Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems

The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it...

Full description

Saved in:
Bibliographic Details
Published inBehavioural brain research Vol. 477; p. 115295
Main Authors V., Haresh M., Begum, B. Shameedha
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 04.02.2025
Subjects
Online AccessGet full text
ISSN0166-4328
1872-7549
1872-7549
DOI10.1016/j.bbr.2024.115295

Cover

Abstract The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination. This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data. In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states. The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals. •Explored four brain states: rest, listening, imagined speech, and actual speech.•Identified key differences in brain activity across different brain states using spatio-temporal, spectral, and functional analyses.•Achieved reasonable accuracy for classifying brain states with both subject-dependent and subject-independent models.•Identified the significance of θ and δ bands and the role of the frontal and temporal lobes in distinguishing brain states.
AbstractList The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination. This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data. In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states. The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.
The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination. This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data. In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states. The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals. •Explored four brain states: rest, listening, imagined speech, and actual speech.•Identified key differences in brain activity across different brain states using spatio-temporal, spectral, and functional analyses.•Achieved reasonable accuracy for classifying brain states with both subject-dependent and subject-independent models.•Identified the significance of θ and δ bands and the role of the frontal and temporal lobes in distinguishing brain states.
The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.BACKGROUNDThe electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.NEW METHODThis study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.RESULTSIn the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.CONCLUSIONThe findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.
ArticleNumber 115295
Author V., Haresh M.
Begum, B. Shameedha
Author_xml – sequence: 1
  givenname: Haresh M.
  surname: V.
  fullname: V., Haresh M.
  email: hareshmv@gmail.com
– sequence: 2
  givenname: B. Shameedha
  surname: Begum
  fullname: Begum, B. Shameedha
  email: shameedha@nitt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39428037$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha0KVALtD-gGednNBD_HHli1UUojIbGBteXHHeooYwd70op_X6NAl11d6eo7R_eec45OUk6A0BdKlpTQ_mq7dK4sGWFiSalkg_yAFlQr1ikphhO0aEzfCc70GTqvdUsIEUTSj-iMD4JpwtUC7R7yH1tCxXGyTzFBwHUP4H9d402ANMcxejvHnHAesSs2JlxnO0PFY8kTXq9vcY1Pye7aIhf8fbXpnK3NxedpOqR3cX2pM0z1EzodGwqf3-YFevyxflj97O7ubzerb3ed50TOnRUD9U7TsWeStWOYDNaJXkvhpHc2CK4DKAe9UMGrUVrVgxsUZ4PuVRgkv0Bfj777kp8PUGczxepht7MJ8qEaTqnWXFCiGnr5hh7cBMHsSwuivJj3hBpAj4AvudYC4z-EEvPagtma1oJ5bcEcW2iam6MG2pO_IxRTfYTkIcQCfjYhx_-o_wIlkY9G
Cites_doi 10.1109/ACCESS.2020.2970012
10.26599/BSA.2023.9050020
10.1109/BCI51272.2021.9385302
10.1109/BTAS.2010.5634515
10.1109/ICASSP.2015.7178118
10.1016/j.rcim.2023.102610
10.1088/1741-2560/8/4/046028
10.1016/j.jneumeth.2006.11.017
10.1016/j.bspc.2023.104872
10.1136/tsaco-2018-000180
10.1109/TBME.2017.2786251
10.4018/978-1-60566-766-9.ch011
10.1016/j.bspc.2022.104433
10.1162/089976699300016719
10.1007/s00521-022-07843-9
10.1002/hbm.25683
10.1007/978-3-642-02574-7_5
10.1088/1741-2552/acb102
10.1016/S1364-6613(00)01463-7
10.1016/j.bspc.2022.104157
10.1088/1741-2560/7/4/046006
10.1007/s41133-016-0001-z
10.3390/pr9040682
10.1016/j.brainresbull.2017.01.023
10.3389/fnins.2023.1191213
10.1016/S0079-6123(05)50034-7
10.1016/j.aej.2022.10.014
10.1016/j.eij.2015.06.002
10.3389/fpsyg.2013.00138
10.21437/Interspeech.2019-3041
10.1016/j.neunet.2009.05.008
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbr.2024.115295
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-7549
ExternalDocumentID 39428037
10_1016_j_bbr_2024_115295
S0166432824004510
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSN
SSZ
T5K
TEORI
TN5
WH7
YR2
~G-
.GJ
41~
5VS
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
M2V
M41
R2-
SNS
SSH
VH1
WUQ
XJT
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c305t-a491cb81f6252eec25dab46854b5cbad438de7be647dc7f5a76eb97329867d953
IEDL.DBID AIKHN
ISSN 0166-4328
1872-7549
IngestDate Sun Sep 28 08:54:31 EDT 2025
Thu Apr 17 08:38:00 EDT 2025
Tue Jul 01 02:19:47 EDT 2025
Sat Nov 16 16:00:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Imagined speech
Electroencephalogram
Machine learning
Speech recognition
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-a491cb81f6252eec25dab46854b5cbad438de7be647dc7f5a76eb97329867d953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39428037
PQID 3118834107
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3118834107
pubmed_primary_39428037
crossref_primary_10_1016_j_bbr_2024_115295
elsevier_sciencedirect_doi_10_1016_j_bbr_2024_115295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-04
  day: 04
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Behavioural brain research
PublicationTitleAlternate Behav Brain Res
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cao, Zhao, Shan, Wei, Guo, Chen, Erkoyuncu, Sarrigiannis (bib6) 2022; 43
Hossain, Khan, Kader (bib19) 2024
Ghitza (bib15) 2013; 4
Ma, Zheng, Peng (bib26) 2021; 9
Zhang, Yan, Chang, Huang, Yuan (bib42) 2023; 79
D’Zmura, M., Deng, S., Lappas, T., Thorpe, S., Srinivasan, R., 2009.Toward eeg sensing of imagined speech, In: Human-Computer Interaction. New Trends: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part I 13, Springer.40-48.
Mardini, BaniYassein, Al-Rawashdeh, Aljawarneh, Khamayseh, Meqdadi (bib27) 2020; 8
Tao, Jia, Xu, Liang, Zhang, Chen, Gao, Chen, Zheng, Yu (bib38) 2023; 20
Bonab, Shamsollahi (bib4) 2024; 87
Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen (bib16) 2013
Duffy, Garry, Talbot, Pasternak, Flinn, Minardi, Dookram, Grant, Fitzgerald, Rubano (bib12) 2018; 3
García-Salinas, Torres-García, Reyes-Garćia, Villaseñor-Pineda (bib14) 2023; 81
Horr, Mousavi, Han, Li, Tang (bib18) 2023; 17
Deng, Srinivasan, Lappas, D’Zmura (bib10) 2010; 7
Siuly, Li, Zhang (bib36) 2016; 11
Dong, Tian (bib11) 2023; 9
Wijayanto, Humairani, Hadiyoso, Rizal, Prasanna, Tripathi (bib41) 2023; 85
Chen, Huang, Bao, Pan, Li (bib7) 2023; 17
Pei, Barbour, Leuthardt, Schalk (bib30) 2011; 8
Priana, Tolle, Aknuranda, Arisetijono (bib32) 2018
Shoka, Dessouky, El-Sayed, Hemdan (bib35) 2023; 65
Hickok, Poeppel (bib17) 2000; 4
Brigham, K., Kumar, B.V., 2010.Subject identification from electroencephalogram (eeg) signals during imagined speech, In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE.1-8.
Jian, Chen, McFarland (bib20) 2017; 130
DaSalla, Kambara, Sato, Koike (bib9) 2009; 22
Qureshi, Min, Park, Cho, Choi, Lee (bib33) 2017; 65
Mohanchandra, Saha (bib28) 2016; 1
Alhaddad, Kamel, Malibary, Thabit, Dahlwi, Hadi (bib2) 2012
Peirce (bib31) 2007; 162
Nguyen, Karavas, Artemiadis (bib29) 2017; 15
Lee, S.H., Lee, M., Lee, S.W., 2021.Functional connectivity of imagined speech and visual imagery based on spectral dynamics, In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI), IEEE.1-6.
Laureys, Pellas, Van Eeckhout, Ghorbel, Schnakers, Perrin, Berre, Faymonville, Pantke, Damas (bib22) 2005; 150
Lee, Girolami, Sejnowski (bib24) 1999; 11
Wester, M., 2006.Unspoken speech-speech recognition based on electroencephalography.Master’s Thesis, Universitat Karlsruhe (TH).
Liu, Wang, Gao (bib25) 2024; 85
Almanza-Conejo, Almanza-Ojeda, Contreras-Hernandez, Ibarra-Manzano (bib3) 2023; 35
Jigar, Pasha, Hari (bib21) 2018; 118
Cooney, C., Korik, A., Raffaella, F., Coyle, D., 2019.Classification of imagined spoken word-pairs using convolutional neural networks, In: The 8th Graz BCI Conference, 2019, Verlag der Technischen Universitat Graz.338-343.
Sokolova, Japkowicz, Szpakowicz (bib37) 2006
Torrey, L., Shavlik, J., 2010.Transfer learning, In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global, 242-264.
Zhao, S., Rudzicz, F., 2015.Classifying phonological categories in imagined and articulated speech, In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE.992-996.
Saha, P., Abdul-Mageed, M., Fels, S., 2019.Speak your mind! towards imagined speech recognition with hierarchical deep learning.arXiv preprint arXiv:1904.05746.
Abdulkader, Atia, Mostafa (bib1) 2015; 16
10.1016/j.bbr.2024.115295_bib39
Nguyen (10.1016/j.bbr.2024.115295_bib29) 2017; 15
Abdulkader (10.1016/j.bbr.2024.115295_bib1) 2015; 16
10.1016/j.bbr.2024.115295_bib13
Hossain (10.1016/j.bbr.2024.115295_bib19) 2024
10.1016/j.bbr.2024.115295_bib34
Almanza-Conejo (10.1016/j.bbr.2024.115295_bib3) 2023; 35
Cao (10.1016/j.bbr.2024.115295_bib6) 2022; 43
Liu (10.1016/j.bbr.2024.115295_bib25) 2024; 85
Shoka (10.1016/j.bbr.2024.115295_bib35) 2023; 65
Alhaddad (10.1016/j.bbr.2024.115295_bib2) 2012
Bonab (10.1016/j.bbr.2024.115295_bib4) 2024; 87
Horr (10.1016/j.bbr.2024.115295_bib18) 2023; 17
10.1016/j.bbr.2024.115295_bib5
10.1016/j.bbr.2024.115295_bib8
Laureys (10.1016/j.bbr.2024.115295_bib22) 2005; 150
Tao (10.1016/j.bbr.2024.115295_bib38) 2023; 20
Chen (10.1016/j.bbr.2024.115295_bib7) 2023; 17
Hickok (10.1016/j.bbr.2024.115295_bib17) 2000; 4
Sokolova (10.1016/j.bbr.2024.115295_bib37) 2006
Jigar (10.1016/j.bbr.2024.115295_bib21) 2018; 118
Mohanchandra (10.1016/j.bbr.2024.115295_bib28) 2016; 1
Siuly (10.1016/j.bbr.2024.115295_bib36) 2016; 11
Zhang (10.1016/j.bbr.2024.115295_bib42) 2023; 79
Ghitza (10.1016/j.bbr.2024.115295_bib15) 2013; 4
Dong (10.1016/j.bbr.2024.115295_bib11) 2023; 9
Gramfort (10.1016/j.bbr.2024.115295_bib16) 2013
10.1016/j.bbr.2024.115295_bib23
Qureshi (10.1016/j.bbr.2024.115295_bib33) 2017; 65
Pei (10.1016/j.bbr.2024.115295_bib30) 2011; 8
10.1016/j.bbr.2024.115295_bib43
DaSalla (10.1016/j.bbr.2024.115295_bib9) 2009; 22
10.1016/j.bbr.2024.115295_bib40
Ma (10.1016/j.bbr.2024.115295_bib26) 2021; 9
Peirce (10.1016/j.bbr.2024.115295_bib31) 2007; 162
Duffy (10.1016/j.bbr.2024.115295_bib12) 2018; 3
Lee (10.1016/j.bbr.2024.115295_bib24) 1999; 11
Wijayanto (10.1016/j.bbr.2024.115295_bib41) 2023; 85
Priana (10.1016/j.bbr.2024.115295_bib32) 2018
Jian (10.1016/j.bbr.2024.115295_bib20) 2017; 130
Mardini (10.1016/j.bbr.2024.115295_bib27) 2020; 8
Deng (10.1016/j.bbr.2024.115295_bib10) 2010; 7
García-Salinas (10.1016/j.bbr.2024.115295_bib14) 2023; 81
References_xml – reference: Cooney, C., Korik, A., Raffaella, F., Coyle, D., 2019.Classification of imagined spoken word-pairs using convolutional neural networks, In: The 8th Graz BCI Conference, 2019, Verlag der Technischen Universitat Graz.338-343.
– volume: 15
  year: 2017
  ident: bib29
  article-title: Inferring imagined speech using eeg signals: a new approach using riemannian manifold features
  publication-title: J. Neural Eng.
– reference: Wester, M., 2006.Unspoken speech-speech recognition based on electroencephalography.Master’s Thesis, Universitat Karlsruhe (TH).
– volume: 130
  start-page: 156
  year: 2017
  end-page: 164
  ident: bib20
  article-title: Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement
  publication-title: Brain Res. Bull.
– start-page: 12
  year: 2018
  ident: bib32
  article-title: User experience design of stroke patient communications using mobile finger (mofi) communication board with user center design approach
  publication-title: Int. J. Interact. Mob. Technol.
– volume: 8
  year: 2011
  ident: bib30
  article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans
  publication-title: J. Neural Eng.
– volume: 43
  start-page: 860
  year: 2022
  end-page: 879
  ident: bib6
  article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review
  publication-title: Hum. brain Mapp.
– volume: 118
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib21
  article-title: Classification of imagery vowel speech using eeg and cross correlation
  publication-title: Int. J. Pure Appl. Math.
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  ident: bib24
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
– reference: Lee, S.H., Lee, M., Lee, S.W., 2021.Functional connectivity of imagined speech and visual imagery based on spectral dynamics, In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI), IEEE.1-6.
– reference: Torrey, L., Shavlik, J., 2010.Transfer learning, In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global, 242-264.
– reference: D’Zmura, M., Deng, S., Lappas, T., Thorpe, S., Srinivasan, R., 2009.Toward eeg sensing of imagined speech, In: Human-Computer Interaction. New Trends: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part I 13, Springer.40-48.
– volume: 20
  year: 2023
  ident: bib38
  article-title: Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential
  publication-title: J. Neural Eng.
– volume: 35
  start-page: 1409
  year: 2023
  end-page: 1422
  ident: bib3
  article-title: Emotion recognition in eeg signals using the continuous wavelet transform and cnns
  publication-title: Neural Comput. Appl.
– volume: 3
  year: 2018
  ident: bib12
  article-title: A pilot study assessing the spiritual, emotional, physical/environmental, and physiological needs of mechanically ventilated surgical intensive care unit patients via eye tracking devices, head nodding, and communication boards
  publication-title: Trauma Surg. Acute Care Open
– volume: 150
  start-page: 495
  year: 2005
  end-page: 611
  ident: bib22
  article-title: The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless?
  publication-title: Prog. brain Res.
– volume: 81
  year: 2023
  ident: bib14
  article-title: Intra-subject class-incremental deep learning approach for eeg-based imagined speech recognition
  publication-title: Biomed. Signal Process. Control
– volume: 162
  start-page: 8
  year: 2007
  end-page: 13
  ident: bib31
  article-title: Psychopy—psychophysics software in python
  publication-title: J. Neurosci. Methods
– reference: Saha, P., Abdul-Mageed, M., Fels, S., 2019.Speak your mind! towards imagined speech recognition with hierarchical deep learning.arXiv preprint arXiv:1904.05746.
– volume: 65
  start-page: 399
  year: 2023
  end-page: 412
  ident: bib35
  article-title: An efficient cnn based epileptic seizures detection framework using encrypted eeg signals for secure telemedicine applications
  publication-title: Alex. Eng. J.
– start-page: 1015
  year: 2006
  end-page: 1021
  ident: bib37
  article-title: Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation
  publication-title: Australasian joint conference on artificial intelligence
– start-page: 267
  year: 2013
  ident: bib16
  article-title: Meg and eeg data analysis with mne-python
  publication-title: Front. Neurosci.
– volume: 1
  start-page: 3
  year: 2016
  ident: bib28
  article-title: A communication paradigm using subvocalized speech: translating brain signals into speech
  publication-title: Augment. Hum. Res.
– volume: 87
  year: 2024
  ident: bib4
  article-title: Low-rank tensor restoration for erp extraction
  publication-title: Biomed. Signal Process. Control
– volume: 22
  start-page: 1334
  year: 2009
  end-page: 1339
  ident: bib9
  article-title: Single-trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Netw.
– start-page: 1
  year: 2024
  end-page: 16
  ident: bib19
  article-title: Imagined speech classification exploiting eeg power spectrum features
  publication-title: Med. Biol. Eng. Comput.
– volume: 65
  start-page: 2168
  year: 2017
  end-page: 2177
  ident: bib33
  article-title: Multiclass classification of word imagination speech with hybrid connectivity features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 85
  year: 2023
  ident: bib41
  article-title: Epileptic seizure detection on a compressed eeg signal using energy measurement
  publication-title: Biomed. Signal Process. Control
– reference: Zhao, S., Rudzicz, F., 2015.Classifying phonological categories in imagined and articulated speech, In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE.992-996.
– volume: 17
  year: 2023
  ident: bib7
  article-title: An eeg-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features
  publication-title: Front. Neurosci.
– start-page: 234
  year: 2012
  end-page: 241
  ident: bib2
  article-title: P300 speller efficiency with common average reference
  publication-title: Autonomous and Intelligent Systems: Third International Conference, AIS 2012, Aveiro, Portugal, June 25-27, 2012. Proceedings
– volume: 79
  year: 2023
  ident: bib42
  article-title: Eeg-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 8
  start-page: 24046
  year: 2020
  end-page: 24055
  ident: bib27
  article-title: Enhanced detection of epileptic seizure using eeg signals in combination with machine learning classifiers
  publication-title: IEEE Access
– volume: 9
  start-page: 682
  year: 2021
  ident: bib26
  article-title: Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency domain measures
  publication-title: Processes
– reference: Brigham, K., Kumar, B.V., 2010.Subject identification from electroencephalogram (eeg) signals during imagined speech, In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE.1-8.
– volume: 7
  year: 2010
  ident: bib10
  article-title: Eeg classification of imagined syllable rhythm using hilbert spectrum methods
  publication-title: J. Neural Eng.
– volume: 11
  start-page: 141
  year: 2016
  end-page: 144
  ident: bib36
  article-title: Eeg signal analysis and classification
  publication-title: IEEE Trans. Neural Syst. Rehabilit Eng.
– volume: 4
  start-page: 138
  year: 2013
  ident: bib15
  article-title: The theta-syllable: a unit of speech information defined by cortical function
  publication-title: Front. Psychol.
– volume: 9
  start-page: 297
  year: 2023
  end-page: 309
  ident: bib11
  article-title: A large database towards user-friendly ssvep-based bci
  publication-title: Brain Sci. Adv.
– volume: 17
  year: 2023
  ident: bib18
  article-title: Human behavior in free search online shopping scenarios can be predicted from eeg activation using hjorth parameters
  publication-title: Front. Neurosci.
– volume: 85
  year: 2024
  ident: bib25
  article-title: Cognitive neuroscience and robotics: advancements and future research directions
  publication-title: Robot. Comput. -Integr. Manuf.
– volume: 16
  start-page: 213
  year: 2015
  end-page: 230
  ident: bib1
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egypt. Inform. J.
– volume: 4
  start-page: 131
  year: 2000
  end-page: 138
  ident: bib17
  article-title: Towards a functional neuroanatomy of speech perception
  publication-title: Trends Cogn. Sci.
– volume: 8
  start-page: 24046
  year: 2020
  ident: 10.1016/j.bbr.2024.115295_bib27
  article-title: Enhanced detection of epileptic seizure using eeg signals in combination with machine learning classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970012
– volume: 9
  start-page: 297
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib11
  article-title: A large database towards user-friendly ssvep-based bci
  publication-title: Brain Sci. Adv.
  doi: 10.26599/BSA.2023.9050020
– volume: 87
  year: 2024
  ident: 10.1016/j.bbr.2024.115295_bib4
  article-title: Low-rank tensor restoration for erp extraction
  publication-title: Biomed. Signal Process. Control
– ident: 10.1016/j.bbr.2024.115295_bib23
  doi: 10.1109/BCI51272.2021.9385302
– ident: 10.1016/j.bbr.2024.115295_bib5
  doi: 10.1109/BTAS.2010.5634515
– ident: 10.1016/j.bbr.2024.115295_bib8
– ident: 10.1016/j.bbr.2024.115295_bib43
  doi: 10.1109/ICASSP.2015.7178118
– volume: 85
  year: 2024
  ident: 10.1016/j.bbr.2024.115295_bib25
  article-title: Cognitive neuroscience and robotics: advancements and future research directions
  publication-title: Robot. Comput. -Integr. Manuf.
  doi: 10.1016/j.rcim.2023.102610
– start-page: 267
  year: 2013
  ident: 10.1016/j.bbr.2024.115295_bib16
  article-title: Meg and eeg data analysis with mne-python
  publication-title: Front. Neurosci.
– volume: 8
  year: 2011
  ident: 10.1016/j.bbr.2024.115295_bib30
  article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/046028
– volume: 162
  start-page: 8
  year: 2007
  ident: 10.1016/j.bbr.2024.115295_bib31
  article-title: Psychopy—psychophysics software in python
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.11.017
– volume: 85
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib41
  article-title: Epileptic seizure detection on a compressed eeg signal using energy measurement
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104872
– volume: 3
  year: 2018
  ident: 10.1016/j.bbr.2024.115295_bib12
  article-title: A pilot study assessing the spiritual, emotional, physical/environmental, and physiological needs of mechanically ventilated surgical intensive care unit patients via eye tracking devices, head nodding, and communication boards
  publication-title: Trauma Surg. Acute Care Open
  doi: 10.1136/tsaco-2018-000180
– volume: 65
  start-page: 2168
  year: 2017
  ident: 10.1016/j.bbr.2024.115295_bib33
  article-title: Multiclass classification of word imagination speech with hybrid connectivity features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2786251
– ident: 10.1016/j.bbr.2024.115295_bib39
  doi: 10.4018/978-1-60566-766-9.ch011
– volume: 81
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib14
  article-title: Intra-subject class-incremental deep learning approach for eeg-based imagined speech recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104433
– volume: 11
  start-page: 417
  year: 1999
  ident: 10.1016/j.bbr.2024.115295_bib24
  article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016719
– volume: 17
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib7
  article-title: An eeg-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features
  publication-title: Front. Neurosci.
– start-page: 12
  year: 2018
  ident: 10.1016/j.bbr.2024.115295_bib32
  article-title: User experience design of stroke patient communications using mobile finger (mofi) communication board with user center design approach
  publication-title: Int. J. Interact. Mob. Technol.
– volume: 35
  start-page: 1409
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib3
  article-title: Emotion recognition in eeg signals using the continuous wavelet transform and cnns
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07843-9
– volume: 43
  start-page: 860
  year: 2022
  ident: 10.1016/j.bbr.2024.115295_bib6
  article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review
  publication-title: Hum. brain Mapp.
  doi: 10.1002/hbm.25683
– ident: 10.1016/j.bbr.2024.115295_bib13
  doi: 10.1007/978-3-642-02574-7_5
– volume: 20
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib38
  article-title: Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acb102
– volume: 4
  start-page: 131
  year: 2000
  ident: 10.1016/j.bbr.2024.115295_bib17
  article-title: Towards a functional neuroanatomy of speech perception
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01463-7
– ident: 10.1016/j.bbr.2024.115295_bib40
– start-page: 1015
  year: 2006
  ident: 10.1016/j.bbr.2024.115295_bib37
  article-title: Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation
– volume: 79
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib42
  article-title: Eeg-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104157
– volume: 7
  year: 2010
  ident: 10.1016/j.bbr.2024.115295_bib10
  article-title: Eeg classification of imagined syllable rhythm using hilbert spectrum methods
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/4/046006
– volume: 1
  start-page: 3
  year: 2016
  ident: 10.1016/j.bbr.2024.115295_bib28
  article-title: A communication paradigm using subvocalized speech: translating brain signals into speech
  publication-title: Augment. Hum. Res.
  doi: 10.1007/s41133-016-0001-z
– volume: 9
  start-page: 682
  year: 2021
  ident: 10.1016/j.bbr.2024.115295_bib26
  article-title: Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency domain measures
  publication-title: Processes
  doi: 10.3390/pr9040682
– start-page: 1
  year: 2024
  ident: 10.1016/j.bbr.2024.115295_bib19
  article-title: Imagined speech classification exploiting eeg power spectrum features
  publication-title: Med. Biol. Eng. Comput.
– volume: 130
  start-page: 156
  year: 2017
  ident: 10.1016/j.bbr.2024.115295_bib20
  article-title: Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2017.01.023
– start-page: 234
  year: 2012
  ident: 10.1016/j.bbr.2024.115295_bib2
  article-title: P300 speller efficiency with common average reference
– volume: 17
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib18
  article-title: Human behavior in free search online shopping scenarios can be predicted from eeg activation using hjorth parameters
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2023.1191213
– volume: 150
  start-page: 495
  year: 2005
  ident: 10.1016/j.bbr.2024.115295_bib22
  article-title: The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless?
  publication-title: Prog. brain Res.
  doi: 10.1016/S0079-6123(05)50034-7
– volume: 15
  year: 2017
  ident: 10.1016/j.bbr.2024.115295_bib29
  article-title: Inferring imagined speech using eeg signals: a new approach using riemannian manifold features
  publication-title: J. Neural Eng.
– volume: 65
  start-page: 399
  year: 2023
  ident: 10.1016/j.bbr.2024.115295_bib35
  article-title: An efficient cnn based epileptic seizures detection framework using encrypted eeg signals for secure telemedicine applications
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.10.014
– volume: 16
  start-page: 213
  year: 2015
  ident: 10.1016/j.bbr.2024.115295_bib1
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2015.06.002
– volume: 4
  start-page: 138
  year: 2013
  ident: 10.1016/j.bbr.2024.115295_bib15
  article-title: The theta-syllable: a unit of speech information defined by cortical function
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2013.00138
– ident: 10.1016/j.bbr.2024.115295_bib34
  doi: 10.21437/Interspeech.2019-3041
– volume: 11
  start-page: 141
  year: 2016
  ident: 10.1016/j.bbr.2024.115295_bib36
  article-title: Eeg signal analysis and classification
  publication-title: IEEE Trans. Neural Syst. Rehabilit Eng.
– volume: 118
  start-page: 1
  year: 2018
  ident: 10.1016/j.bbr.2024.115295_bib21
  article-title: Classification of imagery vowel speech using eeg and cross correlation
  publication-title: Int. J. Pure Appl. Math.
– volume: 22
  start-page: 1334
  year: 2009
  ident: 10.1016/j.bbr.2024.115295_bib9
  article-title: Single-trial classification of vowel speech imagery using common spatial patterns
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.05.008
SSID ssj0004051
Score 2.4828842
Snippet The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 115295
SubjectTerms Adult
Brain - physiology
Brain-computer interface
Brain-Computer Interfaces
Electroencephalogram
Electroencephalography - methods
Female
Humans
Imagination - physiology
Imagined speech
Machine Learning
Male
Neural Networks, Computer
Speech - physiology
Speech recognition
Young Adult
Title Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems
URI https://dx.doi.org/10.1016/j.bbr.2024.115295
https://www.ncbi.nlm.nih.gov/pubmed/39428037
https://www.proquest.com/docview/3118834107
Volume 477
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7YULoi2PpVANEuKAZHaT2E7S27LasgXRC63Um-VX1EU0u2q2By78dmbyAHooB66RrFgeex72980H8MZbO02jKkSV2SikDkG4aVKJQNlxkebKSsls5C9nenkhP12qyx2YD1wYhlX2vr_z6a237r9M-tWcbFaryVdKViicUskg2yYpVLfvphTtixHszk4_L8_-0COnqpMl1FrwgOFxs4V5OcddQVNJvoPfvO4LT_eln20YOnkMj_r8EWfdFPdgJ9b7cDCrqXa-_oFvsUV0tlflB_D9vMXENri6Zi2iGLDZxOivjrGj51b9fR2uK3QsFYEtvahB5pzgYvERGd1B-xMps8UP81PBMS-g_5tUgl0v6OYJXJwszudL0asrCE9nfCusLBPviqSiCiiln6cqWCd1oaRT3tkgsyLE3EUt8-DzStlcR8e9fcpC56FU2VMY1es6PgfUIcoyZprF0yWDsMo08V5H7cpMkbHH8G5YVLPpmmiYAV32zZAFDFvAdBYYgxyW3dzZCYac_L-GvR5MZOiE8LOHreP6tjEZ1VAFBetpPoZnne1-zyIrJctz5S_-76eH8DBlPWBGccuXMNre3MZXlKRs3RE8eP8zOeq34i8XouUD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V6QEuCCiPUB6DhDggWUl2be8utxClJLTNhVTqzfJr1SC6ibrpgX_PzD54HMqB60rWWh57Hvb3zQfwzls7TqLKRZnaKKQOQbjxpBSBsuM8yZSVktnI5yu9uJBfLtXlAcx6LgzDKjvf3_r0xlt3X0bdao52m83oKyUrFE6pZJBNkxSq2w8li1oP4HC6PF2sftMjx6qVJdRa8ID-cbOBeTnHXUETSb6D37zuCk93pZ9NGDp5CA-6_BGn7RQfwUGsHsPRtKLa-foHvscG0dlclR_B93WDia1xc81aRDFgvYvRX33Elp5bdvd1uC3RsVQENvSiGplzgvP5Z2R0B-1PpMwWP82WgmNeQP8nqQTbXtD1E7g4ma9nC9GpKwhPZ3wvrCwm3uWTkiqghH6eqGCd1LmSTnlng0zzEDMXtcyCz0plMx0d9_Ypcp2FQqVPYVBtq_gcUIcoi5hqFk-XDMIqkon3OmpXpIqMPYQP_aKaXdtEw_Tosm-GLGDYAqa1wBBkv-zmr51gyMn_a9jb3kSGTgg_e9gqbm9rk1INlVOwHmdDeNba7tcs0kKyPFf24v9--gbuLdbnZ-ZsuTo9hvsJawMzolu-hMH-5ja-ooRl7153G_Inf0Xm6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+imagined+speech%3A+Identification+of+brain+states+from+EEG+signals+for+BCI-based+communication+systems&rft.jtitle=Behavioural+brain+research&rft.au=V.%2C+Haresh+M.&rft.au=Begum%2C+B.+Shameedha&rft.date=2025-02-04&rft.pub=Elsevier+B.V&rft.issn=0166-4328&rft.volume=477&rft_id=info:doi/10.1016%2Fj.bbr.2024.115295&rft.externalDocID=S0166432824004510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-4328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-4328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-4328&client=summon