Because Muncie's Densities Are Not Manhattan's: Using Geographical Weighting in the Expectation–Maximization Algorithm for Areal Interpolation
Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest...
Saved in:
| Published in | Geographical analysis Vol. 45; no. 3; pp. 216 - 237 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.07.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-7363 1538-4632 |
| DOI | 10.1111/gean.12014 |
Cover
| Abstract | Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization (GWEM), which combines features of two previously used techniques, the expectation–maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting (TDW)—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM–TDW hybrid approaches and find them to improve estimates substantially.
区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。 |
|---|---|
| AbstractList | Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization (GWEM), which combines features of two previously used techniques, the expectation–maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting (TDW)—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM–TDW hybrid approaches and find them to improve estimates substantially.
区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。 Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation-maximization (GWEM), which combines features of two previously used techniques, the expectation-maximization (EM) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control-zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover (LULC) ancillary data to population counts from a nationwide sample of 1980 U.S. census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target-density weighting (TDW)-using 1970 tract densities to guide interpolation-outperforms GWEM in many cases, we also consider two GWEM-TDW hybrid approaches and find them to improve estimates substantially.Original Abstract: 区 域 插 值 可 通 过 变 ৰ 2; 一 组 源 区 感 兴 趣 变 &# 37327; 的 数 据 得 到 目 标 ࡒ 6; 域 同 一 变 量 的 分 布 &# 37319; 用 与 感 兴 趣 变 量 ి 4; 间 分 布 密 切 相 关 的 &# 36741; 助 控 制 区 来 引 导 ৻ 4; 值 是 最 常 用 的 一 种 &# 26041; 法 ,通 常 涉 及 采 用 ě 04; 区 域 数 据 估 计 每 个 & #25511; 制 区 内 感 兴 趣 变 ŵ 27; 的 密 度 值 本 文 引 入 & #20102; 地 理 加 权 最 大 期 ć 95; 算 法 (GWEM)来 进 行 密 度 0272; 计 ,综 合 了 过 去 常 ஷ 2; 的 最 大 期 望 算 法 (EM)ࡴ 4; 地 理 加 权 回 归 (GWR)两 种 6; 术 特 征 EM算 法 为 数 据 分 布 约 束 的 集 成 提 379; 框 架 ,地 理 加 权 则 允 ; 许 估 计 估 计 控 制 区 3494; 度 比 例 的 空 间 变 异 ; 以 美 国 1980年 全 国 普 查 ; 区 域 的 土 地 利 用 /土 &# 22320; 覆 被 数 据 种 群 统 5; 为 例 ,对 该 方 法 的 精 & #24230; 进 行 了 评 估 结 果 ą 74; 示 ,GWEM比 多 种 现 有 方 861; 准 确 性 更 高 采 用 目 标 密 度 加 权 法 (TDW)以 1970 4180; 束 密 度 来 进 行 插 值 ; 在 许 多 情 况 下 优 于 GWE M,融 合 GWEM-TDW两 种 方 法 可 &# 22823; 幅 改 善 估 计 结 果 Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target zones. One common practice has been to guide interpolation by using ancillary control zones that are related to the variable of interest's spatial distribution. This guidance typically involves using source zone data to estimate the density of the variable of interest within each control zone. This article introduces a novel approach to density estimation, the geographically weighted expectation–maximization ( GWEM ), which combines features of two previously used techniques, the expectation–maximization ( EM ) algorithm and geographically weighted regression. The EM algorithm provides a framework for incorporating proper constraints on data distributions, and using geographical weighting allows estimated control‐zone density ratios to vary spatially. We assess the accuracy of GWEM by applying it with land use/land cover ( LULC ) ancillary data to population counts from a nationwide sample of 1980 U . S . census tract pairs. We find that GWEM generally is more accurate in this setting than several previously studied methods. Because target‐density weighting ( TDW )—using 1970 tract densities to guide interpolation—outperforms GWEM in many cases, we also consider two GWEM – TDW hybrid approaches and find them to improve estimates substantially. 区域插值可通过变换一组源区感兴趣变量的数据得到目标区域同一变量的分布。采用与感兴趣变量空间分布密切相关的辅助控制区来引导插值是最常用的一种方法,通常涉及采用源区域数据估计每个控制区内感兴趣变量的密度值。本文引入了地理加权最大期望算法(GWEM)来进行密度估计,综合了过去常用的最大期望算法(EM)和地理加权回归(GWR)两种技术特征。EM算法为数据分布约束的集成提供框架,地理加权则允许估计估计控制区密度比例的空间变异。以美国1980年全国普查区域的土地利用/土地覆被数据种群统计为例,对该方法的精度进行了评估。结果显示,GWEM比多种现有方法准确性更高。采用目标密度加权法(TDW)以1970年束密度来进行插值在许多情况下优于GWEM,融合GWEM‐TDW两种方法可大幅改善估计结果。 |
| Author | Van Riper, David C. Schroeder, Jonathan P. |
| Author_xml | – sequence: 1 givenname: Jonathan P. surname: Schroeder fullname: Schroeder, Jonathan P. organization: University of Minnesota – sequence: 2 givenname: David C. surname: Van Riper fullname: Van Riper, David C. organization: University of Minnesota |
| BookMark | eNp9kM1KxDAQx4MouH5cfILcFKGaNGm29bbqugquXhSPJZtO20g3qUkWP04-guAb-iRut55EnMsww-83A_8ttG6sAYT2KDmiyzquQJojGhPK19CAJiyNuGDxOhoQQkU0ZIJtoi3vHwkh8ZCyAfo4BSUXHvB0YZSGfY_PwXgdNHg8coBvbMBTaWoZgjT7_gTfe20qPAFbOdnWWskGP4Cu6tCttcGhBjx-aUEFGbQ1X--fU_mi5_ptNeJRU1mnQz3HpXXdh6V_ZQK41jYrYgdtlLLxsPvTt9H9xfju7DK6vp1cnY2uI8WI4FGZFMDTOE2LGY95mvIkZiyhYlbIDERCGeNDmfFUFCSb8WSYxUwxRrgoZxBnRcq20UF_t3X2aQE-5HPtFTSNNGAXPqecZkzwLOnQwx5VznrvoMxbp-fSveaU5F3seRd7vop9CZNfsNJ9FMFJ3fyt0F551g28_nM8n4xHN73zDUY-mO0 |
| CitedBy_id | crossref_primary_10_1016_j_apgeog_2017_06_021 crossref_primary_10_1080_15230406_2023_2271379 crossref_primary_10_3390_ijgi8070302 crossref_primary_10_1080_15230406_2019_1618201 crossref_primary_10_1016_j_compenvurbsys_2016_10_001 crossref_primary_10_1080_15481603_2015_1018856 crossref_primary_10_1080_00330124_2015_1033669 crossref_primary_10_1080_15420353_2015_1036484 crossref_primary_10_1111_gean_12016 crossref_primary_10_1080_13658816_2018_1472267 crossref_primary_10_12672_ksis_2014_22_3_035 crossref_primary_10_1080_15481603_2018_1509463 crossref_primary_10_1016_j_compenvurbsys_2016_03_004 crossref_primary_10_1016_j_compenvurbsys_2016_08_006 crossref_primary_10_1038_s41597_022_01184_x crossref_primary_10_1016_j_socscimed_2025_117752 crossref_primary_10_3390_land11122301 crossref_primary_10_1016_j_apgeog_2015_01_006 crossref_primary_10_1016_j_uclim_2024_101945 crossref_primary_10_1080_13658816_2014_909045 crossref_primary_10_1111_gec3_12465 crossref_primary_10_1016_j_healthplace_2024_103411 |
| Cites_doi | 10.1559/1523040041649407 10.1111/j.2517-6161.1977.tb01600.x 10.1111/1467-9671.00022 10.1111/j.1749-8198.2009.00220.x 10.1068/a36202 10.1080/01621459.1979.10481647 10.2307/209467 10.1068/a270211 10.1016/S0198-9715(01)00013-8 10.1016/0098-3004(95)00112-3 10.1002/9780470979563.ch14 10.1007/s11113-007-9050-9 10.1016/j.compenvurbsys.2004.07.001 10.1111/j.1538-4632.2007.00706.x 10.3133/pp964 10.1080/19475683.2010.540258 10.1016/0198-9715(95)00028-3 10.1559/152304010792194976 10.1080/00045608.2011.627054 10.1080/13658810500399589 10.2747/1548-1603.45.2.131 10.1080/13658810701492225 10.1016/S0198-9715(97)01003-X 10.1068/a250383 10.1080/01615440.2011.563228 |
| ContentType | Journal Article |
| Copyright | 2013 The Ohio State University |
| Copyright_xml | – notice: 2013 The Ohio State University |
| DBID | AAYXX CITATION 7ST 7U6 C1K |
| DOI | 10.1111/gean.12014 |
| DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Environment Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1538-4632 |
| EndPage | 237 |
| ExternalDocumentID | 10_1111_gean_12014 GEAN12014 |
| Genre | article |
| GeographicLocations | USA |
| GeographicLocations_xml | – name: USA |
| GrantInformation_xml | – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development funderid: 1RO1 HD057929 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29H 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5HH 5LA 5VS 702 706 709 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A04 AABNI AAESR AAFWJ AAHQN AAIKC AAMMB AAMNL AAMNW AAMZP AAONW AAOUF AASGY AAVNP AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABECW ABEML ABJNI ABPVW ABSOO ACAHQ ACBKW ACCZN ACDWB ACGFS ACHIS ACHQT ACPOU ACSCC ACUHS ACXQS ACYXD ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADMHG ADPSH ADWTG ADXAS ADZMN AEFGJ AEGXH AEHYH AEIGN AEIMD AERNI AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFKFF AFWVQ AFZJQ AGHNM AGXDD AHBTC AI. AIDQK AIDYY AIHXW AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBIC AMBMR AMYDB ANBFE ASTYK AZBYB AZVAB BAFTC BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D D0S DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EBS EJD EMK ESX F00 F01 F5P FOMLG G-S G.N G50 GODZA H13 HGLYW HVGLF HZI HZ~ H~9 IAO ICJ IEA IOF ITC J0M K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MUA MUP MUS MVM MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OHT OIG OK1 P2P P2W P2Y P4C PAQYV Q.N Q11 QB0 R.K RC9 ROL RWL RX1 RXW SUPJJ TAE TN5 TUS UB1 UHB ULY V8K VH1 W8V W99 WBKPD WH7 WIH WII WMRSR WOHZO WQZ WSUWO WXSBR XG1 XOL YZZ ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WP AAYXX CITATION 7ST 7U6 ABUFD C1K |
| ID | FETCH-LOGICAL-c3064-f5de48288db4248845233516bda9e6513347a9486d09b457923c33046fbe29d83 |
| IEDL.DBID | DR2 |
| ISSN | 0016-7363 |
| IngestDate | Tue Oct 07 09:51:34 EDT 2025 Wed Oct 01 03:36:46 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Sun Sep 21 06:22:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3064-f5de48288db4248845233516bda9e6513347a9486d09b457923c33046fbe29d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1419364958 |
| PQPubID | 23462 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1419364958 crossref_primary_10_1111_gean_12014 crossref_citationtrail_10_1111_gean_12014 wiley_primary_10_1111_gean_12014_GEAN12014 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2013 2013-07-00 20130701 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Geographical analysis |
| PublicationYear | 2013 |
| References | 2007; 39 1993; 25 2006; 30 2010; 37 2012; 102 2011 1997; 21 2010 1976 2006 1994 1999; 3 1995; 19 2002 1991 2011; 17 1979; 74 2002; 26 2004; 31 2006; 20 1990 1995; 27 1977; 39 1936; 26 2008; 45 2011; 44 2008; 22 2009; 3 2005; 37 1989 2007; 26 1996; 22 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Langford M. (e_1_2_7_18_1) 1991 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Minnesota Population Center (e_1_2_7_23_1) 2011 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Dempster A. P. (e_1_2_7_5_1) 1977; 39 Flowerdew R. (e_1_2_7_7_1) 1989 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 Fotheringham A. S. (e_1_2_7_9_1) 2002 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Flowerdew R. (e_1_2_7_8_1) 1994 |
| References_xml | – year: 2011 – volume: 37 start-page: 127 year: 2005 end-page: 139 article-title: Street‐Weighted Interpolation Techniques for Demographic Count Estimation in Incompatible Zone Systems publication-title: Environment and Planning A – start-page: 240 year: 2006 article-title: Enhanced Historical Land‐Use and Land‐Cover Datasets of the U.S. Geological Survey – volume: 19 start-page: 287 year: 1995 end-page: 306 article-title: The Overlaid Network Algorithms for Areal Interpolation Problem publication-title: Computers, Environment, and Urban Systems – volume: 22 start-page: 459 year: 1996 end-page: 466 article-title: Implementation of Enhanced Areal Interpolation Using MapInfo publication-title: Computers and Geosciences – volume: 26 start-page: 293 year: 2002 end-page: 14 article-title: The Accuracy of Areal Interpolation Techniques: Standardizing 19th and 20th Century Census Data to Allow Long‐Term Comparisons publication-title: Computers, Environment and Urban Systems – volume: 39 start-page: 311 year: 2007 end-page: 335 article-title: Target‐Density Weighting Interpolation and Uncertainty Evaluation for Temporal Analysis of Census Data publication-title: Geographic Analysis – volume: 22 start-page: 431 year: 2008 end-page: 447 article-title: Population‐Density Estimation Using Regression and Area‐to‐Point Residual Kriging publication-title: International Journal of Geographical Information Science – volume: 26 start-page: 619 year: 2007 end-page: 633 article-title: Areal Interpolation of Population Counts Using Pre‐Classified Land Cover Data publication-title: Population Research and Policy Review – volume: 102 start-page: 763 year: 2012 end-page: 777 article-title: A Quantile Regression Approach to Areal Interpolation publication-title: Annals of the Association of American Geographers – start-page: 4 year: 1990 article-title: Land Use and Land Cover Digital Data from 1:250,000‐ and 1:100,000‐Scale Maps – start-page: 195 year: 2011 end-page: 210 – volume: 3 start-page: 727 year: 2009 end-page: 745 article-title: Dasymetric Mapping for Estimating Population in Small Areas publication-title: Geography Compass – year: 1989 article-title: Statistical Methods for Areal Interpolation: The EM Algorithm for Count Data – start-page: 55 year: 1991 end-page: 77 – volume: 25 start-page: 383 year: 1993 end-page: 397 article-title: A Framework for the Areal Interpolation of Socioeconomic Data publication-title: Environment and Planning A – volume: 74 start-page: 519 year: 1979 end-page: 535 article-title: Smooth Pycnophylactic Interpolation for Geographical Regions publication-title: Journal of the American Statistical Association – start-page: 121 year: 1994 end-page: 146 – volume: 30 start-page: 161 year: 2006 end-page: 180 article-title: Obtaining Population Estimates in Non‐Census Reporting Zones: An Evaluation of the 3‐Class Dasymetric Model publication-title: Computers, Environment and Urban Systems – volume: 21 start-page: 245 year: 1997 end-page: 258 article-title: Remodeling Census Population with Spatial Information from Landsat TM Imagery publication-title: Computers, Environment and Urban Systems – volume: 27 start-page: 211 year: 1995 end-page: 244 article-title: Modeling the Errors in Areal Interpolation between Zonal Systems by Monte Carlo Simulation publication-title: Environment and Planning A – start-page: 239 year: 1989 end-page: 248 – volume: 31 start-page: 103 year: 2004 end-page: 121 article-title: Dasymetric Estimation of Population Density and Areal Interpolation of Census Data publication-title: Cartography and Geographic Information Science – volume: 3 start-page: 285 year: 1999 end-page: 301 article-title: Singly‐ and Doubly‐Constrained Methods of Areal Interpolation for Vector‐Based GIS publication-title: Transactions in GIS – year: 2002 – volume: 37 start-page: 215 year: 2010 end-page: 228 article-title: Areal Interpolation and Dasymetric Mapping Methods Using Local Ancillary Data Sources publication-title: Cartography and Geographic Information Science – volume: 26 start-page: 103 year: 1936 end-page: 110 article-title: A Method of Mapping Densities of Population with Cape Cod as an Example publication-title: Geographical Review – volume: 20 start-page: 135 year: 2006 end-page: 152 article-title: Error‐Sensitive Historical GIS: Identifying Areal Interpolation Errors in Time‐Series Data publication-title: International Journal of Geographical Information Science – year: 1976 article-title: A Land Use and Land Cover Classification System for Use with Remote Sensor Data – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum Likelihood from Incomplete Data Via the EM Algorithm publication-title: Journal of the Royal Statistical Society B – volume: 17 start-page: 1 year: 2011 end-page: 14 article-title: Using Geographically Weighted Regression to Solve the Areal Interpolation Problem publication-title: Annals of GIS – year: 2010 article-title: Some Simplifications for the Expectation‐Maximization (EM) Algorithm: The Linear Regression Model Case – volume: 45 start-page: 131 year: 2008 end-page: 148 article-title: Population Estimation Using Geographically Weighted Regression publication-title: GIScience and Remote Sensing – volume: 44 start-page: 79 year: 2011 end-page: 85 article-title: Harmonizing Disparate Data across Time and Place publication-title: Historical Methods – ident: e_1_2_7_16_1 doi: 10.1559/1523040041649407 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_7_5_1 article-title: Maximum Likelihood from Incomplete Data Via the EM Algorithm publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_7_24_1 doi: 10.1111/1467-9671.00022 – ident: e_1_2_7_22_1 doi: 10.1111/j.1749-8198.2009.00220.x – ident: e_1_2_7_28_1 doi: 10.1068/a36202 – ident: e_1_2_7_31_1 doi: 10.1080/01621459.1979.10481647 – ident: e_1_2_7_33_1 doi: 10.2307/209467 – ident: e_1_2_7_14_1 – ident: e_1_2_7_6_1 doi: 10.1068/a270211 – ident: e_1_2_7_12_1 doi: 10.1016/S0198-9715(01)00013-8 – ident: e_1_2_7_3_1 doi: 10.1016/0098-3004(95)00112-3 – start-page: 239 volume-title: Accuracy of Spatial Databases year: 1989 ident: e_1_2_7_7_1 – ident: e_1_2_7_15_1 doi: 10.1002/9780470979563.ch14 – ident: e_1_2_7_27_1 doi: 10.1007/s11113-007-9050-9 – ident: e_1_2_7_17_1 doi: 10.1016/j.compenvurbsys.2004.07.001 – volume-title: National Historical Geographic Information System: Version 2.0 year: 2011 ident: e_1_2_7_23_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_29_1 doi: 10.1111/j.1538-4632.2007.00706.x – ident: e_1_2_7_2_1 doi: 10.3133/pp964 – ident: e_1_2_7_19_1 doi: 10.1080/19475683.2010.540258 – ident: e_1_2_7_34_1 doi: 10.1016/0198-9715(95)00028-3 – ident: e_1_2_7_30_1 doi: 10.1559/152304010792194976 – ident: e_1_2_7_4_1 doi: 10.1080/00045608.2011.627054 – ident: e_1_2_7_13_1 doi: 10.1080/13658810500399589 – ident: e_1_2_7_21_1 doi: 10.2747/1548-1603.45.2.131 – start-page: 55 volume-title: Handling Geographical Information: Methodology and Potential Applications year: 1991 ident: e_1_2_7_18_1 – ident: e_1_2_7_20_1 doi: 10.1080/13658810701492225 – ident: e_1_2_7_35_1 doi: 10.1016/S0198-9715(97)01003-X – ident: e_1_2_7_10_1 doi: 10.1068/a250383 – ident: e_1_2_7_32_1 – start-page: 121 volume-title: Spatial Analysis and GIS year: 1994 ident: e_1_2_7_8_1 – volume-title: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships year: 2002 ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_25_1 doi: 10.1080/01615440.2011.563228 |
| SSID | ssj0002713 |
| Score | 2.1108665 |
| Snippet | Areal interpolation transforms data for a variable of interest from a set of source zones to estimate the same variable's distribution over a set of target... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 216 |
| Title | Because Muncie's Densities Are Not Manhattan's: Using Geographical Weighting in the Expectation–Maximization Algorithm for Areal Interpolation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgean.12014 https://www.proquest.com/docview/1419364958 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1538-4632 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002713 issn: 0016-7363 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0016-7363 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1538-4632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002713 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS90wFA_ii3uZ0214nY6MCbJBL7ZN02b4ct10Mrj3YUzmyygnae4f1FZsC-rTPoKwb-gn8Zy09boxBvOttEnaJuckv3Ny8juMbRFjSSgMaRqAJ8w481QoEy9WRiodAmhNB5yHI3l4JL4cR8cLbLc7C9PwQ9w73Egz3HxNCg66fKDkEwt538f1i8hA_VA6e-rrnDsqiJvcyIhpvBgft9ykFMYzr_r7ajSHmA-BqltpDpbZj-4bmwCTk35d6b65_oO-8bE_8Yw9bSEoHzQys8IWbL7Kltps6NOr5-xmzxqoS8uHNaXu3S75JwpzJ-pVrGX5qKj4EPIpVIgst8sP3MUd8K4FGnb-3blc6fYs5wgyOXEqm2bf__bnryFczs7aI6B8cDopLmbV9IwjgqY3YP0mGLJoIvVesKOD_W8fD702c4NnyKLxxlFmBdpySaZFgFOEQHM3jHypM1BWUkoZEYMSicx2lBYRcRgacqzIsbaBypLwJVvMi9yuMa7At8LXRFtjhbZaxVoFESBsjMwOSOixd90IpqalNafsGqdpZ95QH6euj3vs7X3Z84bM46-l3nSCkKKu0QYK5LaoSzSTULAlmpRJj713w_qPZtLP-4ORu1r_n8Kv2JPAZdygiOANtlhd1HYTcU-lXzv5vgMMP__v |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUoLOiGV1sxPF1RCVEpIyZxnJjd8BwomUUFKrvIdjzMCEgQSSRgxScg8Yd8Cfc6GQaqqlK7iyLbUex77XPt43MJ-YaKJR7T6GlSOkz3Ekd4PHQCoblQnpRK4QXnqMs7p-zozD-ruTl4F6bSh3jdcEPPsPM1OjhuSL_x8nMj02YLFjD2gUwwDoEKYqKfI_UoN6iyIwOqcQKPe7U6KRJ5RnXfr0cjkPkWqtq1Zn-6SqiaW4lCpJhcNMtCNfX9bwKO__0bM2SqRqG0XZnNLBkz6RyZrBOi9-8-kcdto2WZGxqVmL13Pae7yHRH9VWoZWg3K2gk074sAFyu51vUUg_osAUcefrL7rri60FKAWdSlFXW1dH_88NTJG8HV_UtUNq-PM9uBkX_igKIxi9A_YoPmVVkvc_kdH_vZKfj1MkbHI1BjdPzE8MgnAsTxVyYJRhEvJ7f4iqRwnDMKsMCKVjIk02hmI8yhhr3VnhPGVckofeFjKdZauYJFbJlWEuhco1hyigRKOH6EpCjrzcllw2yMRzCWNfK5phg4zIeRjjYx7Ht4wZZey17Xel5_LHU16ElxOBueIYiU5OVOURKYNscosqwQb7bcf1LM_HBXrtrnxb-pfAqmeycRMfx8WH3xyL56NoEHEgQXiLjxU1plgEGFWrFGvsLDk8EHw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLWgSIMXYANEx5fRJqEhpSKJ48S8FdoO2FqhaWi8Rbbj0mqQVE0ibTzxE5D4h_wSfJ30Y2hCgrcosh3Fvtc-1z4-F6HPoFjiEgmexrlFZDeymEsDy2eSMuFyLgRccG536MkFObv0LktuDtyFKfQhxhtu4BlmvgYHV4OoO-XlV4rHNVsvYGQWzRGPBcDoa_yYqEc5fpEdWaMay3epW6qTApFnUvff9WgCMqehqllrWktFQtXUSBQCxeR3Lc9ETd4-E3B8828so8USheJ6YTbv0YyKP6D5MiF67-8Kuj9Skuepwu0csvfupbgBTHdQX9W1FO4kGW7zuMczDS730kNsqAd41AKMPP5ldl3hdT_GGmdikFWWxdH_491Dm__p35S3QHH9-ioZ9rPeDdYgGr6g6xd8yKQg662ii1bz5_GJVSZvsCQENVbXixTR4VwQCeLoWYLoiNf1bCoizhSFrDLE54wENDpggnggYyhhb4V2hXJYFLhrqBInsVpHmHFbEVuAco0iQgnmC-Z4XCNHTx5wyqvoy2gIQ1kqm0OCjetwFOFAH4emj6vo07jsoNDz-G-p3ZElhNrd4AyFxyrJUx0padumOqoMqmjfjOsLzYRfm_WOefr4msI76N15oxV-P-1820ALjsm_AfzgTVTJhrna0igoE9vG1p8AsRkDow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Because+Muncie%27s+Densities+Are+Not+Manhattan%27s%3A+Using+Geographical+Weighting+in+the+Expectation%E2%80%93Maximization+Algorithm+for+Areal+Interpolation&rft.jtitle=Geographical+analysis&rft.au=Schroeder%2C+Jonathan+P.&rft.au=Van+Riper%2C+David+C.&rft.date=2013-07-01&rft.issn=0016-7363&rft.eissn=1538-4632&rft.volume=45&rft.issue=3&rft.spage=216&rft.epage=237&rft_id=info:doi/10.1111%2Fgean.12014&rft.externalDBID=10.1111%252Fgean.12014&rft.externalDocID=GEAN12014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7363&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7363&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7363&client=summon |