A 30 mm Wide DC-Driven Brush-Shaped Cold Air Plasma Without Airflow Supplement

This paper reports a cold atmospheric pressure DC-driven air plasma brush. Three stainless steel needles are symmetrically mounted on a slot shaped PVC slab to act as the elec- trodes. The brush driven by a direct current (DC) power supply can generate an air plasma glow up to 30 mm wide with no ine...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 16; no. 4; pp. 329 - 334
Main Author 陈兆权 郑晓亮 夏广庆 李平 胡业林 杜志文 祝龙记 刘明海 陈明功 胡希伟
Format Journal Article
LanguageEnglish
Published 01.04.2014
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/1009-0630/16/4/06

Cover

More Information
Summary:This paper reports a cold atmospheric pressure DC-driven air plasma brush. Three stainless steel needles are symmetrically mounted on a slot shaped PVC slab to act as the elec- trodes. The brush driven by a direct current (DC) power supply can generate an air plasma glow up to 30 mm wide with no inert gas addition and no air flow supplement. The plasma glow appears uniform no matter what kinds of material are processed. The measured current and the simulated current all show that each pulsed discharge including two peaks always oc- curs for different gaps between electrodes. Emission spectra measurement result shows that the obtained rotational temperatures are 300 K and the vibrational temperatures are 2250 K. Some reactive species are presented in the plasma glow, which suggest that the proposed plasma brush is beneficial to practical applications.
Bibliography:This paper reports a cold atmospheric pressure DC-driven air plasma brush. Three stainless steel needles are symmetrically mounted on a slot shaped PVC slab to act as the elec- trodes. The brush driven by a direct current (DC) power supply can generate an air plasma glow up to 30 mm wide with no inert gas addition and no air flow supplement. The plasma glow appears uniform no matter what kinds of material are processed. The measured current and the simulated current all show that each pulsed discharge including two peaks always oc- curs for different gaps between electrodes. Emission spectra measurement result shows that the obtained rotational temperatures are 300 K and the vibrational temperatures are 2250 K. Some reactive species are presented in the plasma glow, which suggest that the proposed plasma brush is beneficial to practical applications.
atmospheric pressure plasma, cold plasma plume, DC-driven discharge, airplasma
34-1187/TL
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1009-0630
DOI:10.1088/1009-0630/16/4/06