Finding dependencies in the corporate environment using data mining

The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 431; p. 5032
Main Authors Kozlova, Anastasia, Kukartsev, Vladislav, Melnikov, Vladimir, Kovalev, Georgiy, Stashkevich, Alexander
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2023
Subjects
Online AccessGet full text
ISSN2267-1242
2555-0403
2267-1242
DOI10.1051/e3sconf/202343105032

Cover

Abstract The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of self-organising Kohonen maps was used, which allow to study the structure of the data and identify hidden patterns, as well as the method of artificial neural networks, which allow to analyse large amounts of data and find hidden relationships that may not be obvious to humans. In the course of the work, the errors of the methods were determined, several experiments with different number of factors were conducted, and the dependence between the number of factors and the magnitude of the error of the algorithms was revealed. For both methods and each experiment, conjugacy tables were obtained, which contain the classification results obtained by the methods. In addition, a correlation analysis was performed to determine the degree of association between the factors and the target variable.
AbstractList The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of self-organising Kohonen maps was used, which allow to study the structure of the data and identify hidden patterns, as well as the method of artificial neural networks, which allow to analyse large amounts of data and find hidden relationships that may not be obvious to humans. In the course of the work, the errors of the methods were determined, several experiments with different number of factors were conducted, and the dependence between the number of factors and the magnitude of the error of the algorithms was revealed. For both methods and each experiment, conjugacy tables were obtained, which contain the classification results obtained by the methods. In addition, a correlation analysis was performed to determine the degree of association between the factors and the target variable.
Author Kovalev, Georgiy
Melnikov, Vladimir
Stashkevich, Alexander
Kukartsev, Vladislav
Kozlova, Anastasia
Author_xml – sequence: 1
  givenname: Anastasia
  surname: Kozlova
  fullname: Kozlova, Anastasia
– sequence: 2
  givenname: Vladislav
  surname: Kukartsev
  fullname: Kukartsev, Vladislav
– sequence: 3
  givenname: Vladimir
  surname: Melnikov
  fullname: Melnikov, Vladimir
– sequence: 4
  givenname: Georgiy
  surname: Kovalev
  fullname: Kovalev, Georgiy
– sequence: 5
  givenname: Alexander
  surname: Stashkevich
  fullname: Stashkevich, Alexander
BookMark eNp9kUtLBDEQhIMo-PwHHgY8r5t0HjvjTRZfIHjRc-hJejTLbrImWcF_7-gqiAdPXTRVxQd1yHZjisTYqeDngmsxJVlcisMUOEglxxeXsMMOAMxsIkDB7i-9z05KWXDOBehWcXXA5tch-hCfG09rip6iC1SaEJv6Qo1LeZ0yVmoovoWc4opibTbly48Vm1WIoz5mewMuC5183yP2dH31OL-d3D_c3M0v7ydOcgOTmREI0LdSq14h96L3oHttsCUxtJ3pRiCgznk3aCkIWqERTUdAhveeC3nE7ra9PuHCrnNYYX63CYP9eqT8bDHX4JZkpQHNibRy3ig_gw6ENzj4lveARpux62zbtc7pdUOl2kXa5DjiWwmSq9lI246ui63L5VRKpsG6ULGGFGvGsLSC288N7PcG9vcGY1j9Cf8g_xv7AE4cjE4
CitedBy_id crossref_primary_10_1051_e3sconf_202345809019
crossref_primary_10_1051_bioconf_202411605003
crossref_primary_10_1051_bioconf_202414101028
crossref_primary_10_1051_e3sconf_202458301011
crossref_primary_10_1051_bioconf_202413003002
crossref_primary_10_1051_bioconf_202413003003
crossref_primary_10_1051_bioconf_202413803005
crossref_primary_10_1051_e3sconf_202345809016
crossref_primary_10_1051_e3sconf_202458302004
crossref_primary_10_1051_bioconf_202413003007
crossref_primary_10_1051_bioconf_202413005008
crossref_primary_10_1051_e3sconf_202454909018
crossref_primary_10_1051_bioconf_202413002009
crossref_primary_10_1051_e3sconf_202453105019
crossref_primary_10_1051_e3sconf_202346007002
crossref_primary_10_1051_bioconf_202413001010
crossref_primary_10_1051_bioconf_202413001011
crossref_primary_10_1051_e3sconf_202345809022
crossref_primary_10_1051_bioconf_202413002003
crossref_primary_10_1051_e3sconf_202458302012
crossref_primary_10_1051_bioconf_202413003016
crossref_primary_10_1051_bioconf_202413008007
crossref_primary_10_1051_bioconf_202413802005
crossref_primary_10_1051_bioconf_202413002007
crossref_primary_10_1051_e3sconf_202458301007
crossref_primary_10_1051_e3sconf_202454905009
crossref_primary_10_1051_e3sconf_202459203006
crossref_primary_10_1051_e3sconf_202458308004
crossref_primary_10_1051_e3sconf_202458305012
crossref_primary_10_1051_e3sconf_202454908018
crossref_primary_10_1051_bioconf_202414504029
crossref_primary_10_1051_e3sconf_202459205022
crossref_primary_10_1051_e3sconf_202459207003
crossref_primary_10_1051_bioconf_202411305009
Cites_doi 10.3390/cryst13050825
10.1007/978-3-031-21435-6_39
10.3390/mi14071288
10.3390/en16114276
10.1109/IEMTRONICS55184.2022.9795707
10.3390/en16134907
10.1088/1742-6596/1990/1/012043
10.1109/INFOTEH57020.2023.10094117.
10.1134/S2075113321040316
10.3390/fire6030095
10.3390/educsci12050324
10.1109/IEMTRONICS55184.2022. 9795721.
10.3390/app12010005
10.1109/IEMTRONICS55184.2022.9795842
10.1088/1755-1315/981/2/022064
10.1134/S1995421221020258
10.1088/1742-6596/1990/1/012078
10.3390/app13084671
ContentType Journal Article
Conference Proceeding
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
KR7
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.1051/e3sconf/202343105032
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
Proquest SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database (subscription)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2267-1242
ExternalDocumentID oai_doaj_org_article_36250ee54cd64d72921d6afd80b2a656
10_1051_e3sconf_202343105032
Genre Conference Proceeding
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
RIG
7ST
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
H8D
KR7
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c3062-761a22b8354b4a0d1bd25b56a8e1f89694042e9cdcf531e2815aa69e2e60bd013
IEDL.DBID DOA
ISSN 2267-1242
2555-0403
IngestDate Wed Aug 27 01:28:28 EDT 2025
Thu Jul 17 02:03:22 EDT 2025
Tue Jul 01 03:14:28 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3062-761a22b8354b4a0d1bd25b56a8e1f89694042e9cdcf531e2815aa69e2e60bd013
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://doaj.org/article/36250ee54cd64d72921d6afd80b2a656
PQID 3230477618
PQPubID 2040555
ParticipantIDs doaj_primary_oai_doaj_org_article_36250ee54cd64d72921d6afd80b2a656
proquest_journals_3230477618
crossref_citationtrail_10_1051_e3sconf_202343105032
crossref_primary_10_1051_e3sconf_202343105032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle E3S web of conferences
PublicationYear 2023
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Sokolov (R9) 2021; 1990
Rassokhin (R4) 2022; 109
Nelyub (R10) 2021; 1990
R12
Nelyub (R17) 2021; 14
Efremenkov (R20) 2021; 12
R14
Malozyomov (R2) 2023; 16
Shutaleva (R11) 2022; 12
R13
Strateichuk (R5) 2023; 13
R15
R18
Malozyomov (R3) 2023; 14
Malozyomov (R8) 2023; 16
Bosikov (R7) 2023; 6
Rassokhin (R19) 2022; 110
Nelyub (R16) 2021; 12
Gutarevich (R6) 2023; 13
R1
References_xml – volume: 13
  start-page: 825
  issue: 5
  year: 2023
  ident: R5
  publication-title: Crystals,
  doi: 10.3390/cryst13050825
– ident: R18
  doi: 10.1007/978-3-031-21435-6_39
– volume: 14
  start-page: 1288
  issue: 7
  year: 2023
  ident: R3
  publication-title: Micromachines
  doi: 10.3390/mi14071288
– volume: 110
  start-page: 11015
  issue: 2
  year: 2022
  ident: R19
  publication-title: Magazine of Civil Engineering,
– volume: 16
  start-page: 4276
  issue: 11
  year: 2023
  ident: R8
  publication-title: Energies,
  doi: 10.3390/en16114276
– ident: R1
  doi: 10.1109/IEMTRONICS55184.2022.9795707
– volume: 16
  start-page: 4907
  issue: 13
  year: 2023
  ident: R2
  publication-title: Energies,
  doi: 10.3390/en16134907
– volume: 1990
  start-page: 012043
  issue: 1
  year: 2021
  ident: R9
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/1990/1/012043
– ident: R13
  doi: 10.1109/INFOTEH57020.2023.10094117.
– volume: 12
  start-page: 1037
  issue: 4
  year: 2021
  ident: R16
  publication-title: Inorganic Materials: Applied Research,
  doi: 10.1134/S2075113321040316
– volume: 6
  start-page: 95
  issue: 3
  year: 2023
  ident: R7
  publication-title: Fire,
  doi: 10.3390/fire6030095
– volume: 12
  start-page: 324
  issue: 5
  year: 2022
  ident: R11
  publication-title: Education Sciences,
  doi: 10.3390/educsci12050324
– volume: 109
  start-page: 10913
  issue: 1
  year: 2022
  ident: R4
  publication-title: Magazine of Civil Engineering,
– ident: R15
  doi: 10.1109/IEMTRONICS55184.2022. 9795721.
– volume: 12
  start-page: 5
  issue: 1
  year: 2021
  ident: R20
  publication-title: Applied Sciences,
  doi: 10.3390/app12010005
– ident: R14
  doi: 10.1109/IEMTRONICS55184.2022.9795842
– ident: R12
  doi: 10.1088/1755-1315/981/2/022064
– volume: 14
  start-page: 260
  year: 2021
  ident: R17
  publication-title: Polymer Science, Series D,
  doi: 10.1134/S1995421221020258
– volume: 1990
  start-page: 012078
  issue: 1
  year: 2021
  ident: R10
  publication-title: Journal of Physics Conference Series
  doi: 10.1088/1742-6596/1990/1/012078
– volume: 13
  start-page: 4671
  issue: 8
  year: 2023
  ident: R6
  publication-title: Applied Sciences,
  doi: 10.3390/app13084671
SSID ssj0001258404
Score 2.4220388
Snippet The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5032
SubjectTerms Artificial neural networks
Correlation analysis
Data mining
Neural networks
Work environment
Working conditions
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LawIxEA5WL731odTWlhx6Xdxkk-zuoRQUpRQqUip4W_KyCFata_9_JzGrlkJ73WQhTOY9mfkQuk-l0DxhCWg_wyOmUxbJWKvIpAK8bZsQ4RP6LyPxNGHPUz6toVHVC-OeVVY60Stqs9IuR95NfIEIgu7scf0ZOdQoV12tIDRkgFYwD37E2AlqgErOgO8bvcFo_HqUdQGD6zEFwZXmEXBwUvXTcdK1SQlB6MwlBOD4xI1KoT_slR_r_0tre1M0PEPNQ5MeHu_Nzzmq2eUFag0OjWtygYPklpeoP5z7_hVcod7CSonnSwwOINZhnLHFR31v2D2Jh_1yK_GHh5Fooslw8NZ_igKAQqQhEgDPWRBJqXK5HcVkbIgylCsuZGbJLMtFDqSgNtdGz0AULc0Il1LklloRKwPOYQvVl6ulvULY5mmsRZbCxRomOJVaUeOiMWl0zGTaRklFpkKH6eIO5GJR-Co3J0UgbnFM3DaK9n-td9M1_tnfczew3-tmY_sPq817EUStAJPMY2s500YwA8EDJUbImcliRSW4r23Uqe6vCAJbFgf2uv57-QaduhPtsjAdVN9uvuwt-CVbdReY7RvBkd69
  priority: 102
  providerName: ProQuest
Title Finding dependencies in the corporate environment using data mining
URI https://www.proquest.com/docview/3230477618
https://doaj.org/article/36250ee54cd64d72921d6afd80b2a656
Volume 431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCyIV0WhVB5Yo9qO7SQjrZoWJCqEqNQt8itSJSiIlJXfztlJSxFDF5YMiaM45_P5u7PvO4RuEiWNiHkM1s-KiJuER4oYHdlEAtp2MZUhoP8wlZMZv5-L-VapL38mrKYHrgXXBwMriHOCGyu5BSjIqJWqtCnRTAEY8daXZGTLmaqjK7CwEr7OlRO07-IKHMzSO_vQNeppUNivtShQ9v-xyGGZyY_RUYMP8W3drxO055anqD36SUeDh818rM7QMF-ErBS8rmULTyq8WGKAddg0JMUOb2WzYX_QHdqrlcKvoTjEOZrlo-fhJGrKIkQG8D3gYUkVY9pHbDRXxFJtmdBCqtTRMs1kBj_OXGasKWGCOZZSoZTMHHOSaAuQr41ay7elu0DYZQkxMk1guCyXgimjmfU-lrKGcJV0ULwWUGEaznBfuuKlCHvXghaNWIttsXZQtHnrvebM2NF-4GW_aesZr8MN0IOi0YNilx50UHc9ckUzDasiDruKILD08j--cYUOfb_rCEwXtVYfn-4aMMlK99B-mo976GAwmj4-9YIywnV89_UNY3nf3A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BOJRbaUGkhdaH9rhi7bW9uwdUCZooFIhQBRI3468gJEgoG4T65_htjI03CUJqT1zX3tVqPJ55M_bMA_hWamlFwQu0fk5k3JY807k1mSslom1fUBkT-sdDOTjjv87F-RI8trUw4VplaxOjoXYTG3LkO0U8IMKgu_px-ycLrFHhdLWl0NCJWsHtxhZjqbDj0P99wBCu2T34iev9nbF-73R_kCWWgcwiXEZ4KalmzIQEiOE6d9Q4JoyQuvJ0VNWy5qjXvrbOjlBfPauo0FrWnnmZG4cICr-7DCs8VLh2YGWvNzz5vZDlQQcfOQwRuosMd0zR1u8JuuOLBoPeUUhAoLhoaM3CXvjHSCPwyktE19d_D-vzokByMnN3a7Dkxx9gozcvlNPXJFmK5iPs969ivQxpWXZxpCFXY4KAk9jUPtmThTo7Eq7g43w91eQm0lasw9mbiHIDOuPJ2G8C8XWZW1mVqEiOS8G0NcyF6E87m3NddqFoxaRs6mYeSDWuVTxVF1Ql4apF4XYhm711-9zN4z_z98IKzOaGXtzxweTuUqWtrRACiNx7wa2T3GGwwqiTeuSq3DCNcLkLW-36qWQgGjVX50__Hv4K7wanx0fq6GB4-BlWw989Z4C2oDO9u_fbiImm5ktSPAIXb63rTx1KGnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Finding+dependencies+in+the+corporate+environment+using+data+mining&rft.au=Kozlova%2C+Anastasia&rft.au=Kukartsev%2C+Vladislav&rft.au=Melnikov%2C+Vladimir&rft.au=Kovalev%2C+Georgiy&rft.date=2023-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=431&rft_id=info:doi/10.1051%2Fe3sconf%2F202343105032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon