A hybrid machine learning model for skin disease classification using discrete wavelet transform and gray level co-occurrence matrix (GLCM)

Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is i...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 14; pp. 12835 - 12853
Main Authors Verma, Sarvachan, Kumar, Manoj
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-19449-5

Cover

Abstract Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform ( DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies.
AbstractList Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform (DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies.
Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems. In severe circumstances, it might even result in skin cancer. Therefore, one of the most difficult challenges in medical image handling is identifying skin diseases from clinical images. However, diagnosing skin disease manually by medical professionals is time-consuming and arbitrary. Hence, automatic skin disease prediction is needed by both patients and dermatologists, which makes the treatment strategy fast. This paper core purpose is to predict benign or malignant skin disease. In this paper, we present a technique for hair removal based on morphological filtering, including the Black-Hat transformation to remove small objects, like hair. Then, to eliminate noise from the image, we employ Gaussian filtering. Then discrete wavelet transform ( DWT) algorithm is used for decomposes the image into four sub-band (LL LH, HL, HH); after that, for each channel of the RGB image, A Gray Level Co-occurrence Matrix (GLCM) is calculated to extract the 48 features of the individual image given contrast, correlation, energy, and homogeneity on low frequency (approximate coefficient-LL) and high frequency (horizontal-LH, diagonal-HH, vertical-HL) bands of the segmented image. This Paper focuses on building a hybrid ensemble machine learning model (HEML) (15 Weak learners of Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for automatic skin disease classification and comparing the accuracy with other supervised machine learning such as Decision Tree (DT), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) classifiers. The Hybrid ensemble machine learning model (HEML) model has the highest accuracy of 95.50% compared to the rest of the classification techniques. In addition, we have complemented our work with state-of-the-art methodologies.
Author Verma, Sarvachan
Kumar, Manoj
Author_xml – sequence: 1
  givenname: Sarvachan
  surname: Verma
  fullname: Verma, Sarvachan
  email: sarvachan.verma@gmail.com
  organization: GLA University (Department of Computer Engineering & Applications)
– sequence: 2
  givenname: Manoj
  surname: Kumar
  fullname: Kumar, Manoj
  organization: GLA University (Department of Computer Engineering & Applications)
BookMark eNp9kE8vRDEUxRshwfAFrJrYsHj0z-v7s5QJQzJiw7q50943ypuW9g3mM_jSykiIhdVpcs7v3t6zSzZ98EjIAWcnnLH6NHHOSlEwURa8Lcu2UBtkh6taFnUt-Oav9zbZTemBMV4pUe6Q9zN6v5pFZ-kCzL3zSHuE6J2f00Ww2NMuRJoenafWJYSE1PSQkuucgcEFT5fpM5tNE3FA-gov2ONAhwg-ZXZBwVs6j7DKg7NFTSiCMcsY0RvMS4fo3ujRZDq-Pt4jWx30Cfe_dUTuLs5vx5fF9GZyNT6bFkayShXQyqapubWCW4lZlKmM4AKxBlAcmFLZt03VNV0Hba0aCzNZlR3jdVvxmRyRw_Xcpxiel5gG_RCW0eeVWgouhWpFlhFp1ikTQ0oRO23c8HVzvs31mjP9Wb1eV69z9fqreq0yKv6gT9EtIK7-h-QaSjns5xh_fvUP9QFG8pn3
CitedBy_id crossref_primary_10_1007_s11042_025_20630_7
Cites_doi 10.1016/j.measurement.2020.107922
10.1016/j.patcog.2021.107994
10.1109/TBME.2018.2866166
10.1016/j.compeleceng.2020.106956
10.1016/j.patrec.2011.06.015
10.3390/healthcare10122481
10.1001/jamadermatol.2015.1187
10.1007/s11042-021-11823-x
10.5815/ijigsp.2022.03.05
10.14740/wjon1349
10.14419/ijet.v7i4.24178
10.1109/AEECT.2017.8257738
10.1001/archdermatol.2010.4
10.1109/ICRIEECE44171.2018.9008943
10.1016/j.neuri.2021.100034
10.1016/j.eswa.2011.05.079
10.4018/IJHISI.20211001.oa35
10.18201/ijisae.2017534420
10.1007/s12652-021-02933-3
10.1109/TBME.2017.2712771
10.1038/sdata.2018.161
10.1109/CICT.2016.40
10.1007/978-3-319-11755-3_18
10.1109/ICESC48915.2020.9155914
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-19449-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 12853
ExternalDocumentID 10_1007_s11042_024_19449_5
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3065-a938871dd21d3edd25c6c212ee7aa51a055887d86f8ffa9758dab364f017961b3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:39:35 EDT 2025
Wed Oct 01 08:25:53 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
Sat May 03 01:19:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Hybrid classifier
Feature extraction
Gaussian filtering
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3065-a938871dd21d3edd25c6c212ee7aa51a055887d86f8ffa9758dab364f017961b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3213259221
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_3213259221
crossref_citationtrail_10_1007_s11042_024_19449_5
crossref_primary_10_1007_s11042_024_19449_5
springer_journals_10_1007_s11042_024_19449_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Goel (19449_CR29) 2016
19449_CR28
G Capdehourat (19449_CR24) 2011; 32
19449_CR27
19449_CR31
BJ Janney (19449_CR15) 2020
Z Yu (19449_CR8) 2019; 66
19449_CR12
MA Khan (19449_CR10) 2021; 90
19449_CR11
D Ruiz (19449_CR25) 2011; 38
VR Balaji (19449_CR18) 2020; 163
P Tschandl (19449_CR30) 2018; 5
A Ubale (19449_CR19) 2019; 6
A Jain (19449_CR14) 2022; 81
L Wei (19449_CR23) 2021; 117
SS Sinthura (19449_CR17) 2020
H Alquran (19449_CR16) 2018
19449_CR7
Y Ren (19449_CR1) 2022; 13
19449_CR6
M Maduranga (19449_CR13) 2022
19449_CR5
IA Ozkan (19449_CR21) 2017; 5
19449_CR22
S Albawi (19449_CR20) 2019; 7
A Nasonova (19449_CR26) 2014
19449_CR4
19449_CR3
19449_CR2
S Aziz (19449_CR9) 2020
References_xml – volume: 163
  start-page: 107922
  year: 2020
  ident: 19449_CR18
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107922
– volume: 117
  start-page: 107994
  year: 2021
  ident: 19449_CR23
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107994
– volume: 66
  start-page: 1006
  issue: 4
  year: 2019
  ident: 19449_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2866166
– volume: 90
  start-page: 106
  year: 2021
  ident: 19449_CR10
  publication-title: Comput Electric Eng
  doi: 10.1016/j.compeleceng.2020.106956
– volume: 32
  start-page: 2187
  year: 2011
  ident: 19449_CR24
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2011.06.015
– ident: 19449_CR12
  doi: 10.3390/healthcare10122481
– ident: 19449_CR4
– ident: 19449_CR5
  doi: 10.1001/jamadermatol.2015.1187
– volume: 81
  start-page: 6451
  year: 2022
  ident: 19449_CR14
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-021-11823-x
– start-page: 2074
  volume-title: I.J. Image, Graphics and Signal Processing
  year: 2022
  ident: 19449_CR13
  doi: 10.5815/ijigsp.2022.03.05
– volume: 6
  start-page: 1331
  issue: 7
  year: 2019
  ident: 19449_CR19
  publication-title: Int Res J Eng Technol
– ident: 19449_CR28
– ident: 19449_CR2
  doi: 10.14740/wjon1349
– volume: 7
  start-page: 6473
  issue: 4
  year: 2019
  ident: 19449_CR20
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i4.24178
– volume-title: International Conference on Electrical, Communication, and Computer Engineering (ICECCE) Istanbul, Turkey
  year: 2020
  ident: 19449_CR9
– volume-title: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT
  year: 2018
  ident: 19449_CR16
  doi: 10.1109/AEECT.2017.8257738
– ident: 19449_CR6
  doi: 10.1001/archdermatol.2010.4
– volume-title: International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering, ICRIEECE
  year: 2020
  ident: 19449_CR15
  doi: 10.1109/ICRIEECE44171.2018.9008943
– ident: 19449_CR22
  doi: 10.1016/j.neuri.2021.100034
– volume: 38
  start-page: 15217
  issue: 12
  year: 2011
  ident: 19449_CR25
  publication-title: Expert Syst Appl Int J
  doi: 10.1016/j.eswa.2011.05.079
– ident: 19449_CR11
  doi: 10.4018/IJHISI.20211001.oa35
– volume: 5
  start-page: 285
  year: 2017
  ident: 19449_CR21
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.2017534420
– ident: 19449_CR31
– volume: 13
  start-page: 799
  year: 2022
  ident: 19449_CR1
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-021-02933-3
– ident: 19449_CR7
  doi: 10.1109/TBME.2017.2712771
– volume: 5
  start-page: 180161
  year: 2018
  ident: 19449_CR30
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.161
– volume-title: 2016 Second International Conference on Computational Intelligence & Communication Technology, CICT, 2016
  year: 2016
  ident: 19449_CR29
  doi: 10.1109/CICT.2016.40
– ident: 19449_CR3
– start-page: 159
  volume-title: 11th International Conference on Image Analysis and Recognition, ICIAR 14, Vilamoura, Portugal, 2014
  year: 2014
  ident: 19449_CR26
  doi: 10.1007/978-3-319-11755-3_18
– volume-title: international conference on electronics and sustainable communication systems, ICESC, 2020
  year: 2020
  ident: 19449_CR17
  doi: 10.1109/ICESC48915.2020.9155914
– ident: 19449_CR27
SSID ssj0016524
Score 2.4044886
Snippet Skin conditions are widespread health issues in the world. The dangers of infections are hidden and may lead to mental depression and physical health problems....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12835
SubjectTerms Algorithms
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Decision trees
Discrete Wavelet Transform
Hair removal
Homogeneity
Image filters
Machine learning
Medical imaging
Multimedia Information Systems
Skin diseases
Special Purpose and Application-Based Systems
Supervised learning
Support vector machines
Track 2: Medical Applications of Multimedia
Wavelet transforms
Title A hybrid machine learning model for skin disease classification using discrete wavelet transform and gray level co-occurrence matrix (GLCM)
URI https://link.springer.com/article/10.1007/s11042-024-19449-5
https://www.proquest.com/docview/3213259221
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9gIHPgqIhVLNgQMVWIrtOLs5bqtuKwo9daVyihzH3lYtWbQbBP0N_GlmXKcLCCr15MPYjpTxeN7IM28A3oxMCJkqC8HYWeS6zsQoeEOGl-Vel0xgErMtjovDaf7h1JymorBln-3eP0nGm3pV7Ca5lIR8iqDAOy-FuQcbhum86BRP1fjm7aAwKk_lMf9e96cLWuHKv55Co4eZPIaHCRri-FqXT2DNt5vwqG-7gMkKN-HBbxyCT-HnGM-uuOwKv8S8SI-pEcQMY5cbJFSKy4vzFtNbDDoGzJwhFJWCnPk-YyHhx87jd8utKDrsekSLtm1wtrBXtDGJ0M3F3LlI6-Q8fbRbnP_Atwcf9z7tPIPpZP9k71CkDgvCccd4YUtNl4xsGiUb7WkwrnDkzLwfWmukzYwheTMqwigEW1Js0dhaF3lgOy5krZ_Dejtv_QtAqfPGOl9ngUkI9dD6olZDirZ8qJ0s6wHI_qdXLtGPcxeMy2pFnMyKqmh5FRVVmQG8u1nz9Zp849bZW70uq2SIy0orCrdNqZQcwPtevyvx_3d7ebfpr-C-4s7AMadnC9a7xTf_muBKV2_Dxniyu3vM48Hno_3teFp_AXG55Uc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH7R5aAcQFHjKuo7eNBoybSdzu4cNwRYZeHEJniadDrtQtBZsjtE4F_gn_a122GVqAmnOby207R97ffyfnwA7_vKuUTkGfPYmaWyTFjfWUWKl6RW5r6ASYi2OMyG4_TrsTqOSWHzNtq9dUmGm3qZ7MZ9Kgm9KYwM7zRn6iGspGSgiA6sDPa-7e_ceg8yJdKYIPP3nn8-QktkeccZGt6Y3XUYt7NbhJacbV005Za5vlO48b7TfwJrEXTiYHFKnsIDW2_AekvogFG_N2D1t-qEz-BmgCdXPqELf4SIS4uRYmKCgT8HCe_i_Oy0xujlQeOhuI89CtuNPqZ-4oWETBuLP7UnuWiwabEy6rrCyUxf0cAkQjNlU2NCwShj6afN7PQSP-yNtg8-Pofx7s7R9pBF7gZmPBc907mk64tXleCVtPRRJjP0TFrb01pxnShF8qqfub5zOierpdKlzFLnb4iMl_IFdOppbV8CcplW2tgycb68oexpm5WiR3acdaXhedkF3m5mYWJhc8-v8b1YlmT2a19Q9yKsfaG68Om2z_mirMd_W2-2Z6SIKj4vpCBDXuVC8C58brd8Kf73aK_u1_wdPBoeHYyK0ZfD_dfwWHj-4RA5tAmdZnZh3xAoasq3UQd-ASi_Aig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9RAEJ4IJgYeRFHDKeg8-CDBDd3dbu_6eAFPVCQ-eAlvzXa7exKwR44a4Df4p5nZazk0auJTH2Z3m3R2Ot9kZr4BeD0wISQqzwRjZ5HqMhGD4A0ZXpJ6nTOBSay2OMoOxunHY3N8p4s_Vrt3Kcl5TwOzNNXN7nkVdheNb5LbSsi_CArC01yYJbifMlEC3eixGt7mETKj0rZV5s_7fnVHC4z5W1o0epvRI3jYwkQczvX6GO75eh3WuhEM2FrkOqze4RN8Aj-H-O2aW7Dwe6yR9NgOhZhgnHiDhFDx4vSkxjYvg47BM1cLRQUhV8FPWEhYsvF4aXksRYNNh27R1hVOZvaaDiYRuqmYOhcpnpynlzazkyt88_5w7_P2UxiP3n3dOxDttAXheHq8sLmmH46sKiUr7elhXObIsXnft9ZImxhD8mqQhUEINqc4o7KlztLANp3JUj-D5Xpa-w1AqdPKOl8mgQkJdd_6rFR9irx8KJ3Myx7I7qMXrqUi54kYZ8WCRJkVVdD2IiqqMD3Yud1zPifi-OfqzU6XRWuUF4VWFHqbXCnZg7edfhfiv5_2_P-Wv4IHX_ZHxeGHo08vYEXxwOBY6rMJy83sh98iFNOUL-NFvQEdnOlf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+model+for+skin+disease+classification+using+discrete+wavelet+transform+and+gray+level+co-occurrence+matrix+%28GLCM%29&rft.jtitle=Multimedia+tools+and+applications&rft.au=Verma%2C+Sarvachan&rft.au=Kumar%2C+Manoj&rft.date=2025-04-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=84&rft.issue=14&rft.spage=12835&rft.epage=12853&rft_id=info:doi/10.1007%2Fs11042-024-19449-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_024_19449_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon