Subtype-selective effect and molecular regulation of celastrol and triptolide at human nicotinic acetylcholine receptors
Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known t...
Saved in:
Published in | Chemico-biological interactions Vol. 408; p. 111412 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
25.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2797 1872-7786 1872-7786 |
DOI | 10.1016/j.cbi.2025.111412 |
Cover
Abstract | Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.
[Display omitted]
•Celastrol and triptolide inhibit nicotinic acetylcholine receptor in a subtype-specific manner.•This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive.•Triptolide interacted with α3 (Y151) or β4 (N111) subunits. |
---|---|
AbstractList | Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.
[Display omitted]
•Celastrol and triptolide inhibit nicotinic acetylcholine receptor in a subtype-specific manner.•This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive.•Triptolide interacted with α3 (Y151) or β4 (N111) subunits. Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases. Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases. |
ArticleNumber | 111412 |
Author | Lee, Mee-Hyun Lee, Gihyun Moon, Myungmi Yeom, Hye Duck Yun, Jeongyeon Lee, Junho H. Yang, Jaehui Pyeon, Minsu |
Author_xml | – sequence: 1 givenname: Myungmi surname: Moon fullname: Moon, Myungmi organization: Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea – sequence: 2 givenname: Minsu surname: Pyeon fullname: Pyeon, Minsu organization: Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea – sequence: 3 givenname: Jaehui surname: Yang fullname: Yang, Jaehui organization: Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea – sequence: 4 givenname: Jeongyeon surname: Yun fullname: Yun, Jeongyeon organization: Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea – sequence: 5 givenname: Hye Duck surname: Yeom fullname: Yeom, Hye Duck organization: GoPath Laboratories, Buffalo Grove, IL, 60089, USA – sequence: 6 givenname: Mee-Hyun surname: Lee fullname: Lee, Mee-Hyun organization: Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea – sequence: 7 givenname: Gihyun surname: Lee fullname: Lee, Gihyun email: glee@khu.ac.kr organization: Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea – sequence: 8 givenname: Junho H. orcidid: 0000-0003-0913-8578 surname: Lee fullname: Lee, Junho H. email: leejunho@chonnam.ac.kr organization: Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39914504$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PxCAQholZo-vHD_BiOHrpCrS0JZ7Mxq9kEw_qmVA6VTYtrEA37r-XdVePXhiYPO8wM-8JmlhnAaELSmaU0PJ6OdONmTHC-IxSWlB2gKa0rlhWVXU5QVNCiMhYJapjdBLCMj0JK8gROs6FoAUnxRR9vYxN3KwgC9CDjmYNGLou3bCyLR5cSo698tjDe4rROItdhzX0KkTv-h8qerOKrjctYBXxxzgoi63RLpp0YqUhbnr9kQALqY6GBPtwhg471Qc438dT9HZ_9zp_zBbPD0_z20Wmc8JjpngLneCN1io1LUoQddlyTZhSrMyBCtLUrGUKRFGWmjFeC82a9EkDOWeszk_R1a7uyrvPEUKUgwmp_15ZcGOQOS2LXHAmtujlHh2bAVq58mZQfiN_t5UAugO0dyF46P4QSuTWEbmUyRG5dUTuHEmam50G0pBrA14GbcBqaE3aRZStM_-ovwFaPZVS |
Cites_doi | 10.1007/s13596-024-00768-9 10.1016/j.jpha.2022.12.002 10.1098/rstb.2017.0174 10.1016/j.biopha.2023.114705 10.3389/fmed.2017.00069 10.3181/0712-MR-355 10.1016/j.bcp.2024.116263 10.1111/jnc.14966 10.1186/s13020-021-00525-z 10.1038/nrn1298 10.3389/fphar.2022.1024955 10.3389/fphar.2022.846746 10.1523/JNEUROSCI.22-20-08785.2002 10.3390/molecules26154700 10.1016/bs.irn.2015.07.001 10.7150/thno.57745 10.1038/nrd2927 10.1038/aps.2009.37 10.1007/s10254-003-0005-1 10.1016/j.bcp.2009.05.003 10.1146/annurev.pharmtox.47.120505.105214 10.1016/0092-8674(87)90705-7 10.1016/j.bcp.2009.05.024 10.1146/annurev.ph.57.030195.002513 10.1152/physrev.00015.2008 10.1002/cne.902840212 10.1111/cns.12039 10.1007/s11064-010-0185-4 10.1016/j.pharmthera.2012.08.012 10.1039/c2np00088a 10.1016/j.bcp.2017.12.008 10.1016/j.neuron.2019.07.030 10.1085/jgp.111.2.257 10.1046/j.1365-2982.2002.00363.x 10.14336/AD.2021.1115 10.1016/j.tips.2006.07.004 10.3389/fphar.2018.00104 10.2741/2695 10.1074/jbc.M109.051532 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cbi.2025.111412 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1872-7786 |
ExternalDocumentID | 39914504 10_1016_j_cbi_2025_111412 S0009279725000420 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSJ SSP SSZ T5K WH7 ~G- .GJ 3O- 53G AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGCQF AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ H~9 M34 R2- SPT VH1 WUQ ZGI ZXP AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c305t-a5def95bcca39996e986d5c02aa263e190b82d2ae9466c22589c2becebe352283 |
IEDL.DBID | AIKHN |
ISSN | 0009-2797 1872-7786 |
IngestDate | Sat Sep 27 19:11:07 EDT 2025 Mon Jul 21 05:31:11 EDT 2025 Mon Sep 08 01:33:25 EDT 2025 Sat Mar 01 15:45:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Celastrol Triptolide Nicotinic acetylcholine receptors Subtype-specific effect |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-a5def95bcca39996e986d5c02aa263e190b82d2ae9466c22589c2becebe352283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0913-8578 |
PMID | 39914504 |
PQID | 3164395298 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3164395298 pubmed_primary_39914504 crossref_primary_10_1016_j_cbi_2025_111412 elsevier_sciencedirect_doi_10_1016_j_cbi_2025_111412 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-25 |
PublicationDateYYYYMMDD | 2025-02-25 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Chemico-biological interactions |
PublicationTitleAlternate | Chem Biol Interact |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Song, He, Dai (bib21) 2023; 162 Hong, Cao, Liu, Liu, Chen, Zeng, Qin, Wang, Tao (bib26) 2023; 13 Goldman, Deneris, Luyten, Kochhar, Patrick, Heinemann (bib33) 1987; 48 Changeux (bib2) 2018; 373 Hogg, Raggenbass, Bertrand (bib10) 2003; 147 Cheng, Zhao, Zheng (bib24) 2021; 16 Wada, Wada, Boulter, Deneris, Heinemann, Patrick, Swanson (bib36) 1989; 284 Harkins, Fox (bib40) 1998; 111 Gao, Zhang, Liu, Wu, Huang, Gao (bib30) 2021; 11 Dani, Bertrand (bib3) 2007; 47 Dani (bib6) 2015; 124 Hone, Rueda-Ruzafa, Gordon, Gajewiak, Christensen, Dyhring, Albillos, McIntosh (bib41) 2020; 154 Picciotto, Zoli (bib7) 2008; 13 De Biasi, Salas (bib11) 2008; 233 Gotti, Zoli, Clementi (bib4) 2006; 27 Laviolette, van der Kooy (bib5) 2004; 5 Cui, Jiang, Feng (bib20) 2022; 13 Liu, Zhang, Luo, Gu, Shen, Tang, Zhang, Lyu, Shi, Yang, Wang (bib28) 2022; 13 Gotti, Clementi, Fornari, Gaimarri, Guiducci, Manfredi, Moretti, Pedrazzi, Pucci, Zoli (bib39) 2009; 78 Bertrand, Terry (bib42) 2018; 151 Quik, Huang, Parameswaran, Bordia, Campos, Perez (bib12) 2009; 78 T. Ali, R. Bashir, I. Jan, K.I. Andrabi, G.N. Bader, Unravelling therapeutic potential and nano formulation approaches of farnesol, a bioactive sesquiterpene, Adv. Tradition. Med. (2024). in press. Yang, Tang, Ke, Dai, Shi (bib32) 2022; 23 Zheng, Zhang, Wang (bib15) 2013; 19 Schiavone, Morgese, Tucci, Trabace (bib29) 2021; 26 Gotti, Clementi, Fornari, Gaimarri, Guiducci, Manfredi, Moretti, Pedrazzi, Pucci, Zoli (bib34) 2009; 78 Meng, Zhu, Song, Wang, Huang, Li, Ma, Ma, Qin, Sun, Ma (bib31) 2014; 26 McGehee, Role (bib38) 1995; 57 Taly, Corringer, Guedin, Lestage, Changeux (bib8) 2009; 8 Zoli, Moretti, Zanardi, McIntosh, Clementi, Gotti (bib13) 2002; 22 Choi, Sapkota, Kim, Lee, Choi, Kim (bib14) 2010; 35 Albuquerque, Pereira, Alkondon, Rogers (bib1) 2009; 89 Gharpure, Teng, Zhuang, Noviello, Walsh, Cabuco, Howard, Zaveri, Lindahl, Hibbs (bib22) 2019; 104 Bencherif (bib9) 2009; 30 Cheng, Zhao, Zheng (bib19) 2021; 16 Hurst, Rollema, Bertrand (bib37) 2013; 137 Zhou, Yang, Ding, Li, Miao (bib16) 2012; 29 Zhang, Li, Yu, Zou, Jiang, Sun (bib27) 2009; 284 Cascão, Fonseca, Moita (bib17) 2017; 4 Chen, Dai, Zhao, Lin, Wang, Wang (bib18) 2018; 9 Tong, Qiao, Yang, Liu, Cao, Yang, Wei, Yang (bib25) 2022; 13 Papke (bib35) 2024; 225 Galligan (bib43) 2002; 14 Galligan (10.1016/j.cbi.2025.111412_bib43) 2002; 14 Tong (10.1016/j.cbi.2025.111412_bib25) 2022; 13 Taly (10.1016/j.cbi.2025.111412_bib8) 2009; 8 Hong (10.1016/j.cbi.2025.111412_bib26) 2023; 13 Wada (10.1016/j.cbi.2025.111412_bib36) 1989; 284 Cascão (10.1016/j.cbi.2025.111412_bib17) 2017; 4 Goldman (10.1016/j.cbi.2025.111412_bib33) 1987; 48 Zheng (10.1016/j.cbi.2025.111412_bib15) 2013; 19 Cheng (10.1016/j.cbi.2025.111412_bib24) 2021; 16 Albuquerque (10.1016/j.cbi.2025.111412_bib1) 2009; 89 Dani (10.1016/j.cbi.2025.111412_bib3) 2007; 47 Zoli (10.1016/j.cbi.2025.111412_bib13) 2002; 22 Hurst (10.1016/j.cbi.2025.111412_bib37) 2013; 137 Gao (10.1016/j.cbi.2025.111412_bib30) 2021; 11 Zhang (10.1016/j.cbi.2025.111412_bib27) 2009; 284 Cui (10.1016/j.cbi.2025.111412_bib20) 2022; 13 Schiavone (10.1016/j.cbi.2025.111412_bib29) 2021; 26 Gotti (10.1016/j.cbi.2025.111412_bib34) 2009; 78 Gotti (10.1016/j.cbi.2025.111412_bib39) 2009; 78 Gotti (10.1016/j.cbi.2025.111412_bib4) 2006; 27 Choi (10.1016/j.cbi.2025.111412_bib14) 2010; 35 Song (10.1016/j.cbi.2025.111412_bib21) 2023; 162 Hogg (10.1016/j.cbi.2025.111412_bib10) 2003; 147 Changeux (10.1016/j.cbi.2025.111412_bib2) 2018; 373 Bencherif (10.1016/j.cbi.2025.111412_bib9) 2009; 30 Zhou (10.1016/j.cbi.2025.111412_bib16) 2012; 29 Cheng (10.1016/j.cbi.2025.111412_bib19) 2021; 16 10.1016/j.cbi.2025.111412_bib23 Gharpure (10.1016/j.cbi.2025.111412_bib22) 2019; 104 Chen (10.1016/j.cbi.2025.111412_bib18) 2018; 9 Harkins (10.1016/j.cbi.2025.111412_bib40) 1998; 111 Yang (10.1016/j.cbi.2025.111412_bib32) 2022; 23 Dani (10.1016/j.cbi.2025.111412_bib6) 2015; 124 Papke (10.1016/j.cbi.2025.111412_bib35) 2024; 225 Liu (10.1016/j.cbi.2025.111412_bib28) 2022; 13 Hone (10.1016/j.cbi.2025.111412_bib41) 2020; 154 Quik (10.1016/j.cbi.2025.111412_bib12) 2009; 78 Laviolette (10.1016/j.cbi.2025.111412_bib5) 2004; 5 Bertrand (10.1016/j.cbi.2025.111412_bib42) 2018; 151 McGehee (10.1016/j.cbi.2025.111412_bib38) 1995; 57 Picciotto (10.1016/j.cbi.2025.111412_bib7) 2008; 13 Meng (10.1016/j.cbi.2025.111412_bib31) 2014; 26 De Biasi (10.1016/j.cbi.2025.111412_bib11) 2008; 233 |
References_xml | – volume: 23 year: 2022 ident: bib32 article-title: Triptolide suppresses NF-κB-Mediated inflammatory responses and activates expression of nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 7199 year: 2021 end-page: 7221 ident: bib30 article-title: Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives publication-title: Theranostics – volume: 16 start-page: 114 year: 2021 ident: bib19 article-title: Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity publication-title: Chin. Med. – volume: 373 year: 2018 ident: bib2 article-title: The nicotinic acetylcholine receptor: a typical 'allosteric machine' publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 5 start-page: 55 year: 2004 end-page: 65 ident: bib5 article-title: The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour publication-title: Nat. Rev. Neurosci. – volume: 151 start-page: 214 year: 2018 end-page: 225 ident: bib42 article-title: The wonderland of neuronal nicotinic acetylcholine receptors publication-title: Biochem. Pharmacol. – volume: 284 start-page: 35381 year: 2009 end-page: 35389 ident: bib27 article-title: Characterization of celastrol to inhibit hsp90 and cdc37 interaction publication-title: J. Biol. Chem. – volume: 22 start-page: 8785 year: 2002 end-page: 8789 ident: bib13 article-title: Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum publication-title: J. Neurosci. – volume: 13 year: 2022 ident: bib20 article-title: The therapeutic potential of triptolide and celastrol in neurological diseases publication-title: Front. Pharmacol. – volume: 14 start-page: 611 year: 2002 end-page: 623 ident: bib43 article-title: Ligand-gated ion channels in the enteric nervous system publication-title: Neuro Gastroenterol. Motil. – volume: 154 start-page: 158 year: 2020 end-page: 176 ident: bib41 article-title: Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists publication-title: J. Neurochem. – volume: 13 start-page: 492 year: 2008 end-page: 504 ident: bib7 article-title: Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease publication-title: Front. Biosci. : J. Vis. Literacy – volume: 26 year: 2021 ident: bib29 article-title: The therapeutic potential of celastrol in central nervous system disorders: highlights from in vitro and in vivo approaches publication-title: Molecules – volume: 26 start-page: 622 year: 2014 end-page: 626 ident: bib31 article-title: Targets and molecular mechanisms of triptolide in cancer therapy publication-title: Chin. J. Cancer Res. – volume: 78 start-page: 703 year: 2009 end-page: 711 ident: bib34 article-title: Structural and functional diversity of native brain neuronal nicotinic receptors publication-title: Biochem. Pharmacol. – volume: 162 year: 2023 ident: bib21 article-title: A comprehensive review on celastrol, triptolide and triptonide: insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes publication-title: Biomed. Pharmacother. – volume: 225 year: 2024 ident: bib35 article-title: Functions and pharmacology of α2β2 nicotinic acetylcholine receptors; in and out of the shadow of α4β2 nicotinic acetylcholine receptors publication-title: Biochem. Pharmacol. – volume: 30 start-page: 702 year: 2009 end-page: 714 ident: bib9 article-title: Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance publication-title: Acta Pharmacol. Sin. – volume: 29 start-page: 457 year: 2012 end-page: 475 ident: bib16 article-title: Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms publication-title: Nat. Prod. Rep. – volume: 48 start-page: 965 year: 1987 end-page: 973 ident: bib33 article-title: Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system publication-title: Cell – volume: 13 start-page: 815 year: 2022 end-page: 836 ident: bib28 article-title: Neuroprotective effects of celastrol in neurodegenerative diseases-unscramble its major mechanisms of action and targets publication-title: Aging Dis – volume: 111 start-page: 257 year: 1998 end-page: 269 ident: bib40 article-title: Activation of nicotinic acetylcholine receptors augments calcium channel-mediated exocytosis in rat pheochromocytoma (PC12) cells publication-title: J. Gen. Physiol. – volume: 13 start-page: 156 year: 2023 end-page: 169 ident: bib26 article-title: Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke publication-title: J Pharm Anal – volume: 9 start-page: 104 year: 2018 ident: bib18 article-title: A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F publication-title: Front. Pharmacol. – volume: 233 start-page: 917 year: 2008 end-page: 929 ident: bib11 article-title: Influence of neuronal nicotinic receptors over nicotine addiction and withdrawal publication-title: Exp. Biol. Med. – reference: T. Ali, R. Bashir, I. Jan, K.I. Andrabi, G.N. Bader, Unravelling therapeutic potential and nano formulation approaches of farnesol, a bioactive sesquiterpene, Adv. Tradition. Med. (2024). in press. – volume: 284 start-page: 314 year: 1989 end-page: 335 ident: bib36 article-title: Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat publication-title: J. Comp. Neurol. – volume: 124 start-page: 3 year: 2015 end-page: 19 ident: bib6 article-title: Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine publication-title: Int. Rev. Neurobiol. – volume: 78 start-page: 677 year: 2009 end-page: 685 ident: bib12 article-title: Multiple roles for nicotine in Parkinson's disease publication-title: Biochem. Pharmacol. – volume: 8 start-page: 733 year: 2009 end-page: 750 ident: bib8 article-title: Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system publication-title: Nat. Rev. Drug Discov. – volume: 4 start-page: 69 year: 2017 ident: bib17 article-title: Celastrol: a spectrum of treatment opportunities in chronic diseases publication-title: Front. Med. – volume: 89 start-page: 73 year: 2009 end-page: 120 ident: bib1 article-title: Mammalian nicotinic acetylcholine receptors: from structure to function publication-title: Physiol. Rev. – volume: 104 start-page: 501 year: 2019 end-page: 511.e506 ident: bib22 article-title: Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor publication-title: Neuron – volume: 147 start-page: 1 year: 2003 end-page: 46 ident: bib10 article-title: Nicotinic acetylcholine receptors: from structure to brain function publication-title: Rev. Physiol. Biochem. Pharmacol. – volume: 16 start-page: 114 year: 2021 ident: bib24 article-title: Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity publication-title: Chin. Med. – volume: 13 year: 2022 ident: bib25 article-title: Applications and mechanisms of Tripterygium wilfordii Hook. F. And its preparations in kidney diseases publication-title: Front. Pharmacol. – volume: 35 start-page: 1269 year: 2010 end-page: 1280 ident: bib14 article-title: Antioxidant activity and protective effects of Tripterygium regelii extract on hydrogen peroxide-induced injury in human dopaminergic cells, SH-SY5Y publication-title: Neurochem. Res. – volume: 78 start-page: 703 year: 2009 end-page: 711 ident: bib39 article-title: Structural and functional diversity of native brain neuronal nicotinic receptors publication-title: Biochem. Pharmacol. – volume: 137 start-page: 22 year: 2013 end-page: 54 ident: bib37 article-title: Nicotinic acetylcholine receptors: from basic science to therapeutics publication-title: Pharmacol. Ther. – volume: 47 start-page: 699 year: 2007 end-page: 729 ident: bib3 article-title: Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 27 start-page: 482 year: 2006 end-page: 491 ident: bib4 article-title: Brain nicotinic acetylcholine receptors: native subtypes and their relevance publication-title: Trends Pharmacol. Sci. – volume: 19 start-page: 76 year: 2013 end-page: 82 ident: bib15 article-title: Triptolide with potential medicinal value for diseases of the central nervous system publication-title: CNS Neurosci. Ther. – volume: 57 start-page: 521 year: 1995 end-page: 546 ident: bib38 article-title: Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons publication-title: Annu. Rev. Physiol. – ident: 10.1016/j.cbi.2025.111412_bib23 doi: 10.1007/s13596-024-00768-9 – volume: 13 start-page: 156 year: 2023 ident: 10.1016/j.cbi.2025.111412_bib26 article-title: Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke publication-title: J Pharm Anal doi: 10.1016/j.jpha.2022.12.002 – volume: 373 year: 2018 ident: 10.1016/j.cbi.2025.111412_bib2 article-title: The nicotinic acetylcholine receptor: a typical 'allosteric machine' publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2017.0174 – volume: 162 year: 2023 ident: 10.1016/j.cbi.2025.111412_bib21 article-title: A comprehensive review on celastrol, triptolide and triptonide: insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2023.114705 – volume: 4 start-page: 69 year: 2017 ident: 10.1016/j.cbi.2025.111412_bib17 article-title: Celastrol: a spectrum of treatment opportunities in chronic diseases publication-title: Front. Med. doi: 10.3389/fmed.2017.00069 – volume: 23 year: 2022 ident: 10.1016/j.cbi.2025.111412_bib32 article-title: Triptolide suppresses NF-κB-Mediated inflammatory responses and activates expression of nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis publication-title: Int. J. Mol. Sci. – volume: 233 start-page: 917 year: 2008 ident: 10.1016/j.cbi.2025.111412_bib11 article-title: Influence of neuronal nicotinic receptors over nicotine addiction and withdrawal publication-title: Exp. Biol. Med. doi: 10.3181/0712-MR-355 – volume: 225 year: 2024 ident: 10.1016/j.cbi.2025.111412_bib35 article-title: Functions and pharmacology of α2β2 nicotinic acetylcholine receptors; in and out of the shadow of α4β2 nicotinic acetylcholine receptors publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2024.116263 – volume: 26 start-page: 622 year: 2014 ident: 10.1016/j.cbi.2025.111412_bib31 article-title: Targets and molecular mechanisms of triptolide in cancer therapy publication-title: Chin. J. Cancer Res. – volume: 154 start-page: 158 year: 2020 ident: 10.1016/j.cbi.2025.111412_bib41 article-title: Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists publication-title: J. Neurochem. doi: 10.1111/jnc.14966 – volume: 16 start-page: 114 year: 2021 ident: 10.1016/j.cbi.2025.111412_bib24 article-title: Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity publication-title: Chin. Med. doi: 10.1186/s13020-021-00525-z – volume: 5 start-page: 55 year: 2004 ident: 10.1016/j.cbi.2025.111412_bib5 article-title: The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1298 – volume: 13 year: 2022 ident: 10.1016/j.cbi.2025.111412_bib20 article-title: The therapeutic potential of triptolide and celastrol in neurological diseases publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.1024955 – volume: 13 year: 2022 ident: 10.1016/j.cbi.2025.111412_bib25 article-title: Applications and mechanisms of Tripterygium wilfordii Hook. F. And its preparations in kidney diseases publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.846746 – volume: 22 start-page: 8785 year: 2002 ident: 10.1016/j.cbi.2025.111412_bib13 article-title: Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-20-08785.2002 – volume: 26 year: 2021 ident: 10.1016/j.cbi.2025.111412_bib29 article-title: The therapeutic potential of celastrol in central nervous system disorders: highlights from in vitro and in vivo approaches publication-title: Molecules doi: 10.3390/molecules26154700 – volume: 124 start-page: 3 year: 2015 ident: 10.1016/j.cbi.2025.111412_bib6 article-title: Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine publication-title: Int. Rev. Neurobiol. doi: 10.1016/bs.irn.2015.07.001 – volume: 11 start-page: 7199 year: 2021 ident: 10.1016/j.cbi.2025.111412_bib30 article-title: Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives publication-title: Theranostics doi: 10.7150/thno.57745 – volume: 8 start-page: 733 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib8 article-title: Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2927 – volume: 30 start-page: 702 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib9 article-title: Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2009.37 – volume: 147 start-page: 1 year: 2003 ident: 10.1016/j.cbi.2025.111412_bib10 article-title: Nicotinic acetylcholine receptors: from structure to brain function publication-title: Rev. Physiol. Biochem. Pharmacol. doi: 10.1007/s10254-003-0005-1 – volume: 78 start-page: 677 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib12 article-title: Multiple roles for nicotine in Parkinson's disease publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.05.003 – volume: 16 start-page: 114 year: 2021 ident: 10.1016/j.cbi.2025.111412_bib19 article-title: Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity publication-title: Chin. Med. doi: 10.1186/s13020-021-00525-z – volume: 47 start-page: 699 year: 2007 ident: 10.1016/j.cbi.2025.111412_bib3 article-title: Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.47.120505.105214 – volume: 48 start-page: 965 year: 1987 ident: 10.1016/j.cbi.2025.111412_bib33 article-title: Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system publication-title: Cell doi: 10.1016/0092-8674(87)90705-7 – volume: 78 start-page: 703 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib34 article-title: Structural and functional diversity of native brain neuronal nicotinic receptors publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.05.024 – volume: 57 start-page: 521 year: 1995 ident: 10.1016/j.cbi.2025.111412_bib38 article-title: Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.ph.57.030195.002513 – volume: 89 start-page: 73 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib1 article-title: Mammalian nicotinic acetylcholine receptors: from structure to function publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2008 – volume: 284 start-page: 314 year: 1989 ident: 10.1016/j.cbi.2025.111412_bib36 article-title: Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat publication-title: J. Comp. Neurol. doi: 10.1002/cne.902840212 – volume: 19 start-page: 76 year: 2013 ident: 10.1016/j.cbi.2025.111412_bib15 article-title: Triptolide with potential medicinal value for diseases of the central nervous system publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.12039 – volume: 35 start-page: 1269 year: 2010 ident: 10.1016/j.cbi.2025.111412_bib14 article-title: Antioxidant activity and protective effects of Tripterygium regelii extract on hydrogen peroxide-induced injury in human dopaminergic cells, SH-SY5Y publication-title: Neurochem. Res. doi: 10.1007/s11064-010-0185-4 – volume: 78 start-page: 703 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib39 article-title: Structural and functional diversity of native brain neuronal nicotinic receptors publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.05.024 – volume: 137 start-page: 22 year: 2013 ident: 10.1016/j.cbi.2025.111412_bib37 article-title: Nicotinic acetylcholine receptors: from basic science to therapeutics publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2012.08.012 – volume: 29 start-page: 457 year: 2012 ident: 10.1016/j.cbi.2025.111412_bib16 article-title: Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms publication-title: Nat. Prod. Rep. doi: 10.1039/c2np00088a – volume: 151 start-page: 214 year: 2018 ident: 10.1016/j.cbi.2025.111412_bib42 article-title: The wonderland of neuronal nicotinic acetylcholine receptors publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2017.12.008 – volume: 104 start-page: 501 year: 2019 ident: 10.1016/j.cbi.2025.111412_bib22 article-title: Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor publication-title: Neuron doi: 10.1016/j.neuron.2019.07.030 – volume: 111 start-page: 257 year: 1998 ident: 10.1016/j.cbi.2025.111412_bib40 article-title: Activation of nicotinic acetylcholine receptors augments calcium channel-mediated exocytosis in rat pheochromocytoma (PC12) cells publication-title: J. Gen. Physiol. doi: 10.1085/jgp.111.2.257 – volume: 14 start-page: 611 year: 2002 ident: 10.1016/j.cbi.2025.111412_bib43 article-title: Ligand-gated ion channels in the enteric nervous system publication-title: Neuro Gastroenterol. Motil. doi: 10.1046/j.1365-2982.2002.00363.x – volume: 13 start-page: 815 year: 2022 ident: 10.1016/j.cbi.2025.111412_bib28 article-title: Neuroprotective effects of celastrol in neurodegenerative diseases-unscramble its major mechanisms of action and targets publication-title: Aging Dis doi: 10.14336/AD.2021.1115 – volume: 27 start-page: 482 year: 2006 ident: 10.1016/j.cbi.2025.111412_bib4 article-title: Brain nicotinic acetylcholine receptors: native subtypes and their relevance publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2006.07.004 – volume: 9 start-page: 104 year: 2018 ident: 10.1016/j.cbi.2025.111412_bib18 article-title: A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00104 – volume: 13 start-page: 492 year: 2008 ident: 10.1016/j.cbi.2025.111412_bib7 article-title: Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer's and Parkinson's disease publication-title: Front. Biosci. : J. Vis. Literacy doi: 10.2741/2695 – volume: 284 start-page: 35381 year: 2009 ident: 10.1016/j.cbi.2025.111412_bib27 article-title: Characterization of celastrol to inhibit hsp90 and cdc37 interaction publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.051532 |
SSID | ssj0000240 |
Score | 2.4431558 |
Snippet | Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 111412 |
SubjectTerms | Binding Sites Celastrol Diterpenes - chemistry Diterpenes - metabolism Diterpenes - pharmacology Epoxy Compounds - chemistry Epoxy Compounds - metabolism Epoxy Compounds - pharmacology Humans Molecular Docking Simulation Mutation Nicotinic acetylcholine receptors Pentacyclic Triterpenes Phenanthrenes - chemistry Phenanthrenes - metabolism Phenanthrenes - pharmacology Receptors, Nicotinic - chemistry Receptors, Nicotinic - genetics Receptors, Nicotinic - metabolism Subtype-specific effect Tripterygium - chemistry Triptolide Triterpenes - chemistry Triterpenes - metabolism Triterpenes - pharmacology |
Title | Subtype-selective effect and molecular regulation of celastrol and triptolide at human nicotinic acetylcholine receptors |
URI | https://dx.doi.org/10.1016/j.cbi.2025.111412 https://www.ncbi.nlm.nih.gov/pubmed/39914504 https://www.proquest.com/docview/3164395298 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrRBcELR8LNDKSIgDUmji2FnnuF21WkD0RKXeLMeelRa1SbWbSvTCb2fGiak4lAO3JMqH4zd6fmPPeADeY6OrsKpM5shTIwelqrJGos8QZ9gY0hCN50Thb2fV8lx9udAXO7BIuTAcVjly_8Dpka3HK0djbx5dr9ec45vXclbPJO_pryT57buSRnszgd3556_LsztClipPBdX4gbS4GcO8fLMmL1Fq5g5VyPuGp_vkZxyGTp_Ck1E_ivnQxGewg-0e7M9b8p2vbsUHESM641T5Hjw8TkePFqmu2z78JK7giddsG0vgENuJIahDuDaIq1QuV2yGKvWEm-hWwiPJbA5qj3f1TDXd5TqgcL2Idf5ESzbVc5qlcB7720vmVZKw9B6OnOk22-dwfnryfbHMxvoLmScW6DOnA65qQsu7kv0irE0VtM-lc7IqkaREY2SQDnmPek_EYGovySbILljWmfIFTNquxVcgZNAhr1YuFhJXTe1moaxLV5QBjUcVpvAxdbu9HrbZsCn-7IcljCxjZAeMpqASMPYvW7E0DPzrsXcJREtdzgsjrsXuZmvLgnWZlrWZwssB3T-toD8vlM7V6__76Bt4zGcxCV6_hUm_ucEDkjF9cwgPPv0qDkdj_Q09_fMj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hRYheqhZou_TlSohDpYisY2eT47IqWl57Aomb5diz0laQoN0glX_PjBO34gCH3qI8Hc_o8zf2jD-AA6x07hd5kViK1ChAyfOkkugSxDFWBXGIynGh8OU8n12rsxt9swHTWAvDaZU99neYHtC6P3PU9-bR_XLJNb5pKcflWPKe_kpS3L6pWNR6AJuT0_PZ_B8gS5VGQTV-IC5uhjQvVy0pSpSasUON5EvD00v0MwxDJ-_gbc8fxaRr4nvYwHoHdic1xc53j-JQhIzOMFW-A1vH8Wh7GnXdduEPYQVPvCbrIIFDaCe6pA5hay_uolyuWHUq9WQ30SyEQ6LZnNQe7moZaprbpUdhWxF0_kRNPtVymaWwDtvHW8ZVorD0Hs6caVbrPbg--XU1nSW9_kLiCAXaxGqPi5Ks5WzGcRGWRe61S6W1Ms-QqERVSC8t8h71joChKJ0knyC_YFpXZB9gUDc1fgIhvfZpvrBBSFxVpR37rMzsKPNYOFR-CD9jt5v7bpsNE_PPfhuykWEbmc5GQ1DRMOaZrxgaBl577Ec0oqEu54URW2PzsDbZiHmZlmUxhI-ddf-2gv58pHSq9v_vo99he3Z1eWEuTufnn-ENXwkF8foLDNrVA34lStNW33qXfQL5cPUJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subtype-selective+effect+and+molecular+regulation+of+celastrol+and+triptolide+at+human+nicotinic+acetylcholine+receptors&rft.jtitle=Chemico-biological+interactions&rft.au=Moon%2C+Myungmi&rft.au=Pyeon%2C+Minsu&rft.au=Yang%2C+Jaehui&rft.au=Yun%2C+Jeongyeon&rft.date=2025-02-25&rft.issn=1872-7786&rft.eissn=1872-7786&rft.volume=408&rft.spage=111412&rft_id=info:doi/10.1016%2Fj.cbi.2025.111412&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2797&client=summon |