Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems
The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it...
Saved in:
Published in | Behavioural brain research Vol. 477; p. 115295 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
04.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-4328 1872-7549 1872-7549 |
DOI | 10.1016/j.bbr.2024.115295 |
Cover
Abstract | The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.
This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.
In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.
The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.
•Explored four brain states: rest, listening, imagined speech, and actual speech.•Identified key differences in brain activity across different brain states using spatio-temporal, spectral, and functional analyses.•Achieved reasonable accuracy for classifying brain states with both subject-dependent and subject-independent models.•Identified the significance of θ and δ bands and the role of the frontal and temporal lobes in distinguishing brain states. |
---|---|
AbstractList | The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.
This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.
In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.
The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals. The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination. This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data. In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states. The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals. •Explored four brain states: rest, listening, imagined speech, and actual speech.•Identified key differences in brain activity across different brain states using spatio-temporal, spectral, and functional analyses.•Achieved reasonable accuracy for classifying brain states with both subject-dependent and subject-independent models.•Identified the significance of θ and δ bands and the role of the frontal and temporal lobes in distinguishing brain states. The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.BACKGROUNDThe electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to facilitate control over external devices or communication with the external world at the moment the user desires. To effectively deploy such BCIs, it is imperative to accurately discern various brain states from continuous EEG signals when users initiate word imagination.This study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.NEW METHODThis study involved the acquisition of EEG signals from 15 subjects engaged in four states: resting, listening, imagined speech, and actual speech, each involving a predefined set of 10 words. The EEG signals underwent preprocessing, segmentation, spatio-temporal and spectral analysis of each state, and functional connectivity analysis using the phase locking value (PLV) method. Subsequently, five features were extracted from the frequency and time-frequency domains. Classification tasks were performed using four machine learning algorithms in both pair-wise and multiclass scenarios, considering subject-dependent and subject-independent data.In the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.RESULTSIn the subject-dependent scenario, the random forest (RF) classifier achieved a maximum accuracy of 94.60 % for pairwise classification, while the artificial neural network (ANN) classifier achieved a maximum accuracy of 66.92 % for multiclass classification. In the subject-independent scenario, the random forest (RF) classifier achieved maximum accuracies of 81.02 % for pairwise classification and 55.58 % for multiclass classification. Moreover, EEG signals were classified based on frequency bands and brain lobes, revealing that the theta (θ) and delta (δ) bands, as well as the frontal and temporal lobes, are sufficient for distinguishing between brain states.The findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals.CONCLUSIONThe findings promise to develop a system capable of automatically segmenting imagined speech segments from continuous EEG signals. |
ArticleNumber | 115295 |
Author | V., Haresh M. Begum, B. Shameedha |
Author_xml | – sequence: 1 givenname: Haresh M. surname: V. fullname: V., Haresh M. email: hareshmv@gmail.com – sequence: 2 givenname: B. Shameedha surname: Begum fullname: Begum, B. Shameedha email: shameedha@nitt.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39428037$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPGzEUha0KVALtD-gGednNBD_HHli1UUojIbGBteXHHeooYwd70op_X6NAl11d6eo7R_eec45OUk6A0BdKlpTQ_mq7dK4sGWFiSalkg_yAFlQr1ikphhO0aEzfCc70GTqvdUsIEUTSj-iMD4JpwtUC7R7yH1tCxXGyTzFBwHUP4H9d402ANMcxejvHnHAesSs2JlxnO0PFY8kTXq9vcY1Pye7aIhf8fbXpnK3NxedpOqR3cX2pM0z1EzodGwqf3-YFevyxflj97O7ubzerb3ed50TOnRUD9U7TsWeStWOYDNaJXkvhpHc2CK4DKAe9UMGrUVrVgxsUZ4PuVRgkv0Bfj777kp8PUGczxepht7MJ8qEaTqnWXFCiGnr5hh7cBMHsSwuivJj3hBpAj4AvudYC4z-EEvPagtma1oJ5bcEcW2iam6MG2pO_IxRTfYTkIcQCfjYhx_-o_wIlkY9G |
Cites_doi | 10.1109/ACCESS.2020.2970012 10.26599/BSA.2023.9050020 10.1109/BCI51272.2021.9385302 10.1109/BTAS.2010.5634515 10.1109/ICASSP.2015.7178118 10.1016/j.rcim.2023.102610 10.1088/1741-2560/8/4/046028 10.1016/j.jneumeth.2006.11.017 10.1016/j.bspc.2023.104872 10.1136/tsaco-2018-000180 10.1109/TBME.2017.2786251 10.4018/978-1-60566-766-9.ch011 10.1016/j.bspc.2022.104433 10.1162/089976699300016719 10.1007/s00521-022-07843-9 10.1002/hbm.25683 10.1007/978-3-642-02574-7_5 10.1088/1741-2552/acb102 10.1016/S1364-6613(00)01463-7 10.1016/j.bspc.2022.104157 10.1088/1741-2560/7/4/046006 10.1007/s41133-016-0001-z 10.3390/pr9040682 10.1016/j.brainresbull.2017.01.023 10.3389/fnins.2023.1191213 10.1016/S0079-6123(05)50034-7 10.1016/j.aej.2022.10.014 10.1016/j.eij.2015.06.002 10.3389/fpsyg.2013.00138 10.21437/Interspeech.2019-3041 10.1016/j.neunet.2009.05.008 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbr.2024.115295 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-7549 |
ExternalDocumentID | 39428037 10_1016_j_bbr_2024_115295 S0166432824004510 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSN SSZ T5K TEORI TN5 WH7 YR2 ~G- .GJ 41~ 5VS AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ M2V M41 R2- SNS SSH VH1 WUQ XJT ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c305t-a491cb81f6252eec25dab46854b5cbad438de7be647dc7f5a76eb97329867d953 |
IEDL.DBID | AIKHN |
ISSN | 0166-4328 1872-7549 |
IngestDate | Sun Sep 28 08:54:31 EDT 2025 Thu Apr 17 08:38:00 EDT 2025 Tue Jul 01 02:19:47 EDT 2025 Sat Nov 16 16:00:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-computer interface Imagined speech Electroencephalogram Machine learning Speech recognition |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-a491cb81f6252eec25dab46854b5cbad438de7be647dc7f5a76eb97329867d953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39428037 |
PQID | 3118834107 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3118834107 pubmed_primary_39428037 crossref_primary_10_1016_j_bbr_2024_115295 elsevier_sciencedirect_doi_10_1016_j_bbr_2024_115295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-04 |
PublicationDateYYYYMMDD | 2025-02-04 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Behavioural brain research |
PublicationTitleAlternate | Behav Brain Res |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cao, Zhao, Shan, Wei, Guo, Chen, Erkoyuncu, Sarrigiannis (bib6) 2022; 43 Hossain, Khan, Kader (bib19) 2024 Ghitza (bib15) 2013; 4 Ma, Zheng, Peng (bib26) 2021; 9 Zhang, Yan, Chang, Huang, Yuan (bib42) 2023; 79 D’Zmura, M., Deng, S., Lappas, T., Thorpe, S., Srinivasan, R., 2009.Toward eeg sensing of imagined speech, In: Human-Computer Interaction. New Trends: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part I 13, Springer.40-48. Mardini, BaniYassein, Al-Rawashdeh, Aljawarneh, Khamayseh, Meqdadi (bib27) 2020; 8 Tao, Jia, Xu, Liang, Zhang, Chen, Gao, Chen, Zheng, Yu (bib38) 2023; 20 Bonab, Shamsollahi (bib4) 2024; 87 Gramfort, Luessi, Larson, Engemann, Strohmeier, Brodbeck, Goj, Jas, Brooks, Parkkonen (bib16) 2013 Duffy, Garry, Talbot, Pasternak, Flinn, Minardi, Dookram, Grant, Fitzgerald, Rubano (bib12) 2018; 3 García-Salinas, Torres-García, Reyes-Garćia, Villaseñor-Pineda (bib14) 2023; 81 Horr, Mousavi, Han, Li, Tang (bib18) 2023; 17 Deng, Srinivasan, Lappas, D’Zmura (bib10) 2010; 7 Siuly, Li, Zhang (bib36) 2016; 11 Dong, Tian (bib11) 2023; 9 Wijayanto, Humairani, Hadiyoso, Rizal, Prasanna, Tripathi (bib41) 2023; 85 Chen, Huang, Bao, Pan, Li (bib7) 2023; 17 Pei, Barbour, Leuthardt, Schalk (bib30) 2011; 8 Priana, Tolle, Aknuranda, Arisetijono (bib32) 2018 Shoka, Dessouky, El-Sayed, Hemdan (bib35) 2023; 65 Hickok, Poeppel (bib17) 2000; 4 Brigham, K., Kumar, B.V., 2010.Subject identification from electroencephalogram (eeg) signals during imagined speech, In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE.1-8. Jian, Chen, McFarland (bib20) 2017; 130 DaSalla, Kambara, Sato, Koike (bib9) 2009; 22 Qureshi, Min, Park, Cho, Choi, Lee (bib33) 2017; 65 Mohanchandra, Saha (bib28) 2016; 1 Alhaddad, Kamel, Malibary, Thabit, Dahlwi, Hadi (bib2) 2012 Peirce (bib31) 2007; 162 Nguyen, Karavas, Artemiadis (bib29) 2017; 15 Lee, S.H., Lee, M., Lee, S.W., 2021.Functional connectivity of imagined speech and visual imagery based on spectral dynamics, In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI), IEEE.1-6. Laureys, Pellas, Van Eeckhout, Ghorbel, Schnakers, Perrin, Berre, Faymonville, Pantke, Damas (bib22) 2005; 150 Lee, Girolami, Sejnowski (bib24) 1999; 11 Wester, M., 2006.Unspoken speech-speech recognition based on electroencephalography.Master’s Thesis, Universitat Karlsruhe (TH). Liu, Wang, Gao (bib25) 2024; 85 Almanza-Conejo, Almanza-Ojeda, Contreras-Hernandez, Ibarra-Manzano (bib3) 2023; 35 Jigar, Pasha, Hari (bib21) 2018; 118 Cooney, C., Korik, A., Raffaella, F., Coyle, D., 2019.Classification of imagined spoken word-pairs using convolutional neural networks, In: The 8th Graz BCI Conference, 2019, Verlag der Technischen Universitat Graz.338-343. Sokolova, Japkowicz, Szpakowicz (bib37) 2006 Torrey, L., Shavlik, J., 2010.Transfer learning, In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global, 242-264. Zhao, S., Rudzicz, F., 2015.Classifying phonological categories in imagined and articulated speech, In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE.992-996. Saha, P., Abdul-Mageed, M., Fels, S., 2019.Speak your mind! towards imagined speech recognition with hierarchical deep learning.arXiv preprint arXiv:1904.05746. Abdulkader, Atia, Mostafa (bib1) 2015; 16 10.1016/j.bbr.2024.115295_bib39 Nguyen (10.1016/j.bbr.2024.115295_bib29) 2017; 15 Abdulkader (10.1016/j.bbr.2024.115295_bib1) 2015; 16 10.1016/j.bbr.2024.115295_bib13 Hossain (10.1016/j.bbr.2024.115295_bib19) 2024 10.1016/j.bbr.2024.115295_bib34 Almanza-Conejo (10.1016/j.bbr.2024.115295_bib3) 2023; 35 Cao (10.1016/j.bbr.2024.115295_bib6) 2022; 43 Liu (10.1016/j.bbr.2024.115295_bib25) 2024; 85 Shoka (10.1016/j.bbr.2024.115295_bib35) 2023; 65 Alhaddad (10.1016/j.bbr.2024.115295_bib2) 2012 Bonab (10.1016/j.bbr.2024.115295_bib4) 2024; 87 Horr (10.1016/j.bbr.2024.115295_bib18) 2023; 17 10.1016/j.bbr.2024.115295_bib5 10.1016/j.bbr.2024.115295_bib8 Laureys (10.1016/j.bbr.2024.115295_bib22) 2005; 150 Tao (10.1016/j.bbr.2024.115295_bib38) 2023; 20 Chen (10.1016/j.bbr.2024.115295_bib7) 2023; 17 Hickok (10.1016/j.bbr.2024.115295_bib17) 2000; 4 Sokolova (10.1016/j.bbr.2024.115295_bib37) 2006 Jigar (10.1016/j.bbr.2024.115295_bib21) 2018; 118 Mohanchandra (10.1016/j.bbr.2024.115295_bib28) 2016; 1 Siuly (10.1016/j.bbr.2024.115295_bib36) 2016; 11 Zhang (10.1016/j.bbr.2024.115295_bib42) 2023; 79 Ghitza (10.1016/j.bbr.2024.115295_bib15) 2013; 4 Dong (10.1016/j.bbr.2024.115295_bib11) 2023; 9 Gramfort (10.1016/j.bbr.2024.115295_bib16) 2013 10.1016/j.bbr.2024.115295_bib23 Qureshi (10.1016/j.bbr.2024.115295_bib33) 2017; 65 Pei (10.1016/j.bbr.2024.115295_bib30) 2011; 8 10.1016/j.bbr.2024.115295_bib43 DaSalla (10.1016/j.bbr.2024.115295_bib9) 2009; 22 10.1016/j.bbr.2024.115295_bib40 Ma (10.1016/j.bbr.2024.115295_bib26) 2021; 9 Peirce (10.1016/j.bbr.2024.115295_bib31) 2007; 162 Duffy (10.1016/j.bbr.2024.115295_bib12) 2018; 3 Lee (10.1016/j.bbr.2024.115295_bib24) 1999; 11 Wijayanto (10.1016/j.bbr.2024.115295_bib41) 2023; 85 Priana (10.1016/j.bbr.2024.115295_bib32) 2018 Jian (10.1016/j.bbr.2024.115295_bib20) 2017; 130 Mardini (10.1016/j.bbr.2024.115295_bib27) 2020; 8 Deng (10.1016/j.bbr.2024.115295_bib10) 2010; 7 García-Salinas (10.1016/j.bbr.2024.115295_bib14) 2023; 81 |
References_xml | – reference: Cooney, C., Korik, A., Raffaella, F., Coyle, D., 2019.Classification of imagined spoken word-pairs using convolutional neural networks, In: The 8th Graz BCI Conference, 2019, Verlag der Technischen Universitat Graz.338-343. – volume: 15 year: 2017 ident: bib29 article-title: Inferring imagined speech using eeg signals: a new approach using riemannian manifold features publication-title: J. Neural Eng. – reference: Wester, M., 2006.Unspoken speech-speech recognition based on electroencephalography.Master’s Thesis, Universitat Karlsruhe (TH). – volume: 130 start-page: 156 year: 2017 end-page: 164 ident: bib20 article-title: Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement publication-title: Brain Res. Bull. – start-page: 12 year: 2018 ident: bib32 article-title: User experience design of stroke patient communications using mobile finger (mofi) communication board with user center design approach publication-title: Int. J. Interact. Mob. Technol. – volume: 8 year: 2011 ident: bib30 article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans publication-title: J. Neural Eng. – volume: 43 start-page: 860 year: 2022 end-page: 879 ident: bib6 article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review publication-title: Hum. brain Mapp. – volume: 118 start-page: 1 year: 2018 end-page: 10 ident: bib21 article-title: Classification of imagery vowel speech using eeg and cross correlation publication-title: Int. J. Pure Appl. Math. – volume: 11 start-page: 417 year: 1999 end-page: 441 ident: bib24 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput. – reference: Lee, S.H., Lee, M., Lee, S.W., 2021.Functional connectivity of imagined speech and visual imagery based on spectral dynamics, In: 2021 9th International Winter Conference on Brain-Computer Interface (BCI), IEEE.1-6. – reference: Torrey, L., Shavlik, J., 2010.Transfer learning, In: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques. IGI global, 242-264. – reference: D’Zmura, M., Deng, S., Lappas, T., Thorpe, S., Srinivasan, R., 2009.Toward eeg sensing of imagined speech, In: Human-Computer Interaction. New Trends: 13th International Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings, Part I 13, Springer.40-48. – volume: 20 year: 2023 ident: bib38 article-title: Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential publication-title: J. Neural Eng. – volume: 35 start-page: 1409 year: 2023 end-page: 1422 ident: bib3 article-title: Emotion recognition in eeg signals using the continuous wavelet transform and cnns publication-title: Neural Comput. Appl. – volume: 3 year: 2018 ident: bib12 article-title: A pilot study assessing the spiritual, emotional, physical/environmental, and physiological needs of mechanically ventilated surgical intensive care unit patients via eye tracking devices, head nodding, and communication boards publication-title: Trauma Surg. Acute Care Open – volume: 150 start-page: 495 year: 2005 end-page: 611 ident: bib22 article-title: The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? publication-title: Prog. brain Res. – volume: 81 year: 2023 ident: bib14 article-title: Intra-subject class-incremental deep learning approach for eeg-based imagined speech recognition publication-title: Biomed. Signal Process. Control – volume: 162 start-page: 8 year: 2007 end-page: 13 ident: bib31 article-title: Psychopy—psychophysics software in python publication-title: J. Neurosci. Methods – reference: Saha, P., Abdul-Mageed, M., Fels, S., 2019.Speak your mind! towards imagined speech recognition with hierarchical deep learning.arXiv preprint arXiv:1904.05746. – volume: 65 start-page: 399 year: 2023 end-page: 412 ident: bib35 article-title: An efficient cnn based epileptic seizures detection framework using encrypted eeg signals for secure telemedicine applications publication-title: Alex. Eng. J. – start-page: 1015 year: 2006 end-page: 1021 ident: bib37 article-title: Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation publication-title: Australasian joint conference on artificial intelligence – start-page: 267 year: 2013 ident: bib16 article-title: Meg and eeg data analysis with mne-python publication-title: Front. Neurosci. – volume: 1 start-page: 3 year: 2016 ident: bib28 article-title: A communication paradigm using subvocalized speech: translating brain signals into speech publication-title: Augment. Hum. Res. – volume: 87 year: 2024 ident: bib4 article-title: Low-rank tensor restoration for erp extraction publication-title: Biomed. Signal Process. Control – volume: 22 start-page: 1334 year: 2009 end-page: 1339 ident: bib9 article-title: Single-trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Netw. – start-page: 1 year: 2024 end-page: 16 ident: bib19 article-title: Imagined speech classification exploiting eeg power spectrum features publication-title: Med. Biol. Eng. Comput. – volume: 65 start-page: 2168 year: 2017 end-page: 2177 ident: bib33 article-title: Multiclass classification of word imagination speech with hybrid connectivity features publication-title: IEEE Trans. Biomed. Eng. – volume: 85 year: 2023 ident: bib41 article-title: Epileptic seizure detection on a compressed eeg signal using energy measurement publication-title: Biomed. Signal Process. Control – reference: Zhao, S., Rudzicz, F., 2015.Classifying phonological categories in imagined and articulated speech, In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE.992-996. – volume: 17 year: 2023 ident: bib7 article-title: An eeg-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features publication-title: Front. Neurosci. – start-page: 234 year: 2012 end-page: 241 ident: bib2 article-title: P300 speller efficiency with common average reference publication-title: Autonomous and Intelligent Systems: Third International Conference, AIS 2012, Aveiro, Portugal, June 25-27, 2012. Proceedings – volume: 79 year: 2023 ident: bib42 article-title: Eeg-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition publication-title: Biomed. Signal Process. Control – volume: 8 start-page: 24046 year: 2020 end-page: 24055 ident: bib27 article-title: Enhanced detection of epileptic seizure using eeg signals in combination with machine learning classifiers publication-title: IEEE Access – volume: 9 start-page: 682 year: 2021 ident: bib26 article-title: Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency domain measures publication-title: Processes – reference: Brigham, K., Kumar, B.V., 2010.Subject identification from electroencephalogram (eeg) signals during imagined speech, In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE.1-8. – volume: 7 year: 2010 ident: bib10 article-title: Eeg classification of imagined syllable rhythm using hilbert spectrum methods publication-title: J. Neural Eng. – volume: 11 start-page: 141 year: 2016 end-page: 144 ident: bib36 article-title: Eeg signal analysis and classification publication-title: IEEE Trans. Neural Syst. Rehabilit Eng. – volume: 4 start-page: 138 year: 2013 ident: bib15 article-title: The theta-syllable: a unit of speech information defined by cortical function publication-title: Front. Psychol. – volume: 9 start-page: 297 year: 2023 end-page: 309 ident: bib11 article-title: A large database towards user-friendly ssvep-based bci publication-title: Brain Sci. Adv. – volume: 17 year: 2023 ident: bib18 article-title: Human behavior in free search online shopping scenarios can be predicted from eeg activation using hjorth parameters publication-title: Front. Neurosci. – volume: 85 year: 2024 ident: bib25 article-title: Cognitive neuroscience and robotics: advancements and future research directions publication-title: Robot. Comput. -Integr. Manuf. – volume: 16 start-page: 213 year: 2015 end-page: 230 ident: bib1 article-title: Brain computer interfacing: applications and challenges publication-title: Egypt. Inform. J. – volume: 4 start-page: 131 year: 2000 end-page: 138 ident: bib17 article-title: Towards a functional neuroanatomy of speech perception publication-title: Trends Cogn. Sci. – volume: 8 start-page: 24046 year: 2020 ident: 10.1016/j.bbr.2024.115295_bib27 article-title: Enhanced detection of epileptic seizure using eeg signals in combination with machine learning classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970012 – volume: 9 start-page: 297 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib11 article-title: A large database towards user-friendly ssvep-based bci publication-title: Brain Sci. Adv. doi: 10.26599/BSA.2023.9050020 – volume: 87 year: 2024 ident: 10.1016/j.bbr.2024.115295_bib4 article-title: Low-rank tensor restoration for erp extraction publication-title: Biomed. Signal Process. Control – ident: 10.1016/j.bbr.2024.115295_bib23 doi: 10.1109/BCI51272.2021.9385302 – ident: 10.1016/j.bbr.2024.115295_bib5 doi: 10.1109/BTAS.2010.5634515 – ident: 10.1016/j.bbr.2024.115295_bib8 – ident: 10.1016/j.bbr.2024.115295_bib43 doi: 10.1109/ICASSP.2015.7178118 – volume: 85 year: 2024 ident: 10.1016/j.bbr.2024.115295_bib25 article-title: Cognitive neuroscience and robotics: advancements and future research directions publication-title: Robot. Comput. -Integr. Manuf. doi: 10.1016/j.rcim.2023.102610 – start-page: 267 year: 2013 ident: 10.1016/j.bbr.2024.115295_bib16 article-title: Meg and eeg data analysis with mne-python publication-title: Front. Neurosci. – volume: 8 year: 2011 ident: 10.1016/j.bbr.2024.115295_bib30 article-title: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046028 – volume: 162 start-page: 8 year: 2007 ident: 10.1016/j.bbr.2024.115295_bib31 article-title: Psychopy—psychophysics software in python publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.11.017 – volume: 85 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib41 article-title: Epileptic seizure detection on a compressed eeg signal using energy measurement publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104872 – volume: 3 year: 2018 ident: 10.1016/j.bbr.2024.115295_bib12 article-title: A pilot study assessing the spiritual, emotional, physical/environmental, and physiological needs of mechanically ventilated surgical intensive care unit patients via eye tracking devices, head nodding, and communication boards publication-title: Trauma Surg. Acute Care Open doi: 10.1136/tsaco-2018-000180 – volume: 65 start-page: 2168 year: 2017 ident: 10.1016/j.bbr.2024.115295_bib33 article-title: Multiclass classification of word imagination speech with hybrid connectivity features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2786251 – ident: 10.1016/j.bbr.2024.115295_bib39 doi: 10.4018/978-1-60566-766-9.ch011 – volume: 81 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib14 article-title: Intra-subject class-incremental deep learning approach for eeg-based imagined speech recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104433 – volume: 11 start-page: 417 year: 1999 ident: 10.1016/j.bbr.2024.115295_bib24 article-title: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources publication-title: Neural Comput. doi: 10.1162/089976699300016719 – volume: 17 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib7 article-title: An eeg-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features publication-title: Front. Neurosci. – start-page: 12 year: 2018 ident: 10.1016/j.bbr.2024.115295_bib32 article-title: User experience design of stroke patient communications using mobile finger (mofi) communication board with user center design approach publication-title: Int. J. Interact. Mob. Technol. – volume: 35 start-page: 1409 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib3 article-title: Emotion recognition in eeg signals using the continuous wavelet transform and cnns publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07843-9 – volume: 43 start-page: 860 year: 2022 ident: 10.1016/j.bbr.2024.115295_bib6 article-title: Brain functional and effective connectivity based on electroencephalography recordings: a review publication-title: Hum. brain Mapp. doi: 10.1002/hbm.25683 – ident: 10.1016/j.bbr.2024.115295_bib13 doi: 10.1007/978-3-642-02574-7_5 – volume: 20 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib38 article-title: Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acb102 – volume: 4 start-page: 131 year: 2000 ident: 10.1016/j.bbr.2024.115295_bib17 article-title: Towards a functional neuroanatomy of speech perception publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01463-7 – ident: 10.1016/j.bbr.2024.115295_bib40 – start-page: 1015 year: 2006 ident: 10.1016/j.bbr.2024.115295_bib37 article-title: Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation – volume: 79 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib42 article-title: Eeg-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104157 – volume: 7 year: 2010 ident: 10.1016/j.bbr.2024.115295_bib10 article-title: Eeg classification of imagined syllable rhythm using hilbert spectrum methods publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/4/046006 – volume: 1 start-page: 3 year: 2016 ident: 10.1016/j.bbr.2024.115295_bib28 article-title: A communication paradigm using subvocalized speech: translating brain signals into speech publication-title: Augment. Hum. Res. doi: 10.1007/s41133-016-0001-z – volume: 9 start-page: 682 year: 2021 ident: 10.1016/j.bbr.2024.115295_bib26 article-title: Performance evaluation of epileptic seizure prediction using time, frequency, and time–frequency domain measures publication-title: Processes doi: 10.3390/pr9040682 – start-page: 1 year: 2024 ident: 10.1016/j.bbr.2024.115295_bib19 article-title: Imagined speech classification exploiting eeg power spectrum features publication-title: Med. Biol. Eng. Comput. – volume: 130 start-page: 156 year: 2017 ident: 10.1016/j.bbr.2024.115295_bib20 article-title: Eeg based zero-phase phase-locking value (plv) and effects of spatial filtering during actual movement publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2017.01.023 – start-page: 234 year: 2012 ident: 10.1016/j.bbr.2024.115295_bib2 article-title: P300 speller efficiency with common average reference – volume: 17 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib18 article-title: Human behavior in free search online shopping scenarios can be predicted from eeg activation using hjorth parameters publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1191213 – volume: 150 start-page: 495 year: 2005 ident: 10.1016/j.bbr.2024.115295_bib22 article-title: The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? publication-title: Prog. brain Res. doi: 10.1016/S0079-6123(05)50034-7 – volume: 15 year: 2017 ident: 10.1016/j.bbr.2024.115295_bib29 article-title: Inferring imagined speech using eeg signals: a new approach using riemannian manifold features publication-title: J. Neural Eng. – volume: 65 start-page: 399 year: 2023 ident: 10.1016/j.bbr.2024.115295_bib35 article-title: An efficient cnn based epileptic seizures detection framework using encrypted eeg signals for secure telemedicine applications publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.10.014 – volume: 16 start-page: 213 year: 2015 ident: 10.1016/j.bbr.2024.115295_bib1 article-title: Brain computer interfacing: applications and challenges publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.06.002 – volume: 4 start-page: 138 year: 2013 ident: 10.1016/j.bbr.2024.115295_bib15 article-title: The theta-syllable: a unit of speech information defined by cortical function publication-title: Front. Psychol. doi: 10.3389/fpsyg.2013.00138 – ident: 10.1016/j.bbr.2024.115295_bib34 doi: 10.21437/Interspeech.2019-3041 – volume: 11 start-page: 141 year: 2016 ident: 10.1016/j.bbr.2024.115295_bib36 article-title: Eeg signal analysis and classification publication-title: IEEE Trans. Neural Syst. Rehabilit Eng. – volume: 118 start-page: 1 year: 2018 ident: 10.1016/j.bbr.2024.115295_bib21 article-title: Classification of imagery vowel speech using eeg and cross correlation publication-title: Int. J. Pure Appl. Math. – volume: 22 start-page: 1334 year: 2009 ident: 10.1016/j.bbr.2024.115295_bib9 article-title: Single-trial classification of vowel speech imagery using common spatial patterns publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.05.008 |
SSID | ssj0004051 |
Score | 2.4828842 |
Snippet | The electroencephalogram (EEG) based brain-computer interface (BCI) system employing imagined speech serves as a mechanism for decoding EEG signals to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 115295 |
SubjectTerms | Adult Brain - physiology Brain-computer interface Brain-Computer Interfaces Electroencephalogram Electroencephalography - methods Female Humans Imagination - physiology Imagined speech Machine Learning Male Neural Networks, Computer Speech - physiology Speech recognition Young Adult |
Title | Towards imagined speech: Identification of brain states from EEG signals for BCI-based communication systems |
URI | https://dx.doi.org/10.1016/j.bbr.2024.115295 https://www.ncbi.nlm.nih.gov/pubmed/39428037 https://www.proquest.com/docview/3118834107 |
Volume | 477 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7YULoi2PpVANEuKAZHaT2E7S27LasgXRC63Um-VX1EU0u2q2By78dmbyAHooB66RrFgeex72980H8MZbO02jKkSV2SikDkG4aVKJQNlxkebKSsls5C9nenkhP12qyx2YD1wYhlX2vr_z6a237r9M-tWcbFaryVdKViicUskg2yYpVLfvphTtixHszk4_L8_-0COnqpMl1FrwgOFxs4V5OcddQVNJvoPfvO4LT_eln20YOnkMj_r8EWfdFPdgJ9b7cDCrqXa-_oFvsUV0tlflB_D9vMXENri6Zi2iGLDZxOivjrGj51b9fR2uK3QsFYEtvahB5pzgYvERGd1B-xMps8UP81PBMS-g_5tUgl0v6OYJXJwszudL0asrCE9nfCusLBPviqSiCiiln6cqWCd1oaRT3tkgsyLE3EUt8-DzStlcR8e9fcpC56FU2VMY1es6PgfUIcoyZprF0yWDsMo08V5H7cpMkbHH8G5YVLPpmmiYAV32zZAFDFvAdBYYgxyW3dzZCYac_L-GvR5MZOiE8LOHreP6tjEZ1VAFBetpPoZnne1-zyIrJctz5S_-76eH8DBlPWBGccuXMNre3MZXlKRs3RE8eP8zOeq34i8XouUD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V6QEuCCiPUB6DhDggWUl2be8utxClJLTNhVTqzfJr1SC6ibrpgX_PzD54HMqB60rWWh57Hvb3zQfwzls7TqLKRZnaKKQOQbjxpBSBsuM8yZSVktnI5yu9uJBfLtXlAcx6LgzDKjvf3_r0xlt3X0bdao52m83oKyUrFE6pZJBNkxSq2w8li1oP4HC6PF2sftMjx6qVJdRa8ID-cbOBeTnHXUETSb6D37zuCk93pZ9NGDp5CA-6_BGn7RQfwUGsHsPRtKLa-foHvscG0dlclR_B93WDia1xc81aRDFgvYvRX33Elp5bdvd1uC3RsVQENvSiGplzgvP5Z2R0B-1PpMwWP82WgmNeQP8nqQTbXtD1E7g4ma9nC9GpKwhPZ3wvrCwm3uWTkiqghH6eqGCd1LmSTnlng0zzEDMXtcyCz0plMx0d9_Ypcp2FQqVPYVBtq_gcUIcoi5hqFk-XDMIqkon3OmpXpIqMPYQP_aKaXdtEw_Tosm-GLGDYAqa1wBBkv-zmr51gyMn_a9jb3kSGTgg_e9gqbm9rk1INlVOwHmdDeNba7tcs0kKyPFf24v9--gbuLdbnZ-ZsuTo9hvsJawMzolu-hMH-5ja-ooRl7153G_Inf0Xm6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+imagined+speech%3A+Identification+of+brain+states+from+EEG+signals+for+BCI-based+communication+systems&rft.jtitle=Behavioural+brain+research&rft.au=V.%2C+Haresh+M.&rft.au=Begum%2C+B.+Shameedha&rft.date=2025-02-04&rft.pub=Elsevier+B.V&rft.issn=0166-4328&rft.volume=477&rft_id=info:doi/10.1016%2Fj.bbr.2024.115295&rft.externalDocID=S0166432824004510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-4328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-4328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-4328&client=summon |