An investigation into many-objective optimization on combinatorial problems: Analyzing the pickup and delivery problem

Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily bec...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 38; pp. 218 - 230
Main Authors García-Nájera, Abel, López-Jaimes, Antonio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2018
Subjects
Online AccessGet full text
ISSN2210-6502
DOI10.1016/j.swevo.2017.08.001

Cover

Abstract Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily becomes more difficult while more objectives are considered. Nevertheless, combinatorial problems have not received an appropriate attention, making this an open research area. This investigation takes this subject on by studying a many-objective combinatorial problem, particularly, the pickup and delivery problem (PDP), which is an important combinatorial optimization problem in the transportation industry and consists of finding a collection of routes with minimum cost. Traditionally, cost has been associated with the number of routes and the total travel distance, however, in many applications, some other objectives emerge, for example, travel time, workload imbalance, and uncollected profit. If we consider all these objectives equally important, PDP can be tackled as a many-objective problem. This study is concerned with the study of: (i) the performance of four representative multi-objective evolutionary algorithms on PDP varying the number of objectives, (ii) the properties of the many-objective PDP regarding scalability, i.e. the conflict between each pair of objectives and the proportion of non-dominated solutions as the number of objectives is varied, and finally (iii) the change of PDP's difficulty when the number of objectives is increased. Results show that the regarded objectives are actually in conflict and that the problem is more difficult to solve while more objectives are considered. •Many-objective analysis of a combinatorial problem with four evolutionary algorithms.•The well-known pickup and delivery problem is used as a benchmark problem.•Six objectives are defined and different settings are used for experimentation.•Results indicate that all the considered objectives contribute to the problem difficulty.•Not all of the evolutionary algorithms have the same performance on the problem.
AbstractList Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems, with interesting results and for which several proposals have appeared. An important result states that the problem does not necessarily becomes more difficult while more objectives are considered. Nevertheless, combinatorial problems have not received an appropriate attention, making this an open research area. This investigation takes this subject on by studying a many-objective combinatorial problem, particularly, the pickup and delivery problem (PDP), which is an important combinatorial optimization problem in the transportation industry and consists of finding a collection of routes with minimum cost. Traditionally, cost has been associated with the number of routes and the total travel distance, however, in many applications, some other objectives emerge, for example, travel time, workload imbalance, and uncollected profit. If we consider all these objectives equally important, PDP can be tackled as a many-objective problem. This study is concerned with the study of: (i) the performance of four representative multi-objective evolutionary algorithms on PDP varying the number of objectives, (ii) the properties of the many-objective PDP regarding scalability, i.e. the conflict between each pair of objectives and the proportion of non-dominated solutions as the number of objectives is varied, and finally (iii) the change of PDP's difficulty when the number of objectives is increased. Results show that the regarded objectives are actually in conflict and that the problem is more difficult to solve while more objectives are considered. •Many-objective analysis of a combinatorial problem with four evolutionary algorithms.•The well-known pickup and delivery problem is used as a benchmark problem.•Six objectives are defined and different settings are used for experimentation.•Results indicate that all the considered objectives contribute to the problem difficulty.•Not all of the evolutionary algorithms have the same performance on the problem.
Author López-Jaimes, Antonio
García-Nájera, Abel
Author_xml – sequence: 1
  givenname: Abel
  surname: García-Nájera
  fullname: García-Nájera, Abel
  email: agarcian@correo.cua.uam.mx
– sequence: 2
  givenname: Antonio
  surname: López-Jaimes
  fullname: López-Jaimes, Antonio
  email: alopez@correo.cua.uam.mx
BookMark eNqFkM9OwzAMh3MACRh7Ai55gRYnXdsVicOE-CdN4gLnKEtd8GiTKglF29PTbXDhAJYl6yf5s-TvjB1ZZ5GxCwGpAFFcrtPwiYNLJYgyhXkKII7YqZQCkiIHecKmIaxhrAJknlenbFhYTnbAEOlVR3K7FB3vtN0kbrVGE2lA7vpIHW0PC2Mb163I6ug86Zb33q1a7MIVX1jdbrZkX3l8Q96Tef_oubY1r7Ed7_jNz-45O250G3D6PSfs5e72-eYhWT7dP94slonJIItJU2hZzUStMYd5WdTaoKxWoKGZzfKqbCqdYdEUtRGZLiXgbIyZQCPKopFllmcTVh3uGu9C8NgoQ3H_RvSaWiVA7byptdp7UztvCuZq9Day2S-299Rpv_mHuj5QOL41EHoVDKE1WJMfbara0Z_8F2FkkEc
CitedBy_id crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_swevo_2019_01_001
crossref_primary_10_1155_2023_8378850
crossref_primary_10_1016_j_swevo_2018_04_010
crossref_primary_10_1016_j_swevo_2023_101394
crossref_primary_10_1016_j_rico_2022_100195
crossref_primary_10_1016_j_cor_2022_105867
crossref_primary_10_1142_S0218213020500037
crossref_primary_10_1109_ACCESS_2023_3274532
crossref_primary_10_1016_j_swevo_2020_100674
crossref_primary_10_1016_j_engappai_2023_107381
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1109_ACCESS_2019_2960531
crossref_primary_10_1016_j_asoc_2023_110446
crossref_primary_10_1142_S0219622020300049
crossref_primary_10_1016_j_swevo_2023_101398
crossref_primary_10_1016_j_swevo_2020_100647
crossref_primary_10_1016_j_swevo_2019_03_006
crossref_primary_10_1016_j_swevo_2019_05_008
crossref_primary_10_1016_j_swevo_2019_100602
Cites_doi 10.1109/TEVC.2010.2064321
10.1016/0305-0548(94)E0023-Z
10.1109/TEVC.2004.823470
10.13053/rcs-104-1-4
10.1109/TEVC.2015.2420112
10.1002/net.3230110211
10.1080/0305215X.2011.639368
10.1016/j.cor.2010.05.004
10.1287/trsc.1090.0301
10.1109/CEC.2005.1554688
10.1109/CEC.2013.6557676
10.1109/CIPLS.2013.6595207
10.1016/j.ins.2015.09.006
10.1007/BF01197559
10.1109/TEVC.2010.2051446
10.1007/s11590-012-0551-z
10.1007/978-3-642-37140-0_20
10.1109/4235.996017
10.1162/evco.2007.15.4.475
10.1109/CEC.2002.1007032
10.1109/ICSMC.2011.6083675
10.1109/CEC.2007.4424987
10.1109/ICTAI.2001.974461
10.1109/TEVC.2014.2350987
10.1109/TEVC.2014.2315442
10.1162/106365602760234108
10.1007/978-3-540-88051-6_14
10.1109/TEVC.2013.2281535
10.1162/106365605774666895
10.1016/j.sbspro.2014.01.053
10.1007/s11301-008-0036-4
10.1007/3-540-36970-8_16
10.1109/TEVC.2007.892759
10.1109/TEVC.2007.910138
10.1109/NAFIPS.2002.1018061
10.1016/j.trpro.2014.10.009
10.1109/CEC.2001.934293
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2017.08.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 230
ExternalDocumentID 10_1016_j_swevo_2017_08_001
S2210650216303583
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-f6a2941dae50876dace29b0a0f44597f9a3e6f6dc13a720e43e631ec176f27353
IEDL.DBID .~1
ISSN 2210-6502
IngestDate Wed Oct 01 05:53:32 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Fri Feb 23 02:47:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Many-objective optimization
Combinatorial optimization
Multi-objective evolutionary algorithms
Pickup and delivery problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-f6a2941dae50876dace29b0a0f44597f9a3e6f6dc13a720e43e631ec176f27353
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2017_08_001
crossref_primary_10_1016_j_swevo_2017_08_001
elsevier_sciencedirect_doi_10_1016_j_swevo_2017_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References H. Li, A. Lim, A metaheuristic for the pickup and delivery problem with time windows, in: Proceedings of the 13th International Conference on Tools and Artificial Intelligence, vol. 1, IEEE Computer Society, 2001, pp. 160–167.
Zhu, Xiao, He, Ji, Sun (bib28) 2016; 329
K. Praditwong, X. Yao, How well do multi-objective evolutionary algorithms scale to large problems, in: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, 3959–3966.
Deb, Pratap, Agarwal, Meyarivan (bib30) 2002; 6
K. Deb, M. Mohan, S. Mishra, Towards a quick computation of well-spread pareto-optimal solutions, in: Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 222–236.
Goldberg (bib40) 1989
Parragh, Doerner, Hartl (bib22) 2008; 58
Teytaud (bib6) 2007; 15
Laumanns, Thiele, Zitzler (bib33) 2004; 8
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the 2002 IEEE Congress on Evolutionary Computation vol. 1, IEEE, 2002, 825–830.
J. Castro-Gutierrez, D. Landa-Silva, J. Moreno Pérez, Nature of real-world multi-objective vehicle routing with evolutionary algorithms, in: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp. 257–264.
Velasco, Dejax, Guéret, Prins (bib24) 2012; 44
Deb, Mohan, Mishra (bib35) 2005; 13
Garcia-Najera, López-Jaimes (bib31) 2015; 104
Yuan, Xu, Wang, Yao (bib10) 2016; 20
A. Garcia-Najera, M. A. Gutierrez-Andrade, An evolutionary approach to the multi-objective pickup and delivery problem with time windows, in: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, IEEE, 2013, pp. 997–1004.
I. Kokolo, K. Hajime, K. Shigenobu, Failure of pareto-based MOEAs: does non-dominated really mean near to optimal? in: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, vol. 2, IEEE, 2001, pp. 957–962.
Mei, Tang, Yao (bib39) 2011; 15
von Lücken, Barán, Brizuela (bib11) 2014; 58
S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test problem toolkit, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 3410 of LNCS, 2005, pp. 280–295.
Ishibuchi, Akedo, Nojima (bib15) 2015; 19
Jozefowiez, Semet, Talbi (bib19) 2008
J. Knowles, D. Corne, Quantifying the effects of objective space dimension in evolutionary multiobjective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer, 2007, pp. 757–771.
D. Brockhoff, E. Zitzler, Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization, in: T. P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao (Eds.), Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Springer. vol. 4193 of LNCS, 2006, pp. 533–542.
Laporte (bib16) 2009; 43
Garcia-Najera, Bullinaria (bib18) 2011; 38
Carlsson, Fullér (bib20) 1995; 22
X.-L. Liao, C.-K. Ting, Solving the biobjective selective pickup and delivery problem with memetic algorithm, in: Proceedings of the 2013 IEEE Workshop on Computational Intelligence In Production And Logistics Systems, IEEE, 2013, pp. 107–114.
E.J. Hughes, Evolutionary many-objective optimisation: many once or one many? in: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE, 2005, pp. 222–227.
Wang, Jiao, Yao (bib9) 2015; 19
Deb, Jain (bib8) 2014; 18
H. Ishibuchi, M. Yamane, Y. Nojima, Difficulty in evolutionary multiobjective optimization of discrete objective functions with different granularities, in: R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, J. Shaw (Eds.), Proceedings of the 7th International Conference Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 230–245.
Schütze, Lara, Coello Coello (bib13) 2011; 15
Lenstra, Kan (bib17) 1981; 11
López Jaimes, Coello Coello (bib12) 2015
Zhang, Li (bib36) 2007; 11
T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer,2007, pp. 742–756.
Das, Dennis (bib41) 1997; 14
Grandinetti, Guerriero, Pezzella, Pisacane (bib27) 2014; 111
Purshouse, Fleming (bib5) 2007; 11
M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems, in: Proceedings of the NAFIPS-FLINT International Conference'2002, IEEE, 2002, pp. 233–238.
W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, in: Multi-Objective Memetic Algorithms, Springer, 2009, pp. 309–324.
Guerriero, Pezzella, Pisacane, Trollini (bib26) 2014; 3
Assis, Maravilha, Vivas, Campelo, Ramírez (bib23) 2012; 7
T. Hanne, Global multiobjective optimization with evolutionary algorithms: selection mechanisms and mutation control, in: E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D. Corne (Eds.), Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 1992 of LNCS, 2001, pp. 197–212.
Laumanns, Thiele, Deb, Zitzler (bib37) 2002; 10
Lenstra (10.1016/j.swevo.2017.08.001_bib17) 1981; 11
Zhu (10.1016/j.swevo.2017.08.001_bib28) 2016; 329
10.1016/j.swevo.2017.08.001_bib3
10.1016/j.swevo.2017.08.001_bib4
10.1016/j.swevo.2017.08.001_bib1
10.1016/j.swevo.2017.08.001_bib2
10.1016/j.swevo.2017.08.001_bib7
10.1016/j.swevo.2017.08.001_bib25
Assis (10.1016/j.swevo.2017.08.001_bib23) 2012; 7
Zhang (10.1016/j.swevo.2017.08.001_bib36) 2007; 11
10.1016/j.swevo.2017.08.001_bib29
Goldberg (10.1016/j.swevo.2017.08.001_bib40) 1989
Guerriero (10.1016/j.swevo.2017.08.001_bib26) 2014; 3
10.1016/j.swevo.2017.08.001_bib32
Yuan (10.1016/j.swevo.2017.08.001_bib10) 2016; 20
10.1016/j.swevo.2017.08.001_bib34
Parragh (10.1016/j.swevo.2017.08.001_bib22) 2008; 58
Carlsson (10.1016/j.swevo.2017.08.001_bib20) 1995; 22
Jozefowiez (10.1016/j.swevo.2017.08.001_bib19) 2008
Teytaud (10.1016/j.swevo.2017.08.001_bib6) 2007; 15
Garcia-Najera (10.1016/j.swevo.2017.08.001_bib31) 2015; 104
von Lücken (10.1016/j.swevo.2017.08.001_bib11) 2014; 58
López Jaimes (10.1016/j.swevo.2017.08.001_bib12) 2015
Deb (10.1016/j.swevo.2017.08.001_bib8) 2014; 18
Wang (10.1016/j.swevo.2017.08.001_bib9) 2015; 19
Laumanns (10.1016/j.swevo.2017.08.001_bib37) 2002; 10
10.1016/j.swevo.2017.08.001_bib14
Grandinetti (10.1016/j.swevo.2017.08.001_bib27) 2014; 111
10.1016/j.swevo.2017.08.001_bib38
Deb (10.1016/j.swevo.2017.08.001_bib30) 2002; 6
Laporte (10.1016/j.swevo.2017.08.001_bib16) 2009; 43
Mei (10.1016/j.swevo.2017.08.001_bib39) 2011; 15
Velasco (10.1016/j.swevo.2017.08.001_bib24) 2012; 44
Ishibuchi (10.1016/j.swevo.2017.08.001_bib15) 2015; 19
Laumanns (10.1016/j.swevo.2017.08.001_bib33) 2004; 8
Deb (10.1016/j.swevo.2017.08.001_bib35) 2005; 13
10.1016/j.swevo.2017.08.001_bib42
10.1016/j.swevo.2017.08.001_bib21
10.1016/j.swevo.2017.08.001_bib43
10.1016/j.swevo.2017.08.001_bib44
10.1016/j.swevo.2017.08.001_bib45
10.1016/j.swevo.2017.08.001_bib46
Purshouse (10.1016/j.swevo.2017.08.001_bib5) 2007; 11
Das (10.1016/j.swevo.2017.08.001_bib41) 1997; 14
Schütze (10.1016/j.swevo.2017.08.001_bib13) 2011; 15
Garcia-Najera (10.1016/j.swevo.2017.08.001_bib18) 2011; 38
References_xml – volume: 15
  start-page: 475
  year: 2007
  end-page: 491
  ident: bib6
  article-title: On the hardness of offline multi-objective optimization
  publication-title: Evol. Comput.
– reference: D. Brockhoff, E. Zitzler, Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization, in: T. P. Runarsson, H.-G. Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao (Eds.), Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Springer. vol. 4193 of LNCS, 2006, pp. 533–542.
– volume: 15
  start-page: 151
  year: 2011
  end-page: 165
  ident: bib39
  article-title: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem
  publication-title: IEEE T. Evolut. Comput.
– reference: S. Huband, L. Barone, L. While, P. Hingston, A scalable multi-objective test problem toolkit, in: C.A. Coello Coello, A. Hernández Aguirre, E. Zitzler (Eds.), Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 3410 of LNCS, 2005, pp. 280–295.
– reference: E.J. Hughes, Evolutionary many-objective optimisation: many once or one many? in: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, IEEE, 2005, pp. 222–227.
– reference: I. Kokolo, K. Hajime, K. Shigenobu, Failure of pareto-based MOEAs: does non-dominated really mean near to optimal? in: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, vol. 2, IEEE, 2001, pp. 957–962.
– reference: M. Farina, P. Amato, On the optimal solution definition for many-criteria optimization problems, in: Proceedings of the NAFIPS-FLINT International Conference'2002, IEEE, 2002, pp. 233–238.
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: bib10
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE T. Evolut. Comput.
– volume: 8
  start-page: 170
  year: 2004
  end-page: 182
  ident: bib33
  article-title: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions
  publication-title: IEEE T. Evolut. Comput.
– volume: 58
  start-page: 707
  year: 2014
  end-page: 756
  ident: bib11
  article-title: A survey on multi-objective evolutionary algorithms for many-objective problems
  publication-title: Comput. Optim. Appl.
– start-page: 1033
  year: 2015
  end-page: 1046
  ident: bib12
  article-title: Many-objective problems: challenges and methods (chap. 51)
  publication-title: Springer Handbook of Computational Intelligence
– volume: 3
  start-page: 299
  year: 2014
  end-page: 308
  ident: bib26
  article-title: Multi-objective optimization in dial-a-ride public transportation
  publication-title: Transp. Res. Procedia
– reference: A. Garcia-Najera, M. A. Gutierrez-Andrade, An evolutionary approach to the multi-objective pickup and delivery problem with time windows, in: Proceedings of the 2013 IEEE Congress on Evolutionary Computation, IEEE, 2013, pp. 997–1004.
– reference: H. Ishibuchi, M. Yamane, Y. Nojima, Difficulty in evolutionary multiobjective optimization of discrete objective functions with different granularities, in: R.C. Purshouse, P.J. Fleming, C.M. Fonseca, S. Greco, J. Shaw (Eds.), Proceedings of the 7th International Conference Evolutionary Multi-Criterion Optimization, Springer, 2013, pp. 230–245.
– volume: 58
  start-page: 81
  year: 2008
  end-page: 117
  ident: bib22
  article-title: A survey on pickup and delivery problems
  publication-title: J. Betriebswirtschaft
– volume: 14
  start-page: 63
  year: 1997
  end-page: 69
  ident: bib41
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
– volume: 38
  start-page: 287
  year: 2011
  end-page: 300
  ident: bib18
  article-title: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows
  publication-title: Comput. Oper. Res.
– reference: X.-L. Liao, C.-K. Ting, Solving the biobjective selective pickup and delivery problem with memetic algorithm, in: Proceedings of the 2013 IEEE Workshop on Computational Intelligence In Production And Logistics Systems, IEEE, 2013, pp. 107–114.
– reference: J. Castro-Gutierrez, D. Landa-Silva, J. Moreno Pérez, Nature of real-world multi-objective vehicle routing with evolutionary algorithms, in: Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, 2011, pp. 257–264.
– volume: 22
  start-page: 251
  year: 1995
  end-page: 260
  ident: bib20
  article-title: Multiple criteria decision making: the case for interdependence
  publication-title: Comput. Oper. Res.
– year: 1989
  ident: bib40
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in: Proceedings of the 2002 IEEE Congress on Evolutionary Computation vol. 1, IEEE, 2002, 825–830.
– volume: 7
  start-page: 1419
  year: 2012
  end-page: 1431
  ident: bib23
  article-title: Multiobjective vehicle routing problem with fixed delivery and optional collections
  publication-title: Optim. Lett.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib36
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE T. Evolut. Comput.
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: bib37
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– reference: W. Peng, Q. Zhang, H. Li, Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem, in: Multi-Objective Memetic Algorithms, Springer, 2009, pp. 309–324.
– reference: T. Hanne, Global multiobjective optimization with evolutionary algorithms: selection mechanisms and mutation control, in: E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D. Corne (Eds.), Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Springer, vol. 1992 of LNCS, 2001, pp. 197–212.
– reference: H. Li, A. Lim, A metaheuristic for the pickup and delivery problem with time windows, in: Proceedings of the 13th International Conference on Tools and Artificial Intelligence, vol. 1, IEEE Computer Society, 2001, pp. 160–167.
– volume: 44
  start-page: 305
  year: 2012
  end-page: 325
  ident: bib24
  article-title: A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem
  publication-title: Eng. Optim.
– volume: 104
  start-page: 51
  year: 2015
  end-page: 60
  ident: bib31
  article-title: The pickup and delivery problem: a many-objective analysis
  publication-title: Res. Comput. Sci.
– volume: 11
  start-page: 770
  year: 2007
  end-page: 784
  ident: bib5
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE T. Evolut. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE T. Evolut. Comput.
– reference: K. Deb, M. Mohan, S. Mishra, Towards a quick computation of well-spread pareto-optimal solutions, in: Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 222–236.
– volume: 15
  start-page: 444
  year: 2011
  end-page: 455
  ident: bib13
  article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem
  publication-title: IEEE T. Evolut. Comput.
– volume: 111
  start-page: 203
  year: 2014
  end-page: 212
  ident: bib27
  article-title: The multi-objective multi-vehicle pickup and delivery problem with time windows
  publication-title: Procedia Soc. Behav.
– volume: 329
  start-page: 73
  year: 2016
  end-page: 89
  ident: bib28
  article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem
  publication-title: Inform. Sci.
– reference: T. Wagner, N. Beume, B. Naujoks, Pareto-, aggregation-, and indicator-based methods in many-objective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer,2007, pp. 742–756.
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: bib9
  article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization
  publication-title: IEEE T. Evolut. Comput.
– volume: 43
  start-page: 408
  year: 2009
  end-page: 416
  ident: bib16
  article-title: Fifty years of vehicle routing
  publication-title: Transp. Sci.
– volume: 19
  start-page: 264
  year: 2015
  end-page: 283
  ident: bib15
  article-title: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems
  publication-title: IEEE T. Evolut. Comput.
– reference: J. Knowles, D. Corne, Quantifying the effects of objective space dimension in evolutionary multiobjective optimization, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, vol. 4403 of LNCS, Springer, 2007, pp. 757–771.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib8
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE T. Evolut. Comput.
– volume: 13
  start-page: 501
  year: 2005
  end-page: 525
  ident: bib35
  article-title: Evaluating the
  publication-title: Evol. Comput.
– reference: K. Praditwong, X. Yao, How well do multi-objective evolutionary algorithms scale to large problems, in: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, 3959–3966.
– start-page: 445
  year: 2008
  end-page: 471
  ident: bib19
  article-title: From single-objective to multi-objective vehicle routing problems: motivations, case studies, and methods
  publication-title: The Vehicle Routing Problem: Latest Advances and New Challenges
– volume: 11
  start-page: 221
  year: 1981
  end-page: 227
  ident: bib17
  article-title: Complexity of vehicle routing and scheduling problems
  publication-title: Networks
– volume: 15
  start-page: 444
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2017.08.001_bib13
  article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2010.2064321
– volume: 22
  start-page: 251
  issue: 3
  year: 1995
  ident: 10.1016/j.swevo.2017.08.001_bib20
  article-title: Multiple criteria decision making: the case for interdependence
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(94)E0023-Z
– volume: 8
  start-page: 170
  issue: 2
  year: 2004
  ident: 10.1016/j.swevo.2017.08.001_bib33
  article-title: Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2004.823470
– volume: 104
  start-page: 51
  year: 2015
  ident: 10.1016/j.swevo.2017.08.001_bib31
  article-title: The pickup and delivery problem: a many-objective analysis
  publication-title: Res. Comput. Sci.
  doi: 10.13053/rcs-104-1-4
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.swevo.2017.08.001_bib10
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 11
  start-page: 221
  issue: 2
  year: 1981
  ident: 10.1016/j.swevo.2017.08.001_bib17
  article-title: Complexity of vehicle routing and scheduling problems
  publication-title: Networks
  doi: 10.1002/net.3230110211
– ident: 10.1016/j.swevo.2017.08.001_bib21
– start-page: 445
  year: 2008
  ident: 10.1016/j.swevo.2017.08.001_bib19
  article-title: From single-objective to multi-objective vehicle routing problems: motivations, case studies, and methods
– volume: 44
  start-page: 305
  issue: 3
  year: 2012
  ident: 10.1016/j.swevo.2017.08.001_bib24
  article-title: A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.639368
– volume: 38
  start-page: 287
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2017.08.001_bib18
  article-title: An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.05.004
– volume: 43
  start-page: 408
  issue: 4
  year: 2009
  ident: 10.1016/j.swevo.2017.08.001_bib16
  article-title: Fifty years of vehicle routing
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1090.0301
– ident: 10.1016/j.swevo.2017.08.001_bib2
  doi: 10.1109/CEC.2005.1554688
– ident: 10.1016/j.swevo.2017.08.001_bib29
  doi: 10.1109/CEC.2013.6557676
– ident: 10.1016/j.swevo.2017.08.001_bib25
  doi: 10.1109/CIPLS.2013.6595207
– volume: 329
  start-page: 73
  year: 2016
  ident: 10.1016/j.swevo.2017.08.001_bib28
  article-title: A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.09.006
– volume: 14
  start-page: 63
  issue: 1
  year: 1997
  ident: 10.1016/j.swevo.2017.08.001_bib41
  article-title: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197559
– volume: 15
  start-page: 151
  issue: 2
  year: 2011
  ident: 10.1016/j.swevo.2017.08.001_bib39
  article-title: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2010.2051446
– year: 1989
  ident: 10.1016/j.swevo.2017.08.001_bib40
– volume: 7
  start-page: 1419
  issue: 7
  year: 2012
  ident: 10.1016/j.swevo.2017.08.001_bib23
  article-title: Multiobjective vehicle routing problem with fixed delivery and optional collections
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-012-0551-z
– ident: 10.1016/j.swevo.2017.08.001_bib14
  doi: 10.1007/978-3-642-37140-0_20
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2017.08.001_bib30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.swevo.2017.08.001_bib45
– volume: 15
  start-page: 475
  issue: 4
  year: 2007
  ident: 10.1016/j.swevo.2017.08.001_bib6
  article-title: On the hardness of offline multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2007.15.4.475
– ident: 10.1016/j.swevo.2017.08.001_bib44
  doi: 10.1109/CEC.2002.1007032
– ident: 10.1016/j.swevo.2017.08.001_bib32
  doi: 10.1109/ICSMC.2011.6083675
– ident: 10.1016/j.swevo.2017.08.001_bib4
  doi: 10.1109/CEC.2007.4424987
– ident: 10.1016/j.swevo.2017.08.001_bib7
– ident: 10.1016/j.swevo.2017.08.001_bib46
  doi: 10.1109/ICTAI.2001.974461
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2017.08.001_bib9
  article-title: Two_Arch2: an improved two-archive algorithm for many-objective optimization
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2014.2350987
– ident: 10.1016/j.swevo.2017.08.001_bib43
– ident: 10.1016/j.swevo.2017.08.001_bib3
– volume: 19
  start-page: 264
  issue: 2
  year: 2015
  ident: 10.1016/j.swevo.2017.08.001_bib15
  article-title: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2014.2315442
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.swevo.2017.08.001_bib37
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– ident: 10.1016/j.swevo.2017.08.001_bib38
  doi: 10.1007/978-3-540-88051-6_14
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2017.08.001_bib8
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 13
  start-page: 501
  issue: 4
  year: 2005
  ident: 10.1016/j.swevo.2017.08.001_bib35
  article-title: Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evol. Comput.
  doi: 10.1162/106365605774666895
– volume: 111
  start-page: 203
  year: 2014
  ident: 10.1016/j.swevo.2017.08.001_bib27
  article-title: The multi-objective multi-vehicle pickup and delivery problem with time windows
  publication-title: Procedia Soc. Behav.
  doi: 10.1016/j.sbspro.2014.01.053
– start-page: 1033
  year: 2015
  ident: 10.1016/j.swevo.2017.08.001_bib12
  article-title: Many-objective problems: challenges and methods (chap. 51)
– volume: 58
  start-page: 81
  issue: 2
  year: 2008
  ident: 10.1016/j.swevo.2017.08.001_bib22
  article-title: A survey on pickup and delivery problems
  publication-title: J. Betriebswirtschaft
  doi: 10.1007/s11301-008-0036-4
– volume: 58
  start-page: 707
  issue: 3
  year: 2014
  ident: 10.1016/j.swevo.2017.08.001_bib11
  article-title: A survey on multi-objective evolutionary algorithms for many-objective problems
  publication-title: Comput. Optim. Appl.
– ident: 10.1016/j.swevo.2017.08.001_bib34
  doi: 10.1007/3-540-36970-8_16
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2017.08.001_bib36
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 11
  start-page: 770
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2017.08.001_bib5
  article-title: On the evolutionary optimization of many conflicting objectives
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/TEVC.2007.910138
– ident: 10.1016/j.swevo.2017.08.001_bib1
  doi: 10.1109/NAFIPS.2002.1018061
– volume: 3
  start-page: 299
  year: 2014
  ident: 10.1016/j.swevo.2017.08.001_bib26
  article-title: Multi-objective optimization in dial-a-ride public transportation
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2014.10.009
– ident: 10.1016/j.swevo.2017.08.001_bib42
  doi: 10.1109/CEC.2001.934293
SSID ssj0000602559
Score 2.2308078
Snippet Many-objective optimization focuses on solving optimization problems with four or more objectives. Effort has been made mainly on studying continuous problems,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 218
SubjectTerms Combinatorial optimization
Many-objective optimization
Multi-objective evolutionary algorithms
Pickup and delivery problem
Title An investigation into many-objective optimization on combinatorial problems: Analyzing the pickup and delivery problem
URI https://dx.doi.org/10.1016/j.swevo.2017.08.001
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2210-6502
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 2210-6502
  databaseCode: .~1
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  issn: 2210-6502
  databaseCode: ACRLP
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 2210-6502
  databaseCode: AIKHN
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2210-6502
  databaseCode: AKRWK
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL178Lc4fIweP1jVpm67exnBMhV10sFtJ0wQ6t3a4bqIH_3Zf0nQqwg5CLyl50L4m732vvHwfQleUBx1BlXIoDxUUKEw4PEykIxWXUUJdAMWm22LIBiP_YRyMG6hXn4XRbZU29lcx3URre6dtvdmeZ1n7iUK1AviCAqJwvaCjGT99P9QqBjefZP2fxWUGNWuNOZjvaIOafMi0eS3e5EofAiShofK04jB_EtSPpNPfR7sWLeJu9UAHqCHzQ7RXKzFguzGP0Kqb4-ybMaPQo7LAM9jpTpFMqqCGCwgPM3vuEsMF7wx1sa66YRFiKy2zuMWGqOQDchoGdIjnmXhZzjHPU5zKqW7jeK_nHqNR_-65N3CsooIjwEeloxinkU9SLgNNRZdyIWmUuNxVvg-VhYq4J5liqSAeD6krfRh6RAoSMgU4J_BO0FZe5PIU4dSTJKUdQSLO_UTJJFBCJYSpNDJBoolo7cZYWLpxrXoxjeu-sklsfB9r38daC9MlTXS9NppXbBubp7P6-8S_Fk0M-WCT4dl_Dc_RDow6Vdv2BdoqX5fyElBJmbTMsmuh7e7942D4BXvS5dQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4yExk7iNGxVBSpQWKBSt8hxbKmlTSL6QDDw2zk7Dg8hMSBlceKTkotz9110_j6ETikPWoIq5VAeKihQmHB4mEhHKi6jhLoAik23xT3r9v2bQTCooU61F0a3VdrYX8Z0E63tmab1ZrMYDpsPFKoVwBcUEIXrBS1vCS37AQ11BXb-Tj5_tLjMwGYtMgcGjrao2IdMn9f0RS70LkASGi5Pqw7zK0N9yzpXG2jNwkXcLu9oE9VktoXWKykGbL_MbbRoZ3j4RZmR69EsxxP41J08GZVRDecQHyZ24yWGAx4aCmNddsMqxFZbZnqBDVPJGyQ1DPAQF0PxNC8wz1KcyrHu43it5u6g_tXlY6frWEkFR4CTZo5inEY-SbkMNBddyoWkUeJyV_k-lBYq4p5kiqWCeDykrvRh6BEpSMgUAJ3A20X1LM_kHsKpJ0lKW4JEnPuJkkmghEoIU2lkokQD0cqNsbB841r2YhxXjWWj2Pg-1r6PtRimSxro7NOoKOk2_p7OqvcT_1g1MSSEvwz3_2t4gla6j3e9uHd9f3uAVuFKq-zhPkT12fNcHgFEmSXHZgl-AN4A52k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+into+many-objective+optimization+on+combinatorial+problems%3A+Analyzing+the+pickup+and+delivery+problem&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Garc%C3%ADa-N%C3%A1jera%2C+Abel&rft.au=L%C3%B3pez-Jaimes%2C+Antonio&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=38&rft.spage=218&rft.epage=230&rft_id=info:doi/10.1016%2Fj.swevo.2017.08.001&rft.externalDocID=S2210650216303583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon