Finding dependencies in the corporate environment using data mining
The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of...
Saved in:
Published in | E3S web of conferences Vol. 431; p. 5032 |
---|---|
Main Authors | , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2267-1242 2555-0403 2267-1242 |
DOI | 10.1051/e3sconf/202343105032 |
Cover
Abstract | The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of self-organising Kohonen maps was used, which allow to study the structure of the data and identify hidden patterns, as well as the method of artificial neural networks, which allow to analyse large amounts of data and find hidden relationships that may not be obvious to humans. In the course of the work, the errors of the methods were determined, several experiments with different number of factors were conducted, and the dependence between the number of factors and the magnitude of the error of the algorithms was revealed. For both methods and each experiment, conjugacy tables were obtained, which contain the classification results obtained by the methods. In addition, a correlation analysis was performed to determine the degree of association between the factors and the target variable. |
---|---|
AbstractList | The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A dataset containing 1470 data rows with 14 attributes belonging to the company's employees was selected for the analysis. The method of self-organising Kohonen maps was used, which allow to study the structure of the data and identify hidden patterns, as well as the method of artificial neural networks, which allow to analyse large amounts of data and find hidden relationships that may not be obvious to humans. In the course of the work, the errors of the methods were determined, several experiments with different number of factors were conducted, and the dependence between the number of factors and the magnitude of the error of the algorithms was revealed. For both methods and each experiment, conjugacy tables were obtained, which contain the classification results obtained by the methods. In addition, a correlation analysis was performed to determine the degree of association between the factors and the target variable. |
Author | Kovalev, Georgiy Melnikov, Vladimir Stashkevich, Alexander Kukartsev, Vladislav Kozlova, Anastasia |
Author_xml | – sequence: 1 givenname: Anastasia surname: Kozlova fullname: Kozlova, Anastasia – sequence: 2 givenname: Vladislav surname: Kukartsev fullname: Kukartsev, Vladislav – sequence: 3 givenname: Vladimir surname: Melnikov fullname: Melnikov, Vladimir – sequence: 4 givenname: Georgiy surname: Kovalev fullname: Kovalev, Georgiy – sequence: 5 givenname: Alexander surname: Stashkevich fullname: Stashkevich, Alexander |
BookMark | eNp9kUtLBDEQhIMo-PwHHgY8r5t0HjvjTRZfIHjRc-hJejTLbrImWcF_7-gqiAdPXTRVxQd1yHZjisTYqeDngmsxJVlcisMUOEglxxeXsMMOAMxsIkDB7i-9z05KWXDOBehWcXXA5tch-hCfG09rip6iC1SaEJv6Qo1LeZ0yVmoovoWc4opibTbly48Vm1WIoz5mewMuC5183yP2dH31OL-d3D_c3M0v7ydOcgOTmREI0LdSq14h96L3oHttsCUxtJ3pRiCgznk3aCkIWqERTUdAhveeC3nE7ra9PuHCrnNYYX63CYP9eqT8bDHX4JZkpQHNibRy3ig_gw6ENzj4lveARpux62zbtc7pdUOl2kXa5DjiWwmSq9lI246ui63L5VRKpsG6ULGGFGvGsLSC288N7PcG9vcGY1j9Cf8g_xv7AE4cjE4 |
CitedBy_id | crossref_primary_10_1051_e3sconf_202345809019 crossref_primary_10_1051_bioconf_202411605003 crossref_primary_10_1051_bioconf_202414101028 crossref_primary_10_1051_e3sconf_202458301011 crossref_primary_10_1051_bioconf_202413003002 crossref_primary_10_1051_bioconf_202413003003 crossref_primary_10_1051_bioconf_202413803005 crossref_primary_10_1051_e3sconf_202345809016 crossref_primary_10_1051_e3sconf_202458302004 crossref_primary_10_1051_bioconf_202413003007 crossref_primary_10_1051_bioconf_202413005008 crossref_primary_10_1051_e3sconf_202454909018 crossref_primary_10_1051_bioconf_202413002009 crossref_primary_10_1051_e3sconf_202453105019 crossref_primary_10_1051_e3sconf_202346007002 crossref_primary_10_1051_bioconf_202413001010 crossref_primary_10_1051_bioconf_202413001011 crossref_primary_10_1051_e3sconf_202345809022 crossref_primary_10_1051_bioconf_202413002003 crossref_primary_10_1051_e3sconf_202458302012 crossref_primary_10_1051_bioconf_202413003016 crossref_primary_10_1051_bioconf_202413008007 crossref_primary_10_1051_bioconf_202413802005 crossref_primary_10_1051_bioconf_202413002007 crossref_primary_10_1051_e3sconf_202458301007 crossref_primary_10_1051_e3sconf_202454905009 crossref_primary_10_1051_e3sconf_202459203006 crossref_primary_10_1051_e3sconf_202458308004 crossref_primary_10_1051_e3sconf_202458305012 crossref_primary_10_1051_e3sconf_202454908018 crossref_primary_10_1051_bioconf_202414504029 crossref_primary_10_1051_e3sconf_202459205022 crossref_primary_10_1051_e3sconf_202459207003 crossref_primary_10_1051_bioconf_202411305009 |
Cites_doi | 10.3390/cryst13050825 10.1007/978-3-031-21435-6_39 10.3390/mi14071288 10.3390/en16114276 10.1109/IEMTRONICS55184.2022.9795707 10.3390/en16134907 10.1088/1742-6596/1990/1/012043 10.1109/INFOTEH57020.2023.10094117. 10.1134/S2075113321040316 10.3390/fire6030095 10.3390/educsci12050324 10.1109/IEMTRONICS55184.2022. 9795721. 10.3390/app12010005 10.1109/IEMTRONICS55184.2022.9795842 10.1088/1755-1315/981/2/022064 10.1134/S1995421221020258 10.1088/1742-6596/1990/1/012078 10.3390/app13084671 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ H8D HCIFZ KR7 L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.1051/e3sconf/202343105032 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni Edition) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Aerospace Database Proquest SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database (subscription) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2267-1242 |
ExternalDocumentID | oai_doaj_org_article_36250ee54cd64d72921d6afd80b2a656 10_1051_e3sconf_202343105032 |
Genre | Conference Proceeding |
GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY RIG 7ST 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ H8D KR7 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c3062-761a22b8354b4a0d1bd25b56a8e1f89694042e9cdcf531e2815aa69e2e60bd013 |
IEDL.DBID | DOA |
ISSN | 2267-1242 2555-0403 |
IngestDate | Wed Aug 27 01:28:28 EDT 2025 Thu Jul 17 02:03:22 EDT 2025 Tue Jul 01 03:14:28 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3062-761a22b8354b4a0d1bd25b56a8e1f89694042e9cdcf531e2815aa69e2e60bd013 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
OpenAccessLink | https://doaj.org/article/36250ee54cd64d72921d6afd80b2a656 |
PQID | 3230477618 |
PQPubID | 2040555 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36250ee54cd64d72921d6afd80b2a656 proquest_journals_3230477618 crossref_citationtrail_10_1051_e3sconf_202343105032 crossref_primary_10_1051_e3sconf_202343105032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | E3S web of conferences |
PublicationYear | 2023 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Sokolov (R9) 2021; 1990 Rassokhin (R4) 2022; 109 Nelyub (R10) 2021; 1990 R12 Nelyub (R17) 2021; 14 Efremenkov (R20) 2021; 12 R14 Malozyomov (R2) 2023; 16 Shutaleva (R11) 2022; 12 R13 Strateichuk (R5) 2023; 13 R15 R18 Malozyomov (R3) 2023; 14 Malozyomov (R8) 2023; 16 Bosikov (R7) 2023; 6 Rassokhin (R19) 2022; 110 Nelyub (R16) 2021; 12 Gutarevich (R6) 2023; 13 R1 |
References_xml | – volume: 13 start-page: 825 issue: 5 year: 2023 ident: R5 publication-title: Crystals, doi: 10.3390/cryst13050825 – ident: R18 doi: 10.1007/978-3-031-21435-6_39 – volume: 14 start-page: 1288 issue: 7 year: 2023 ident: R3 publication-title: Micromachines doi: 10.3390/mi14071288 – volume: 110 start-page: 11015 issue: 2 year: 2022 ident: R19 publication-title: Magazine of Civil Engineering, – volume: 16 start-page: 4276 issue: 11 year: 2023 ident: R8 publication-title: Energies, doi: 10.3390/en16114276 – ident: R1 doi: 10.1109/IEMTRONICS55184.2022.9795707 – volume: 16 start-page: 4907 issue: 13 year: 2023 ident: R2 publication-title: Energies, doi: 10.3390/en16134907 – volume: 1990 start-page: 012043 issue: 1 year: 2021 ident: R9 publication-title: Journal of Physics Conference Series doi: 10.1088/1742-6596/1990/1/012043 – ident: R13 doi: 10.1109/INFOTEH57020.2023.10094117. – volume: 12 start-page: 1037 issue: 4 year: 2021 ident: R16 publication-title: Inorganic Materials: Applied Research, doi: 10.1134/S2075113321040316 – volume: 6 start-page: 95 issue: 3 year: 2023 ident: R7 publication-title: Fire, doi: 10.3390/fire6030095 – volume: 12 start-page: 324 issue: 5 year: 2022 ident: R11 publication-title: Education Sciences, doi: 10.3390/educsci12050324 – volume: 109 start-page: 10913 issue: 1 year: 2022 ident: R4 publication-title: Magazine of Civil Engineering, – ident: R15 doi: 10.1109/IEMTRONICS55184.2022. 9795721. – volume: 12 start-page: 5 issue: 1 year: 2021 ident: R20 publication-title: Applied Sciences, doi: 10.3390/app12010005 – ident: R14 doi: 10.1109/IEMTRONICS55184.2022.9795842 – ident: R12 doi: 10.1088/1755-1315/981/2/022064 – volume: 14 start-page: 260 year: 2021 ident: R17 publication-title: Polymer Science, Series D, doi: 10.1134/S1995421221020258 – volume: 1990 start-page: 012078 issue: 1 year: 2021 ident: R10 publication-title: Journal of Physics Conference Series doi: 10.1088/1742-6596/1990/1/012078 – volume: 13 start-page: 4671 issue: 8 year: 2023 ident: R6 publication-title: Applied Sciences, doi: 10.3390/app13084671 |
SSID | ssj0001258404 |
Score | 2.4220388 |
Snippet | The article analyses the influence of factors of the work environment, as well as the non-work environment, on the employee's departure from the company. A... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5032 |
SubjectTerms | Artificial neural networks Correlation analysis Data mining Neural networks Work environment Working conditions |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LawIxEA5WL731odTWlhx6Xdxkk-zuoRQUpRQqUip4W_KyCFata_9_JzGrlkJ73WQhTOY9mfkQuk-l0DxhCWg_wyOmUxbJWKvIpAK8bZsQ4RP6LyPxNGHPUz6toVHVC-OeVVY60Stqs9IuR95NfIEIgu7scf0ZOdQoV12tIDRkgFYwD37E2AlqgErOgO8bvcFo_HqUdQGD6zEFwZXmEXBwUvXTcdK1SQlB6MwlBOD4xI1KoT_slR_r_0tre1M0PEPNQ5MeHu_Nzzmq2eUFag0OjWtygYPklpeoP5z7_hVcod7CSonnSwwOINZhnLHFR31v2D2Jh_1yK_GHh5Fooslw8NZ_igKAQqQhEgDPWRBJqXK5HcVkbIgylCsuZGbJLMtFDqSgNtdGz0AULc0Il1LklloRKwPOYQvVl6ulvULY5mmsRZbCxRomOJVaUeOiMWl0zGTaRklFpkKH6eIO5GJR-Co3J0UgbnFM3DaK9n-td9M1_tnfczew3-tmY_sPq817EUStAJPMY2s500YwA8EDJUbImcliRSW4r23Uqe6vCAJbFgf2uv57-QaduhPtsjAdVN9uvuwt-CVbdReY7RvBkd69 priority: 102 providerName: ProQuest |
Title | Finding dependencies in the corporate environment using data mining |
URI | https://www.proquest.com/docview/3230477618 https://doaj.org/article/36250ee54cd64d72921d6afd80b2a656 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCyIV0WhVB5Yo9qO7SQjrZoWJCqEqNQt8itSJSiIlJXfztlJSxFDF5YMiaM45_P5u7PvO4RuEiWNiHkM1s-KiJuER4oYHdlEAtp2MZUhoP8wlZMZv5-L-VapL38mrKYHrgXXBwMriHOCGyu5BSjIqJWqtCnRTAEY8daXZGTLmaqjK7CwEr7OlRO07-IKHMzSO_vQNeppUNivtShQ9v-xyGGZyY_RUYMP8W3drxO055anqD36SUeDh818rM7QMF-ErBS8rmULTyq8WGKAddg0JMUOb2WzYX_QHdqrlcKvoTjEOZrlo-fhJGrKIkQG8D3gYUkVY9pHbDRXxFJtmdBCqtTRMs1kBj_OXGasKWGCOZZSoZTMHHOSaAuQr41ay7elu0DYZQkxMk1guCyXgimjmfU-lrKGcJV0ULwWUGEaznBfuuKlCHvXghaNWIttsXZQtHnrvebM2NF-4GW_aesZr8MN0IOi0YNilx50UHc9ckUzDasiDruKILD08j--cYUOfb_rCEwXtVYfn-4aMMlK99B-mo976GAwmj4-9YIywnV89_UNY3nf3A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1BOJRbaUGkhdaH9rhi7bW9uwdUCZooFIhQBRI3468gJEgoG4T65_htjI03CUJqT1zX3tVqPJ55M_bMA_hWamlFwQu0fk5k3JY807k1mSslom1fUBkT-sdDOTjjv87F-RI8trUw4VplaxOjoXYTG3LkO0U8IMKgu_px-ycLrFHhdLWl0NCJWsHtxhZjqbDj0P99wBCu2T34iev9nbF-73R_kCWWgcwiXEZ4KalmzIQEiOE6d9Q4JoyQuvJ0VNWy5qjXvrbOjlBfPauo0FrWnnmZG4cICr-7DCs8VLh2YGWvNzz5vZDlQQcfOQwRuosMd0zR1u8JuuOLBoPeUUhAoLhoaM3CXvjHSCPwyktE19d_D-vzokByMnN3a7Dkxx9gozcvlNPXJFmK5iPs969ivQxpWXZxpCFXY4KAk9jUPtmThTo7Eq7g43w91eQm0lasw9mbiHIDOuPJ2G8C8XWZW1mVqEiOS8G0NcyF6E87m3NddqFoxaRs6mYeSDWuVTxVF1Ql4apF4XYhm711-9zN4z_z98IKzOaGXtzxweTuUqWtrRACiNx7wa2T3GGwwqiTeuSq3DCNcLkLW-36qWQgGjVX50__Hv4K7wanx0fq6GB4-BlWw989Z4C2oDO9u_fbiImm5ktSPAIXb63rTx1KGnM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Finding+dependencies+in+the+corporate+environment+using+data+mining&rft.au=Kozlova%2C+Anastasia&rft.au=Kukartsev%2C+Vladislav&rft.au=Melnikov%2C+Vladimir&rft.au=Kovalev%2C+Georgiy&rft.date=2023-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=431&rft_id=info:doi/10.1051%2Fe3sconf%2F202343105032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |