Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations

Pectin is a group of structurally diverse dietary fibers, very abundant in agri-food waste and by-products such as those generated during apple cider manufacturing. In recent years, pectin and pectinoligosaccharides have demonstrated good fermentation properties and prominent health promoting traits...

Full description

Saved in:
Bibliographic Details
Published inFood hydrocolloids Vol. 133; p. 107958
Main Authors Calvete-Torre, Ines, Sabater, Carlos, Antón, María José, Moreno, F. Javier, Riestra, Sabino, Margolles, Abelardo, Ruiz, Lorena
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN0268-005X
DOI10.1016/j.foodhyd.2022.107958

Cover

Abstract Pectin is a group of structurally diverse dietary fibers, very abundant in agri-food waste and by-products such as those generated during apple cider manufacturing. In recent years, pectin and pectinoligosaccharides have demonstrated good fermentation properties and prominent health promoting traits, particularly ameliorating certain inflammatory conditions. In previous investigations apple pomace derived from production of monovarietal Asturian ciders was demonstrated to represent a source of pectin with varied structural characteristics. In this work we investigated in vitro the modulatory effect of pectin and pomace fractions derived from the production of selected monovarietal ciders on human microbiota from healthy subjects and inflammatory bowel disease (IBD) patients through fecal batch fermentations and 16S rRNA gene sequencing. Overall, these fractions promoted the growth of Akkermansia, Lachnospiraceae UCG-010, Prevotella, Sucinivibrio and Turicibacter on samples from healthy donors, while Blautia, Lachnospiraceae CAG-56, Dialister, Eubacterium eligens and Intestinimonas were stimulated in fermentations from IBD patients. The growth of Akkermansia, Blautia, E. eligens group, Intestinimonas and Succinivibrio only occurred with pomace and pectin derived from the tested by-products, and not with other non-pectic prebiotics/substrates. Galactose content and (Arabinose + Galactose)/Rhamnose ratio in apple pomace, and galactose and rhamnose content in pectin, were positively associated to the promotion of most of these genera. This work comprehensively characterize the gut microbiota modulation of apple pectin and pomace fractions derived from cider by-products, demonstrating diverse modulatory capacity of structurally distinct pectin and apple pomace fractions. This diversifies the opportunities to achieve cider by-products valorization through formulation of novel prebiotics for particular population groups. [Display omitted] •Apple pomace and pectin modulated beneficial gut bacteria including Eubacterium and Lachnospiraceae in fecal fermentations.•Apple pomace promoted short-chain fatty acid producers in Chron's disease microbiota.•Galactose and rhamnose contents of pectin and apple pomace determine their modulatory activity.•Similar composition-activity relationships were found for apple pomace and pectin.
AbstractList Pectin is a group of structurally diverse dietary fibers, very abundant in agri-food waste and by-products such as those generated during apple cider manufacturing. In recent years, pectin and pectinoligosaccharides have demonstrated good fermentation properties and prominent health promoting traits, particularly ameliorating certain inflammatory conditions. In previous investigations apple pomace derived from production of monovarietal Asturian ciders was demonstrated to represent a source of pectin with varied structural characteristics. In this work we investigated in vitro the modulatory effect of pectin and pomace fractions derived from the production of selected monovarietal ciders on human microbiota from healthy subjects and inflammatory bowel disease (IBD) patients through fecal batch fermentations and 16S rRNA gene sequencing. Overall, these fractions promoted the growth of Akkermansia, Lachnospiraceae UCG-010, Prevotella, Sucinivibrio and Turicibacter on samples from healthy donors, while Blautia, Lachnospiraceae CAG-56, Dialister, Eubacterium eligens and Intestinimonas were stimulated in fermentations from IBD patients. The growth of Akkermansia, Blautia, E. eligens group, Intestinimonas and Succinivibrio only occurred with pomace and pectin derived from the tested by-products, and not with other non-pectic prebiotics/substrates. Galactose content and (Arabinose + Galactose)/Rhamnose ratio in apple pomace, and galactose and rhamnose content in pectin, were positively associated to the promotion of most of these genera. This work comprehensively characterize the gut microbiota modulation of apple pectin and pomace fractions derived from cider by-products, demonstrating diverse modulatory capacity of structurally distinct pectin and apple pomace fractions. This diversifies the opportunities to achieve cider by-products valorization through formulation of novel prebiotics for particular population groups.
Pectin is a group of structurally diverse dietary fibers, very abundant in agri-food waste and by-products such as those generated during apple cider manufacturing. In recent years, pectin and pectinoligosaccharides have demonstrated good fermentation properties and prominent health promoting traits, particularly ameliorating certain inflammatory conditions. In previous investigations apple pomace derived from production of monovarietal Asturian ciders was demonstrated to represent a source of pectin with varied structural characteristics. In this work we investigated in vitro the modulatory effect of pectin and pomace fractions derived from the production of selected monovarietal ciders on human microbiota from healthy subjects and inflammatory bowel disease (IBD) patients through fecal batch fermentations and 16S rRNA gene sequencing. Overall, these fractions promoted the growth of Akkermansia, Lachnospiraceae UCG-010, Prevotella, Sucinivibrio and Turicibacter on samples from healthy donors, while Blautia, Lachnospiraceae CAG-56, Dialister, Eubacterium eligens and Intestinimonas were stimulated in fermentations from IBD patients. The growth of Akkermansia, Blautia, E. eligens group, Intestinimonas and Succinivibrio only occurred with pomace and pectin derived from the tested by-products, and not with other non-pectic prebiotics/substrates. Galactose content and (Arabinose + Galactose)/Rhamnose ratio in apple pomace, and galactose and rhamnose content in pectin, were positively associated to the promotion of most of these genera. This work comprehensively characterize the gut microbiota modulation of apple pectin and pomace fractions derived from cider by-products, demonstrating diverse modulatory capacity of structurally distinct pectin and apple pomace fractions. This diversifies the opportunities to achieve cider by-products valorization through formulation of novel prebiotics for particular population groups. [Display omitted] •Apple pomace and pectin modulated beneficial gut bacteria including Eubacterium and Lachnospiraceae in fecal fermentations.•Apple pomace promoted short-chain fatty acid producers in Chron's disease microbiota.•Galactose and rhamnose contents of pectin and apple pomace determine their modulatory activity.•Similar composition-activity relationships were found for apple pomace and pectin.
ArticleNumber 107958
Author Calvete-Torre, Ines
Moreno, F. Javier
Sabater, Carlos
Margolles, Abelardo
Ruiz, Lorena
Antón, María José
Riestra, Sabino
Author_xml – sequence: 1
  givenname: Ines
  orcidid: 0000-0001-5509-7696
  surname: Calvete-Torre
  fullname: Calvete-Torre, Ines
  organization: Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
– sequence: 2
  givenname: Carlos
  orcidid: 0000-0002-6098-895X
  surname: Sabater
  fullname: Sabater, Carlos
  organization: Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
– sequence: 3
  givenname: María José
  surname: Antón
  fullname: Antón, María José
  organization: The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
– sequence: 4
  givenname: F. Javier
  orcidid: 0000-0002-7637-9542
  surname: Moreno
  fullname: Moreno, F. Javier
  organization: Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
– sequence: 5
  givenname: Sabino
  surname: Riestra
  fullname: Riestra, Sabino
  organization: Department of Gastroenterology, Hospital Universitario Central de Asturias and ISPA, 33011, Oviedo, Spain
– sequence: 6
  givenname: Abelardo
  orcidid: 0000-0003-2278-1816
  surname: Margolles
  fullname: Margolles, Abelardo
  email: amargolles@ipla.csic.es
  organization: Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
– sequence: 7
  givenname: Lorena
  orcidid: 0000-0001-8199-5502
  surname: Ruiz
  fullname: Ruiz, Lorena
  email: lorena.ruiz@ipla.csic.es
  organization: Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
BookMark eNqFkLluGzEQhlk4QHzkEQKwTCOF5Gq5u0kRBIYvwIZTxEA6gscwobLLWZOUAb2FH9mUpcqNqwEG3z_Hd0KOIkYg5DNnS864_LpeekT3b-uWgglRe93Q9kfkmAnZLxhr_3wkJzmvGeMd4_yYPP9KYAKWYOmMBWIJeqToqZ7nEWpr0haojo7OYEuImfqEE3XBe0iVPnBPOgUoAfI3eoduM-qCaUuhQrZkipH-hy0tOv2FQi1OE8Rc10zBJjS7hTPOu1DAmM_IB6_HDJ8O9ZQ8XF78Pr9e3N5f3Zz_vF3Yhq36xcB652xvJDTMWCu8lNI3IDrbdsx2QzOs5MoMXnBmDe9dMxjeGi1bDzAY0TWn5Mt-7pzwcQO5qClkC-OoI-AmK9HxXshOiFVF2z1az805gVdzCpNOW8WZ2llXa3WwrnbW1d56zX1_k7OhvH5Zkg7ju-kf-zRUC08Bkso2QLTgQqpalcPwzoQXk_upvw
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_125410
crossref_primary_10_1038_s41538_024_00320_8
crossref_primary_10_1016_j_ijbiomac_2024_131579
crossref_primary_10_3390_nu16142174
crossref_primary_10_1021_acs_jafc_4c05864
crossref_primary_10_1016_j_ijbiomac_2024_134007
crossref_primary_10_1016_j_fbio_2025_105892
crossref_primary_10_1007_s12602_024_10375_4
crossref_primary_10_1186_s13568_023_01649_1
crossref_primary_10_3390_nu15183880
crossref_primary_10_1016_j_ijbiomac_2024_132002
crossref_primary_10_1111_1751_7915_14443
crossref_primary_10_3390_microorganisms11020436
crossref_primary_10_1016_j_lwt_2025_117608
crossref_primary_10_1038_s41522_023_00468_3
crossref_primary_10_3390_foods13142163
crossref_primary_10_1016_j_foodhyd_2023_109451
crossref_primary_10_1016_j_ijbiomac_2024_137139
crossref_primary_10_1039_D3FO04277D
crossref_primary_10_1016_j_ijbiomac_2023_128011
crossref_primary_10_3390_foods11203297
crossref_primary_10_1016_j_foodchem_2024_140664
crossref_primary_10_1016_j_lwt_2023_115362
crossref_primary_10_2174_0122133461332276240903075341
crossref_primary_10_1016_j_fbio_2024_105329
crossref_primary_10_1128_spectrum_02580_23
crossref_primary_10_1016_j_foodhyd_2024_109939
crossref_primary_10_1186_s13099_024_00627_7
crossref_primary_10_3390_nu16213689
crossref_primary_10_3390_molecules27206937
crossref_primary_10_1016_j_carbpol_2024_123209
crossref_primary_10_1016_j_ultsonch_2024_107215
crossref_primary_10_1007_s11130_024_01196_5
crossref_primary_10_1016_j_carbpol_2024_122399
crossref_primary_10_1016_j_lwt_2024_116580
crossref_primary_10_1016_j_indcrop_2023_117745
crossref_primary_10_1016_j_foodhyd_2023_108870
crossref_primary_10_1093_ismejo_wrae101
crossref_primary_10_1016_j_ijfoodmicro_2024_110789
crossref_primary_10_3390_foods14030376
crossref_primary_10_1080_87559129_2024_2383429
Cites_doi 10.3390/nu9060533
10.1038/nature17626
10.1016/j.foodres.2020.109888
10.3389/fmicb.2016.02005
10.1186/s13568-019-0790-9
10.1080/19490976.2020.1826748
10.1128/AEM.71.12.8228-8235.2005
10.1093/femsec/fix127
10.1016/j.tim.2021.01.003
10.1016/j.fochx.2021.100133
10.3390/agriculture11070584
10.1038/s41467-020-17041-7
10.3390/nu8030126
10.1073/pnas.1102938108
10.3389/fmicb.2019.00223
10.1016/j.carbpol.2021.117980
10.1128/AEM.00325-08
10.7717/peerj.4268
10.1038/s41396-019-0363-6
10.1016/j.jenvman.2020.110510
10.1016/j.foodhyd.2021.107213
10.1016/j.tifs.2021.10.002
10.1016/j.tifs.2013.01.006
10.3389/fmicb.2016.00185
10.1016/j.resconrec.2021.105426
10.1371/journal.pone.0061217
10.1016/j.nut.2005.01.005
10.1016/j.coph.2021.11.001
10.1038/s41564-017-0079-1
10.3390/fermentation7040224
10.1038/ismej.2012.4
10.1038/s41596-018-0119-1
10.1016/j.carbpol.2006.06.018
10.1210/clinem/dgaa407
10.1016/j.foodhyd.2019.105238
10.1093/femsle/fnab042
10.3390/foods11111632
10.1007/s11882-021-01020-z
10.1016/j.carbpol.2017.12.048
10.1016/j.carbpol.2021.118326
10.18637/jss.v048.i04
10.1016/j.jff.2015.10.029
10.1186/s12866-016-0869-2
10.1038/s41587-019-0209-9
10.1186/s12866-020-01968-4
10.1016/j.foodhyd.2021.107257
10.1007/s12328-017-0813-5
10.1016/j.ijbiomac.2022.06.075
10.1128/microbiolspec.BAD-0011-2016
10.1016/j.foodhyd.2020.105988
10.1186/s13073-021-00921-y
10.1111/apt.16086
10.1002/mnfr.202000455
10.1007/s00253-018-9234-8
10.1016/j.carbpol.2018.07.041
10.1016/j.carbpol.2018.11.088
10.3748/wjg.v17.i12.1519
10.1016/j.foodhyd.2019.105383
10.1016/j.foodres.2020.110054
10.1136/gutjnl-2018-316250
10.1016/j.jenvman.2018.12.041
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2022.107958
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_foodhyd_2022_107958
S0268005X22004787
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
ACLOT
EFKBS
EFLBG
L.6
~HD
ID FETCH-LOGICAL-c3048-908ddc8b6e30bcc2f666f3e27c570c7939464b9f210cb18d39b15ba65fee9b273
IEDL.DBID AIKHN
ISSN 0268-005X
IngestDate Sun Sep 28 06:17:29 EDT 2025
Tue Jul 01 00:41:58 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Sun Apr 06 06:54:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microbiota
Pectin
IBD
Apple pomace
Prebiotics
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3048-908ddc8b6e30bcc2f666f3e27c570c7939464b9f210cb18d39b15ba65fee9b273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2278-1816
0000-0002-7637-9542
0000-0001-5509-7696
0000-0001-8199-5502
0000-0002-6098-895X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0268005X22004787
PQID 2718267224
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718267224
crossref_primary_10_1016_j_foodhyd_2022_107958
crossref_citationtrail_10_1016_j_foodhyd_2022_107958
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2022_107958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Food hydrocolloids
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raba, Adamberg, Adamberg (bib42) 2021; 368
Yousi, Kainan, Junnan, Chhuanxing, Lina, Bangzhou, Jianlin, Baishan (bib64) 2019; 9
Sabater, Calvete-Torre, Villamiel, Moreno, Margolles, Ruiz (bib46) 2021; 118
Salazar, Gueimonde, Hernandez-Barranco, Ruas-Madiedo, de los Reyes-Gavilán (bib49) 2008; 74
Rakoff-Nahoum, Foster, Comstock (bib43) 2016; 533
Zahid, Ranadheera, Fang, Ajlouni (bib65) 2021; 11
Brodkorb, Egger, Alminger, Alvito, Assunção, Ballance, Bohn, Bourlieu-Lacanal, Boutrou, Carrière, Clemente, Corredig, Dupont, Dufour, Edwards, Golding, Karakaya, Kirkhus, Le Feunteun, Recio (bib6) 2019; 14
Gallego-Lobillo, Ferreira-Lazarte, Hernández-Hernández, Villamiel (bib19) 2021; 140
Chung, Walker, Bosscher, Garcia-Campayo, Wagner, Parkhill, Duncan, Flint (bib11) 2020; 20
Fu, Cao, Ren, Zhang, Huang, Li (bib18) 2018; 183
Singh, Prakash, Bhatia, Negi, Singh, Bishnoi, Kondepudi (bib54) 2020; 108
Bianchi, Larsen, de Mello Tieghi, Adorno, Kot, Saad, Jespersen, Sivieri (bib2) 2018; 102
Dranca, Vargas, Oroian (bib13) 2020; 100
Luis, Briggs, Zhang, Farnell, Ndeh, Labourel, Baslé, Cartmell, Terrapon, Stott, Lowe, McLean, Shearer, Schückel, Venditto, Ralet, Henrissat, Martens, Mosimann, Abbott, Gilbert (bib35) 2018; 3
Sabater, Sabater, Olano, Montilla, Corzo (bib47) 2020; 98
Canani, Di Costanzo, Leone, Pedata, Meli, Calignano (bib9) 2011; 17
Gómez, Gullón, Yáñez, Schols, Alonso (bib20) 2016; 20
Lahti, Shetty (bib29) 2017
Chung, Meijerink, Zeuner, Holck, Louis, Meyer, Wells, Fllint, Duncan (bib10) 2017; 93
Zhao, Bi, Yi, Wu, Ma, Li (bib67) 2021; 269
Cunningham, Azcarate-Peril, Barnard, Benoit, Grimaldi, Guyonnet, Holscher, Hunter, Manurung, Obis, Petrova, Steinert, Swanson, van Sinderen, Vulevic, Gibson (bib12) 2021; 29
Taylor, Serrano‐Contreras, McDonald, Epstein, Fell, Seoane, Li, Marchesi, Hart (bib57) 2020; 52
Ferreira-Lazarte, Moreno, Cueva, Gil-Sánchez, Villamiel (bib17) 2019; 207
Kim, Healey, Kelly, Patchett, Jordens, Tannock, Sims, Bell, Hedderley, Henrissat, Rosendale (bib27) 2019; 13
Goodman, Kallstrom, Faith, Reyes, Moore, Dantas, Gordon (bib21) 2011; 108
Zhu, Song, Martínez-Cuesta, Peláez, Li, Requena, Wang, Sum (bib69) 2022; 11
Calvete-Torre, Muñoz-Almagro, Pacheco, Antón, Dapena, Ruiz, Margolles, Villamiel, Moreno (bib8) 2021; 264
Sandberg, Ahderinee, Andersson, Hallgren, Hultén (bib51) 1983; 37
Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar, Bai, Bisanz, Bittinger, Brejnrod, Brislawn, Brown, Callahan, Caraballo-Rodríguez, Chase, Caporaso (bib5) 2019; 37
Stanisavljević, Lukić, Soković, Mihajlovic, Mostarica Stojković, Miljković, Golić (bib56) 2016; 7
Epskamp, Cramer, Waldorp, Schmittmann, Borsboom (bib14) 2012; 48
Ma, Nguyen, Song, Wang, Franzosa, Cao, Joshi, Drew, Mehta, Ivey, Strate, Giovannucci, Izard, Garrett, Rimm, Huttenhower, Chan (bib36) 2021; 13
Hadji, Bouchemal (bib24) 2022; 114101
Ríos-Covián, Ruas-Madiedo, Margolles, Gueimonde, De Los Reyes-gavilán, Salazar (bib45) 2016; 7
Zhou, Guo, Liu, Wu, Zhao, Cao, Zhang, Shang (bib68) 2022; 215
Lenoir, Martín, Torres-Maravilla, Chadi, González-Dávila, Sokol, Langella, Chain, Bermúdez-Humarán (bib31) 2020; 12
Esparza, Jiménez-Moreno, Bimbela, Ancín-Azpilicueta, Gandía (bib15) 2020; 265
Caldeira, De Laurentiis, Ghose, Corrado, Sala (bib7) 2021; 168
Blanco-Pérez, Steigerwald, Schülke, Vieths, Toda, Scheurer (bib4) 2021; 21
da Silva, Viganó, de Souza Mesquita, Baião Dias, de Souza, Sanches, Chaves, Pizani, Contieri, Rostagno (bib53) 2021; 12
Koutsos, Lima, Conterno, Gasperotti, Bianchi, Fava, Vrhovsek, Lovegrove, Tuohy (bib28) 2017; 9
Nayak, Bhushan (bib40) 2019; 233
Wilkowska, Motyl, Antczak-Chrobot, Wojtczak, Nowak, Czyżowska, Motyl (bib61) 2021; 7
Ze, Duncan, Louis, Flint (bib66) 2012; 6
Lozupone, Knight (bib33) 2005; 71
Alshehri, Saadah, Mosli, Edris, Alhindi, Bahieldin (bib1) 2021; 21
Biassoni, Di Marco, Squillario, Barla, Piccolo, Ugolotti, Gatti, Minuto, Patti, Maghnie, d'Annunzio (bib3) 2020; 105
Larsen, Bussolo de Souza, Krych, Barbosa Cahú, Wiese, Kot, Hansen, Blennow, Venema, Jespersen (bib30) 2019; 10
Lu, Flanagan, Mikkelsen, Williams, Gidley (bib34) 2022; 124
Singh, Yeoh, Walker, Xiao, Saha, Golonka, Cai, Bretin, Cheng, Liu, Flythe, Chassaing, Shearer, Patterson, Gewirtz, Vijay-Kumar (bib55) 2019; 68
Hou, Hu, Luan, Yu, Wang, Chen, Ye (bib25) 2022; 124
Ribeiro, dos Santos Pereira, de Oliveira Raphaelli, Radünz, Camargo, da Rocha Concenço, Flores Cantillano, Fiorentini, Nora (bib44) 2021
van Trijp, Rösch, An, Keshtkar, Logtenberg, Hermes, Zoetendal, Schols, Hooiveld (bib58) 2020; 64
Wei, Gong, Zhu, Tian, Ding, Gu, Li, Li (bib59) 2016; 16
Ferreira-Lazarte, Kachrimanidou, Villamiel, Rastall, Moreno (bib16) 2018; 199
Jiang, Gao, Wu, Tian, Lei, Bi, Xie, Wang, Chen, Wang (bib26) 2016; 8
Saito, Nakajo, Fukuda, Shimoyama, Sakamoto, Sugawara (bib48) 2005; 21
Xu, Wu, Liu, Sun, Wang, Fan, Meng, Zhang, Zhang (bib63) 2022; 62
Wiese, Khakimov, Nielsen, Sørensen, van den Berg, Nielsen (bib60) 2018; 6
Salvetti, O'Toole (bib50) 2017; 5
McMurdie, Holmes (bib38) 2013; 8
Wu, Yuan, Guo, Fu, Li, Wang, Gan (bib62) 2021; 141
Gulfi, Arrigoni, Amadò (bib22) 2007; 67
Schwager, Bielski, Weingart (bib52) 2019
Lin, Peddada (bib32) 2020; 11
Martău, Emoke, Ranga, Pop, Vodnar (bib37) 2021; 3850
Nishida, Inoue, Inatomi, Bamba, Naito, Andoh (bib41) 2018; 11
Gullón, Gómez, Martínez-Sabajanes, Yáñez, Parajó, Alonso (bib23) 2013; 30
Nishida (10.1016/j.foodhyd.2022.107958_bib41) 2018; 11
Salvetti (10.1016/j.foodhyd.2022.107958_bib50) 2017; 5
Ríos-Covián (10.1016/j.foodhyd.2022.107958_bib45) 2016; 7
Caldeira (10.1016/j.foodhyd.2022.107958_bib7) 2021; 168
McMurdie (10.1016/j.foodhyd.2022.107958_bib38) 2013; 8
Dranca (10.1016/j.foodhyd.2022.107958_bib13) 2020; 100
Singh (10.1016/j.foodhyd.2022.107958_bib54) 2020; 108
Lenoir (10.1016/j.foodhyd.2022.107958_bib31) 2020; 12
Bolyen (10.1016/j.foodhyd.2022.107958_bib5) 2019; 37
Zhao (10.1016/j.foodhyd.2022.107958_bib67) 2021; 269
Gullón (10.1016/j.foodhyd.2022.107958_bib23) 2013; 30
da Silva (10.1016/j.foodhyd.2022.107958_bib53) 2021; 12
Gulfi (10.1016/j.foodhyd.2022.107958_bib22) 2007; 67
Blanco-Pérez (10.1016/j.foodhyd.2022.107958_bib4) 2021; 21
Ribeiro (10.1016/j.foodhyd.2022.107958_bib44) 2021
Sabater (10.1016/j.foodhyd.2022.107958_bib46) 2021; 118
Ferreira-Lazarte (10.1016/j.foodhyd.2022.107958_bib17) 2019; 207
Gómez (10.1016/j.foodhyd.2022.107958_bib20) 2016; 20
Koutsos (10.1016/j.foodhyd.2022.107958_bib28) 2017; 9
Zhu (10.1016/j.foodhyd.2022.107958_bib69) 2022; 11
Ze (10.1016/j.foodhyd.2022.107958_bib66) 2012; 6
Hou (10.1016/j.foodhyd.2022.107958_bib25) 2022; 124
Biassoni (10.1016/j.foodhyd.2022.107958_bib3) 2020; 105
Lozupone (10.1016/j.foodhyd.2022.107958_bib33) 2005; 71
Kim (10.1016/j.foodhyd.2022.107958_bib27) 2019; 13
Xu (10.1016/j.foodhyd.2022.107958_bib63) 2022; 62
Chung (10.1016/j.foodhyd.2022.107958_bib11) 2020; 20
Zhou (10.1016/j.foodhyd.2022.107958_bib68) 2022; 215
Taylor (10.1016/j.foodhyd.2022.107958_bib57) 2020; 52
Epskamp (10.1016/j.foodhyd.2022.107958_bib14) 2012; 48
Luis (10.1016/j.foodhyd.2022.107958_bib35) 2018; 3
Jiang (10.1016/j.foodhyd.2022.107958_bib26) 2016; 8
Larsen (10.1016/j.foodhyd.2022.107958_bib30) 2019; 10
Lin (10.1016/j.foodhyd.2022.107958_bib32) 2020; 11
Bianchi (10.1016/j.foodhyd.2022.107958_bib2) 2018; 102
Ferreira-Lazarte (10.1016/j.foodhyd.2022.107958_bib16) 2018; 199
Cunningham (10.1016/j.foodhyd.2022.107958_bib12) 2021; 29
Schwager (10.1016/j.foodhyd.2022.107958_bib52) 2019
Stanisavljević (10.1016/j.foodhyd.2022.107958_bib56) 2016; 7
Brodkorb (10.1016/j.foodhyd.2022.107958_bib6) 2019; 14
Saito (10.1016/j.foodhyd.2022.107958_bib48) 2005; 21
Sandberg (10.1016/j.foodhyd.2022.107958_bib51) 1983; 37
Lu (10.1016/j.foodhyd.2022.107958_bib34) 2022; 124
Hadji (10.1016/j.foodhyd.2022.107958_bib24) 2022; 114101
Lahti (10.1016/j.foodhyd.2022.107958_bib29) 2017
Wu (10.1016/j.foodhyd.2022.107958_bib62) 2021; 141
Sabater (10.1016/j.foodhyd.2022.107958_bib47) 2020; 98
Salazar (10.1016/j.foodhyd.2022.107958_bib49) 2008; 74
Zahid (10.1016/j.foodhyd.2022.107958_bib65) 2021; 11
van Trijp (10.1016/j.foodhyd.2022.107958_bib58) 2020; 64
Yousi (10.1016/j.foodhyd.2022.107958_bib64) 2019; 9
Canani (10.1016/j.foodhyd.2022.107958_bib9) 2011; 17
Ma (10.1016/j.foodhyd.2022.107958_bib36) 2021; 13
Wei (10.1016/j.foodhyd.2022.107958_bib59) 2016; 16
Goodman (10.1016/j.foodhyd.2022.107958_bib21) 2011; 108
Esparza (10.1016/j.foodhyd.2022.107958_bib15) 2020; 265
Alshehri (10.1016/j.foodhyd.2022.107958_bib1) 2021; 21
Raba (10.1016/j.foodhyd.2022.107958_bib42) 2021; 368
Chung (10.1016/j.foodhyd.2022.107958_bib10) 2017; 93
Martău (10.1016/j.foodhyd.2022.107958_bib37) 2021; 3850
Rakoff-Nahoum (10.1016/j.foodhyd.2022.107958_bib43) 2016; 533
Nayak (10.1016/j.foodhyd.2022.107958_bib40) 2019; 233
Calvete-Torre (10.1016/j.foodhyd.2022.107958_bib8) 2021; 264
Fu (10.1016/j.foodhyd.2022.107958_bib18) 2018; 183
Wiese (10.1016/j.foodhyd.2022.107958_bib60) 2018; 6
Wilkowska (10.1016/j.foodhyd.2022.107958_bib61) 2021; 7
Gallego-Lobillo (10.1016/j.foodhyd.2022.107958_bib19) 2021; 140
Singh (10.1016/j.foodhyd.2022.107958_bib55) 2019; 68
References_xml – volume: 3850
  year: 2021
  ident: bib37
  article-title: Apple pomace as a sustainable substrate in sourdough fermentation
  publication-title: Frontiers in Microbiology
– volume: 233
  start-page: 352
  year: 2019
  end-page: 370
  ident: bib40
  article-title: An overview of the recent trends on the waste valorization techniques for food wastes
  publication-title: Journal of Environmental Management
– volume: 37
  start-page: 852
  year: 2019
  end-page: 857
  ident: bib5
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
– volume: 64
  year: 2020
  ident: bib58
  article-title: Fermentation kinetics of selected dietary fibers by human small intestinal microbiota depend on the type of fiber and subject
  publication-title: Molecular Nutrition & Food Research
– volume: 20
  start-page: 108
  year: 2016
  end-page: 121
  ident: bib20
  article-title: Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation
  publication-title: Journal of Functional Foods
– volume: 74
  start-page: 4737
  year: 2008
  end-page: 4745
  ident: bib49
  article-title: Exopolysaccharides produced by intestinal
  publication-title: Applied and Environmental Microbiology
– volume: 21
  start-page: 43
  year: 2021
  ident: bib4
  article-title: The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota
  publication-title: Current Allergy and Asthma Reports
– volume: 124
  year: 2022
  ident: bib25
  article-title: Prebiotic potential of RG-I pectic polysaccharides from
  publication-title: Food Hydrocolloids
– volume: 108
  year: 2020
  ident: bib54
  article-title: Generation of structurally diverse pectin oligosaccharides having prebiotic attributes
  publication-title: Food Hydrocolloids
– volume: 9
  start-page: 69
  year: 2019
  ident: bib64
  article-title: Evaluation of the effects of four media on human intestinal microbiota culture
  publication-title: In Vitro. AMB Express
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib44
  article-title: Application of prebiotics in apple products and potential health benefits
  publication-title: Journal of Food Science & Technology
– volume: 8
  year: 2013
  ident: bib38
  article-title: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data
  publication-title: PLoS One
– volume: 102
  start-page: 8827
  year: 2018
  end-page: 8840
  ident: bib2
  article-title: Modulation of gut microbiota from obese individuals by
  publication-title: Applied Microbiology and Biotechnology
– volume: 71
  start-page: 8228
  year: 2005
  end-page: 8235
  ident: bib33
  article-title: UniFrac: A new phylogenetic method for comparing microbial communities
  publication-title: Applied and Environmental Microbiology
– volume: 48
  start-page: 1
  year: 2012
  end-page: 18
  ident: bib14
  article-title: qgraph: Network visualizations of relationships in psychometric data
  publication-title: Journal of Statistical Software
– volume: 13
  start-page: 1437
  year: 2019
  end-page: 1456
  ident: bib27
  article-title: Genomic insights from
  publication-title: The ISME Journal
– volume: 17
  year: 2011
  ident: bib9
  article-title: Potential beneficial effects of butyrate in intestinal and extraintestinal disease
  publication-title: World Journal of Gastroenterology
– volume: 124
  year: 2022
  ident: bib34
  article-title: fermentation of onion cell walls and model polysaccharides using human faecal inoculum: Effects of molecular interactions and cell wall architecture
  publication-title: Food Hydrocolloids
– volume: 100
  year: 2020
  ident: bib13
  article-title: Physicochemical properties of pectin from
  publication-title: Food Hydrocolloids
– volume: 20
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib11
  article-title: Relative abundance of the
  publication-title: BMC Microbiology
– volume: 12
  year: 2021
  ident: bib53
  article-title: Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products
  publication-title: Food Chemistry X
– volume: 7
  year: 2016
  ident: bib56
  article-title: Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats
  publication-title: Frontiers in Microbiology
– volume: 67
  start-page: 410
  year: 2007
  end-page: 416
  ident: bib22
  article-title: fermentability of a pectin fraction rich in hairy regions
  publication-title: Carbohydrate Polymers
– volume: 199
  start-page: 482
  year: 2018
  end-page: 491
  ident: bib16
  article-title: fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources
  publication-title: Carbohydrate Polymers
– volume: 8
  start-page: 126
  year: 2016
  ident: bib26
  article-title: Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity
  publication-title: Nutrients
– volume: 9
  start-page: 533
  year: 2017
  ident: bib28
  article-title: Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model
  publication-title: Nutrients
– volume: 207
  start-page: 382
  year: 2019
  end-page: 390
  ident: bib17
  article-title: Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®)
  publication-title: Carbohydrate Polymers
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib32
  article-title: Analysis of compositions of microbiomes with bias correction
  publication-title: Nature Communications
– volume: 52
  start-page: 1491
  year: 2020
  end-page: 1502
  ident: bib57
  article-title: Multiomic features associated with mucosal healing and inflammation in paediatric Crohn's disease
  publication-title: Alimentary Pharmacology & Therapeutics
– volume: 21
  start-page: 914
  year: 2005
  end-page: 919
  ident: bib48
  article-title: Comparison of the amount of pectin in the human terminal ileum with the amount of orally administered pectin
  publication-title: Nutrition
– volume: 183
  start-page: 230
  year: 2018
  end-page: 239
  ident: bib18
  article-title: Structural characterization and
  publication-title: Carbohydrate Polymers
– volume: 168
  year: 2021
  ident: bib7
  article-title: Grown and thrown: Exploring approaches to estimate food waste in EU countries
  publication-title: Resources, Conservation and Recycling
– volume: 62
  start-page: 36
  year: 2022
  end-page: 42
  ident: bib63
  article-title: The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids
  publication-title: Current Opinion in Pharmacology
– volume: 269
  year: 2021
  ident: bib67
  article-title: Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via
  publication-title: Carbohydrate Polymers
– volume: 14
  start-page: 991
  year: 2019
  end-page: 1014
  ident: bib6
  article-title: INFOGEST static
  publication-title: Nature Protocols
– volume: 7
  start-page: 185
  year: 2016
  ident: bib45
  article-title: Intestinal short chain fatty acids and their link with diet and human health
  publication-title: Frontiers in Microbiology
– volume: 7
  start-page: 224
  year: 2021
  ident: bib61
  article-title: Influence of human age on the prebiotic effect of pectin-derived oligosaccharides obtained from apple pomace
  publication-title: Fermentation
– volume: 6
  start-page: 1535
  year: 2012
  end-page: 1543
  ident: bib66
  article-title: is a keystone species for the degradation of resistant starch in the hyuman colon
  publication-title: The ISME Journal
– volume: 12
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib31
  article-title: Butryate mediates anti-inflammatory effects of
  publication-title: Gut Microbes
– volume: 533
  start-page: 255
  year: 2016
  end-page: 259
  ident: bib43
  article-title: The evolution of cooperation within the gut microbiota
  publication-title: Nature
– year: 2019
  ident: bib52
  article-title: Ccrepe: Ccrepe_And_Nc.Score. R package version 1.22.0
– volume: 16
  start-page: 255
  year: 2016
  ident: bib59
  article-title: Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora
  publication-title: BMC Microbiology
– volume: 264
  year: 2021
  ident: bib8
  article-title: Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties
  publication-title: Carbohydrate Polymers
– volume: 368
  year: 2021
  ident: bib42
  article-title: Acidic pH enhances butyrate production from pectin by faecal microbiota
  publication-title: FEMS Microbiology Letters
– volume: 37
  start-page: 171
  year: 1983
  end-page: 183
  ident: bib51
  article-title: The effect of citrus pectin on the absorption of nutrients in the small intestine
  publication-title: Human Nutrition - Clinical Nutrition
– volume: 11
  start-page: 584
  year: 2021
  ident: bib65
  article-title: Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients
  publication-title: Agriculture
– volume: 11
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib41
  article-title: Gut microbiota in the pathogenesis of inflammatory bowel disease
  publication-title: Clinical Journal of Gastroenterology
– volume: 98
  year: 2020
  ident: bib47
  article-title: Ultrasound-assisted extraction of pectin from artichoke-by-products. An artificial neural network approach to pectin characterisation
  publication-title: Food Hydrocolloids
– volume: 118
  start-page: 399
  year: 2021
  end-page: 417
  ident: bib46
  article-title: Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods
  publication-title: Trends in Food Science & Technology
– volume: 30
  start-page: 153
  year: 2013
  end-page: 161
  ident: bib23
  article-title: Pectic oligosaccharides: Manufacture and functional properties
  publication-title: Trends in Food Science & Technology
– year: 2017
  ident: bib29
  article-title: Tools for microbiome analysis in R
– volume: 93
  start-page: fix127
  year: 2017
  ident: bib10
  article-title: Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon
  publication-title: FEMS Microbiology Ecology
– volume: 215
  start-page: 45
  year: 2022
  end-page: 56
  ident: bib68
  article-title: Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens
  publication-title: International Journal of Biological Macromolecules
– volume: 6
  start-page: e4268
  year: 2018
  ident: bib60
  article-title: CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes
  publication-title: Peer Journal
– volume: 11
  start-page: 1632
  year: 2022
  ident: bib69
  article-title: Immunological activity and gut microbiota modulation of pectin from Kiwano (
  publication-title: Foods
– volume: 13
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib36
  article-title: Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men
  publication-title: Genome Medicine
– volume: 3
  start-page: 210
  year: 2018
  end-page: 219
  ident: bib35
  article-title: Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic
  publication-title: Nature Microbiology
– volume: 29
  start-page: 667
  year: 2021
  end-page: 685
  ident: bib12
  article-title: Shaping the future of probiotics and prebiotics
  publication-title: Trends in Microbiology
– volume: 141
  year: 2021
  ident: bib62
  article-title: Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota
  publication-title: Food Research International
– volume: 114101
  year: 2022
  ident: bib24
  article-title: Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems
  publication-title: Advanced Drug Delivery Reviews
– volume: 21
  start-page: 270
  year: 2021
  ident: bib1
  article-title: Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches
  publication-title: Bosnian Journal of Basic Medical Sciences
– volume: 265
  year: 2020
  ident: bib15
  article-title: Fruit and vegetable waste management: Conventional and emerging approaches
  publication-title: Journal of Environmental Management
– volume: 10
  start-page: 223
  year: 2019
  ident: bib30
  article-title: Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties
  publication-title: Frontiers in Microbiology
– volume: 108
  start-page: 6252
  year: 2011
  end-page: 6257
  ident: bib21
  article-title: Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice
  publication-title: Proceedings of the National Academy of Sciences
– volume: 140
  year: 2021
  ident: bib19
  article-title: In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat
  publication-title: Food Research International
– volume: 68
  start-page: 1801
  year: 2019
  end-page: 1812
  ident: bib55
  article-title: Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation
  publication-title: Gut
– volume: 105
  start-page: e3114
  year: 2020
  end-page: e3126
  ident: bib3
  article-title: Gut microbiota in T1DM-onset pediatric patients: Machine-learning algorithms to classify microorganisms as disease linked
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 5
  year: 2017
  ident: bib50
  article-title: The genomic basis of lactobacilli as health-promoting organisms
  publication-title: Microbiology Spectrum
– volume: 37
  start-page: 171
  issue: 3
  year: 1983
  ident: 10.1016/j.foodhyd.2022.107958_bib51
  article-title: The effect of citrus pectin on the absorption of nutrients in the small intestine
  publication-title: Human Nutrition - Clinical Nutrition
– volume: 9
  start-page: 533
  issue: 6
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107958_bib28
  article-title: Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model
  publication-title: Nutrients
  doi: 10.3390/nu9060533
– volume: 114101
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib24
  article-title: Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems
  publication-title: Advanced Drug Delivery Reviews
– volume: 533
  start-page: 255
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib43
  article-title: The evolution of cooperation within the gut microbiota
  publication-title: Nature
  doi: 10.1038/nature17626
– volume: 141
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib62
  article-title: Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2020.109888
– volume: 7
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib56
  article-title: Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.02005
– volume: 9
  start-page: 69
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib64
  article-title: Evaluation of the effects of four media on human intestinal microbiota culture
  publication-title: In Vitro. AMB Express
  doi: 10.1186/s13568-019-0790-9
– volume: 21
  start-page: 270
  issue: 3
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib1
  article-title: Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches
  publication-title: Bosnian Journal of Basic Medical Sciences
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib31
  article-title: Butryate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2020.1826748
– volume: 71
  start-page: 8228
  issue: 12
  year: 2005
  ident: 10.1016/j.foodhyd.2022.107958_bib33
  article-title: UniFrac: A new phylogenetic method for comparing microbial communities
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume: 93
  start-page: fix127
  issue: 11
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107958_bib10
  article-title: Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon
  publication-title: FEMS Microbiology Ecology
  doi: 10.1093/femsec/fix127
– volume: 29
  start-page: 667
  issue: 8
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib12
  article-title: Shaping the future of probiotics and prebiotics
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2021.01.003
– volume: 12
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib53
  article-title: Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products
  publication-title: Food Chemistry X
  doi: 10.1016/j.fochx.2021.100133
– volume: 11
  start-page: 584
  issue: 7
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib65
  article-title: Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients
  publication-title: Agriculture
  doi: 10.3390/agriculture11070584
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib32
  article-title: Analysis of compositions of microbiomes with bias correction
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17041-7
– volume: 8
  start-page: 126
  issue: 3
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib26
  article-title: Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity
  publication-title: Nutrients
  doi: 10.3390/nu8030126
– volume: 108
  start-page: 6252
  issue: 15
  year: 2011
  ident: 10.1016/j.foodhyd.2022.107958_bib21
  article-title: Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1102938108
– volume: 10
  start-page: 223
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib30
  article-title: Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2019.00223
– volume: 264
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib8
  article-title: Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.117980
– volume: 74
  start-page: 4737
  year: 2008
  ident: 10.1016/j.foodhyd.2022.107958_bib49
  article-title: Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.00325-08
– volume: 6
  start-page: e4268
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib60
  article-title: CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes
  publication-title: Peer Journal
  doi: 10.7717/peerj.4268
– volume: 13
  start-page: 1437
  issue: 6
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib27
  article-title: Genomic insights from Monoglobus pectinolyticus: A pectin-degrading specialist bacterium in the human colon
  publication-title: The ISME Journal
  doi: 10.1038/s41396-019-0363-6
– volume: 265
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib15
  article-title: Fruit and vegetable waste management: Conventional and emerging approaches
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2020.110510
– volume: 124
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib25
  article-title: Prebiotic potential of RG-I pectic polysaccharides from Citrus subcompressa by novel extraction methods
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107213
– volume: 118
  start-page: 399
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib46
  article-title: Vegetable waste and by-products to feed a healthy gut microbiota: Current evidence, machine learning and computational tools to design novel microbiome-targeted foods
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.10.002
– start-page: 1
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib44
  article-title: Application of prebiotics in apple products and potential health benefits
  publication-title: Journal of Food Science & Technology
– volume: 30
  start-page: 153
  issue: 2
  year: 2013
  ident: 10.1016/j.foodhyd.2022.107958_bib23
  article-title: Pectic oligosaccharides: Manufacture and functional properties
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2013.01.006
– volume: 7
  start-page: 185
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib45
  article-title: Intestinal short chain fatty acids and their link with diet and human health
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2016.00185
– volume: 168
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib7
  article-title: Grown and thrown: Exploring approaches to estimate food waste in EU countries
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2021.105426
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.foodhyd.2022.107958_bib38
  article-title: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061217
– volume: 21
  start-page: 914
  issue: 9
  year: 2005
  ident: 10.1016/j.foodhyd.2022.107958_bib48
  article-title: Comparison of the amount of pectin in the human terminal ileum with the amount of orally administered pectin
  publication-title: Nutrition
  doi: 10.1016/j.nut.2005.01.005
– volume: 62
  start-page: 36
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib63
  article-title: The regulatory roles of dietary fibers on host health via gut microbiota-derived short chain fatty acids
  publication-title: Current Opinion in Pharmacology
  doi: 10.1016/j.coph.2021.11.001
– volume: 3
  start-page: 210
  issue: 2
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib35
  article-title: Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroidetes
  publication-title: Nature Microbiology
  doi: 10.1038/s41564-017-0079-1
– volume: 7
  start-page: 224
  issue: 4
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib61
  article-title: Influence of human age on the prebiotic effect of pectin-derived oligosaccharides obtained from apple pomace
  publication-title: Fermentation
  doi: 10.3390/fermentation7040224
– volume: 3850
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib37
  article-title: Apple pomace as a sustainable substrate in sourdough fermentation
  publication-title: Frontiers in Microbiology
– volume: 6
  start-page: 1535
  issue: 8
  year: 2012
  ident: 10.1016/j.foodhyd.2022.107958_bib66
  article-title: Ruminococcus bromii is a keystone species for the degradation of resistant starch in the hyuman colon
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2012.4
– volume: 14
  start-page: 991
  issue: 4
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib6
  article-title: INFOGEST static in vitro simulation of gastrointestinal food digestion
  publication-title: Nature Protocols
  doi: 10.1038/s41596-018-0119-1
– volume: 67
  start-page: 410
  year: 2007
  ident: 10.1016/j.foodhyd.2022.107958_bib22
  article-title: In vitro fermentability of a pectin fraction rich in hairy regions
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2006.06.018
– volume: 105
  start-page: e3114
  issue: 9
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib3
  article-title: Gut microbiota in T1DM-onset pediatric patients: Machine-learning algorithms to classify microorganisms as disease linked
  publication-title: Journal of Clinical Endocrinology and Metabolism
  doi: 10.1210/clinem/dgaa407
– volume: 98
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib47
  article-title: Ultrasound-assisted extraction of pectin from artichoke-by-products. An artificial neural network approach to pectin characterisation
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105238
– volume: 368
  issue: 7
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib42
  article-title: Acidic pH enhances butyrate production from pectin by faecal microbiota
  publication-title: FEMS Microbiology Letters
  doi: 10.1093/femsle/fnab042
– volume: 11
  start-page: 1632
  issue: 11
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib69
  article-title: Immunological activity and gut microbiota modulation of pectin from Kiwano (Cucumis metuliferus) peels
  publication-title: Foods
  doi: 10.3390/foods11111632
– year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib52
– volume: 21
  start-page: 43
  issue: 10
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib4
  article-title: The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota
  publication-title: Current Allergy and Asthma Reports
  doi: 10.1007/s11882-021-01020-z
– volume: 183
  start-page: 230
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib18
  article-title: Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.12.048
– volume: 269
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib67
  article-title: Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118326
– volume: 48
  start-page: 1
  year: 2012
  ident: 10.1016/j.foodhyd.2022.107958_bib14
  article-title: qgraph: Network visualizations of relationships in psychometric data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v048.i04
– volume: 20
  start-page: 108
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib20
  article-title: Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation
  publication-title: Journal of Functional Foods
  doi: 10.1016/j.jff.2015.10.029
– volume: 16
  start-page: 255
  issue: 1
  year: 2016
  ident: 10.1016/j.foodhyd.2022.107958_bib59
  article-title: Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora
  publication-title: BMC Microbiology
  doi: 10.1186/s12866-016-0869-2
– volume: 37
  start-page: 852
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib5
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-019-0209-9
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib11
  article-title: Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides
  publication-title: BMC Microbiology
  doi: 10.1186/s12866-020-01968-4
– volume: 124
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib34
  article-title: In vitro fermentation of onion cell walls and model polysaccharides using human faecal inoculum: Effects of molecular interactions and cell wall architecture
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2021.107257
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib41
  article-title: Gut microbiota in the pathogenesis of inflammatory bowel disease
  publication-title: Clinical Journal of Gastroenterology
  doi: 10.1007/s12328-017-0813-5
– volume: 215
  start-page: 45
  year: 2022
  ident: 10.1016/j.foodhyd.2022.107958_bib68
  article-title: Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2022.06.075
– volume: 5
  issue: 3
  year: 2017
  ident: 10.1016/j.foodhyd.2022.107958_bib50
  article-title: The genomic basis of lactobacilli as health-promoting organisms
  publication-title: Microbiology Spectrum
  doi: 10.1128/microbiolspec.BAD-0011-2016
– volume: 108
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib54
  article-title: Generation of structurally diverse pectin oligosaccharides having prebiotic attributes
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2020.105988
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib36
  article-title: Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men
  publication-title: Genome Medicine
  doi: 10.1186/s13073-021-00921-y
– volume: 52
  start-page: 1491
  issue: 9
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib57
  article-title: Multiomic features associated with mucosal healing and inflammation in paediatric Crohn's disease
  publication-title: Alimentary Pharmacology & Therapeutics
  doi: 10.1111/apt.16086
– volume: 64
  issue: 20
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib58
  article-title: Fermentation kinetics of selected dietary fibers by human small intestinal microbiota depend on the type of fiber and subject
  publication-title: Molecular Nutrition & Food Research
  doi: 10.1002/mnfr.202000455
– volume: 102
  start-page: 8827
  issue: 20
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib2
  article-title: Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-018-9234-8
– volume: 199
  start-page: 482
  year: 2018
  ident: 10.1016/j.foodhyd.2022.107958_bib16
  article-title: In vitro fermentation properties of pectins and enzymatic-modified pectins obtained from different renewable bioresources
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.07.041
– volume: 207
  start-page: 382
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib17
  article-title: Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®)
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.11.088
– volume: 17
  issue: 12
  year: 2011
  ident: 10.1016/j.foodhyd.2022.107958_bib9
  article-title: Potential beneficial effects of butyrate in intestinal and extraintestinal disease
  publication-title: World Journal of Gastroenterology
  doi: 10.3748/wjg.v17.i12.1519
– volume: 100
  year: 2020
  ident: 10.1016/j.foodhyd.2022.107958_bib13
  article-title: Physicochemical properties of pectin from Malus domestica ‘Fălticeni’apple pomace as affected by non-conventional extraction techniques
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.105383
– year: 2017
  ident: 10.1016/j.foodhyd.2022.107958_bib29
– volume: 140
  year: 2021
  ident: 10.1016/j.foodhyd.2022.107958_bib19
  article-title: In vitro digestion of polysaccharides: InfoGest protocol and use of small intestinal extract from rat
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2020.110054
– volume: 68
  start-page: 1801
  issue: 10
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib55
  article-title: Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation
  publication-title: Gut
  doi: 10.1136/gutjnl-2018-316250
– volume: 233
  start-page: 352
  year: 2019
  ident: 10.1016/j.foodhyd.2022.107958_bib40
  article-title: An overview of the recent trends on the waste valorization techniques for food wastes
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2018.12.041
SSID ssj0017011
Score 2.5766902
Snippet Pectin is a group of structurally diverse dietary fibers, very abundant in agri-food waste and by-products such as those generated during apple cider...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107958
SubjectTerms apple cider
Apple pomace
apples
arabinose
Dialister
Eubacterium eligens
fermentation
galactose
genes
humans
hydrocolloids
IBD
inflammatory bowel disease
intestinal microorganisms
Lachnospiraceae
Microbiota
Pectin
pectins
Prebiotics
Prevotella
rhamnose
Succinivibrio
wastes
Title Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations
URI https://dx.doi.org/10.1016/j.foodhyd.2022.107958
https://www.proquest.com/docview/2718267224
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcqEHBJSqvFZG6jW7edvpDa1ACy0IFZC4WbHjqIsgXu0DaS_9Df3JnUmcpSAkJG6J5Ukiz8PzxfMA-JYjzIi4iT2VRghQuEg8kRnhqTDXPNChMHW7t4vLdHgbn98ldyswaHNhKKzS2f7GptfW2o303Wr2x6NR_xrRA3o7CLaI0Sh3q7AW4m4vOrB2fPZjeLk8TOB-3YaX5ntE8JzI07_vldYWvxdUMzQMcYxn1Pz97S3qlbGud6DTTdhwriM7br5uC1ZMtQ2f_iso-Bn-Xk2MGlmcwMZ2RoFASGBLRsfUBofo7zXLq4LV-ZXVlFF2CWubpMzcvCfCz1Ro9Tu7sAX197KTBXORH8xWDBWfNSHkDNftEZEwvuZxVNd0wqvxsinYdAduT09uBkPP9VzwdITK7GW-KAotVGoiX2kdlghvysiEXCfc16jMWZzGKisRKWoViCLKVJCoPE1KYzKFvtAX6FS2Ml-BGZ4EUSoUOhF5rIRSPDGFn2l0CTg-V-xC3C6z1K4gOfXFeJBt5Nm9dNyRxB3ZcGcXekuycVOR4z0C0fJQvhAtibvGe6RHLc8lqh2dpeSVsfOpDDkBM44O0N7HH78P63TXRMccQGc2mZtD9HFmqgurvT9BFyV58OvnVddJ9D_7BQBq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtSD-MT1GcFrd7fPpN5kUVbdFUEFb6FJU1zRZtmHsBd_gz_ZmTZdHwiCt5Jm0pKZSeZL5kHIcQIww2c6cGTkA0BhPHR4rLkjvUQxV3lcF-XeetdR5z64fAgf5ki7ioVBt0q79pdrerFa25amnc3moN9v3gJ6AGsHwBYyGuRuniwEWOYAhLrxNvPzwHzjbnnQwh3s_hnG03xqZMakj1PMGOp50MZiLP3--wb1Y6ku9p_zVbJiDUd6Wv7bGpnT-TpZ_pJOcIO83wy17BvoQAdmjG5AQGAyipfUGprw7JomeUqL6Mp8RDG2hFYlUsa23yuiZ0yzekJ7JsXqXmY4pdbvg5qcgtrT0oGcwqy9AA6Gz7z0i4xO8DSYlQQbbZL787O7dsexFRcc5YMqO3GLp6niMtJ-SyrlZQBuMl97TIWspUCV4yAKZJwBTlTS5akfSzeUSRRmWscSLKEtUstNrrcJ1Sx0_YhLMCGSQHIpWajTVqzAIGAwLq-ToJpmoWw6cqyK8Swqv7MnYbkjkDui5E6dNGZkgzIfx18EvOKh-CZYAvaMv0iPKp4LUDq8SUlybSYj4TGEZQzMn53_D39IFjt3va7oXlxf7ZIlfFP6yeyR2ng40ftg7YzlQSHNHxWC_4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prebiotic+potential+of+apple+pomace+and+pectins+from+different+apple+varieties%3A+Modulatory+effects+on+key+target+commensal+microbial+populations&rft.jtitle=Food+hydrocolloids&rft.au=Calvete-Torre%2C+Ines&rft.au=Sabater%2C+Carlos&rft.au=Ant%C3%B3n%2C+Mar%C3%ADa+Jos%C3%A9&rft.au=Moreno%2C+F.+Javier&rft.date=2022-12-01&rft.issn=0268-005X&rft.volume=133&rft.spage=107958&rft_id=info:doi/10.1016%2Fj.foodhyd.2022.107958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2022_107958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon