Approximations of Theories of Unars

Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties...

Full description

Saved in:
Bibliographic Details
Published inҚарағанды университетінің хабаршысы. Математика сериясы Vol. 119; no. 3; pp. 176 - 183
Main Author Markhabatov, N.D.
Format Journal Article
LanguageEnglish
Published Academician Ye.A. Buketov Karaganda University 30.09.2025
Subjects
Online AccessGet full text
ISSN2518-7929
2663-5011
2663-5011
DOI10.31489/2025m3/176-183

Cover

Abstract Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties under ultraproduct constructions. Pseudofinite structures – those that are elementarily equivalent to ultraproducts of finite models–serve as an important bridge between the finite and the infinite, allowing the transfer of finite combinatorial intuition to the study of infinite models. In the context of unary algebras (unars), a classification of unar theories provides a foundation for analyzing pseudofiniteness within this framework. Based on this classification, a characterization of pseudofinite unar theories is obtained, along with several necessary and sufficient conditions for a unar theory to be pseudofinite. Furthermore, various forms of approximation to unar theories are investigated. These include approximations not only for arbitrary unar theories but also for the strongly minimal unar theory. Different types of approximating sequences of finite structures are examined, shedding light on the model-theoretic and algebraic properties of unars and enhancing our understanding of their finite counterparts.
AbstractList Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is understood in terms of a given ultrafilter. This fundamental result plays a key role in understanding the behavior of first-order properties under ultraproduct constructions. Pseudofinite structures – those that are elementarily equivalent to ultraproducts of finite models–serve as an important bridge between the finite and the infinite, allowing the transfer of finite combinatorial intuition to the study of infinite models. In the context of unary algebras (unars), a classification of unar theories provides a foundation for analyzing pseudofiniteness within this framework. Based on this classification, a characterization of pseudofinite unar theories is obtained, along with several necessary and sufficient conditions for a unar theory to be pseudofinite. Furthermore, various forms of approximation to unar theories are investigated. These include approximations not only for arbitrary unar theories but also for the strongly minimal unar theory. Different types of approximating sequences of finite structures are examined, shedding light on the model-theoretic and algebraic properties of unars and enhancing our understanding of their finite counterparts.
Author Markhabatov, N.D.
Author_xml – sequence: 1
  givenname: N.D.
  orcidid: 0000-0002-5088-0208
  surname: Markhabatov
  fullname: Markhabatov, N.D.
BookMark eNqFkE1LAzEQhoNUsNaevRY8r51kkmxyLMWPQsFLew7ZbKJbtpslW9H-e0NXvHqZeRl4Xobnlky62HlC7ik8IuVKLxkwccQlLWVBFV6RKZMSCwGUTnIWVBWlZvqGzIfhAABMM9RcTMnDqu9T_G6O9tTEbljEsNh9-Jgaf8n7zqbhjlwH2w5-_rtnZP_8tFu_Ftu3l816tS0cAj_l6R2va0t5zRTWyCCwSkotmdMlF1YAZ65CUMJq4KBrHrRnUiFmBJzDGdmMvXW0B9On_FQ6m2gbcznE9G5sOjWu9YaXQCss0Wsqeah8pQKVNbVaBOTKVrkLxq7PrrfnL9u2f4UUzMWZGZ2Z7MxkZxlZjohLcRiSD_8SP88fbOU
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.31489/2025m3/176-183
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2663-5011
EndPage 183
ExternalDocumentID oai_doaj_org_article_4701b373e9164fbeb8f16d1a95f348ab
10.31489/2025m3/176-183
10_31489_2025m3_176_183
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c304t-c3ec4dda14d283d320f2b66962c9745a5042cb3085a90409d4f9e26833a140cc3
IEDL.DBID DOA
ISSN 2518-7929
2663-5011
IngestDate Fri Oct 03 12:45:36 EDT 2025
Sat Oct 04 05:49:24 EDT 2025
Thu Oct 02 04:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c304t-c3ec4dda14d283d320f2b66962c9745a5042cb3085a90409d4f9e26833a140cc3
ORCID 0000-0002-5088-0208
OpenAccessLink https://doaj.org/article/4701b373e9164fbeb8f16d1a95f348ab
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4701b373e9164fbeb8f16d1a95f348ab
unpaywall_primary_10_31489_2025m3_176_183
crossref_primary_10_31489_2025m3_176_183
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Қарағанды университетінің хабаршысы. Математика сериясы
PublicationYear 2025
Publisher Academician Ye.A. Buketov Karaganda University
Publisher_xml – name: Academician Ye.A. Buketov Karaganda University
SSID ssj0002923945
Score 2.3073888
Snippet Lo´s’s theorem states that a first-order formula holds in an ultraproduct of structures if and only if it holds in “almost all” factors, where “almost all” is...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 176
SubjectTerms Collatz Hypotesis
pseudofinite structure
pseudofinite theory
smoothly approximated structure
strongly minimal unar
unar
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6Cc2hzSFraECdtMTSH9LCWVvuQ9uiUhlBoaCCG5CT2GYJjKdgybfLrOyvJps2lFHoRYplF0sys5ptl5xuA48ylqbdCE8qCJhihAylc8ARdhQXE9yFt2wF9u5DnU_71WlxvweW6FmbeLMdmNfNN3XIJjWdPSUsbGLkikvmGyXRJIglFdTdLegUnLnLL19oliqokjyV921IgPB_A9vTi--QmNpkTtCC5ajuXYVxiRKBzd3Q_DLMCFTcCxJwlNJeEFuyPSNUS-u_Ai1X1oB9_6Pv736LQ2R4s1u_fHT6ZjVeNGdunZ9SO__UDX8Fuj1lHk07kNWz56g18nEQ28p93XenjclSHUVvnj5l3vJ9WmDG_henZl6vP56TvuEAsS3mDV2-5c5pyh7DDsSwNmZFSycxi3iG0wCVuDUOYphWufuV4UD6TBWM4JbWW7cOgqit_ACOpDZW5xV-pcJzh_FhEm7q47aU1wqIhnKy1Wz50xBolJiStIcrOECUaokRDDOE0an8jFhmx24F6cVv26il5nlLDcuYR7_JgvCkClY5qJQLjhTZD-LSx3d8eePgPskfwMg50R0jewaBZrPx7xCmN-dB73i-R6uUv
  priority: 102
  providerName: Unpaywall
Title Approximations of Theories of Unars
URI https://mts.buketov.edu.kz/index.php/mathematics-vestnik/article/download/919/709
https://doaj.org/article/4701b373e9164fbeb8f16d1a95f348ab
UnpaywallVersion publishedVersion
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2663-5011
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002923945
  issn: 2518-7929
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yD-pBFBXnxyjoQQ9hSZOmzXGKYwgODxbmqeQThNmNuaH-9740c8zTLl5KKU3T_l7y3u-V94HQdWoJcSZTmDKvMFhojwvrHYalwjzwe0-adkBPQzEo-eMoG621-goxYbE8cASuy3NCNcuZAx7DvXa68FRYqmTmGS-UDtqXFHLNmQo6OJWh5XeIXwT7XeAcSECs68OA_svg8WfvrEtzgWnB_pikpnL_HtpZ1FP1_anG4zVz0z9A-0uemPTi-x2iLVcfoateqAD-9RbTDT-SiU-a3HrwdsN5WYOXeozK_sPL_QAvuxxgwwifw9EZbq2i3IKptywlPtVCSJEa4PqZymBbGc2AGikJO05a7qVLRcEYDCHGsBPUqie1O0WJUJqK3ID6yixnMD4krhIbfjUpBVSkjW5-P7SaxmIWFTgBDSZVxKQCTCrApI3uAhCr20IV6uYCyKZayqbaJJs2ul3BuGnCs_-Y8BzthqfGeI4L1JrPFu4SSMNcd5r10UHb5fC59_oDdQa59w
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB6Cc2hzSFraECdtMTSH9LCWVvuQ9uiUhlBoaCCG5CT2GYJjKdgybfLrOyvJps2lFHoRYplF0sys5ptl5xuA48ylqbdCE8qCJhihAylc8ARdhQXE9yFt2wF9u5DnU_71WlxvweW6FmbeLMdmNfNN3XIJjWdPSUsbGLkikvmGyXRJIglFdTdLegUnLnLL19oliqokjyV921IgPB_A9vTi--QmNpkTtCC5ajuXYVxiRKBzd3Q_DLMCFTcCxJwlNJeEFuyPSNUS-u_Ai1X1oB9_6Pv736LQ2R4s1u_fHT6ZjVeNGdunZ9SO__UDX8Fuj1lHk07kNWz56g18nEQ28p93XenjclSHUVvnj5l3vJ9WmDG_henZl6vP56TvuEAsS3mDV2-5c5pyh7DDsSwNmZFSycxi3iG0wCVuDUOYphWufuV4UD6TBWM4JbWW7cOgqit_ACOpDZW5xV-pcJzh_FhEm7q47aU1wqIhnKy1Wz50xBolJiStIcrOECUaokRDDOE0an8jFhmx24F6cVv26il5nlLDcuYR7_JgvCkClY5qJQLjhTZD-LSx3d8eePgPskfwMg50R0jewaBZrPx7xCmN-dB73i-R6uUv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximations+of+Theories+of+Unars&rft.jtitle=%D2%9A%D0%B0%D1%80%D0%B0%D2%93%D0%B0%D0%BD%D0%B4%D1%8B+%D1%83%D0%BD%D0%B8%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%82%D0%B5%D1%82%D1%96%D0%BD%D1%96%D2%A3+%D1%85%D0%B0%D0%B1%D0%B0%D1%80%D1%88%D1%8B%D1%81%D1%8B.+%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0+%D1%81%D0%B5%D1%80%D0%B8%D1%8F%D1%81%D1%8B&rft.au=Markhabatov%2C+N.D.&rft.date=2025-09-30&rft.issn=2518-7929&rft.eissn=2663-5011&rft.volume=119&rft.issue=3&rft.spage=176&rft.epage=183&rft_id=info:doi/10.31489%2F2025m3%2F176-183&rft.externalDBID=n%2Fa&rft.externalDocID=10_31489_2025m3_176_183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2518-7929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2518-7929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2518-7929&client=summon