Approximations of Theories of Unars
Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties...
Saved in:
| Published in | Қарағанды университетінің хабаршысы. Математика сериясы Vol. 119; no. 3; pp. 176 - 183 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Academician Ye.A. Buketov Karaganda University
30.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2518-7929 2663-5011 2663-5011 |
| DOI | 10.31489/2025m3/176-183 |
Cover
| Abstract | Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties under ultraproduct constructions. Pseudofinite structures – those that are elementarily equivalent to ultraproducts of finite models–serve as an important bridge between the finite and the infinite, allowing the transfer of finite combinatorial intuition to the study of infinite models. In the context of unary algebras (unars), a classification of unar theories provides a foundation for analyzing pseudofiniteness within this framework. Based on this classification, a characterization of pseudofinite unar theories is obtained, along with several necessary and sufficient conditions for a unar theory to be pseudofinite. Furthermore, various forms of approximation to unar theories are investigated. These include approximations not only for arbitrary unar theories but also for the strongly minimal unar theory. Different types of approximating sequences of finite structures are examined, shedding light on the model-theoretic and algebraic properties of unars and enhancing our understanding of their finite counterparts. |
|---|---|
| AbstractList | Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties under ultraproduct constructions. Pseudofinite structures – those that are elementarily equivalent to ultraproducts of finite models–serve as an important bridge between the finite and the infinite, allowing the transfer of finite combinatorial intuition to the study of infinite models. In the context of unary algebras (unars), a classification of unar theories provides a foundation for analyzing pseudofiniteness within this framework. Based on this classification, a characterization of pseudofinite unar theories is obtained, along with several necessary and sufficient conditions for a unar theory to be pseudofinite. Furthermore, various forms of approximation to unar theories are investigated. These include approximations not only for arbitrary unar theories but also for the strongly minimal unar theory. Different types of approximating sequences of finite structures are examined, shedding light on the model-theoretic and algebraic properties of unars and enhancing our understanding of their finite counterparts. |
| Author | Markhabatov, N.D. |
| Author_xml | – sequence: 1 givenname: N.D. orcidid: 0000-0002-5088-0208 surname: Markhabatov fullname: Markhabatov, N.D. |
| BookMark | eNqFkE1LAzEQhoNUsNaevRY8r51kkmxyLMWPQsFLew7ZbKJbtpslW9H-e0NXvHqZeRl4Xobnlky62HlC7ik8IuVKLxkwccQlLWVBFV6RKZMSCwGUTnIWVBWlZvqGzIfhAABMM9RcTMnDqu9T_G6O9tTEbljEsNh9-Jgaf8n7zqbhjlwH2w5-_rtnZP_8tFu_Ftu3l816tS0cAj_l6R2va0t5zRTWyCCwSkotmdMlF1YAZ65CUMJq4KBrHrRnUiFmBJzDGdmMvXW0B9On_FQ6m2gbcznE9G5sOjWu9YaXQCss0Wsqeah8pQKVNbVaBOTKVrkLxq7PrrfnL9u2f4UUzMWZGZ2Z7MxkZxlZjohLcRiSD_8SP88fbOU |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.31489/2025m3/176-183 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2663-5011 |
| EndPage | 183 |
| ExternalDocumentID | oai_doaj_org_article_4701b373e9164fbeb8f16d1a95f348ab 10.31489/2025m3/176-183 10_31489_2025m3_176_183 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c304t-c3ec4dda14d283d320f2b66962c9745a5042cb3085a90409d4f9e26833a140cc3 |
| IEDL.DBID | DOA |
| ISSN | 2518-7929 2663-5011 |
| IngestDate | Fri Oct 03 12:45:36 EDT 2025 Sat Oct 04 05:49:24 EDT 2025 Thu Oct 02 04:30:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c304t-c3ec4dda14d283d320f2b66962c9745a5042cb3085a90409d4f9e26833a140cc3 |
| ORCID | 0000-0002-5088-0208 |
| OpenAccessLink | https://doaj.org/article/4701b373e9164fbeb8f16d1a95f348ab |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4701b373e9164fbeb8f16d1a95f348ab unpaywall_primary_10_31489_2025m3_176_183 crossref_primary_10_31489_2025m3_176_183 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Қарағанды университетінің хабаршысы. Математика сериясы |
| PublicationYear | 2025 |
| Publisher | Academician Ye.A. Buketov Karaganda University |
| Publisher_xml | – name: Academician Ye.A. Buketov Karaganda University |
| SSID | ssj0002923945 |
| Score | 2.3073888 |
| Snippet | Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 176 |
| SubjectTerms | Collatz Hypotesis pseudofinite structure pseudofinite theory smoothly approximated structure strongly minimal unar unar |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6Cc2hzSFraECdtMTSH9LCWVvuQ9uiUhlBoaCCG5CT2GYJjKdgybfLrOyvJps2lFHoRYplF0sys5ptl5xuA48ylqbdCE8qCJhihAylc8ARdhQXE9yFt2wF9u5DnU_71WlxvweW6FmbeLMdmNfNN3XIJjWdPSUsbGLkikvmGyXRJIglFdTdLegUnLnLL19oliqokjyV921IgPB_A9vTi--QmNpkTtCC5ajuXYVxiRKBzd3Q_DLMCFTcCxJwlNJeEFuyPSNUS-u_Ai1X1oB9_6Pv736LQ2R4s1u_fHT6ZjVeNGdunZ9SO__UDX8Fuj1lHk07kNWz56g18nEQ28p93XenjclSHUVvnj5l3vJ9WmDG_henZl6vP56TvuEAsS3mDV2-5c5pyh7DDsSwNmZFSycxi3iG0wCVuDUOYphWufuV4UD6TBWM4JbWW7cOgqit_ACOpDZW5xV-pcJzh_FhEm7q47aU1wqIhnKy1Wz50xBolJiStIcrOECUaokRDDOE0an8jFhmx24F6cVv26il5nlLDcuYR7_JgvCkClY5qJQLjhTZD-LSx3d8eePgPskfwMg50R0jewaBZrPx7xCmN-dB73i-R6uUv priority: 102 providerName: Unpaywall |
| Title | Approximations of Theories of Unars |
| URI | https://mts.buketov.edu.kz/index.php/mathematics-vestnik/article/download/919/709 https://doaj.org/article/4701b373e9164fbeb8f16d1a95f348ab |
| UnpaywallVersion | publishedVersion |
| Volume | 119 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2663-5011 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002923945 issn: 2518-7929 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yD-pBFBXnxyjoQQ9hSZOmzXGKYwgODxbmqeQThNmNuaH-9740c8zTLl5KKU3T_l7y3u-V94HQdWoJcSZTmDKvMFhojwvrHYalwjzwe0-adkBPQzEo-eMoG621-goxYbE8cASuy3NCNcuZAx7DvXa68FRYqmTmGS-UDtqXFHLNmQo6OJWh5XeIXwT7XeAcSECs68OA_svg8WfvrEtzgWnB_pikpnL_HtpZ1FP1_anG4zVz0z9A-0uemPTi-x2iLVcfoateqAD-9RbTDT-SiU-a3HrwdsN5WYOXeozK_sPL_QAvuxxgwwifw9EZbq2i3IKptywlPtVCSJEa4PqZymBbGc2AGikJO05a7qVLRcEYDCHGsBPUqie1O0WJUJqK3ID6yixnMD4krhIbfjUpBVSkjW5-P7SaxmIWFTgBDSZVxKQCTCrApI3uAhCr20IV6uYCyKZayqbaJJs2ul3BuGnCs_-Y8BzthqfGeI4L1JrPFu4SSMNcd5r10UHb5fC59_oDdQa59w |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6Cc2hzSFraECdtMTSH9LCWVvuQ9uiUhlBoaCCG5CT2GYJjKdgybfLrOyvJps2lFHoRYplF0sys5ptl5xuA48ylqbdCE8qCJhihAylc8ARdhQXE9yFt2wF9u5DnU_71WlxvweW6FmbeLMdmNfNN3XIJjWdPSUsbGLkikvmGyXRJIglFdTdLegUnLnLL19oliqokjyV921IgPB_A9vTi--QmNpkTtCC5ajuXYVxiRKBzd3Q_DLMCFTcCxJwlNJeEFuyPSNUS-u_Ai1X1oB9_6Pv736LQ2R4s1u_fHT6ZjVeNGdunZ9SO__UDX8Fuj1lHk07kNWz56g18nEQ28p93XenjclSHUVvnj5l3vJ9WmDG_henZl6vP56TvuEAsS3mDV2-5c5pyh7DDsSwNmZFSycxi3iG0wCVuDUOYphWufuV4UD6TBWM4JbWW7cOgqit_ACOpDZW5xV-pcJzh_FhEm7q47aU1wqIhnKy1Wz50xBolJiStIcrOECUaokRDDOE0an8jFhmx24F6cVv26il5nlLDcuYR7_JgvCkClY5qJQLjhTZD-LSx3d8eePgPskfwMg50R0jewaBZrPx7xCmN-dB73i-R6uUv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximations+of+Theories+of+Unars&rft.jtitle=%D2%9A%D0%B0%D1%80%D0%B0%D2%93%D0%B0%D0%BD%D0%B4%D1%8B+%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82%D1%96%D0%BD%D1%96%D2%A3+%D1%85%D0%B0%D0%B1%D0%B0%D1%80%D1%88%D1%8B%D1%81%D1%8B.+%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0+%D1%81%D0%B5%D1%80%D0%B8%D1%8F%D1%81%D1%8B&rft.au=Markhabatov%2C+N.D.&rft.date=2025-09-30&rft.issn=2518-7929&rft.eissn=2663-5011&rft.volume=119&rft.issue=3&rft.spage=176&rft.epage=183&rft_id=info:doi/10.31489%2F2025m3%2F176-183&rft.externalDBID=n%2Fa&rft.externalDocID=10_31489_2025m3_176_183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2518-7929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2518-7929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2518-7929&client=summon |