An investigation into many-objective optimization on combinatorial problems: Analyzing the pickup and delivery problem
Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily bec...
Saved in:
| Published in | Swarm and evolutionary computation Vol. 38; pp. 218 - 230 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2210-6502 |
| DOI | 10.1016/j.swevo.2017.08.001 |
Cover
| Abstract | Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily becomes more difficult while more objectives are considered. Nevertheless, combinatorial problems have not received an appropriate attention, making this an open research area. This investigation takes this subject on by studying a many-objective combinatorial problem, particularly, the pickup and delivery problem (PDP), which is an important combinatorial optimization problem in the transportation industry and consists of finding a collection of routes with minimum cost. Traditionally, cost has been associated with the number of routes and the total travel distance, however, in many applications, some other objectives emerge, for example, travel time, workload imbalance, and uncollected profit. If we consider all these objectives equally important, PDP can be tackled as a many-objective problem. This study is concerned with the study of: (i) the performance of four representative multi-objective evolutionary algorithms on PDP varying the number of objectives, (ii) the properties of the many-objective PDP regarding scalability, i.e. the conflict between each pair of objectives and the proportion of non-dominated solutions as the number of objectives is varied, and finally (iii) the change of PDP's difficulty when the number of objectives is increased. Results show that the regarded objectives are actually in conflict and that the problem is more difficult to solve while more objectives are considered.
•Many-objective analysis of a combinatorial problem with four evolutionary algorithms.•The well-known pickup and delivery problem is used as a benchmark problem.•Six objectives are defined and different settings are used for experimentation.•Results indicate that all the considered objectives contribute to the problem difficulty.•Not all of the evolutionary algorithms have the same performance on the problem. |
|---|---|
| AbstractList | Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily becomes more difficult while more objectives are considered. Nevertheless, combinatorial problems have not received an appropriate attention, making this an open research area. This investigation takes this subject on by studying a many-objective combinatorial problem, particularly, the pickup and delivery problem (PDP), which is an important combinatorial optimization problem in the transportation industry and consists of finding a collection of routes with minimum cost. Traditionally, cost has been associated with the number of routes and the total travel distance, however, in many applications, some other objectives emerge, for example, travel time, workload imbalance, and uncollected profit. If we consider all these objectives equally important, PDP can be tackled as a many-objective problem. This study is concerned with the study of: (i) the performance of four representative multi-objective evolutionary algorithms on PDP varying the number of objectives, (ii) the properties of the many-objective PDP regarding scalability, i.e. the conflict between each pair of objectives and the proportion of non-dominated solutions as the number of objectives is varied, and finally (iii) the change of PDP's difficulty when the number of objectives is increased. Results show that the regarded objectives are actually in conflict and that the problem is more difficult to solve while more objectives are considered.
•Many-objective analysis of a combinatorial problem with four evolutionary algorithms.•The well-known pickup and delivery problem is used as a benchmark problem.•Six objectives are defined and different settings are used for experimentation.•Results indicate that all the considered objectives contribute to the problem difficulty.•Not all of the evolutionary algorithms have the same performance on the problem. |
| Author | López-Jaimes, Antonio García-Nájera, Abel |
| Author_xml | – sequence: 1 givenname: Abel surname: García-Nájera fullname: García-Nájera, Abel email: agarcian@correo.cua.uam.mx – sequence: 2 givenname: Antonio surname: López-Jaimes fullname: López-Jaimes, Antonio email: alopez@correo.cua.uam.mx |
| BookMark | eNqFkM9OwzAMh3MACRh7Ai55gRYnXdsVicOE-CdN4gLnKEtd8GiTKglF29PTbXDhAJYl6yf5s-TvjB1ZZ5GxCwGpAFFcrtPwiYNLJYgyhXkKII7YqZQCkiIHecKmIaxhrAJknlenbFhYTnbAEOlVR3K7FB3vtN0kbrVGE2lA7vpIHW0PC2Mb163I6ug86Zb33q1a7MIVX1jdbrZkX3l8Q96Tef_oubY1r7Ed7_jNz-45O250G3D6PSfs5e72-eYhWT7dP94slonJIItJU2hZzUStMYd5WdTaoKxWoKGZzfKqbCqdYdEUtRGZLiXgbIyZQCPKopFllmcTVh3uGu9C8NgoQ3H_RvSaWiVA7byptdp7UztvCuZq9Day2S-299Rpv_mHuj5QOL41EHoVDKE1WJMfbara0Z_8F2FkkEc |
| CitedBy_id | crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_swevo_2019_01_001 crossref_primary_10_1155_2023_8378850 crossref_primary_10_1016_j_swevo_2018_04_010 crossref_primary_10_1016_j_swevo_2023_101394 crossref_primary_10_1016_j_rico_2022_100195 crossref_primary_10_1016_j_cor_2022_105867 crossref_primary_10_1142_S0218213020500037 crossref_primary_10_1109_ACCESS_2023_3274532 crossref_primary_10_1016_j_swevo_2020_100674 crossref_primary_10_1016_j_engappai_2023_107381 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1109_ACCESS_2019_2960531 crossref_primary_10_1016_j_asoc_2023_110446 crossref_primary_10_1142_S0219622020300049 crossref_primary_10_1016_j_swevo_2023_101398 crossref_primary_10_1016_j_swevo_2020_100647 crossref_primary_10_1016_j_swevo_2019_03_006 crossref_primary_10_1016_j_swevo_2019_05_008 crossref_primary_10_1016_j_swevo_2019_100602 |
| Cites_doi | 10.1109/TEVC.2010.2064321 10.1016/0305-0548(94)E0023-Z 10.1109/TEVC.2004.823470 10.13053/rcs-104-1-4 10.1109/TEVC.2015.2420112 10.1002/net.3230110211 10.1080/0305215X.2011.639368 10.1016/j.cor.2010.05.004 10.1287/trsc.1090.0301 10.1109/CEC.2005.1554688 10.1109/CEC.2013.6557676 10.1109/CIPLS.2013.6595207 10.1016/j.ins.2015.09.006 10.1007/BF01197559 10.1109/TEVC.2010.2051446 10.1007/s11590-012-0551-z 10.1007/978-3-642-37140-0_20 10.1109/4235.996017 10.1162/evco.2007.15.4.475 10.1109/CEC.2002.1007032 10.1109/ICSMC.2011.6083675 10.1109/CEC.2007.4424987 10.1109/ICTAI.2001.974461 10.1109/TEVC.2014.2350987 10.1109/TEVC.2014.2315442 10.1162/106365602760234108 10.1007/978-3-540-88051-6_14 10.1109/TEVC.2013.2281535 10.1162/106365605774666895 10.1016/j.sbspro.2014.01.053 10.1007/s11301-008-0036-4 10.1007/3-540-36970-8_16 10.1109/TEVC.2007.892759 10.1109/TEVC.2007.910138 10.1109/NAFIPS.2002.1018061 10.1016/j.trpro.2014.10.009 10.1109/CEC.2001.934293 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2017.08.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 230 |
| ExternalDocumentID | 10_1016_j_swevo_2017_08_001 S2210650216303583 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-f6a2941dae50876dace29b0a0f44597f9a3e6f6dc13a720e43e631ec176f27353 |
| IEDL.DBID | .~1 |
| ISSN | 2210-6502 |
| IngestDate | Wed Oct 01 05:53:32 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Fri Feb 23 02:47:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Many-objective optimization Combinatorial optimization Multi-objective evolutionary algorithms Pickup and delivery problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-f6a2941dae50876dace29b0a0f44597f9a3e6f6dc13a720e43e631ec176f27353 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2017_08_001 crossref_primary_10_1016_j_swevo_2017_08_001 elsevier_sciencedirect_doi_10_1016_j_swevo_2017_08_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | H. Li, A. Lim, A metaheuristic for the pickup and delivery problem with time windows, in: Proceedings of the 13th International Conference on Tools and Artificial Intelligence, vol. 1, IEEE Computer Society, 2001, pp. 160–167. Zhu, Xiao, He, Ji, Sun (bib28) 2016; 329 K. Praditwong, X. Yao, How well do multi-objective evolutionary algorithms scale to large problems, in: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, 3959–3966. Deb, Pratap, Agarwal, Meyarivan (bib30) 2002; 6 K. Deb, M. Mohan, S. Mishra, Towards a quick computation of well-spread pareto-optimal solutions, in: Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 222–236. Goldberg (bib40) 1989 Parragh, Doerner, Hartl (bib22) 2008; 58 Teytaud (bib6) 2007; 15 Laumanns, Thiele, Zitzler (bib33) 2004; 8 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the 2002 IEEE Congress on Evolutionary Computation vol. 1, IEEE, 2002, 825–830. J. Castro-Gutierrez, D. Landa-Silva, J. Moreno Pérez, Nature of real-world multi-objective vehicle routing with evolutionary algorithms, in: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp. 257–264. Velasco, Dejax, Guéret, Prins (bib24) 2012; 44 Deb, Mohan, Mishra (bib35) 2005; 13 Garcia-Najera, López-Jaimes (bib31) 2015; 104 Yuan, Xu, Wang, Yao (bib10) 2016; 20 A. Garcia-Najera, M. A. Gutierrez-Andrade, An evolutionary approach to the multi-objective pickup and delivery problem with time windows, in: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, IEEE, 2013, pp. 997–1004. I. Kokolo, K. Hajime, K. Shigenobu, Failure of pareto-based MOEAs: does non-dominated really mean near to optimal? in: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, vol. 2, IEEE, 2001, pp. 957–962. Mei, Tang, Yao (bib39) 2011; 15 von Lücken, Barán, Brizuela (bib11) 2014; 58 S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test problem toolkit, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 3410 of LNCS, 2005, pp. 280–295. Ishibuchi, Akedo, Nojima (bib15) 2015; 19 Jozefowiez, Semet, Talbi (bib19) 2008 J. Knowles, D. Corne, Quantifying the effects of objective space dimension in evolutionary multiobjective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer, 2007, pp. 757–771. D. Brockhoff, E. Zitzler, Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization, in: T. P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao (Eds.), Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Springer. vol. 4193 of LNCS, 2006, pp. 533–542. Laporte (bib16) 2009; 43 Garcia-Najera, Bullinaria (bib18) 2011; 38 Carlsson, Fullér (bib20) 1995; 22 X.-L. Liao, C.-K. Ting, Solving the biobjective selective pickup and delivery problem with memetic algorithm, in: Proceedings of the 2013 IEEE Workshop on Computational Intelligence In Production And Logistics Systems, IEEE, 2013, pp. 107–114. E.J. Hughes, Evolutionary many-objective optimisation: many once or one many? in: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE, 2005, pp. 222–227. Wang, Jiao, Yao (bib9) 2015; 19 Deb, Jain (bib8) 2014; 18 H. Ishibuchi, M. Yamane, Y. Nojima, Difficulty in evolutionary multiobjective optimization of discrete objective functions with different granularities, in: R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, J. Shaw (Eds.), Proceedings of the 7th International Conference Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 230–245. Schütze, Lara, Coello Coello (bib13) 2011; 15 Lenstra, Kan (bib17) 1981; 11 López Jaimes, Coello Coello (bib12) 2015 Zhang, Li (bib36) 2007; 11 T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer,2007, pp. 742–756. Das, Dennis (bib41) 1997; 14 Grandinetti, Guerriero, Pezzella, Pisacane (bib27) 2014; 111 Purshouse, Fleming (bib5) 2007; 11 M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems, in: Proceedings of the NAFIPS-FLINT International Conference'2002, IEEE, 2002, pp. 233–238. W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, in: Multi-Objective Memetic Algorithms, Springer, 2009, pp. 309–324. Guerriero, Pezzella, Pisacane, Trollini (bib26) 2014; 3 Assis, Maravilha, Vivas, Campelo, Ramírez (bib23) 2012; 7 T. Hanne, Global multiobjective optimization with evolutionary algorithms: selection mechanisms and mutation control, in: E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D. Corne (Eds.), Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 1992 of LNCS, 2001, pp. 197–212. Laumanns, Thiele, Deb, Zitzler (bib37) 2002; 10 Lenstra (10.1016/j.swevo.2017.08.001_bib17) 1981; 11 Zhu (10.1016/j.swevo.2017.08.001_bib28) 2016; 329 10.1016/j.swevo.2017.08.001_bib3 10.1016/j.swevo.2017.08.001_bib4 10.1016/j.swevo.2017.08.001_bib1 10.1016/j.swevo.2017.08.001_bib2 10.1016/j.swevo.2017.08.001_bib7 10.1016/j.swevo.2017.08.001_bib25 Assis (10.1016/j.swevo.2017.08.001_bib23) 2012; 7 Zhang (10.1016/j.swevo.2017.08.001_bib36) 2007; 11 10.1016/j.swevo.2017.08.001_bib29 Goldberg (10.1016/j.swevo.2017.08.001_bib40) 1989 Guerriero (10.1016/j.swevo.2017.08.001_bib26) 2014; 3 10.1016/j.swevo.2017.08.001_bib32 Yuan (10.1016/j.swevo.2017.08.001_bib10) 2016; 20 10.1016/j.swevo.2017.08.001_bib34 Parragh (10.1016/j.swevo.2017.08.001_bib22) 2008; 58 Carlsson (10.1016/j.swevo.2017.08.001_bib20) 1995; 22 Jozefowiez (10.1016/j.swevo.2017.08.001_bib19) 2008 Teytaud (10.1016/j.swevo.2017.08.001_bib6) 2007; 15 Garcia-Najera (10.1016/j.swevo.2017.08.001_bib31) 2015; 104 von Lücken (10.1016/j.swevo.2017.08.001_bib11) 2014; 58 López Jaimes (10.1016/j.swevo.2017.08.001_bib12) 2015 Deb (10.1016/j.swevo.2017.08.001_bib8) 2014; 18 Wang (10.1016/j.swevo.2017.08.001_bib9) 2015; 19 Laumanns (10.1016/j.swevo.2017.08.001_bib37) 2002; 10 10.1016/j.swevo.2017.08.001_bib14 Grandinetti (10.1016/j.swevo.2017.08.001_bib27) 2014; 111 10.1016/j.swevo.2017.08.001_bib38 Deb (10.1016/j.swevo.2017.08.001_bib30) 2002; 6 Laporte (10.1016/j.swevo.2017.08.001_bib16) 2009; 43 Mei (10.1016/j.swevo.2017.08.001_bib39) 2011; 15 Velasco (10.1016/j.swevo.2017.08.001_bib24) 2012; 44 Ishibuchi (10.1016/j.swevo.2017.08.001_bib15) 2015; 19 Laumanns (10.1016/j.swevo.2017.08.001_bib33) 2004; 8 Deb (10.1016/j.swevo.2017.08.001_bib35) 2005; 13 10.1016/j.swevo.2017.08.001_bib42 10.1016/j.swevo.2017.08.001_bib21 10.1016/j.swevo.2017.08.001_bib43 10.1016/j.swevo.2017.08.001_bib44 10.1016/j.swevo.2017.08.001_bib45 10.1016/j.swevo.2017.08.001_bib46 Purshouse (10.1016/j.swevo.2017.08.001_bib5) 2007; 11 Das (10.1016/j.swevo.2017.08.001_bib41) 1997; 14 Schütze (10.1016/j.swevo.2017.08.001_bib13) 2011; 15 Garcia-Najera (10.1016/j.swevo.2017.08.001_bib18) 2011; 38 |
| References_xml | – volume: 15 start-page: 475 year: 2007 end-page: 491 ident: bib6 article-title: On the hardness of offline multi-objective optimization publication-title: Evol. Comput. – reference: D. Brockhoff, E. Zitzler, Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization, in: T. P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao (Eds.), Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Springer. vol. 4193 of LNCS, 2006, pp. 533–542. – volume: 15 start-page: 151 year: 2011 end-page: 165 ident: bib39 article-title: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem publication-title: IEEE T. Evolut. Comput. – reference: S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test problem toolkit, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 3410 of LNCS, 2005, pp. 280–295. – reference: E.J. Hughes, Evolutionary many-objective optimisation: many once or one many? in: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE, 2005, pp. 222–227. – reference: I. Kokolo, K. Hajime, K. Shigenobu, Failure of pareto-based MOEAs: does non-dominated really mean near to optimal? in: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, vol. 2, IEEE, 2001, pp. 957–962. – reference: M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems, in: Proceedings of the NAFIPS-FLINT International Conference'2002, IEEE, 2002, pp. 233–238. – volume: 20 start-page: 16 year: 2016 end-page: 37 ident: bib10 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE T. Evolut. Comput. – volume: 8 start-page: 170 year: 2004 end-page: 182 ident: bib33 article-title: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions publication-title: IEEE T. Evolut. Comput. – volume: 58 start-page: 707 year: 2014 end-page: 756 ident: bib11 article-title: A survey on multi-objective evolutionary algorithms for many-objective problems publication-title: Comput. Optim. Appl. – start-page: 1033 year: 2015 end-page: 1046 ident: bib12 article-title: Many-objective problems: challenges and methods (chap. 51) publication-title: Springer Handbook of Computational Intelligence – volume: 3 start-page: 299 year: 2014 end-page: 308 ident: bib26 article-title: Multi-objective optimization in dial-a-ride public transportation publication-title: Transp. Res. Procedia – reference: A. Garcia-Najera, M. A. Gutierrez-Andrade, An evolutionary approach to the multi-objective pickup and delivery problem with time windows, in: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, IEEE, 2013, pp. 997–1004. – reference: H. Ishibuchi, M. Yamane, Y. Nojima, Difficulty in evolutionary multiobjective optimization of discrete objective functions with different granularities, in: R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, J. Shaw (Eds.), Proceedings of the 7th International Conference Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 230–245. – volume: 58 start-page: 81 year: 2008 end-page: 117 ident: bib22 article-title: A survey on pickup and delivery problems publication-title: J. Betriebswirtschaft – volume: 14 start-page: 63 year: 1997 end-page: 69 ident: bib41 article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems publication-title: Struct. Optim. – volume: 38 start-page: 287 year: 2011 end-page: 300 ident: bib18 article-title: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows publication-title: Comput. Oper. Res. – reference: X.-L. Liao, C.-K. Ting, Solving the biobjective selective pickup and delivery problem with memetic algorithm, in: Proceedings of the 2013 IEEE Workshop on Computational Intelligence In Production And Logistics Systems, IEEE, 2013, pp. 107–114. – reference: J. Castro-Gutierrez, D. Landa-Silva, J. Moreno Pérez, Nature of real-world multi-objective vehicle routing with evolutionary algorithms, in: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp. 257–264. – volume: 22 start-page: 251 year: 1995 end-page: 260 ident: bib20 article-title: Multiple criteria decision making: the case for interdependence publication-title: Comput. Oper. Res. – year: 1989 ident: bib40 article-title: Genetic Algorithms in Search, Optimization and Machine Learning – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the 2002 IEEE Congress on Evolutionary Computation vol. 1, IEEE, 2002, 825–830. – volume: 7 start-page: 1419 year: 2012 end-page: 1431 ident: bib23 article-title: Multiobjective vehicle routing problem with fixed delivery and optional collections publication-title: Optim. Lett. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib36 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE T. Evolut. Comput. – volume: 10 start-page: 263 year: 2002 end-page: 282 ident: bib37 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. – reference: W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, in: Multi-Objective Memetic Algorithms, Springer, 2009, pp. 309–324. – reference: T. Hanne, Global multiobjective optimization with evolutionary algorithms: selection mechanisms and mutation control, in: E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D. Corne (Eds.), Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 1992 of LNCS, 2001, pp. 197–212. – reference: H. Li, A. Lim, A metaheuristic for the pickup and delivery problem with time windows, in: Proceedings of the 13th International Conference on Tools and Artificial Intelligence, vol. 1, IEEE Computer Society, 2001, pp. 160–167. – volume: 44 start-page: 305 year: 2012 end-page: 325 ident: bib24 article-title: A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem publication-title: Eng. Optim. – volume: 104 start-page: 51 year: 2015 end-page: 60 ident: bib31 article-title: The pickup and delivery problem: a many-objective analysis publication-title: Res. Comput. Sci. – volume: 11 start-page: 770 year: 2007 end-page: 784 ident: bib5 article-title: On the evolutionary optimization of many conflicting objectives publication-title: IEEE T. Evolut. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE T. Evolut. Comput. – reference: K. Deb, M. Mohan, S. Mishra, Towards a quick computation of well-spread pareto-optimal solutions, in: Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 222–236. – volume: 15 start-page: 444 year: 2011 end-page: 455 ident: bib13 article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem publication-title: IEEE T. Evolut. Comput. – volume: 111 start-page: 203 year: 2014 end-page: 212 ident: bib27 article-title: The multi-objective multi-vehicle pickup and delivery problem with time windows publication-title: Procedia Soc. Behav. – volume: 329 start-page: 73 year: 2016 end-page: 89 ident: bib28 article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem publication-title: Inform. Sci. – reference: T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer,2007, pp. 742–756. – volume: 19 start-page: 524 year: 2015 end-page: 541 ident: bib9 article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization publication-title: IEEE T. Evolut. Comput. – volume: 43 start-page: 408 year: 2009 end-page: 416 ident: bib16 article-title: Fifty years of vehicle routing publication-title: Transp. Sci. – volume: 19 start-page: 264 year: 2015 end-page: 283 ident: bib15 article-title: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems publication-title: IEEE T. Evolut. Comput. – reference: J. Knowles, D. Corne, Quantifying the effects of objective space dimension in evolutionary multiobjective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer, 2007, pp. 757–771. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib8 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE T. Evolut. Comput. – volume: 13 start-page: 501 year: 2005 end-page: 525 ident: bib35 article-title: Evaluating the publication-title: Evol. Comput. – reference: K. Praditwong, X. Yao, How well do multi-objective evolutionary algorithms scale to large problems, in: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, 3959–3966. – start-page: 445 year: 2008 end-page: 471 ident: bib19 article-title: From single-objective to multi-objective vehicle routing problems: motivations, case studies, and methods publication-title: The Vehicle Routing Problem: Latest Advances and New Challenges – volume: 11 start-page: 221 year: 1981 end-page: 227 ident: bib17 article-title: Complexity of vehicle routing and scheduling problems publication-title: Networks – volume: 15 start-page: 444 issue: 4 year: 2011 ident: 10.1016/j.swevo.2017.08.001_bib13 article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2010.2064321 – volume: 22 start-page: 251 issue: 3 year: 1995 ident: 10.1016/j.swevo.2017.08.001_bib20 article-title: Multiple criteria decision making: the case for interdependence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(94)E0023-Z – volume: 8 start-page: 170 issue: 2 year: 2004 ident: 10.1016/j.swevo.2017.08.001_bib33 article-title: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2004.823470 – volume: 104 start-page: 51 year: 2015 ident: 10.1016/j.swevo.2017.08.001_bib31 article-title: The pickup and delivery problem: a many-objective analysis publication-title: Res. Comput. Sci. doi: 10.13053/rcs-104-1-4 – volume: 20 start-page: 16 issue: 1 year: 2016 ident: 10.1016/j.swevo.2017.08.001_bib10 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2015.2420112 – volume: 11 start-page: 221 issue: 2 year: 1981 ident: 10.1016/j.swevo.2017.08.001_bib17 article-title: Complexity of vehicle routing and scheduling problems publication-title: Networks doi: 10.1002/net.3230110211 – ident: 10.1016/j.swevo.2017.08.001_bib21 – start-page: 445 year: 2008 ident: 10.1016/j.swevo.2017.08.001_bib19 article-title: From single-objective to multi-objective vehicle routing problems: motivations, case studies, and methods – volume: 44 start-page: 305 issue: 3 year: 2012 ident: 10.1016/j.swevo.2017.08.001_bib24 article-title: A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.639368 – volume: 38 start-page: 287 issue: 1 year: 2011 ident: 10.1016/j.swevo.2017.08.001_bib18 article-title: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.05.004 – volume: 43 start-page: 408 issue: 4 year: 2009 ident: 10.1016/j.swevo.2017.08.001_bib16 article-title: Fifty years of vehicle routing publication-title: Transp. Sci. doi: 10.1287/trsc.1090.0301 – ident: 10.1016/j.swevo.2017.08.001_bib2 doi: 10.1109/CEC.2005.1554688 – ident: 10.1016/j.swevo.2017.08.001_bib29 doi: 10.1109/CEC.2013.6557676 – ident: 10.1016/j.swevo.2017.08.001_bib25 doi: 10.1109/CIPLS.2013.6595207 – volume: 329 start-page: 73 year: 2016 ident: 10.1016/j.swevo.2017.08.001_bib28 article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.09.006 – volume: 14 start-page: 63 issue: 1 year: 1997 ident: 10.1016/j.swevo.2017.08.001_bib41 article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems publication-title: Struct. Optim. doi: 10.1007/BF01197559 – volume: 15 start-page: 151 issue: 2 year: 2011 ident: 10.1016/j.swevo.2017.08.001_bib39 article-title: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2010.2051446 – year: 1989 ident: 10.1016/j.swevo.2017.08.001_bib40 – volume: 7 start-page: 1419 issue: 7 year: 2012 ident: 10.1016/j.swevo.2017.08.001_bib23 article-title: Multiobjective vehicle routing problem with fixed delivery and optional collections publication-title: Optim. Lett. doi: 10.1007/s11590-012-0551-z – ident: 10.1016/j.swevo.2017.08.001_bib14 doi: 10.1007/978-3-642-37140-0_20 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2017.08.001_bib30 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE T. Evolut. Comput. doi: 10.1109/4235.996017 – ident: 10.1016/j.swevo.2017.08.001_bib45 – volume: 15 start-page: 475 issue: 4 year: 2007 ident: 10.1016/j.swevo.2017.08.001_bib6 article-title: On the hardness of offline multi-objective optimization publication-title: Evol. Comput. doi: 10.1162/evco.2007.15.4.475 – ident: 10.1016/j.swevo.2017.08.001_bib44 doi: 10.1109/CEC.2002.1007032 – ident: 10.1016/j.swevo.2017.08.001_bib32 doi: 10.1109/ICSMC.2011.6083675 – ident: 10.1016/j.swevo.2017.08.001_bib4 doi: 10.1109/CEC.2007.4424987 – ident: 10.1016/j.swevo.2017.08.001_bib7 – ident: 10.1016/j.swevo.2017.08.001_bib46 doi: 10.1109/ICTAI.2001.974461 – volume: 19 start-page: 524 issue: 4 year: 2015 ident: 10.1016/j.swevo.2017.08.001_bib9 article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2014.2350987 – ident: 10.1016/j.swevo.2017.08.001_bib43 – ident: 10.1016/j.swevo.2017.08.001_bib3 – volume: 19 start-page: 264 issue: 2 year: 2015 ident: 10.1016/j.swevo.2017.08.001_bib15 article-title: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2014.2315442 – volume: 10 start-page: 263 issue: 3 year: 2002 ident: 10.1016/j.swevo.2017.08.001_bib37 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. doi: 10.1162/106365602760234108 – ident: 10.1016/j.swevo.2017.08.001_bib38 doi: 10.1007/978-3-540-88051-6_14 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.swevo.2017.08.001_bib8 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 13 start-page: 501 issue: 4 year: 2005 ident: 10.1016/j.swevo.2017.08.001_bib35 article-title: Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions publication-title: Evol. Comput. doi: 10.1162/106365605774666895 – volume: 111 start-page: 203 year: 2014 ident: 10.1016/j.swevo.2017.08.001_bib27 article-title: The multi-objective multi-vehicle pickup and delivery problem with time windows publication-title: Procedia Soc. Behav. doi: 10.1016/j.sbspro.2014.01.053 – start-page: 1033 year: 2015 ident: 10.1016/j.swevo.2017.08.001_bib12 article-title: Many-objective problems: challenges and methods (chap. 51) – volume: 58 start-page: 81 issue: 2 year: 2008 ident: 10.1016/j.swevo.2017.08.001_bib22 article-title: A survey on pickup and delivery problems publication-title: J. Betriebswirtschaft doi: 10.1007/s11301-008-0036-4 – volume: 58 start-page: 707 issue: 3 year: 2014 ident: 10.1016/j.swevo.2017.08.001_bib11 article-title: A survey on multi-objective evolutionary algorithms for many-objective problems publication-title: Comput. Optim. Appl. – ident: 10.1016/j.swevo.2017.08.001_bib34 doi: 10.1007/3-540-36970-8_16 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2017.08.001_bib36 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 11 start-page: 770 issue: 6 year: 2007 ident: 10.1016/j.swevo.2017.08.001_bib5 article-title: On the evolutionary optimization of many conflicting objectives publication-title: IEEE T. Evolut. Comput. doi: 10.1109/TEVC.2007.910138 – ident: 10.1016/j.swevo.2017.08.001_bib1 doi: 10.1109/NAFIPS.2002.1018061 – volume: 3 start-page: 299 year: 2014 ident: 10.1016/j.swevo.2017.08.001_bib26 article-title: Multi-objective optimization in dial-a-ride public transportation publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2014.10.009 – ident: 10.1016/j.swevo.2017.08.001_bib42 doi: 10.1109/CEC.2001.934293 |
| SSID | ssj0000602559 |
| Score | 2.2308078 |
| Snippet | Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 218 |
| SubjectTerms | Combinatorial optimization Many-objective optimization Multi-objective evolutionary algorithms Pickup and delivery problem |
| Title | An investigation into many-objective optimization on combinatorial problems: Analyzing the pickup and delivery problem |
| URI | https://dx.doi.org/10.1016/j.swevo.2017.08.001 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2210-6502 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 2210-6502 databaseCode: .~1 dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] issn: 2210-6502 databaseCode: ACRLP dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 2210-6502 databaseCode: AIKHN dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2210-6502 databaseCode: AKRWK dateStart: 20110301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602559 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL178Lc4fIweP1jVpm67exnBMhV10sFtJ0wQ6t3a4bqIH_3Zf0nQqwg5CLyl50L4m732vvHwfQleUBx1BlXIoDxUUKEw4PEykIxWXUUJdAMWm22LIBiP_YRyMG6hXn4XRbZU29lcx3URre6dtvdmeZ1n7iUK1AviCAqJwvaCjGT99P9QqBjefZP2fxWUGNWuNOZjvaIOafMi0eS3e5EofAiShofK04jB_EtSPpNPfR7sWLeJu9UAHqCHzQ7RXKzFguzGP0Kqb4-ybMaPQo7LAM9jpTpFMqqCGCwgPM3vuEsMF7wx1sa66YRFiKy2zuMWGqOQDchoGdIjnmXhZzjHPU5zKqW7jeK_nHqNR_-65N3CsooIjwEeloxinkU9SLgNNRZdyIWmUuNxVvg-VhYq4J5liqSAeD6krfRh6RAoSMgU4J_BO0FZe5PIU4dSTJKUdQSLO_UTJJFBCJYSpNDJBoolo7cZYWLpxrXoxjeu-sklsfB9r38daC9MlTXS9NppXbBubp7P6-8S_Fk0M-WCT4dl_Dc_RDow6Vdv2BdoqX5fyElBJmbTMsmuh7e7942D4BXvS5dQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4yExk7iNGxVBSpQWKBSt8hxbKmlTSL6QDDw2zk7Dg8hMSBlceKTkotz9110_j6ETikPWoIq5VAeKihQmHB4mEhHKi6jhLoAik23xT3r9v2bQTCooU61F0a3VdrYX8Z0E63tmab1ZrMYDpsPFKoVwBcUEIXrBS1vCS37AQ11BXb-Tj5_tLjMwGYtMgcGjrao2IdMn9f0RS70LkASGi5Pqw7zK0N9yzpXG2jNwkXcLu9oE9VktoXWKykGbL_MbbRoZ3j4RZmR69EsxxP41J08GZVRDecQHyZ24yWGAx4aCmNddsMqxFZbZnqBDVPJGyQ1DPAQF0PxNC8wz1KcyrHu43it5u6g_tXlY6frWEkFR4CTZo5inEY-SbkMNBddyoWkUeJyV_k-lBYq4p5kiqWCeDykrvRh6BEpSMgUAJ3A20X1LM_kHsKpJ0lKW4JEnPuJkkmghEoIU2lkokQD0cqNsbB841r2YhxXjWWj2Pg-1r6PtRimSxro7NOoKOk2_p7OqvcT_1g1MSSEvwz3_2t4gla6j3e9uHd9f3uAVuFKq-zhPkT12fNcHgFEmSXHZgl-AN4A52k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+into+many-objective+optimization+on+combinatorial+problems%3A+Analyzing+the+pickup+and+delivery+problem&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Garc%C3%ADa-N%C3%A1jera%2C+Abel&rft.au=L%C3%B3pez-Jaimes%2C+Antonio&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=38&rft.spage=218&rft.epage=230&rft_id=info:doi/10.1016%2Fj.swevo.2017.08.001&rft.externalDocID=S2210650216303583 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |