Because Muncie's Densities Are Not Manhattan's: Using Geographical Weighting in the Expectation–Maximization Algorithm for Areal Interpolation

Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest�...

Full description

Saved in:
Bibliographic Details
Published inGeographical analysis Vol. 45; no. 3; pp. 216 - 237
Main Authors Schroeder, Jonathan P., Van Riper, David C.
Format Journal Article
LanguageEnglish
Published 01.07.2013
Subjects
USA
Online AccessGet full text
ISSN0016-7363
1538-4632
DOI10.1111/gean.12014

Cover

Abstract Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization (GWEM), which combines features of two previously used techniques, the expectation–maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting (TDW)—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM–TDW hybrid approaches and find them to improve estimates substantially. 区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。
AbstractList Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization (GWEM), which combines features of two previously used techniques, the expectation–maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting (TDW)—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM–TDW hybrid approaches and find them to improve estimates substantially. 区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。
Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation-maximization (GWEM), which combines features of two previously used techniques, the expectation-maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control-zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target-density weighting (TDW)-using 1970 tract densities to guide interpolation-outperforms GWEM in many cases, we also consider two GWEM-TDW hybrid approaches and find them to improve estimates substantially.Original Abstract: 区 域 插 值 可 通 过 变 ৰ 2; 一 组 源 区 感 兴 趣 变 &# 37327; 的 数 据 得 到 目 标 ࡒ 6; 域 同 一 变 量 的 分 布 &# 37319; 用 与 感 兴 趣 变 量 ి 4; 间 分 布 密 切 相 关 的 &# 36741; 助 控 制 区 来 引 导 ৻ 4; 值 是 最 常 用 的 一 种 &# 26041; 法 ,通 常 涉 及 采 用 ě 04; 区 域 数 据 估 计 每 个 & #25511; 制 区 内 感 兴 趣 变 ŵ 27; 的 密 度 值 本 文 引 入 & #20102; 地 理 加 权 最 大 期 ć 95; 算 法 (GWEM)来 进 行 密 度 0272; 计 ,综 合 了 过 去 常 ஷ 2; 的 最 大 期 望 算 法 (EM)ࡴ 4; 地 理 加 权 回 归 (GWR)两 种 ৙ 6; 术 特 征 EM算 法 为 数 据 分 布 约 束 的 集 成 提 379; 框 架 ,地 理 加 权 则 允 ; 许 估 计 估 计 控 制 区 3494; 度 比 例 的 空 间 变 异 ; 以 美 国 1980年 全 国 普 查 ; 区 域 的 土 地 利 用 /土 &# 22320; 覆 被 数 据 种 群 统 ෶ 5; 为 例 ,对 该 方 法 的 精 & #24230; 进 行 了 评 估 结 果 ą 74; 示 ,GWEM比 多 种 现 有 方 861; 准 确 性 更 高 采 用 目 标 密 度 加 权 法 (TDW)以 1970 4180; 束 密 度 来 进 行 插 值 ; 在 许 多 情 况 下 优 于 GWE M,融 合 GWEM-TDW两 种 方 法 可 &# 22823; 幅 改 善 估 计 结 果
Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization ( GWEM ), which combines features of two previously used techniques, the expectation–maximization ( EM ) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover ( LULC ) ancillary data to population counts from a nationwide sample of 1980 U . S . census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting ( TDW )—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM – TDW hybrid approaches and find them to improve estimates substantially. 区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。
Author Van Riper, David C.
Schroeder, Jonathan P.
Author_xml – sequence: 1
  givenname: Jonathan P.
  surname: Schroeder
  fullname: Schroeder, Jonathan P.
  organization: University of Minnesota
– sequence: 2
  givenname: David C.
  surname: Van Riper
  fullname: Van Riper, David C.
  organization: University of Minnesota
BookMark eNp9kM1KxDAQx4MouH5cfILcFKGaNGm29bbqugquXhSPJZtO20g3qUkWP04-guAb-iRut55EnMsww-83A_8ttG6sAYT2KDmiyzquQJojGhPK19CAJiyNuGDxOhoQQkU0ZIJtoi3vHwkh8ZCyAfo4BSUXHvB0YZSGfY_PwXgdNHg8coBvbMBTaWoZgjT7_gTfe20qPAFbOdnWWskGP4Cu6tCttcGhBjx-aUEFGbQ1X--fU_mi5_ptNeJRU1mnQz3HpXXdh6V_ZQK41jYrYgdtlLLxsPvTt9H9xfju7DK6vp1cnY2uI8WI4FGZFMDTOE2LGY95mvIkZiyhYlbIDERCGeNDmfFUFCSb8WSYxUwxRrgoZxBnRcq20UF_t3X2aQE-5HPtFTSNNGAXPqecZkzwLOnQwx5VznrvoMxbp-fSveaU5F3seRd7vop9CZNfsNJ9FMFJ3fyt0F551g28_nM8n4xHN73zDUY-mO0
CitedBy_id crossref_primary_10_1016_j_apgeog_2017_06_021
crossref_primary_10_1080_15230406_2023_2271379
crossref_primary_10_3390_ijgi8070302
crossref_primary_10_1080_15230406_2019_1618201
crossref_primary_10_1016_j_compenvurbsys_2016_10_001
crossref_primary_10_1080_15481603_2015_1018856
crossref_primary_10_1080_00330124_2015_1033669
crossref_primary_10_1080_15420353_2015_1036484
crossref_primary_10_1111_gean_12016
crossref_primary_10_1080_13658816_2018_1472267
crossref_primary_10_12672_ksis_2014_22_3_035
crossref_primary_10_1080_15481603_2018_1509463
crossref_primary_10_1016_j_compenvurbsys_2016_03_004
crossref_primary_10_1016_j_compenvurbsys_2016_08_006
crossref_primary_10_1038_s41597_022_01184_x
crossref_primary_10_1016_j_socscimed_2025_117752
crossref_primary_10_3390_land11122301
crossref_primary_10_1016_j_apgeog_2015_01_006
crossref_primary_10_1016_j_uclim_2024_101945
crossref_primary_10_1080_13658816_2014_909045
crossref_primary_10_1111_gec3_12465
crossref_primary_10_1016_j_healthplace_2024_103411
Cites_doi 10.1559/1523040041649407
10.1111/j.2517-6161.1977.tb01600.x
10.1111/1467-9671.00022
10.1111/j.1749-8198.2009.00220.x
10.1068/a36202
10.1080/01621459.1979.10481647
10.2307/209467
10.1068/a270211
10.1016/S0198-9715(01)00013-8
10.1016/0098-3004(95)00112-3
10.1002/9780470979563.ch14
10.1007/s11113-007-9050-9
10.1016/j.compenvurbsys.2004.07.001
10.1111/j.1538-4632.2007.00706.x
10.3133/pp964
10.1080/19475683.2010.540258
10.1016/0198-9715(95)00028-3
10.1559/152304010792194976
10.1080/00045608.2011.627054
10.1080/13658810500399589
10.2747/1548-1603.45.2.131
10.1080/13658810701492225
10.1016/S0198-9715(97)01003-X
10.1068/a250383
10.1080/01615440.2011.563228
ContentType Journal Article
Copyright 2013 The Ohio State University
Copyright_xml – notice: 2013 The Ohio State University
DBID AAYXX
CITATION
7ST
7U6
C1K
DOI 10.1111/gean.12014
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1538-4632
EndPage 237
ExternalDocumentID 10_1111_gean_12014
GEAN12014
Genre article
GeographicLocations USA
GeographicLocations_xml – name: USA
GrantInformation_xml – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  funderid: 1RO1 HD057929
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29H
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
702
706
709
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A04
AABNI
AAESR
AAFWJ
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AAMZP
AAONW
AAOUF
AASGY
AAVNP
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABECW
ABEML
ABJNI
ABPVW
ABSOO
ACAHQ
ACBKW
ACCZN
ACDWB
ACGFS
ACHIS
ACHQT
ACPOU
ACSCC
ACUHS
ACXQS
ACYXD
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADPSH
ADWTG
ADXAS
ADZMN
AEFGJ
AEGXH
AEHYH
AEIGN
AEIMD
AERNI
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFWVQ
AFZJQ
AGHNM
AGXDD
AHBTC
AI.
AIDQK
AIDYY
AIHXW
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBIC
AMBMR
AMYDB
ANBFE
ASTYK
AZBYB
AZVAB
BAFTC
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
D0S
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EBS
EJD
EMK
ESX
F00
F01
F5P
FOMLG
G-S
G.N
G50
GODZA
H13
HGLYW
HVGLF
HZI
HZ~
H~9
IAO
ICJ
IEA
IOF
ITC
J0M
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MUA
MUP
MUS
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OHT
OIG
OK1
P2P
P2W
P2Y
P4C
PAQYV
Q.N
Q11
QB0
R.K
RC9
ROL
RWL
RX1
RXW
SUPJJ
TAE
TN5
TUS
UB1
UHB
ULY
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WII
WMRSR
WOHZO
WQZ
WSUWO
WXSBR
XG1
XOL
YZZ
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WP
AAYXX
CITATION
7ST
7U6
ABUFD
C1K
ID FETCH-LOGICAL-c3064-f5de48288db4248845233516bda9e6513347a9486d09b457923c33046fbe29d83
IEDL.DBID DR2
ISSN 0016-7363
IngestDate Tue Oct 07 09:51:34 EDT 2025
Wed Oct 01 03:36:46 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Sun Sep 21 06:22:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3064-f5de48288db4248845233516bda9e6513347a9486d09b457923c33046fbe29d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1419364958
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_1419364958
crossref_primary_10_1111_gean_12014
crossref_citationtrail_10_1111_gean_12014
wiley_primary_10_1111_gean_12014_GEAN12014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2013
2013-07-00
20130701
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationTitle Geographical analysis
PublicationYear 2013
References 2007; 39
1993; 25
2006; 30
2010; 37
2012; 102
2011
1997; 21
2010
1976
2006
1994
1999; 3
1995; 19
2002
1991
2011; 17
1979; 74
2002; 26
2004; 31
2006; 20
1990
1995; 27
1977; 39
1936; 26
2008; 45
2011; 44
2008; 22
2009; 3
2005; 37
1989
2007; 26
1996; 22
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Langford M. (e_1_2_7_18_1) 1991
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Minnesota Population Center (e_1_2_7_23_1) 2011
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Dempster A. P. (e_1_2_7_5_1) 1977; 39
Flowerdew R. (e_1_2_7_7_1) 1989
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Fotheringham A. S. (e_1_2_7_9_1) 2002
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Flowerdew R. (e_1_2_7_8_1) 1994
References_xml – year: 2011
– volume: 37
  start-page: 127
  year: 2005
  end-page: 139
  article-title: Street‐Weighted Interpolation Techniques for Demographic Count Estimation in Incompatible Zone Systems
  publication-title: Environment and Planning A
– start-page: 240
  year: 2006
  article-title: Enhanced Historical Land‐Use and Land‐Cover Datasets of the U.S. Geological Survey
– volume: 19
  start-page: 287
  year: 1995
  end-page: 306
  article-title: The Overlaid Network Algorithms for Areal Interpolation Problem
  publication-title: Computers, Environment, and Urban Systems
– volume: 22
  start-page: 459
  year: 1996
  end-page: 466
  article-title: Implementation of Enhanced Areal Interpolation Using MapInfo
  publication-title: Computers and Geosciences
– volume: 26
  start-page: 293
  year: 2002
  end-page: 14
  article-title: The Accuracy of Areal Interpolation Techniques: Standardizing 19th and 20th Century Census Data to Allow Long‐Term Comparisons
  publication-title: Computers, Environment and Urban Systems
– volume: 39
  start-page: 311
  year: 2007
  end-page: 335
  article-title: Target‐Density Weighting Interpolation and Uncertainty Evaluation for Temporal Analysis of Census Data
  publication-title: Geographic Analysis
– volume: 22
  start-page: 431
  year: 2008
  end-page: 447
  article-title: Population‐Density Estimation Using Regression and Area‐to‐Point Residual Kriging
  publication-title: International Journal of Geographical Information Science
– volume: 26
  start-page: 619
  year: 2007
  end-page: 633
  article-title: Areal Interpolation of Population Counts Using Pre‐Classified Land Cover Data
  publication-title: Population Research and Policy Review
– volume: 102
  start-page: 763
  year: 2012
  end-page: 777
  article-title: A Quantile Regression Approach to Areal Interpolation
  publication-title: Annals of the Association of American Geographers
– start-page: 4
  year: 1990
  article-title: Land Use and Land Cover Digital Data from 1:250,000‐ and 1:100,000‐Scale Maps
– start-page: 195
  year: 2011
  end-page: 210
– volume: 3
  start-page: 727
  year: 2009
  end-page: 745
  article-title: Dasymetric Mapping for Estimating Population in Small Areas
  publication-title: Geography Compass
– year: 1989
  article-title: Statistical Methods for Areal Interpolation: The EM Algorithm for Count Data
– start-page: 55
  year: 1991
  end-page: 77
– volume: 25
  start-page: 383
  year: 1993
  end-page: 397
  article-title: A Framework for the Areal Interpolation of Socioeconomic Data
  publication-title: Environment and Planning A
– volume: 74
  start-page: 519
  year: 1979
  end-page: 535
  article-title: Smooth Pycnophylactic Interpolation for Geographical Regions
  publication-title: Journal of the American Statistical Association
– start-page: 121
  year: 1994
  end-page: 146
– volume: 30
  start-page: 161
  year: 2006
  end-page: 180
  article-title: Obtaining Population Estimates in Non‐Census Reporting Zones: An Evaluation of the 3‐Class Dasymetric Model
  publication-title: Computers, Environment and Urban Systems
– volume: 21
  start-page: 245
  year: 1997
  end-page: 258
  article-title: Remodeling Census Population with Spatial Information from Landsat TM Imagery
  publication-title: Computers, Environment and Urban Systems
– volume: 27
  start-page: 211
  year: 1995
  end-page: 244
  article-title: Modeling the Errors in Areal Interpolation between Zonal Systems by Monte Carlo Simulation
  publication-title: Environment and Planning A
– start-page: 239
  year: 1989
  end-page: 248
– volume: 31
  start-page: 103
  year: 2004
  end-page: 121
  article-title: Dasymetric Estimation of Population Density and Areal Interpolation of Census Data
  publication-title: Cartography and Geographic Information Science
– volume: 3
  start-page: 285
  year: 1999
  end-page: 301
  article-title: Singly‐ and Doubly‐Constrained Methods of Areal Interpolation for Vector‐Based GIS
  publication-title: Transactions in GIS
– year: 2002
– volume: 37
  start-page: 215
  year: 2010
  end-page: 228
  article-title: Areal Interpolation and Dasymetric Mapping Methods Using Local Ancillary Data Sources
  publication-title: Cartography and Geographic Information Science
– volume: 26
  start-page: 103
  year: 1936
  end-page: 110
  article-title: A Method of Mapping Densities of Population with Cape Cod as an Example
  publication-title: Geographical Review
– volume: 20
  start-page: 135
  year: 2006
  end-page: 152
  article-title: Error‐Sensitive Historical GIS: Identifying Areal Interpolation Errors in Time‐Series Data
  publication-title: International Journal of Geographical Information Science
– year: 1976
  article-title: A Land Use and Land Cover Classification System for Use with Remote Sensor Data
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum Likelihood from Incomplete Data Via the EM Algorithm
  publication-title: Journal of the Royal Statistical Society B
– volume: 17
  start-page: 1
  year: 2011
  end-page: 14
  article-title: Using Geographically Weighted Regression to Solve the Areal Interpolation Problem
  publication-title: Annals of GIS
– year: 2010
  article-title: Some Simplifications for the Expectation‐Maximization (EM) Algorithm: The Linear Regression Model Case
– volume: 45
  start-page: 131
  year: 2008
  end-page: 148
  article-title: Population Estimation Using Geographically Weighted Regression
  publication-title: GIScience and Remote Sensing
– volume: 44
  start-page: 79
  year: 2011
  end-page: 85
  article-title: Harmonizing Disparate Data across Time and Place
  publication-title: Historical Methods
– ident: e_1_2_7_16_1
  doi: 10.1559/1523040041649407
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_7_5_1
  article-title: Maximum Likelihood from Incomplete Data Via the EM Algorithm
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_24_1
  doi: 10.1111/1467-9671.00022
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1749-8198.2009.00220.x
– ident: e_1_2_7_28_1
  doi: 10.1068/a36202
– ident: e_1_2_7_31_1
  doi: 10.1080/01621459.1979.10481647
– ident: e_1_2_7_33_1
  doi: 10.2307/209467
– ident: e_1_2_7_14_1
– ident: e_1_2_7_6_1
  doi: 10.1068/a270211
– ident: e_1_2_7_12_1
  doi: 10.1016/S0198-9715(01)00013-8
– ident: e_1_2_7_3_1
  doi: 10.1016/0098-3004(95)00112-3
– start-page: 239
  volume-title: Accuracy of Spatial Databases
  year: 1989
  ident: e_1_2_7_7_1
– ident: e_1_2_7_15_1
  doi: 10.1002/9780470979563.ch14
– ident: e_1_2_7_27_1
  doi: 10.1007/s11113-007-9050-9
– ident: e_1_2_7_17_1
  doi: 10.1016/j.compenvurbsys.2004.07.001
– volume-title: National Historical Geographic Information System: Version 2.0
  year: 2011
  ident: e_1_2_7_23_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1538-4632.2007.00706.x
– ident: e_1_2_7_2_1
  doi: 10.3133/pp964
– ident: e_1_2_7_19_1
  doi: 10.1080/19475683.2010.540258
– ident: e_1_2_7_34_1
  doi: 10.1016/0198-9715(95)00028-3
– ident: e_1_2_7_30_1
  doi: 10.1559/152304010792194976
– ident: e_1_2_7_4_1
  doi: 10.1080/00045608.2011.627054
– ident: e_1_2_7_13_1
  doi: 10.1080/13658810500399589
– ident: e_1_2_7_21_1
  doi: 10.2747/1548-1603.45.2.131
– start-page: 55
  volume-title: Handling Geographical Information: Methodology and Potential Applications
  year: 1991
  ident: e_1_2_7_18_1
– ident: e_1_2_7_20_1
  doi: 10.1080/13658810701492225
– ident: e_1_2_7_35_1
  doi: 10.1016/S0198-9715(97)01003-X
– ident: e_1_2_7_10_1
  doi: 10.1068/a250383
– ident: e_1_2_7_32_1
– start-page: 121
  volume-title: Spatial Analysis and GIS
  year: 1994
  ident: e_1_2_7_8_1
– volume-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships
  year: 2002
  ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_25_1
  doi: 10.1080/01615440.2011.563228
SSID ssj0002713
Score 2.1108665
Snippet Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 216
Title Because Muncie's Densities Are Not Manhattan's: Using Geographical Weighting in the Expectation–Maximization Algorithm for Areal Interpolation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgean.12014
https://www.proquest.com/docview/1419364958
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1538-4632
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002713
  issn: 0016-7363
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0016-7363
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1538-4632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002713
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS90wFA_ii3uZ0214nY6MCbJBL7ZN02b4ct10Mrj3YUzmyygnae4f1FZsC-rTPoKwb-gn8Zy09boxBvOttEnaJuckv3Ny8juMbRFjSSgMaRqAJ8w481QoEy9WRiodAmhNB5yHI3l4JL4cR8cLbLc7C9PwQ9w73Egz3HxNCg66fKDkEwt538f1i8hA_VA6e-rrnDsqiJvcyIhpvBgft9ykFMYzr_r7ajSHmA-BqltpDpbZj-4bmwCTk35d6b65_oO-8bE_8Yw9bSEoHzQys8IWbL7Kltps6NOr5-xmzxqoS8uHNaXu3S75JwpzJ-pVrGX5qKj4EPIpVIgst8sP3MUd8K4FGnb-3blc6fYs5wgyOXEqm2bf__bnryFczs7aI6B8cDopLmbV9IwjgqY3YP0mGLJoIvVesKOD_W8fD702c4NnyKLxxlFmBdpySaZFgFOEQHM3jHypM1BWUkoZEYMSicx2lBYRcRgacqzIsbaBypLwJVvMi9yuMa7At8LXRFtjhbZaxVoFESBsjMwOSOixd90IpqalNafsGqdpZ95QH6euj3vs7X3Z84bM46-l3nSCkKKu0QYK5LaoSzSTULAlmpRJj713w_qPZtLP-4ORu1r_n8Kv2JPAZdygiOANtlhd1HYTcU-lXzv5vgMMP__v
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUoLOiGV1sxPF1RCVEpIyZxnJjd8BwomUUFKrvIdjzMCEgQSSRgxScg8Yd8Cfc6GQaqqlK7iyLbUex77XPt43MJ-YaKJR7T6GlSOkz3Ekd4PHQCoblQnpRK4QXnqMs7p-zozD-ruTl4F6bSh3jdcEPPsPM1OjhuSL_x8nMj02YLFjD2gUwwDoEKYqKfI_UoN6iyIwOqcQKPe7U6KRJ5RnXfr0cjkPkWqtq1Zn-6SqiaW4lCpJhcNMtCNfX9bwKO__0bM2SqRqG0XZnNLBkz6RyZrBOi9-8-kcdto2WZGxqVmL13Pae7yHRH9VWoZWg3K2gk074sAFyu51vUUg_osAUcefrL7rri60FKAWdSlFXW1dH_88NTJG8HV_UtUNq-PM9uBkX_igKIxi9A_YoPmVVkvc_kdH_vZKfj1MkbHI1BjdPzE8MgnAsTxVyYJRhEvJ7f4iqRwnDMKsMCKVjIk02hmI8yhhr3VnhPGVckofeFjKdZauYJFbJlWEuhco1hyigRKOH6EpCjrzcllw2yMRzCWNfK5phg4zIeRjjYx7Ht4wZZey17Xel5_LHU16ElxOBueIYiU5OVOURKYNscosqwQb7bcf1LM_HBXrtrnxb-pfAqmeycRMfx8WH3xyL56NoEHEgQXiLjxU1plgEGFWrFGvsLDk8EHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLWgSIMXYANEx5fRJqEhpSKJ48S8FdoO2FqhaWi8Rbbj0mqQVE0ibTzxE5D4h_wSfJ30Y2hCgrcosh3Fvtc-1z4-F6HPoFjiEgmexrlFZDeymEsDy2eSMuFyLgRccG536MkFObv0LktuDtyFKfQhxhtu4BlmvgYHV4OoO-XlV4rHNVsvYGQWzRGPBcDoa_yYqEc5fpEdWaMay3epW6qTApFnUvff9WgCMqehqllrWktFQtXUSBQCxeR3Lc9ETd4-E3B8828so8USheJ6YTbv0YyKP6D5MiF67-8Kuj9Skuepwu0csvfupbgBTHdQX9W1FO4kGW7zuMczDS730kNsqAd41AKMPP5ldl3hdT_GGmdikFWWxdH_491Dm__p35S3QHH9-ioZ9rPeDdYgGr6g6xd8yKQg662ii1bz5_GJVSZvsCQENVbXixTR4VwQCeLoWYLoiNf1bCoizhSFrDLE54wENDpggnggYyhhb4V2hXJYFLhrqBInsVpHmHFbEVuAco0iQgnmC-Z4XCNHTx5wyqvoy2gIQ1kqm0OCjetwFOFAH4emj6vo07jsoNDz-G-p3ZElhNrd4AyFxyrJUx0padumOqoMqmjfjOsLzYRfm_WOefr4msI76N15oxV-P-1820ALjsm_AfzgTVTJhrna0igoE9vG1p8AsRkDow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Because+Muncie%27s+Densities+Are+Not+Manhattan%27s%3A+Using+Geographical+Weighting+in+the+Expectation%E2%80%93Maximization+Algorithm+for+Areal+Interpolation&rft.jtitle=Geographical+analysis&rft.au=Schroeder%2C+Jonathan+P.&rft.au=Van+Riper%2C+David+C.&rft.date=2013-07-01&rft.issn=0016-7363&rft.eissn=1538-4632&rft.volume=45&rft.issue=3&rft.spage=216&rft.epage=237&rft_id=info:doi/10.1111%2Fgean.12014&rft.externalDBID=10.1111%252Fgean.12014&rft.externalDocID=GEAN12014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7363&client=summon