: 2013 ident: 10.1016/j.neucom.2024.128173_b64 – volume: 99 start-page: 56 year: 2018 ident: 10.1016/j.neucom.2024.128173_b49 article-title: STDP-based spiking deep convolutional neural networks for object recognition publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.12.005 – volume: 16 start-page: 693 year: 2006 ident: 10.1016/j.neucom.2024.128173_b12 article-title: Item, context and relational episodic encoding in humans publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2006.10.012 – year: 2017 ident: 10.1016/j.neucom.2024.128173_b11 – volume: 36 start-page: 51 year: 2019 ident: 10.1016/j.neucom.2024.128173_b34 article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2931595 – ident: 10.1016/j.neucom.2024.128173_b66 – volume: 132 start-page: 108 year: 2020 ident: 10.1016/j.neucom.2024.128173_b26 article-title: Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.08.001 – year: 2014 ident: 10.1016/j.neucom.2024.128173_b69 – volume: 5 start-page: 73 year: 2011 ident: 10.1016/j.neucom.2024.128173_b36 article-title: Neuromorphic silicon neuron circuits publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00073 – volume: 381 start-page: 520 year: 1996 ident: 10.1016/j.neucom.2024.128173_b40 article-title: Speed of processing in the human visual system publication-title: Nature doi: 10.1038/381520a0 – volume: 27 start-page: 279 year: 2004 ident: 10.1016/j.neucom.2024.128173_b13 article-title: The medial temporal lobe publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144130 – volume: 21 start-page: 860 year: 2018 ident: 10.1016/j.neucom.2024.128173_b22 article-title: Prefrontal cortex as a meta-reinforcement learning system publication-title: Nature Neurosci. doi: 10.1038/s41593-018-0147-8 – volume: 94 start-page: 115 year: 1987 ident: 10.1016/j.neucom.2024.128173_b42 article-title: Recognition-by-components: a theory of human image understanding. publication-title: Psychol. Rev. doi: 10.1037/0033-295X.94.2.115 – volume: 383 start-page: 76 year: 1996 ident: 10.1016/j.neucom.2024.128173_b18 article-title: A neuronal learning rule for sub-millisecond temporal coding publication-title: Nature doi: 10.1038/383076a0 – volume: 111 start-page: 47 year: 2019 ident: 10.1016/j.neucom.2024.128173_b33 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.002 – volume: 29 year: 2016 ident: 10.1016/j.neucom.2024.128173_b4 article-title: Matching networks for one shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 17 start-page: i110 year: 2007 ident: 10.1016/j.neucom.2024.128173_b57 article-title: Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex publication-title: Cerebral Cortex doi: 10.1093/cercor/bhm064 – volume: 1 start-page: 386 year: 2019 ident: 10.1016/j.neucom.2024.128173_b37 article-title: Benchmarks for progress in neuromorphic computing publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0097-1 – volume: 206 start-page: 157 year: 2010 ident: 10.1016/j.neucom.2024.128173_b2 article-title: Structure learning in action publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2009.08.031 – volume: 114 start-page: 784 year: 2007 ident: 10.1016/j.neucom.2024.128173_b31 article-title: Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling publication-title: Psychol. Rev. doi: 10.1037/0033-295X.114.3.784 – year: 2023 ident: 10.1016/j.neucom.2024.128173_b16 article-title: SNIB: improving spike-based machine learning using nonlinear information bottleneck publication-title: IEEE Trans. Syst Man Cybern.: Syst. doi: 10.1109/TSMC.2023.3300318 – volume: 22 start-page: 2013 year: 2005 ident: 10.1016/j.neucom.2024.128173_b43 article-title: Coding of color and form in the geniculostriate visual pathway (invited review) publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.22.002013 – volume: 12 start-page: 3915 year: 2021 ident: 10.1016/j.neucom.2024.128173_b51 article-title: Synaptic plasticity-dependent competition rule influences memory formation publication-title: Nat. Commun. doi: 10.1038/s41467-021-24269-4 – ident: 10.1016/j.neucom.2024.128173_b6 doi: 10.1109/CVPR.2018.00131 – year: 2017 ident: 10.1016/j.neucom.2024.128173_b8 – volume: 2 year: 2022 ident: 10.1016/j.neucom.2024.128173_b27 article-title: Meta-learning spiking neural networks with surrogate gradient descent publication-title: Neuromorphic Comput. Eng. doi: 10.1088/2634-4386/ac8828 – volume: 18 start-page: 10464 year: 1998 ident: 10.1016/j.neucom.2024.128173_b19 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-24-10464.1998 – volume: 6 year: 2017 ident: 10.1016/j.neucom.2024.128173_b21 article-title: Sequential neuromodulation of hebbian plasticity offers mechanism for effective reward-based navigation publication-title: Elife doi: 10.7554/eLife.27756 – start-page: 3 year: 1998 ident: 10.1016/j.neucom.2024.128173_b3 article-title: Learning to learn: Introduction and overview – volume: 363 start-page: 3845 year: 2008 ident: 10.1016/j.neucom.2024.128173_b62 article-title: Cortical mechanisms for reinforcement learning in competitive games publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2008.0158 – ident: 10.1016/j.neucom.2024.128173_b65 – ident: 10.1016/j.neucom.2024.128173_b23 – volume: 9 start-page: 85 year: 2016 ident: 10.1016/j.neucom.2024.128173_b20 article-title: Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules publication-title: Front. Neural Circuits doi: 10.3389/fncir.2015.00085 – volume: 121 start-page: 387 year: 2020 ident: 10.1016/j.neucom.2024.128173_b73 article-title: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.09.007 – volume: 7 start-page: 404 year: 2004 ident: 10.1016/j.neucom.2024.128173_b61 article-title: Prefrontal cortex and decision making in a mixed-strategy game publication-title: Nature Neurosci. doi: 10.1038/nn1209 – volume: 36 start-page: 1597 year: 2012 ident: 10.1016/j.neucom.2024.128173_b14 article-title: Towards a functional organization of episodic memory in the medial temporal lobe publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2011.07.006 – year: 2020 ident: 10.1016/j.neucom.2024.128173_b29 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.neucom.2024.128173_b1 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1016/j.neucom.2024.128173_b9 doi: 10.1109/ICCKE57176.2022.9960005 – volume: 29 start-page: 2061 year: 2009 ident: 10.1016/j.neucom.2024.128173_b32 article-title: Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2009.06743.x – volume: 66 start-page: 170 year: 1991 ident: 10.1016/j.neucom.2024.128173_b45 article-title: Coding visual images of objects in the inferotemporal cortex of the macaque monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.1991.66.1.170 – year: 2014 ident: 10.1016/j.neucom.2024.128173_b46 – year: 2017 ident: 10.1016/j.neucom.2024.128173_b68 – volume: 16 year: 2022 ident: 10.1016/j.neucom.2024.128173_b15 article-title: Heterogeneous ensemble-based spike-driven few-shot online learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.850932 – volume: 74 start-page: 947 year: 2012 ident: 10.1016/j.neucom.2024.128173_b60 article-title: Action selection and action value in frontal-striatal circuits publication-title: Neuron doi: 10.1016/j.neuron.2012.03.037 – volume: 78 start-page: 1102 year: 2013 ident: 10.1016/j.neucom.2024.128173_b44 article-title: The fine structure of shape tuning in area V4 publication-title: Neuron doi: 10.1016/j.neuron.2013.04.016 – volume: 7 start-page: 12554 year: 2016 ident: 10.1016/j.neucom.2024.128173_b59 article-title: A dynamic code for economic object valuation in prefrontal cortex neurons publication-title: Nature Commun.. doi: 10.1038/ncomms12554 – volume: 30 year: 2017 ident: 10.1016/j.neucom.2024.128173_b5 article-title: Prototypical networks for few-shot learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 542 year: 2023 ident: 10.1016/j.neucom.2024.128173_b17 article-title: Spike-driven multi-scale learning with hybrid mechanisms of spiking dendrites publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126240 – volume: 2 start-page: 176 year: 1999 ident: 10.1016/j.neucom.2024.128173_b55 article-title: Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque publication-title: Nature Neurosci. doi: 10.1038/5739 – volume: 94 start-page: 87 year: 2019 ident: 10.1016/j.neucom.2024.128173_b50 article-title: Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.05.015 – ident: 10.1016/j.neucom.2024.128173_b70 – volume: 75 start-page: 556 year: 2012 ident: 10.1016/j.neucom.2024.128173_b48 article-title: The spike-timing dependence of plasticity publication-title: Neuron doi: 10.1016/j.neuron.2012.08.001 – volume: 73 start-page: 415 year: 2012 ident: 10.1016/j.neucom.2024.128173_b41 article-title: How does the brain solve visual object recognition? publication-title: Neuron doi: 10.1016/j.neuron.2012.01.010 – volume: 22 start-page: 332 year: 2012 ident: 10.1016/j.neucom.2024.128173_b47 article-title: Stimulus timing-dependent plasticity in high-level vision publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.01.003 – volume: 2015 year: 2015 ident: 10.1016/j.neucom.2024.128173_b39 article-title: Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders publication-title: BioMed Res. Int. – volume: 29 start-page: 97 year: 2019 ident: 10.1016/j.neucom.2024.128173_b63 article-title: The omniglot challenge: a 3-year progress report publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2019.04.007 – ident: 10.1016/j.neucom.2024.128173_b10 – volume: 78 start-page: 1629 year: 1990 ident: 10.1016/j.neucom.2024.128173_b35 article-title: Neuromorphic electronic systems publication-title: Proc. IEEE doi: 10.1109/5.58356 – volume: 441 start-page: 223 year: 2006 ident: 10.1016/j.neucom.2024.128173_b58 article-title: Neurons in the orbitofrontal cortex encode economic value publication-title: Nature doi: 10.1038/nature04676 – volume: 21 start-page: 35 year: 2006 ident: 10.1016/j.neucom.2024.128173_b53 article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-006-7074-5 – volume: 31 year: 2018 ident: 10.1016/j.neucom.2024.128173_b71 article-title: Bayesian model-agnostic meta-learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 32 year: 2019 ident: 10.1016/j.neucom.2024.128173_b72 article-title: Multimodal model-agnostic meta-learning via task-aware modulation publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neucom.2024.128173_b67 – volume: 31 year: 2018 ident: 10.1016/j.neucom.2024.128173_b38 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.neucom.2024.128173_b25 – volume: 10 start-page: 647 year: 2007 ident: 10.1016/j.neucom.2024.128173_b30 article-title: Medial prefrontal cell activity signaling prediction errors of action values publication-title: Nature Neurosci. doi: 10.1038/nn1890 – ident: 10.1016/j.neucom.2024.128173_b7 – year: 2021 ident: 10.1016/j.neucom.2024.128173_b28 – volume: 282 start-page: 1335 year: 1998 ident: 10.1016/j.neucom.2024.128173_b56 article-title: Role for cingulate motor area cells in voluntary movement selection based on reward publication-title: Science doi: 10.1126/science.282.5392.1335 |
SSID | ssj0017129 |
Score | 2.4740226 |
Snippet | The human brain constantly learns and rapidly adapts to new situations by integrating acquired knowledge and experiences into memory. Developing this... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128173 |
SubjectTerms | Few-shot learning Hippocampus Learning to learn Meta-learning PFC Reward-modulated STDP Spiking neurons STDP |
Title | Meta-learning in spiking neural networks with reward-modulated STDP |
URI | https://dx.doi.org/10.1016/j.neucom.2024.128173 |
Volume | 600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017129 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017129 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017129 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017129 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL178FufHyMFrt7ZJ-nEc0zEVh7ANditpk0pFu7F1V_9232vSoSAKHpu-lPJ4eR_JL79HyE2Wy1y4EoqcSAoH6U-cCASdgGlI9lXg6bxm-xwHoxl_mIt5iwyauzAIq7S-3_j02lvbkZ7VZm9ZFL2JG_tQRXk1CjLmHC-aI_sX2HT3Ywvz8ELPN3x7vnBQurk-V2O8Sr1BzIgPgaqLR0oh-zk8fQk5w0Oyb3NF2je_c0RaujwmB00fBmqX5QkZPOlKOrb_wwstSrpeFrgFTpGtEr5QGqz3muKuK13pGin7vlDYuksrOpnePp-S2fBuOhg5tjmCk0GWX4F1B7Ccohjie65TV0MexbMojCOWytSXLguhPkx1GGd4tBxAISCEjlwVSOH62svYGdkpF6U-J5TDG8F9lad5zlXsxRlnignJgwizGdUmrNFJklnmcGxg8ZY0ELHXxGgyQU0mRpNt4mxnLQ1zxh_yYaPu5JsFJODcf5158e-Zl2QPnww474rsVKuNvoYko0o7tRV1yG7__nE0_gSZZs-k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAXdkRZfeAamsXOcqwKKKWLkNpKvUVJ7KAgSKs2_X_GsVOBhEDiGnusaDSexX5-A3CXZnHGzBiLHD9mhqQ_MXycaLiOwGSfu5bIKrbPsRvO6POczRvQq9_CSFil9v3Kp1feWn_paG12lnnemZiBjVWUVaEgA0rZDrQoQ5_chFa3PwjH28sEz7IV5Z7NDClQv6CrYF6F2EjYiI2x6l7eKnnOzxHqS9R5OoR9nS6SrvqjI2iI4hgO6lYMRO_ME-iNRBkbugXEK8kLsl7m8hScSMJKXKFQcO81kQevZCUqsOzHgsvuXYKTyfTh5RRmT4_TXmjo_ghGiol-iQbu4o7yAwzxmUhMgakUTX0v8J0kTuzYdDwsERPhBam8XXaxFmBM-CZ3Y2bawkqdM2gWi0KcA6E4wqjNsyTLKA-sIKUOd1hMXV8mNLwNTq2TKNXk4bKHxXtUo8TeIqXJSGoyUppsg7GVWiryjD_me7W6o29GEKF__1Xy4t-St7AbTkfDaNgfDy5hT44orN4VNMvVRlxjzlEmN9qmPgG-PNJP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-learning+in+spiking+neural+networks+with+reward-modulated+STDP&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gholamzadeh+Khoee%2C+Arsham&rft.au=Javaheri%2C+Alireza&rft.au=Kheradpisheh%2C+Saeed+Reza&rft.au=Ganjtabesh%2C+Mohammad&rft.date=2024-10-01&rft.issn=0925-2312&rft.volume=600&rft.spage=128173&rft_id=info:doi/10.1016%2Fj.neucom.2024.128173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_128173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |