An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification
Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electroc...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 513; pp. 127 - 136 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
07.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2022.09.079 |
Cover
| Abstract | Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electrocardiogram data is strenuous and relatively subjective. In this study, an improved Elman neural network (IENN) model is specially designed for automated AF signals identification. Inspired by the exponential moving average (EMA) algorithm, a weight strategy is installed into the existing ENN network that provides more effective and comprehensive discrimination ability to the model for ECG signals recognition. Besides, our IENN network is embedded into a convolutional network architecture and the existing multi-layer perceptron and ENN networks are considered as control subjects to evaluate the validity on two public databases. The results exhibit that the proposed model yields the accuracy, specificity and sensitivity of 97.9%, 97.8% and 98.0% on the MIT-BIH AF database and 97.1%, 97.1% and 97.2% on the MIT-BIH arrhythmia database, respectively. These superior performances enable the proposed IENN model to have considerable potential as an effective tool to aid cardiologists in detecting AF signals accurately. |
|---|---|
| AbstractList | Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great attention by widespread scientific and clinical research in recent years. However, routine AF detection using the visual examination of electrocardiogram data is strenuous and relatively subjective. In this study, an improved Elman neural network (IENN) model is specially designed for automated AF signals identification. Inspired by the exponential moving average (EMA) algorithm, a weight strategy is installed into the existing ENN network that provides more effective and comprehensive discrimination ability to the model for ECG signals recognition. Besides, our IENN network is embedded into a convolutional network architecture and the existing multi-layer perceptron and ENN networks are considered as control subjects to evaluate the validity on two public databases. The results exhibit that the proposed model yields the accuracy, specificity and sensitivity of 97.9%, 97.8% and 98.0% on the MIT-BIH AF database and 97.1%, 97.1% and 97.2% on the MIT-BIH arrhythmia database, respectively. These superior performances enable the proposed IENN model to have considerable potential as an effective tool to aid cardiologists in detecting AF signals accurately. |
| Author | Zhang, Shuo Wang, Jibin |
| Author_xml | – sequence: 1 givenname: Jibin surname: Wang fullname: Wang, Jibin organization: Department of Network Engineering, Anhui Science and Technology University, Fengyang 233100, China – sequence: 2 givenname: Shuo surname: Zhang fullname: Zhang, Shuo email: shuozhang@tju.edu.cn organization: Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, China |
| BookMark | eNqFkMtOwzAQRS0EEqXwByz8Awm283DCAqlCvCQkNrC2ps64nSqxIydUsOLXSVtWLGA10p05d2buGTv2wSNjl1KkUsjyapN6fLehS5VQKhV1KnR9xGay0iqpVFUes5moVZGoTKpTdjYMGyGklqqesa-F59T1MWyx4Q1iz1uE6MmvOPSTDHbNlzBMzeA5fvTTYj8StLwL2_3QFiOskEO7CpHGdcddiBzGuJtxtIzUtjDSBA-08tAOnJqdgyO7l8_ZiZtUvPipc_Z2f_d6-5g8vzw83S6eE5uJckwkllVeKVuXNhdaF8q5WmOppcTGNQ2AAl0UIstLmelMKVRyWYnCuVwrCQKyOcsPvjaGYYjoTB-pg_hppDC7EM3GHEI0uxCNqM0U4oRd_8IsjfvDxwjU_gffHGCcHtsSRjNYQm-xoYh2NE2gvw2-ARwGlYw |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106683 crossref_primary_10_1007_s10278_023_00801_4 crossref_primary_10_1016_j_ress_2023_109182 crossref_primary_10_34133_plantphenomics_0218 crossref_primary_10_1080_03772063_2024_2376125 crossref_primary_10_3934_mbe_2023739 crossref_primary_10_1016_j_bspc_2024_106016 |
| Cites_doi | 10.1016/j.knosys.2017.06.003 10.1016/j.ins.2018.07.063 10.1016/j.asoc.2019.105778 10.1016/j.patrec.2011.08.019 10.1016/j.ins.2016.10.013 10.1016/j.cmpb.2020.105607 10.1038/nature14539 10.1016/j.compbiomed.2019.103386 10.1161/01.CIR.101.23.e215 10.1016/j.ins.2017.04.012 10.1016/j.ijepes.2013.10.020 10.1016/j.knosys.2019.105460 10.1016/j.cmpb.2019.05.028 10.1109/51.932724 10.1029/96GL00259 10.1016/j.eswa.2019.02.035 10.1016/j.compbiomed.2018.07.001 10.1016/j.bspc.2020.101874 10.1016/j.amc.2018.09.005 10.1016/j.bspc.2019.101662 10.1016/j.eswa.2016.12.034 10.1016/j.bspc.2013.01.005 10.1109/TBME.2006.880879 10.1016/j.artmed.2019.101788 10.1016/j.comnet.2019.01.034 10.1016/j.neucom.2011.10.045 10.1207/s15516709cog1402_1 10.1016/j.ins.2019.02.065 10.1016/j.inffus.2019.06.024 10.1016/j.neucom.2019.08.023 10.1016/j.neucom.2018.03.011 10.1016/j.neucom.2016.12.038 10.1016/j.enconman.2017.05.063 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2022.09.079 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 136 |
| ExternalDocumentID | 10_1016_j_neucom_2022_09_079 S0925231222011717 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-1e68482c96c407752ff97e6711edfddaa2a7550346137322e21b805ff4721a0a3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Thu Oct 16 04:25:45 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:42:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | 68Uxx 62P10 Exponential moving average algorithm Improved Elman neural network Atrial fibrillation Electrocardiogram |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-1e68482c96c407752ff97e6711edfddaa2a7550346137322e21b805ff4721a0a3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2022_09_079 crossref_citationtrail_10_1016_j_neucom_2022_09_079 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_09_079 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-07 |
| PublicationDateYYYYMMDD | 2022-11-07 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kong, Zhu, Wu (b0045) 2019; 177 Yao, Wang, Fan (b0105) 2020; 53 Inan, Giovangrandi, Kovacs (b0020) 2006; 53 Ioffe, Szegedy (b0185) 2015 Moody, Mark (b0150) 2001; 20 Krishnan, Lokesh, Devi (b0115) 2019; 151 He, Zhang, Ren (b0200) 2015 Goldberger, Amaral, Glass (b0145) 2000; 101 Li, Pan, Li (b0025) 2018; 294 Zou, Wang, Li (b0205) 2019; 367 Wang, Wang, Wang (b0120) 2020; 55 Ramirez, Melin, Arechiga (b0015) 2019; 126 Acharya, Fujita, Lih (b0080) 2017; 405 Kalidas, Tamil (b0050) 2019; 113 Ross, Adams, Tasoulis (b0195) 2012; 33 Faust, Shenfiled, Kareem (b0085) 2018; 102 Jin, Qin, Huang (b0100) 2020; 193 Acharya, Fujita, Lih (b0070) 2017; 132 Shukri, Ali, Noor (b0125) 2012 Kolanowski, Swietlicka, Kapela (b0175) 2018; 319 Sannino, Pietro (b0075) 2018; 86 Wu, Lundstedt (b0130) 2013; 23 Elman (b0165) 1990; 14 Atal, Singh (b0110) 2020; 196 Yu, Li, Zhang (b0135) 2017; 148 Li, Li, Xiong (b0170) 2014; 55 Ke, Chen, Shah (b0210) 2020; 50 Sangaiah, Arumugam, Bian (b0060) 2020; 103 Berkaya, Uysal, Gunal (b0010) 2018; 43 Wang, Chiang, Hsu (b0160) 2013; 116 Kingma, Ba (b0180) 2014 Nakanoa, Takahashi, Takahashi (b0190) 2017; 73 Wang (b0030) 2020; 102 Acharya, Fujita, Adam (b0040) 2017; 377 Liu, Wang, Liu (b0035) 2017; 234 Wang, Shi, Lin (b0055) 2020; 58 Lecun, Bengio, Hinton (b0065) 2015; 521 Hu, Wang, Bai (b0140) 2019; 341 Hagiwara, Fujita, Lih (b0005) 2018; 467 Zhou, Tan (b0095) 2020; 86 Fujita, Cimr (b0090) 2019; 486 Martis, Acharya, Min (b0155) 2013; 8 Wang (10.1016/j.neucom.2022.09.079_b0030) 2020; 102 Wang (10.1016/j.neucom.2022.09.079_b0160) 2013; 116 Kong (10.1016/j.neucom.2022.09.079_b0045) 2019; 177 Yu (10.1016/j.neucom.2022.09.079_b0135) 2017; 148 Wang (10.1016/j.neucom.2022.09.079_b0055) 2020; 58 Acharya (10.1016/j.neucom.2022.09.079_b0080) 2017; 405 Ioffe (10.1016/j.neucom.2022.09.079_b0185) 2015 Hu (10.1016/j.neucom.2022.09.079_b0140) 2019; 341 Fujita (10.1016/j.neucom.2022.09.079_b0090) 2019; 486 Atal (10.1016/j.neucom.2022.09.079_b0110) 2020; 196 Nakanoa (10.1016/j.neucom.2022.09.079_b0190) 2017; 73 Hagiwara (10.1016/j.neucom.2022.09.079_b0005) 2018; 467 Sannino (10.1016/j.neucom.2022.09.079_b0075) 2018; 86 Jin (10.1016/j.neucom.2022.09.079_b0100) 2020; 193 Kolanowski (10.1016/j.neucom.2022.09.079_b0175) 2018; 319 Moody (10.1016/j.neucom.2022.09.079_b0150) 2001; 20 Martis (10.1016/j.neucom.2022.09.079_b0155) 2013; 8 Ke (10.1016/j.neucom.2022.09.079_b0210) 2020; 50 Li (10.1016/j.neucom.2022.09.079_b0025) 2018; 294 Acharya (10.1016/j.neucom.2022.09.079_b0070) 2017; 132 Yao (10.1016/j.neucom.2022.09.079_b0105) 2020; 53 Wu (10.1016/j.neucom.2022.09.079_b0130) 2013; 23 Zhou (10.1016/j.neucom.2022.09.079_b0095) 2020; 86 Goldberger (10.1016/j.neucom.2022.09.079_b0145) 2000; 101 Li (10.1016/j.neucom.2022.09.079_b0170) 2014; 55 Ross (10.1016/j.neucom.2022.09.079_b0195) 2012; 33 Wang (10.1016/j.neucom.2022.09.079_b0120) 2020; 55 Liu (10.1016/j.neucom.2022.09.079_b0035) 2017; 234 Elman (10.1016/j.neucom.2022.09.079_b0165) 1990; 14 Kingma (10.1016/j.neucom.2022.09.079_b0180) 2014 Acharya (10.1016/j.neucom.2022.09.079_b0040) 2017; 377 Shukri (10.1016/j.neucom.2022.09.079_b0125) 2012 Inan (10.1016/j.neucom.2022.09.079_b0020) 2006; 53 Faust (10.1016/j.neucom.2022.09.079_b0085) 2018; 102 He (10.1016/j.neucom.2022.09.079_b0200) 2015 Berkaya (10.1016/j.neucom.2022.09.079_b0010) 2018; 43 Kalidas (10.1016/j.neucom.2022.09.079_b0050) 2019; 113 Krishnan (10.1016/j.neucom.2022.09.079_b0115) 2019; 151 Lecun (10.1016/j.neucom.2022.09.079_b0065) 2015; 521 Sangaiah (10.1016/j.neucom.2022.09.079_b0060) 2020; 103 Zou (10.1016/j.neucom.2022.09.079_b0205) 2019; 367 Ramirez (10.1016/j.neucom.2022.09.079_b0015) 2019; 126 |
| References_xml | – volume: 151 start-page: 201 year: 2019 end-page: 210 ident: b0115 article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system publication-title: Comput. Netw. – volume: 86 year: 2020 ident: b0095 article-title: Electrocardiogram soft computing using hybrid deep learning CNN-ELM publication-title: Appl. Soft. Comput. – volume: 116 start-page: 38 year: 2013 end-page: 45 ident: b0160 article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method publication-title: Neurocomputing – volume: 148 start-page: 895 year: 2017 end-page: 904 ident: b0135 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network publication-title: Energ. Convers. Manage. – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: b0145 article-title: PhysioBank, PhysioToolkit, and Physionet components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 53 start-page: 2507 year: 2006 end-page: 2515 ident: b0020 article-title: Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features publication-title: IEEE Trans. Biomed. Eng. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0065 article-title: Deep learning publication-title: Nature – volume: 319 start-page: 236 year: 2018 end-page: 244 ident: b0175 article-title: Multisensor data fusion using Elman neural networks publication-title: Appl. Math. Comput. – volume: 50 start-page: 596 year: 2020 end-page: 610 ident: b0210 article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN publication-title: Softw: Pract. Exper. – volume: 126 start-page: 295 year: 2019 end-page: 307 ident: b0015 article-title: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification publication-title: Expert Syst. Appl. – volume: 486 start-page: 231 year: 2019 end-page: 239 ident: b0090 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. – volume: 294 start-page: 94 year: 2018 end-page: 101 ident: b0025 article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal publication-title: Neurocomputing – volume: 73 start-page: 187 year: 2017 end-page: 200 ident: b0190 article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection publication-title: Expert Syst. Appl. – volume: 55 year: 2020 ident: b0120 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Proces. – start-page: 328 year: 2012 end-page: 332 ident: b0125 article-title: Investigation on Elman neural network for detection of cardiomyopathy, in publication-title: Proceedings of the IEEE Control and System Graduate Research Colloquium – volume: 86 start-page: 446 year: 2018 end-page: 455 ident: b0075 article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection, Future Gener publication-title: Comput. Syst. – year: 2014 ident: b0180 article-title: Adam: a method for stochastic optimization – volume: 103 year: 2020 ident: b0060 article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis publication-title: Artif. Intell. Med. – year: 2015 ident: b0185 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in publication-title: Proceedings of the International Conference on International Conference on Machine Learning (ICML) – volume: 377 start-page: 17 year: 2017 end-page: 29 ident: b0040 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inform. Sci. – volume: 43 start-page: 216 year: 2018 end-page: 235 ident: b0010 article-title: A survey on ECG analysis, Biomed publication-title: Signal Process. – volume: 55 start-page: 749 year: 2014 end-page: 759 ident: b0170 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power – volume: 196 year: 2020 ident: b0110 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Meth. Prog. Bio. – volume: 33 start-page: 191 year: 2012 end-page: 198 ident: b0195 article-title: Exponentially weighted moving average charts for detecting concept drift publication-title: Pattern Recogn. Lett. – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b0150 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 132 start-page: 62 year: 2017 end-page: 71 ident: b0070 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl-Based Syst. – volume: 367 start-page: 39 year: 2019 end-page: 45 ident: b0205 article-title: Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification publication-title: Neurocomputing – volume: 102 start-page: 670 year: 2020 end-page: 679 ident: b0030 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network, Future Gener publication-title: Comput. Syst. – volume: 193 year: 2020 ident: b0100 article-title: Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks publication-title: Knowl-Based Syst. – year: 2015 ident: b0200 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV) – volume: 102 start-page: 327 year: 2018 end-page: 335 ident: b0085 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0165 article-title: Finding structure in time publication-title: Cogn. Sci. – volume: 177 start-page: 183 year: 2019 end-page: 192 ident: b0045 article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation publication-title: Comput. Methods Prog. Biol. – volume: 58 year: 2020 ident: b0055 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. – volume: 467 start-page: 99 year: 2018 end-page: 114 ident: b0005 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review publication-title: Inform. Sci. – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: b0035 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 113 year: 2019 ident: b0050 article-title: Detection of atrial fibrillation using discrete-state Markov models and random forests publication-title: Comput. Biol. Med. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: b0080 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. – volume: 23 start-page: 319 year: 2013 end-page: 322 ident: b0130 article-title: Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks publication-title: Geophys. Res. Lett. – volume: 341 start-page: 204 year: 2019 end-page: 214 ident: b0140 article-title: Determination of endometrial carcinoma with gene expression based on optimized Elman neural network publication-title: Appl. Math. Compit. – volume: 53 start-page: 174 year: 2020 end-page: 182 ident: b0105 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion – volume: 8 start-page: 437 year: 2013 end-page: 448 ident: b0155 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process Control – volume: 132 start-page: 62 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0070 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2017.06.003 – volume: 467 start-page: 99 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0005 article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.07.063 – volume: 86 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0095 article-title: Electrocardiogram soft computing using hybrid deep learning CNN-ELM publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2019.105778 – volume: 33 start-page: 191 issue: 2 year: 2012 ident: 10.1016/j.neucom.2022.09.079_b0195 article-title: Exponentially weighted moving average charts for detecting concept drift publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2011.08.019 – volume: 377 start-page: 17 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0040 article-title: Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.10.013 – year: 2015 ident: 10.1016/j.neucom.2022.09.079_b0185 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift, in – volume: 196 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0110 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Meth. Prog. Bio. doi: 10.1016/j.cmpb.2020.105607 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neucom.2022.09.079_b0065 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 113 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0050 article-title: Detection of atrial fibrillation using discrete-state Markov models and random forests publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103386 – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 10.1016/j.neucom.2022.09.079_b0145 article-title: PhysioBank, PhysioToolkit, and Physionet components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0080 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 86 start-page: 446 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0075 article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection, Future Gener publication-title: Comput. Syst. – volume: 55 start-page: 749 year: 2014 ident: 10.1016/j.neucom.2022.09.079_b0170 article-title: Application of a hybrid quantized Elman neural network in short-term load forecasting publication-title: Int. J. Electr. Power doi: 10.1016/j.ijepes.2013.10.020 – volume: 193 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0100 article-title: Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks publication-title: Knowl-Based Syst. doi: 10.1016/j.knosys.2019.105460 – volume: 50 start-page: 596 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0210 article-title: Cloud-aided online EEG classification system for brain healthcare: a case study of depression evaluation with a lightweight CNN publication-title: Softw: Pract. Exper. – volume: 177 start-page: 183 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0045 article-title: A novel IRBF-RVM model for diagnosis of atrial fibrillation publication-title: Comput. Methods Prog. Biol. doi: 10.1016/j.cmpb.2019.05.028 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.neucom.2022.09.079_b0150 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – year: 2014 ident: 10.1016/j.neucom.2022.09.079_b0180 – start-page: 328 year: 2012 ident: 10.1016/j.neucom.2022.09.079_b0125 article-title: Investigation on Elman neural network for detection of cardiomyopathy, in – volume: 23 start-page: 319 issue: 4 year: 2013 ident: 10.1016/j.neucom.2022.09.079_b0130 article-title: Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks publication-title: Geophys. Res. Lett. doi: 10.1029/96GL00259 – volume: 319 start-page: 236 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0175 article-title: Multisensor data fusion using Elman neural networks publication-title: Appl. Math. Comput. – volume: 126 start-page: 295 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0015 article-title: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.02.035 – volume: 102 start-page: 327 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0085 article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.001 – volume: 58 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0055 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. doi: 10.1016/j.bspc.2020.101874 – volume: 341 start-page: 204 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0140 article-title: Determination of endometrial carcinoma with gene expression based on optimized Elman neural network publication-title: Appl. Math. Compit. doi: 10.1016/j.amc.2018.09.005 – volume: 102 start-page: 670 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0030 article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network, Future Gener publication-title: Comput. Syst. – volume: 55 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0120 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Proces. doi: 10.1016/j.bspc.2019.101662 – volume: 73 start-page: 187 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0190 article-title: Generalized exponential moving average (EMA) model with particle filtering and anomaly detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.034 – volume: 8 start-page: 437 year: 2013 ident: 10.1016/j.neucom.2022.09.079_b0155 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2013.01.005 – volume: 53 start-page: 2507 issue: 12 year: 2006 ident: 10.1016/j.neucom.2022.09.079_b0020 article-title: Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.880879 – volume: 103 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0060 article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101788 – volume: 151 start-page: 201 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0115 article-title: An efficient Elman neural network classifier with cloud supported internet of things structure for health monitoring system publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.01.034 – volume: 116 start-page: 38 year: 2013 ident: 10.1016/j.neucom.2022.09.079_b0160 article-title: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.045 – volume: 43 start-page: 216 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0010 article-title: A survey on ECG analysis, Biomed publication-title: Signal Process. – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.neucom.2022.09.079_b0165 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 486 start-page: 231 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0090 article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.065 – volume: 53 start-page: 174 year: 2020 ident: 10.1016/j.neucom.2022.09.079_b0105 article-title: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network publication-title: Inform. Fusion doi: 10.1016/j.inffus.2019.06.024 – volume: 367 start-page: 39 year: 2019 ident: 10.1016/j.neucom.2022.09.079_b0205 article-title: Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.023 – volume: 294 start-page: 94 year: 2018 ident: 10.1016/j.neucom.2022.09.079_b0025 article-title: A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.011 – year: 2015 ident: 10.1016/j.neucom.2022.09.079_b0200 article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0035 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 148 start-page: 895 year: 2017 ident: 10.1016/j.neucom.2022.09.079_b0135 article-title: An improved wavelet transform using singular spectrum analysis for wind speed forecasting based on Elman neural network publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2017.05.063 |
| SSID | ssj0017129 |
| Score | 2.4467118 |
| Snippet | Atrial fibrillation (AF) is one of the leading causes of heart diseases worldwide. An accurate AF detection method for timely treatment is attracting great... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127 |
| SubjectTerms | Atrial fibrillation Electrocardiogram Exponential moving average algorithm Improved Elman neural network |
| Title | An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification |
| URI | https://dx.doi.org/10.1016/j.neucom.2022.09.079 |
| Volume | 513 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xfWxzMFr3TbtJs1xEWVV9KLC3kraJGtl7ZalC570rztJU1EQBY9NkxAyk5lM-OYbQk7jhOU6VQyDnFAGiSxMIAquglSGRiXGsNTVWLq9Y-PH5HoynKyQ8y4XxsIqve1vbbqz1r5l4HdzUJfl4D4UFKOoCB2c5TWLbEZ5knBbxeDs7RPmgT9oy7dHh4Ht3aXPOYxXpZcWM0LRkTm2Uwvo-sk9fXE5l1tkw98VYdQuZ5us6GqHbHZ1GMAfy13yPqqgdI8DWoHSugZfC2IKHWU4WG-lYF6Bfq3nlYUI4cwv7jkBJKozmhWQs-l8UTZPL4A3WZCuoAcYmxMwaxFzYNEeqK9QKg8ycs175PHy4uF8HPjCCkGBEUITRJqlSUoLwYrEUuBRYwTXjEeRVkYpKankGLmgHKOY44nXNMrTcGgMbm8kQxnvk9UK13pAgIs0Z0KgKuDB5oLmWjNLKSPRkohQsh6Ju_3MCs86botfzLIOXvactVLIrBSyUGQohR4JPkfVLevGH_15J6rsm_Zk6Bh-HXn475FHZN1-ubxEfkxWm8VSn-AFpcn7TgP7ZG10dTO--wCT6uhN |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-DnrxLdbnHLyu3U23yeYootTnRQu9hewm0ZV2W0oFT_rXnWSzoiAKXvMiZCYzmfDNN4Qcd1KWm0wzDHJiFaWqsJEouI4yFVudWssyX2Pp9o71-unVoDuYI2dNLoyDVQbbX9t0b61DSzucZntSlu37WFCMohJ0cI7XLOHzZDHtUu4isJO3T5wH9tCacI92Ize8yZ_zIK_KvDjQCEVP5ulOHaLrJ__0xedcrJGV8FiE03o_62TOVBtktSnEAOFebpL30wpK_ztgNGhjJhCKQTxCwxkOzl1pGFdgXifjymGEcOWR_08AhfqMdgXU8HE8LWdPI8CnLChf0QOsSwoY1pA5cHAPVFgodUAZ-eYt0r84fzjrRaGyQlRgiDCLEsOyNKOFYEXqOPCotYIbxpPEaKu1UlRxDF1QkEmH45U3NMmzuGttigGjilVnmyxUuNcdAlxkORMCdQFvNhc0N4Y5ThmFpkTEirVIpzlPWQTacVf9YigbfNmzrKUgnRRkLCRKoUWiz1mTmnbjj_G8EZX8pj4SPcOvM3f_PfOILPUebm_kzeXd9R5Zdj0-SZHvk4XZ9MUc4Gtllh96bfwAAlnp4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+deep+learning+approach+based+on+exponential+moving+average+algorithm+for+atrial+fibrillation+signals+identification&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Jibin&rft.au=Zhang%2C+Shuo&rft.date=2022-11-07&rft.issn=0925-2312&rft.volume=513&rft.spage=127&rft.epage=136&rft_id=info:doi/10.1016%2Fj.neucom.2022.09.079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_09_079 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |