An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification

Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electroc...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 513; pp. 127 - 136
Main Authors Wang, Jibin, Zhang, Shuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.11.2022
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2022.09.079

Cover

Abstract Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electrocardiogram data is strenuous and relatively subjective. In this study, an improved Elman neural network (IENN) model is specially designed for automated AF signals identification. Inspired by the exponential moving average (EMA) algorithm, a weight strategy is installed into the existing ENN network that provides more effective and comprehensive discrimination ability to the model for ECG signals recognition. Besides, our IENN network is embedded into a convolutional network architecture and the existing multi-layer perceptron and ENN networks are considered as control subjects to evaluate the validity on two public databases. The results exhibit that the proposed model yields the accuracy, specificity and sensitivity of 97.9%, 97.8% and 98.0% on the MIT-BIH AF database and 97.1%, 97.1% and 97.2% on the MIT-BIH arrhythmia database, respectively. These superior performances enable the proposed IENN model to have considerable potential as an effective tool to aid cardiologists in detecting AF signals accurately.
AbstractList Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electrocardiogram data is strenuous and relatively subjective. In this study, an improved Elman neural network (IENN) model is specially designed for automated AF signals identification. Inspired by the exponential moving average (EMA) algorithm, a weight strategy is installed into the existing ENN network that provides more effective and comprehensive discrimination ability to the model for ECG signals recognition. Besides, our IENN network is embedded into a convolutional network architecture and the existing multi-layer perceptron and ENN networks are considered as control subjects to evaluate the validity on two public databases. The results exhibit that the proposed model yields the accuracy, specificity and sensitivity of 97.9%, 97.8% and 98.0% on the MIT-BIH AF database and 97.1%, 97.1% and 97.2% on the MIT-BIH arrhythmia database, respectively. These superior performances enable the proposed IENN model to have considerable potential as an effective tool to aid cardiologists in detecting AF signals accurately.
Author Zhang, Shuo
Wang, Jibin
Author_xml – sequence: 1
  givenname: Jibin
  surname: Wang
  fullname: Wang, Jibin
  organization: Department of Network Engineering, Anhui Science and Technology University, Fengyang 233100, China
– sequence: 2
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  email: shuozhang@tju.edu.cn
  organization: Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, China
BookMark eNqFkMtOwzAQRS0EEqXwByz8Awm283DCAqlCvCQkNrC2ps64nSqxIydUsOLXSVtWLGA10p05d2buGTv2wSNjl1KkUsjyapN6fLehS5VQKhV1KnR9xGay0iqpVFUes5moVZGoTKpTdjYMGyGklqqesa-F59T1MWyx4Q1iz1uE6MmvOPSTDHbNlzBMzeA5fvTTYj8StLwL2_3QFiOskEO7CpHGdcddiBzGuJtxtIzUtjDSBA-08tAOnJqdgyO7l8_ZiZtUvPipc_Z2f_d6-5g8vzw83S6eE5uJckwkllVeKVuXNhdaF8q5WmOppcTGNQ2AAl0UIstLmelMKVRyWYnCuVwrCQKyOcsPvjaGYYjoTB-pg_hppDC7EM3GHEI0uxCNqM0U4oRd_8IsjfvDxwjU_gffHGCcHtsSRjNYQm-xoYh2NE2gvw2-ARwGlYw
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106683
crossref_primary_10_1007_s10278_023_00801_4
crossref_primary_10_1016_j_ress_2023_109182
crossref_primary_10_34133_plantphenomics_0218
crossref_primary_10_1080_03772063_2024_2376125
crossref_primary_10_3934_mbe_2023739
crossref_primary_10_1016_j_bspc_2024_106016
Cites_doi 10.1016/j.knosys.2017.06.003
10.1016/j.ins.2018.07.063
10.1016/j.asoc.2019.105778
10.1016/j.patrec.2011.08.019
10.1016/j.ins.2016.10.013
10.1016/j.cmpb.2020.105607
10.1038/nature14539
10.1016/j.compbiomed.2019.103386
10.1161/01.CIR.101.23.e215
10.1016/j.ins.2017.04.012
10.1016/j.ijepes.2013.10.020
10.1016/j.knosys.2019.105460
10.1016/j.cmpb.2019.05.028
10.1109/51.932724
10.1029/96GL00259
10.1016/j.eswa.2019.02.035
10.1016/j.compbiomed.2018.07.001
10.1016/j.bspc.2020.101874
10.1016/j.amc.2018.09.005
10.1016/j.bspc.2019.101662
10.1016/j.eswa.2016.12.034
10.1016/j.bspc.2013.01.005
10.1109/TBME.2006.880879
10.1016/j.artmed.2019.101788
10.1016/j.comnet.2019.01.034
10.1016/j.neucom.2011.10.045
10.1207/s15516709cog1402_1
10.1016/j.ins.2019.02.065
10.1016/j.inffus.2019.06.024
10.1016/j.neucom.2019.08.023
10.1016/j.neucom.2018.03.011
10.1016/j.neucom.2016.12.038
10.1016/j.enconman.2017.05.063
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.09.079
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 136
ExternalDocumentID 10_1016_j_neucom_2022_09_079
S0925231222011717
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-1e68482c96c407752ff97e6711edfddaa2a7550346137322e21b805ff4721a0a3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Oct 16 04:25:45 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:42:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 68Uxx
62P10
Exponential moving average algorithm
Improved Elman neural network
Atrial fibrillation
Electrocardiogram
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-1e68482c96c407752ff97e6711edfddaa2a7550346137322e21b805ff4721a0a3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_09_079
crossref_citationtrail_10_1016_j_neucom_2022_09_079
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_09_079
PublicationCentury 2000
PublicationDate 2022-11-07
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kong, Zhu, Wu (b0045) 2019; 177
Yao, Wang, Fan (b0105) 2020; 53
Inan, Giovangrandi, Kovacs (b0020) 2006; 53
Ioffe, Szegedy (b0185) 2015
Moody, Mark (b0150) 2001; 20
Krishnan, Lokesh, Devi (b0115) 2019; 151
He, Zhang, Ren (b0200) 2015
Goldberger, Amaral, Glass (b0145) 2000; 101
Li, Pan, Li (b0025) 2018; 294
Zou, Wang, Li (b0205) 2019; 367
Wang, Wang, Wang (b0120) 2020; 55
Ramirez, Melin, Arechiga (b0015) 2019; 126
Acharya, Fujita, Lih (b0080) 2017; 405
Kalidas, Tamil (b0050) 2019; 113
Ross, Adams, Tasoulis (b0195) 2012; 33
Faust, Shenfiled, Kareem (b0085) 2018; 102
Jin, Qin, Huang (b0100) 2020; 193
Acharya, Fujita, Lih (b0070) 2017; 132
Shukri, Ali, Noor (b0125) 2012
Kolanowski, Swietlicka, Kapela (b0175) 2018; 319
Sannino, Pietro (b0075) 2018; 86
Wu, Lundstedt (b0130) 2013; 23
Elman (b0165) 1990; 14
Atal, Singh (b0110) 2020; 196
Yu, Li, Zhang (b0135) 2017; 148
Li, Li, Xiong (b0170) 2014; 55
Ke, Chen, Shah (b0210) 2020; 50
Sangaiah, Arumugam, Bian (b0060) 2020; 103
Berkaya, Uysal, Gunal (b0010) 2018; 43
Wang, Chiang, Hsu (b0160) 2013; 116
Kingma, Ba (b0180) 2014
Nakanoa, Takahashi, Takahashi (b0190) 2017; 73
Wang (b0030) 2020; 102
Acharya, Fujita, Adam (b0040) 2017; 377
Liu, Wang, Liu (b0035) 2017; 234
Wang, Shi, Lin (b0055) 2020; 58
Lecun, Bengio, Hinton (b0065) 2015; 521
Hu, Wang, Bai (b0140) 2019; 341
Hagiwara, Fujita, Lih (b0005) 2018; 467
Zhou, Tan (b0095) 2020; 86
Fujita, Cimr (b0090) 2019; 486
Martis, Acharya, Min (b0155) 2013; 8
Wang (10.1016/j.neucom.2022.09.079_b0030) 2020; 102
Wang (10.1016/j.neucom.2022.09.079_b0160) 2013; 116
Kong (10.1016/j.neucom.2022.09.079_b0045) 2019; 177
Yu (10.1016/j.neucom.2022.09.079_b0135) 2017; 148
Wang (10.1016/j.neucom.2022.09.079_b0055) 2020; 58
Acharya (10.1016/j.neucom.2022.09.079_b0080) 2017; 405
Ioffe (10.1016/j.neucom.2022.09.079_b0185) 2015
Hu (10.1016/j.neucom.2022.09.079_b0140) 2019; 341
Fujita (10.1016/j.neucom.2022.09.079_b0090) 2019; 486
Atal (10.1016/j.neucom.2022.09.079_b0110) 2020; 196
Nakanoa (10.1016/j.neucom.2022.09.079_b0190) 2017; 73
Hagiwara (10.1016/j.neucom.2022.09.079_b0005) 2018; 467
Sannino (10.1016/j.neucom.2022.09.079_b0075) 2018; 86
Jin (10.1016/j.neucom.2022.09.079_b0100) 2020; 193
Kolanowski (10.1016/j.neucom.2022.09.079_b0175) 2018; 319
Moody (10.1016/j.neucom.2022.09.079_b0150) 2001; 20
Martis (10.1016/j.neucom.2022.09.079_b0155) 2013; 8
Ke (10.1016/j.neucom.2022.09.079_b0210) 2020; 50
Li (10.1016/j.neucom.2022.09.079_b0025) 2018; 294
Acharya (10.1016/j.neucom.2022.09.079_b0070) 2017; 132
Yao (10.1016/j.neucom.2022.09.079_b0105) 2020; 53
Wu (10.1016/j.neucom.2022.09.079_b0130) 2013; 23
Zhou (10.1016/j.neucom.2022.09.079_b0095) 2020; 86
Goldberger (10.1016/j.neucom.2022.09.079_b0145) 2000; 101
Li (10.1016/j.neucom.2022.09.079_b0170) 2014; 55
Ross (10.1016/j.neucom.2022.09.079_b0195) 2012; 33
Wang (10.1016/j.neucom.2022.09.079_b0120) 2020; 55
Liu (10.1016/j.neucom.2022.09.079_b0035) 2017; 234
Elman (10.1016/j.neucom.2022.09.079_b0165) 1990; 14
Kingma (10.1016/j.neucom.2022.09.079_b0180) 2014
Acharya (10.1016/j.neucom.2022.09.079_b0040) 2017; 377
Shukri (10.1016/j.neucom.2022.09.079_b0125) 2012
Inan (10.1016/j.neucom.2022.09.079_b0020) 2006; 53
Faust (10.1016/j.neucom.2022.09.079_b0085) 2018; 102
He (10.1016/j.neucom.2022.09.079_b0200) 2015
Berkaya (10.1016/j.neucom.2022.09.079_b0010) 2018; 43
Kalidas (10.1016/j.neucom.2022.09.079_b0050) 2019; 113
Krishnan (10.1016/j.neucom.2022.09.079_b0115) 2019; 151
Lecun (10.1016/j.neucom.2022.09.079_b0065) 2015; 521
Sangaiah (10.1016/j.neucom.2022.09.079_b0060) 2020; 103
Zou (10.1016/j.neucom.2022.09.079_b0205) 2019; 367
Ramirez (10.1016/j.neucom.2022.09.079_b0015) 2019; 126
References_xml – volume: 151
  start-page: 201
  year: 2019
  end-page: 210
  ident: b0115
  article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system
  publication-title: Comput. Netw.
– volume: 86
  year: 2020
  ident: b0095
  article-title: Electrocardiogram soft computing using hybrid deep learning CNN-ELM
  publication-title: Appl. Soft. Comput.
– volume: 116
  start-page: 38
  year: 2013
  end-page: 45
  ident: b0160
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
– volume: 148
  start-page: 895
  year: 2017
  end-page: 904
  ident: b0135
  article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network
  publication-title: Energ. Convers. Manage.
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: b0145
  article-title: PhysioBank, PhysioToolkit, and Physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 53
  start-page: 2507
  year: 2006
  end-page: 2515
  ident: b0020
  article-title: Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0065
  article-title: Deep learning
  publication-title: Nature
– volume: 319
  start-page: 236
  year: 2018
  end-page: 244
  ident: b0175
  article-title: Multisensor data fusion using Elman neural networks
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 596
  year: 2020
  end-page: 610
  ident: b0210
  article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN
  publication-title: Softw: Pract. Exper.
– volume: 126
  start-page: 295
  year: 2019
  end-page: 307
  ident: b0015
  article-title: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification
  publication-title: Expert Syst. Appl.
– volume: 486
  start-page: 231
  year: 2019
  end-page: 239
  ident: b0090
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
– volume: 294
  start-page: 94
  year: 2018
  end-page: 101
  ident: b0025
  article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal
  publication-title: Neurocomputing
– volume: 73
  start-page: 187
  year: 2017
  end-page: 200
  ident: b0190
  article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection
  publication-title: Expert Syst. Appl.
– volume: 55
  year: 2020
  ident: b0120
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Proces.
– start-page: 328
  year: 2012
  end-page: 332
  ident: b0125
  article-title: Investigation on Elman neural network for detection of cardiomyopathy, in
  publication-title: Proceedings of the IEEE Control and System Graduate Research Colloquium
– volume: 86
  start-page: 446
  year: 2018
  end-page: 455
  ident: b0075
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection, Future Gener
  publication-title: Comput. Syst.
– year: 2014
  ident: b0180
  article-title: Adam: a method for stochastic optimization
– volume: 103
  year: 2020
  ident: b0060
  article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis
  publication-title: Artif. Intell. Med.
– year: 2015
  ident: b0185
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in
  publication-title: Proceedings of the International Conference on International Conference on Machine Learning (ICML)
– volume: 377
  start-page: 17
  year: 2017
  end-page: 29
  ident: b0040
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inform. Sci.
– volume: 43
  start-page: 216
  year: 2018
  end-page: 235
  ident: b0010
  article-title: A survey on ECG analysis, Biomed
  publication-title: Signal Process.
– volume: 55
  start-page: 749
  year: 2014
  end-page: 759
  ident: b0170
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power
– volume: 196
  year: 2020
  ident: b0110
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Meth. Prog. Bio.
– volume: 33
  start-page: 191
  year: 2012
  end-page: 198
  ident: b0195
  article-title: Exponentially weighted moving average charts for detecting concept drift
  publication-title: Pattern Recogn. Lett.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b0150
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 132
  start-page: 62
  year: 2017
  end-page: 71
  ident: b0070
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl-Based Syst.
– volume: 367
  start-page: 39
  year: 2019
  end-page: 45
  ident: b0205
  article-title: Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification
  publication-title: Neurocomputing
– volume: 102
  start-page: 670
  year: 2020
  end-page: 679
  ident: b0030
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network, Future Gener
  publication-title: Comput. Syst.
– volume: 193
  year: 2020
  ident: b0100
  article-title: Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks
  publication-title: Knowl-Based Syst.
– year: 2015
  ident: b0200
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: b0085
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b0165
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– volume: 177
  start-page: 183
  year: 2019
  end-page: 192
  ident: b0045
  article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation
  publication-title: Comput. Methods Prog. Biol.
– volume: 58
  year: 2020
  ident: b0055
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process.
– volume: 467
  start-page: 99
  year: 2018
  end-page: 114
  ident: b0005
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Inform. Sci.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b0035
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 113
  year: 2019
  ident: b0050
  article-title: Detection of atrial fibrillation using discrete-state Markov models and random forests
  publication-title: Comput. Biol. Med.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: b0080
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
– volume: 23
  start-page: 319
  year: 2013
  end-page: 322
  ident: b0130
  article-title: Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks
  publication-title: Geophys. Res. Lett.
– volume: 341
  start-page: 204
  year: 2019
  end-page: 214
  ident: b0140
  article-title: Determination of endometrial carcinoma with gene expression based on optimized Elman neural network
  publication-title: Appl. Math. Compit.
– volume: 53
  start-page: 174
  year: 2020
  end-page: 182
  ident: b0105
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
– volume: 8
  start-page: 437
  year: 2013
  end-page: 448
  ident: b0155
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process Control
– volume: 132
  start-page: 62
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0070
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2017.06.003
– volume: 467
  start-page: 99
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0005
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.063
– volume: 86
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0095
  article-title: Electrocardiogram soft computing using hybrid deep learning CNN-ELM
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2019.105778
– volume: 33
  start-page: 191
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2022.09.079_b0195
  article-title: Exponentially weighted moving average charts for detecting concept drift
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2011.08.019
– volume: 377
  start-page: 17
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0040
  article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.10.013
– year: 2015
  ident: 10.1016/j.neucom.2022.09.079_b0185
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in
– volume: 196
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0110
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Meth. Prog. Bio.
  doi: 10.1016/j.cmpb.2020.105607
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neucom.2022.09.079_b0065
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 113
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0050
  article-title: Detection of atrial fibrillation using discrete-state Markov models and random forests
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103386
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.neucom.2022.09.079_b0145
  article-title: PhysioBank, PhysioToolkit, and Physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0080
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 86
  start-page: 446
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0075
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection, Future Gener
  publication-title: Comput. Syst.
– volume: 55
  start-page: 749
  year: 2014
  ident: 10.1016/j.neucom.2022.09.079_b0170
  article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting
  publication-title: Int. J. Electr. Power
  doi: 10.1016/j.ijepes.2013.10.020
– volume: 193
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0100
  article-title: Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks
  publication-title: Knowl-Based Syst.
  doi: 10.1016/j.knosys.2019.105460
– volume: 50
  start-page: 596
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0210
  article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN
  publication-title: Softw: Pract. Exper.
– volume: 177
  start-page: 183
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0045
  article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation
  publication-title: Comput. Methods Prog. Biol.
  doi: 10.1016/j.cmpb.2019.05.028
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2022.09.079_b0150
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– year: 2014
  ident: 10.1016/j.neucom.2022.09.079_b0180
– start-page: 328
  year: 2012
  ident: 10.1016/j.neucom.2022.09.079_b0125
  article-title: Investigation on Elman neural network for detection of cardiomyopathy, in
– volume: 23
  start-page: 319
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2022.09.079_b0130
  article-title: Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/96GL00259
– volume: 319
  start-page: 236
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0175
  article-title: Multisensor data fusion using Elman neural networks
  publication-title: Appl. Math. Comput.
– volume: 126
  start-page: 295
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0015
  article-title: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.02.035
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0085
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 58
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0055
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process.
  doi: 10.1016/j.bspc.2020.101874
– volume: 341
  start-page: 204
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0140
  article-title: Determination of endometrial carcinoma with gene expression based on optimized Elman neural network
  publication-title: Appl. Math. Compit.
  doi: 10.1016/j.amc.2018.09.005
– volume: 102
  start-page: 670
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0030
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network, Future Gener
  publication-title: Comput. Syst.
– volume: 55
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0120
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Proces.
  doi: 10.1016/j.bspc.2019.101662
– volume: 73
  start-page: 187
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0190
  article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.034
– volume: 8
  start-page: 437
  year: 2013
  ident: 10.1016/j.neucom.2022.09.079_b0155
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 53
  start-page: 2507
  issue: 12
  year: 2006
  ident: 10.1016/j.neucom.2022.09.079_b0020
  article-title: Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.880879
– volume: 103
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0060
  article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101788
– volume: 151
  start-page: 201
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0115
  article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.034
– volume: 116
  start-page: 38
  year: 2013
  ident: 10.1016/j.neucom.2022.09.079_b0160
  article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.045
– volume: 43
  start-page: 216
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0010
  article-title: A survey on ECG analysis, Biomed
  publication-title: Signal Process.
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.neucom.2022.09.079_b0165
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– volume: 486
  start-page: 231
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0090
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.065
– volume: 53
  start-page: 174
  year: 2020
  ident: 10.1016/j.neucom.2022.09.079_b0105
  article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2019.06.024
– volume: 367
  start-page: 39
  year: 2019
  ident: 10.1016/j.neucom.2022.09.079_b0205
  article-title: Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.023
– volume: 294
  start-page: 94
  year: 2018
  ident: 10.1016/j.neucom.2022.09.079_b0025
  article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.011
– year: 2015
  ident: 10.1016/j.neucom.2022.09.079_b0200
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0035
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 148
  start-page: 895
  year: 2017
  ident: 10.1016/j.neucom.2022.09.079_b0135
  article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2017.05.063
SSID ssj0017129
Score 2.4467118
Snippet Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Atrial fibrillation
Electrocardiogram
Exponential moving average algorithm
Improved Elman neural network
Title An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification
URI https://dx.doi.org/10.1016/j.neucom.2022.09.079
Volume 513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xfWxzMFr3TbtJs1xEWVV9KLC3kraJGtl7ZalC570rztJU1EQBY9NkxAyk5lM-OYbQk7jhOU6VQyDnFAGiSxMIAquglSGRiXGsNTVWLq9Y-PH5HoynKyQ8y4XxsIqve1vbbqz1r5l4HdzUJfl4D4UFKOoCB2c5TWLbEZ5knBbxeDs7RPmgT9oy7dHh4Ht3aXPOYxXpZcWM0LRkTm2Uwvo-sk9fXE5l1tkw98VYdQuZ5us6GqHbHZ1GMAfy13yPqqgdI8DWoHSugZfC2IKHWU4WG-lYF6Bfq3nlYUI4cwv7jkBJKozmhWQs-l8UTZPL4A3WZCuoAcYmxMwaxFzYNEeqK9QKg8ycs175PHy4uF8HPjCCkGBEUITRJqlSUoLwYrEUuBRYwTXjEeRVkYpKankGLmgHKOY44nXNMrTcGgMbm8kQxnvk9UK13pAgIs0Z0KgKuDB5oLmWjNLKSPRkohQsh6Ju_3MCs86botfzLIOXvactVLIrBSyUGQohR4JPkfVLevGH_15J6rsm_Zk6Bh-HXn475FHZN1-ubxEfkxWm8VSn-AFpcn7TgP7ZG10dTO--wCT6uhN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-DnrxLdbnHLyu3U23yeYootTnRQu9hewm0ZV2W0oFT_rXnWSzoiAKXvMiZCYzmfDNN4Qcd1KWm0wzDHJiFaWqsJEouI4yFVudWssyX2Pp9o71-unVoDuYI2dNLoyDVQbbX9t0b61DSzucZntSlu37WFCMohJ0cI7XLOHzZDHtUu4isJO3T5wH9tCacI92Ize8yZ_zIK_KvDjQCEVP5ulOHaLrJ__0xedcrJGV8FiE03o_62TOVBtktSnEAOFebpL30wpK_ztgNGhjJhCKQTxCwxkOzl1pGFdgXifjymGEcOWR_08AhfqMdgXU8HE8LWdPI8CnLChf0QOsSwoY1pA5cHAPVFgodUAZ-eYt0r84fzjrRaGyQlRgiDCLEsOyNKOFYEXqOPCotYIbxpPEaKu1UlRxDF1QkEmH45U3NMmzuGttigGjilVnmyxUuNcdAlxkORMCdQFvNhc0N4Y5ThmFpkTEirVIpzlPWQTacVf9YigbfNmzrKUgnRRkLCRKoUWiz1mTmnbjj_G8EZX8pj4SPcOvM3f_PfOILPUebm_kzeXd9R5Zdj0-SZHvk4XZ9MUc4Gtllh96bfwAAlnp4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+deep+learning+approach+based+on+exponential+moving+average+algorithm+for+atrial+fibrillation+signals+identification&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Jibin&rft.au=Zhang%2C+Shuo&rft.date=2022-11-07&rft.issn=0925-2312&rft.volume=513&rft.spage=127&rft.epage=136&rft_id=info:doi/10.1016%2Fj.neucom.2022.09.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_09_079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon