Guessing subject to distortion

We investigate the problem of guessing a random vector X within distortion level D. Our aim is to characterize the best attainable performance in the sense of minimizing, in some probabilistic sense, the number of required guesses G(X) until the error falls below D. The underlying motivation is that...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 44; no. 3; pp. 1041 - 1056
Main Authors Arikan, E., Merhav, N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.1998
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/18.669158

Cover

More Information
Summary:We investigate the problem of guessing a random vector X within distortion level D. Our aim is to characterize the best attainable performance in the sense of minimizing, in some probabilistic sense, the number of required guesses G(X) until the error falls below D. The underlying motivation is that G(X) is the number of candidate codewords to be examined by a rate-distortion block encoder until a satisfactory codeword is found. In particular, for memoryless sources, we provide a single-letter characterization of the least achievable exponential growth rate of the /spl rho/th moment of G(X) as the dimension of the random vector X grows without bound. In this context, we propose an asymptotically optimal guessing scheme that is universal both with respect to the information source and the value of /spl rho/. We then study some properties of the exponent function E(D, /spl rho/) along with its relation to the source-coding exponents. Finally, we provide extensions of our main results to the Gaussian case, guessing with side information, and sources with memory.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.669158