A hybrid machine learning model for skin disease classification using discrete wavelet transform and gray level co-occurrence matrix (GLCM)
Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is i...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 84; no. 14; pp. 12835 - 12853 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.04.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1573-7721 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-024-19449-5 | 
Cover
| Abstract | Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform
(
DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies. | 
    
|---|---|
| AbstractList | Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform (DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies. Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform ( DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies.  | 
    
| Author | Verma, Sarvachan Kumar, Manoj  | 
    
| Author_xml | – sequence: 1 givenname: Sarvachan surname: Verma fullname: Verma, Sarvachan email: sarvachan.verma@gmail.com organization: GLA University (Department of Computer Engineering & Applications) – sequence: 2 givenname: Manoj surname: Kumar fullname: Kumar, Manoj organization: GLA University (Department of Computer Engineering & Applications)  | 
    
| BookMark | eNp9kE8vRDEUxRshwfAFrJrYsHj0z-v7s5QJQzJiw7q50943ypuW9g3mM_jSykiIhdVpcs7v3t6zSzZ98EjIAWcnnLH6NHHOSlEwURa8Lcu2UBtkh6taFnUt-Oav9zbZTemBMV4pUe6Q9zN6v5pFZ-kCzL3zSHuE6J2f00Ww2NMuRJoenafWJYSE1PSQkuucgcEFT5fpM5tNE3FA-gov2ONAhwg-ZXZBwVs6j7DKg7NFTSiCMcsY0RvMS4fo3ujRZDq-Pt4jWx30Cfe_dUTuLs5vx5fF9GZyNT6bFkayShXQyqapubWCW4lZlKmM4AKxBlAcmFLZt03VNV0Hba0aCzNZlR3jdVvxmRyRw_Xcpxiel5gG_RCW0eeVWgouhWpFlhFp1ikTQ0oRO23c8HVzvs31mjP9Wb1eV69z9fqreq0yKv6gT9EtIK7-h-QaSjns5xh_fvUP9QFG8pn3 | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_025_20630_7 | 
    
| Cites_doi | 10.1016/j.measurement.2020.107922 10.1016/j.patcog.2021.107994 10.1109/TBME.2018.2866166 10.1016/j.compeleceng.2020.106956 10.1016/j.patrec.2011.06.015 10.3390/healthcare10122481 10.1001/jamadermatol.2015.1187 10.1007/s11042-021-11823-x 10.5815/ijigsp.2022.03.05 10.14740/wjon1349 10.14419/ijet.v7i4.24178 10.1109/AEECT.2017.8257738 10.1001/archdermatol.2010.4 10.1109/ICRIEECE44171.2018.9008943 10.1016/j.neuri.2021.100034 10.1016/j.eswa.2011.05.079 10.4018/IJHISI.20211001.oa35 10.18201/ijisae.2017534420 10.1007/s12652-021-02933-3 10.1109/TBME.2017.2712771 10.1038/sdata.2018.161 10.1109/CICT.2016.40 10.1007/978-3-319-11755-3_18 10.1109/ICESC48915.2020.9155914  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1007/s11042-024-19449-5 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 12853 | 
    
| ExternalDocumentID | 10_1007_s11042_024_19449_5 | 
    
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION PUEGO 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c3065-a938871dd21d3edd25c6c212ee7aa51a055887d86f8ffa9758dab364f017961b3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1573-7721 1380-7501  | 
    
| IngestDate | Fri Jul 25 09:39:35 EDT 2025 Wed Oct 01 08:25:53 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 Sat May 03 01:19:41 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Keywords | Hybrid classifier Feature extraction Gaussian filtering Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3065-a938871dd21d3edd25c6c212ee7aa51a055887d86f8ffa9758dab364f017961b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3213259221 | 
    
| PQPubID | 54626 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_journals_3213259221 crossref_citationtrail_10_1007_s11042_024_19449_5 crossref_primary_10_1007_s11042_024_19449_5 springer_journals_10_1007_s11042_024_19449_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250400 | 
    
| PublicationDateYYYYMMDD | 2025-04-01 | 
    
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | A Goel (19449_CR29) 2016 19449_CR28 G Capdehourat (19449_CR24) 2011; 32 19449_CR27 19449_CR31 BJ Janney (19449_CR15) 2020 Z Yu (19449_CR8) 2019; 66 19449_CR12 MA Khan (19449_CR10) 2021; 90 19449_CR11 D Ruiz (19449_CR25) 2011; 38 VR Balaji (19449_CR18) 2020; 163 P Tschandl (19449_CR30) 2018; 5 A Ubale (19449_CR19) 2019; 6 A Jain (19449_CR14) 2022; 81 L Wei (19449_CR23) 2021; 117 SS Sinthura (19449_CR17) 2020 H Alquran (19449_CR16) 2018 19449_CR7 Y Ren (19449_CR1) 2022; 13 19449_CR6 M Maduranga (19449_CR13) 2022 19449_CR5 IA Ozkan (19449_CR21) 2017; 5 19449_CR22 S Albawi (19449_CR20) 2019; 7 A Nasonova (19449_CR26) 2014 19449_CR4 19449_CR3 19449_CR2 S Aziz (19449_CR9) 2020  | 
    
| References_xml | – volume: 163 start-page: 107922 year: 2020 ident: 19449_CR18 publication-title: Measurement doi: 10.1016/j.measurement.2020.107922 – volume: 117 start-page: 107994 year: 2021 ident: 19449_CR23 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.107994 – volume: 66 start-page: 1006 issue: 4 year: 2019 ident: 19449_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2866166 – volume: 90 start-page: 106 year: 2021 ident: 19449_CR10 publication-title: Comput Electric Eng doi: 10.1016/j.compeleceng.2020.106956 – volume: 32 start-page: 2187 year: 2011 ident: 19449_CR24 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2011.06.015 – ident: 19449_CR12 doi: 10.3390/healthcare10122481 – ident: 19449_CR4 – ident: 19449_CR5 doi: 10.1001/jamadermatol.2015.1187 – volume: 81 start-page: 6451 year: 2022 ident: 19449_CR14 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-021-11823-x – start-page: 2074 volume-title: I.J. Image, Graphics and Signal Processing year: 2022 ident: 19449_CR13 doi: 10.5815/ijigsp.2022.03.05 – volume: 6 start-page: 1331 issue: 7 year: 2019 ident: 19449_CR19 publication-title: Int Res J Eng Technol – ident: 19449_CR28 – ident: 19449_CR2 doi: 10.14740/wjon1349 – volume: 7 start-page: 6473 issue: 4 year: 2019 ident: 19449_CR20 publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i4.24178 – volume-title: International Conference on Electrical, Communication, and Computer Engineering (ICECCE) Istanbul, Turkey year: 2020 ident: 19449_CR9 – volume-title: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT year: 2018 ident: 19449_CR16 doi: 10.1109/AEECT.2017.8257738 – ident: 19449_CR6 doi: 10.1001/archdermatol.2010.4 – volume-title: International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering, ICRIEECE year: 2020 ident: 19449_CR15 doi: 10.1109/ICRIEECE44171.2018.9008943 – ident: 19449_CR22 doi: 10.1016/j.neuri.2021.100034 – volume: 38 start-page: 15217 issue: 12 year: 2011 ident: 19449_CR25 publication-title: Expert Syst Appl Int J doi: 10.1016/j.eswa.2011.05.079 – ident: 19449_CR11 doi: 10.4018/IJHISI.20211001.oa35 – volume: 5 start-page: 285 year: 2017 ident: 19449_CR21 publication-title: Int J Intell Syst Appl Eng doi: 10.18201/ijisae.2017534420 – ident: 19449_CR31 – volume: 13 start-page: 799 year: 2022 ident: 19449_CR1 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-021-02933-3 – ident: 19449_CR7 doi: 10.1109/TBME.2017.2712771 – volume: 5 start-page: 180161 year: 2018 ident: 19449_CR30 publication-title: Sci. Data doi: 10.1038/sdata.2018.161 – volume-title: 2016 Second International Conference on Computational Intelligence & Communication Technology, CICT, 2016 year: 2016 ident: 19449_CR29 doi: 10.1109/CICT.2016.40 – ident: 19449_CR3 – start-page: 159 volume-title: 11th International Conference on Image Analysis and Recognition, ICIAR 14, Vilamoura, Portugal, 2014 year: 2014 ident: 19449_CR26 doi: 10.1007/978-3-319-11755-3_18 – volume-title: international conference on electronics and sustainable communication systems, ICESC, 2020 year: 2020 ident: 19449_CR17 doi: 10.1109/ICESC48915.2020.9155914 – ident: 19449_CR27  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.4044886 | 
    
| Snippet | Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems.... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 12835 | 
    
| SubjectTerms | Algorithms Classification Computer Communication Networks Computer Science Data Structures and Information Theory Decision trees Discrete Wavelet Transform Hair removal Homogeneity Image filters Machine learning Medical imaging Multimedia Information Systems Skin diseases Special Purpose and Application-Based Systems Supervised learning Support vector machines Track 2: Medical Applications of Multimedia Wavelet transforms  | 
    
| Title | A hybrid machine learning model for skin disease classification using discrete wavelet transform and gray level co-occurrence matrix (GLCM) | 
    
| URI | https://link.springer.com/article/10.1007/s11042-024-19449-5 https://www.proquest.com/docview/3213259221  | 
    
| Volume | 84 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9gIHPgqIhVLNgQMVWIrtOLs5bqtuKwo9daVyihzH3lYtWbQbBP0N_GlmXKcLCCr15MPYjpTxeN7IM28A3oxMCJkqC8HYWeS6zsQoeEOGl-Vel0xgErMtjovDaf7h1JymorBln-3eP0nGm3pV7Ca5lIR8iqDAOy-FuQcbhum86BRP1fjm7aAwKk_lMf9e96cLWuHKv55Co4eZPIaHCRri-FqXT2DNt5vwqG-7gMkKN-HBbxyCT-HnGM-uuOwKv8S8SI-pEcQMY5cbJFSKy4vzFtNbDDoGzJwhFJWCnPk-YyHhx87jd8utKDrsekSLtm1wtrBXtDGJ0M3F3LlI6-Q8fbRbnP_Atwcf9z7tPIPpZP9k71CkDgvCccd4YUtNl4xsGiUb7WkwrnDkzLwfWmukzYwheTMqwigEW1Js0dhaF3lgOy5krZ_Dejtv_QtAqfPGOl9ngUkI9dD6olZDirZ8qJ0s6wHI_qdXLtGPcxeMy2pFnMyKqmh5FRVVmQG8u1nz9Zp849bZW70uq2SIy0orCrdNqZQcwPtevyvx_3d7ebfpr-C-4s7AMadnC9a7xTf_muBKV2_Dxniyu3vM48Hno_3teFp_AXG55Uc | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH7R5aAcQFHjKuo7eNBoybSdzu4cNwRYZeHEJniadDrtQtBZsjtE4F_gn_a122GVqAmnOby207R97ffyfnwA7_vKuUTkGfPYmaWyTFjfWUWKl6RW5r6ASYi2OMyG4_TrsTqOSWHzNtq9dUmGm3qZ7MZ9Kgm9KYwM7zRn6iGspGSgiA6sDPa-7e_ceg8yJdKYIPP3nn8-QktkeccZGt6Y3XUYt7NbhJacbV005Za5vlO48b7TfwJrEXTiYHFKnsIDW2_AekvogFG_N2D1t-qEz-BmgCdXPqELf4SIS4uRYmKCgT8HCe_i_Oy0xujlQeOhuI89CtuNPqZ-4oWETBuLP7UnuWiwabEy6rrCyUxf0cAkQjNlU2NCwShj6afN7PQSP-yNtg8-Pofx7s7R9pBF7gZmPBc907mk64tXleCVtPRRJjP0TFrb01pxnShF8qqfub5zOierpdKlzFLnb4iMl_IFdOppbV8CcplW2tgycb68oexpm5WiR3acdaXhedkF3m5mYWJhc8-v8b1YlmT2a19Q9yKsfaG68Om2z_mirMd_W2-2Z6SIKj4vpCBDXuVC8C58brd8Kf73aK_u1_wdPBoeHYyK0ZfD_dfwWHj-4RA5tAmdZnZh3xAoasq3UQd-ASi_Aig | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4IJgYeRFHDKeg8-CDBDd3dbu_6eAFPVCQ-eAlvzXa7exKwR44a4Df4p5nZazk0auJTH2Z3m3R2Ot9kZr4BeD0wISQqzwRjZ5HqMhGD4A0ZXpJ6nTOBSay2OMoOxunHY3N8p4s_Vrt3Kcl5TwOzNNXN7nkVdheNb5LbSsi_CArC01yYJbifMlEC3eixGt7mETKj0rZV5s_7fnVHC4z5W1o0epvRI3jYwkQczvX6GO75eh3WuhEM2FrkOqze4RN8Aj-H-O2aW7Dwe6yR9NgOhZhgnHiDhFDx4vSkxjYvg47BM1cLRQUhV8FPWEhYsvF4aXksRYNNh27R1hVOZvaaDiYRuqmYOhcpnpynlzazkyt88_5w7_P2UxiP3n3dOxDttAXheHq8sLmmH46sKiUr7elhXObIsXnft9ZImxhD8mqQhUEINqc4o7KlztLANp3JUj-D5Xpa-w1AqdPKOl8mgQkJdd_6rFR9irx8KJ3Myx7I7qMXrqUi54kYZ8WCRJkVVdD2IiqqMD3Yud1zPifi-OfqzU6XRWuUF4VWFHqbXCnZg7edfhfiv5_2_P-Wv4IHX_ZHxeGHo08vYEXxwOBY6rMJy83sh98iFNOUL-NFvQEdnOlf | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+model+for+skin+disease+classification+using+discrete+wavelet+transform+and+gray+level+co-occurrence+matrix+%28GLCM%29&rft.jtitle=Multimedia+tools+and+applications&rft.au=Verma%2C+Sarvachan&rft.au=Kumar%2C+Manoj&rft.date=2025-04-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=14&rft.spage=12835&rft.epage=12853&rft_id=info:doi/10.1007%2Fs11042-024-19449-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_19449_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |