Automatic segmentation of melanoma using superpixel region growing technique

Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the publ...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 45; pp. 1726 - 1732
Main Authors Bama, S., Velumani, R., Prakash, N.B., Hemalakshmi, G.R., Mohanarathinam, A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2021
Subjects
Online AccessGet full text
ISSN2214-7853
2214-7853
DOI10.1016/j.matpr.2020.08.618

Cover

Abstract Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the public, calling for initial screenings. However, melanoma screening is considered as a non trivial problem even by expert medical practitioners, in spite of several diagnostic algorithms. There is an enthralling need for automated melanoma detection systems due to the surge in the melanoma population and lack of trained dermatologists. Computational models for Melanoma detection are based on learning from the Region of Interest (RoI). Nevertheless, identification of RoI itself poses several challenges due to the diverse structural and chromatic features on the surface of the skin. This paper proposes a superpixel region growing based approach for segmentation of the melanoma region for further analysis. It is based on the Gaussian Mixture Model superpixels which segment the candidate image into accurate homogenous regions. The superiority of the system is demonstrated with performance metrics and comparisons on a standard dataset. This system is an impending solution to perform melanoma screenings with ease.
AbstractList Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the public, calling for initial screenings. However, melanoma screening is considered as a non trivial problem even by expert medical practitioners, in spite of several diagnostic algorithms. There is an enthralling need for automated melanoma detection systems due to the surge in the melanoma population and lack of trained dermatologists. Computational models for Melanoma detection are based on learning from the Region of Interest (RoI). Nevertheless, identification of RoI itself poses several challenges due to the diverse structural and chromatic features on the surface of the skin. This paper proposes a superpixel region growing based approach for segmentation of the melanoma region for further analysis. It is based on the Gaussian Mixture Model superpixels which segment the candidate image into accurate homogenous regions. The superiority of the system is demonstrated with performance metrics and comparisons on a standard dataset. This system is an impending solution to perform melanoma screenings with ease.
Author Mohanarathinam, A.
Prakash, N.B.
Hemalakshmi, G.R.
Bama, S.
Velumani, R.
Author_xml – sequence: 1
  givenname: S.
  surname: Bama
  fullname: Bama, S.
  email: bamasrini@yahoo.com
  organization: Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
– sequence: 2
  givenname: R.
  surname: Velumani
  fullname: Velumani, R.
  organization: IEEE, India
– sequence: 3
  givenname: N.B.
  surname: Prakash
  fullname: Prakash, N.B.
  organization: Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, Tamilnadu, India
– sequence: 4
  givenname: G.R.
  surname: Hemalakshmi
  fullname: Hemalakshmi, G.R.
  organization: Department of Computer Science and Engineering, National Engineering College, Kovilpatti, Tamilnadu, India
– sequence: 5
  givenname: A.
  surname: Mohanarathinam
  fullname: Mohanarathinam, A.
  organization: Department of Electronics and Communication Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
BookMark eNqFkMtOwzAQRS0EEqX0C9jkBxL8SFxnwaKqeEmV2MDacpxxcJU4wU54_D0OZYFYwGquNHNGM-cMHbveAUIXBGcEE365zzo1Dj6jmOIMi4wTcYQWlJI8XYuCHf_Ip2gVwh5jTAqOBeELtNtMYx95q5MATQdujLl3SW-SDlrlYi-ZgnVNEqYB_GDfoU08NPNM4_u3uTOCfnb2ZYJzdGJUG2D1XZfo6eb6cXuX7h5u77ebXaoZZmNqeM4FLURpSqJxWZtKk6rO11yUQKtKx1AbpQzTRU1VRXJsDBNmndesMIoTtkTlYa_2fQgejNT2cPfolW0lwXI2I_fyy4yczUgsZDQTWfaLHbztlP_4h7o6UBDferXgZdAWnIbaetCjrHv7J_8JV4KDFw
CitedBy_id crossref_primary_10_1007_s13042_025_02575_3
crossref_primary_10_1080_21681163_2023_2300257
crossref_primary_10_1155_2022_7502504
crossref_primary_10_1002_ima_22750
crossref_primary_10_1049_ipr2_12307
crossref_primary_10_1002_ima_22852
crossref_primary_10_1007_s11517_024_03093_0
Cites_doi 10.1016/j.compmedimag.2016.05.002
10.1007/s12652-020-02265-8
10.1166/jmihi.2020.3263
10.3390/s18020556
10.5373/JARDCS/V11/20192665
10.1109/ICIP.2014.7025180
10.1016/j.irbm.2013.12.007
10.1016/j.sder.2007.12.002
10.1016/S0933-3657(02)00087-8
10.1111/j.1600-0846.2008.00301.x
10.1016/j.ins.2017.01.003
10.1016/j.eswa.2011.05.079
10.1109/TIP.2018.2836306
10.1109/TBME.2012.2227478
10.3390/diagnostics9030072
10.1111/j.1600-0846.2012.00636.x
10.1109/TFUZZ.2018.2889018
10.1109/EMBC.2013.6610779
10.1109/CISP.2013.6744054
10.1147/JRD.2017.2708299
10.18576/amis/110331
10.1007/s12652-020-02172-y
10.1016/j.compmedimag.2008.11.002
10.1016/j.compmedimag.2008.06.005
10.1109/42.918473
10.1016/j.compmedimag.2010.09.006
10.1109/TPAMI.2012.120
10.1111/j.1600-0846.2011.00544.x
10.1109/ICACI.2013.6748493
10.1111/j.1600-0846.2005.00092.x
10.1016/j.compmedimag.2010.08.001
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2020.08.618
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 1732
ExternalDocumentID 10_1016_j_matpr_2020_08_618
S2214785320365007
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-f64682589f91c09dfbc1bd47689e2bbc768dfaaf3c5d2ab140ff38f74d35fa613
IEDL.DBID AIKHN
ISSN 2214-7853
IngestDate Thu Apr 24 22:56:04 EDT 2025
Tue Jul 01 01:53:17 EDT 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Superpixels
Region growing
GMM
Melanoma
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-f64682589f91c09dfbc1bd47689e2bbc768dfaaf3c5d2ab140ff38f74d35fa613
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2020_08_618
crossref_primary_10_1016_j_matpr_2020_08_618
elsevier_sciencedirect_doi_10_1016_j_matpr_2020_08_618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Massone, Wurm, Hofmann-Wellenhof, Soyer (b0015) 2008; 27
Sadri, Zekri, Sadri, Gheissari, Mokhtari, Kolahdouzan (b0105) 2012; 60
Emre Celebi, Wen, Hwang, Iyatomi, Schaefer (b0110) 2013; 19
O. Lézoray, M. Revenu, M. Desvignes (2014) Graph-based skin lesion segmentation of multispectral dermoscopic images. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 897-901). IEEE.
Q. Wen, D. Ming, J. Chen, W. Liu (2013) A superpixel based post-processing approach for segmenting dermoscopy images. In 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI) (pp. 155-158). IEEE.
Lei, Jia, Zhang, Liu, Meng, Nandi (b0175) 2019; 27
Stolz (b0005) 1994; 4
Codella, Nguyen, Pankanti, Gutman, Helba, Halpern, Smith (b0035) 2017; 61
Mokrzycki, Tatol (b0185) 2011; 20
Gao, Zhang, Fleming, Pollak, Cognetta (b0095) 1998
Lei, Zhang, Wang, Liu, Guo (b0180) 2017; 387
Codella, Cai, Abedini, Garnavi, Halpern, Smith (b0030) 2015
Wang, Moss, Chen, Stanley, Stoecker, Celebi, Malters, Grichnik, Marghoob, Rabinovitz, Menzies, Szalapski (b0090) 2011; 35
Cucchiara, Grana, Seidenari, Pellacani (b0075) 2002; 11
Ganster, Pinz, Rohrer, Wildling, Binder, Kittler (b0020) 2001; 20
Iyatomi, Oka, Celebi, Hashimoto, Hagiwara, Tanaka, Ogawa (b0120) 2008; 32
Abbas, Celebi, García (b0080) 2012; 18
D. Ming, Q. Wen, J. Chen, W. Liu (2013) A generalized fusion approach for segmenting dermoscopy images using Markov random field. In 2013 6th International Congress on Image and Signal Processing (CISP) (Vol. 1, pp. 532-537). IEEE.
J. Jayanthi, E. Laxmi Lydia, N. Krishnaraj, T. Jayasankar, R. Lenin Babu, R. Adaline Suji, An effective deep learning features based integrated framework for iris detection and recognition, J. Ambient Intell. Human. Comput. (2020). https://doi.org/10.1007/s12652-020-02172-y.
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b0045) 2012; 34
Sylvain Boltz (2019). Image segmentation using statistical region merging (https://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging), MATLAB Central File Exchange. Accessed 11 December 2019.
Oliver, Anuradha, Justus, Bellam, Jayasankar (b0145) 2020; 10
Hintz-Madsen, Hansen, Larsen, Drzewiecki (b0070) 2001; 5
Ban, Liu, Cao (b0055) 2018; 27
Zhao Q JSEG method implementation (2001) cs.joensuu.fi/zhao/Software/JSEG.zip. 6 Accessed 24 December 2019.
Garnavi, Aldeen, Celebi, Varigos, Finch (b0060) 2011; 35
Emre Celebi, Kingravi, Iyatomi, Alp Aslandogan, Stoecker, Moss (b0085) 2008; 14
Erkol, Moss, Joe Stanley, Stoecker, Hvatum (b0100) 2005; 11
Celebi, Iyatomi, Schaefer, Stoecker (b0065) 2009; 33
Crandall, R.: Level set implementation https://github.com/rcrandall/ ChanVese. 6 Accessed 24 December 2019.
Ünver, Ayan (b0025) 2019; 9
Li, Shen (b0040) 2018; 18
Jayasankar, VinothKumar, Arputha Vijayaselvi (b0050) 2017; 11
Sboner, Eccher, Blanzieri, Bauer, Cristofolini, Zumiani, Forti (b0010) 2003; 27
Buyssens, Gardin, Ruan (b0140) 2014; 35
Ruiz, Berenguer, Soriano, Sánchez (b0125) 2011; 38
Pennisi, Bloisi, Nardi, Giampetruzzi, Mondino, Facchiano (b0165) 2016; 52
T. Mendoncÿa, P.M. Ferreira, J. Marques, A.R.S. Marcÿal, J. Rozeira (2013) A dermoscopic image database for research and benchmarking. Presentation in Proceedings of PH, 2.
10.1016/j.matpr.2020.08.618_b0135
Cucchiara (10.1016/j.matpr.2020.08.618_b0075) 2002; 11
Ganster (10.1016/j.matpr.2020.08.618_b0020) 2001; 20
10.1016/j.matpr.2020.08.618_b0155
Codella (10.1016/j.matpr.2020.08.618_b0035) 2017; 61
Sadri (10.1016/j.matpr.2020.08.618_b0105) 2012; 60
Ruiz (10.1016/j.matpr.2020.08.618_b0125) 2011; 38
Mokrzycki (10.1016/j.matpr.2020.08.618_b0185) 2011; 20
10.1016/j.matpr.2020.08.618_b0115
Li (10.1016/j.matpr.2020.08.618_b0040) 2018; 18
Ünver (10.1016/j.matpr.2020.08.618_b0025) 2019; 9
Emre Celebi (10.1016/j.matpr.2020.08.618_b0110) 2013; 19
Hintz-Madsen (10.1016/j.matpr.2020.08.618_b0070) 2001; 5
Iyatomi (10.1016/j.matpr.2020.08.618_b0120) 2008; 32
Ban (10.1016/j.matpr.2020.08.618_b0055) 2018; 27
Celebi (10.1016/j.matpr.2020.08.618_b0065) 2009; 33
10.1016/j.matpr.2020.08.618_b0160
Codella (10.1016/j.matpr.2020.08.618_b0030) 2015
Jayasankar (10.1016/j.matpr.2020.08.618_b0050) 2017; 11
Pennisi (10.1016/j.matpr.2020.08.618_b0165) 2016; 52
Gao (10.1016/j.matpr.2020.08.618_b0095) 1998
Lei (10.1016/j.matpr.2020.08.618_b0175) 2019; 27
Wang (10.1016/j.matpr.2020.08.618_b0090) 2011; 35
Achanta (10.1016/j.matpr.2020.08.618_b0045) 2012; 34
Sboner (10.1016/j.matpr.2020.08.618_b0010) 2003; 27
Garnavi (10.1016/j.matpr.2020.08.618_b0060) 2011; 35
Massone (10.1016/j.matpr.2020.08.618_b0015) 2008; 27
Emre Celebi (10.1016/j.matpr.2020.08.618_b0085) 2008; 14
Buyssens (10.1016/j.matpr.2020.08.618_b0140) 2014; 35
Abbas (10.1016/j.matpr.2020.08.618_b0080) 2012; 18
Oliver (10.1016/j.matpr.2020.08.618_b0145) 2020; 10
Lei (10.1016/j.matpr.2020.08.618_b0180) 2017; 387
10.1016/j.matpr.2020.08.618_b0170
Stolz (10.1016/j.matpr.2020.08.618_b0005) 1994; 4
10.1016/j.matpr.2020.08.618_b0190
10.1016/j.matpr.2020.08.618_b0130
Erkol (10.1016/j.matpr.2020.08.618_b0100) 2005; 11
10.1016/j.matpr.2020.08.618_b0150
10.1016/j.matpr.2020.08.618_b0195
References_xml – volume: 33
  start-page: 148
  year: 2009
  end-page: 153
  ident: b0065
  article-title: Lesion border detection in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
– volume: 11
  start-page: 169
  year: 2002
  end-page: 182
  ident: b0075
  article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means
  publication-title: Machine Graph. Vision
– start-page: 118
  year: 2015
  end-page: 126
  ident: b0030
  article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 35
  start-page: 105
  year: 2011
  end-page: 115
  ident: b0060
  article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels
  publication-title: Comput. Med. Imaging Graph.
– volume: 27
  start-page: 101
  year: 2008
  end-page: 105
  ident: b0015
  article-title: Teledermatology: an update
  publication-title: Semin. Cutan. Med. Surg.
– volume: 38
  start-page: 15217
  year: 2011
  end-page: 15223
  ident: b0125
  article-title: A decision support system for the diagnosis of melanoma: a comparative approach
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 3262
  year: 2001
  end-page: 3266
  ident: b0070
  article-title: A probabilistic neural network framework for detection of malignant melanoma
  publication-title: Artif. Neural Networks Cancer Diagnosis Prognosis Patient Manage.
– volume: 35
  start-page: 20
  year: 2014
  end-page: 26
  ident: b0140
  article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images
  publication-title: IRBM
– reference: D. Ming, Q. Wen, J. Chen, W. Liu (2013) A generalized fusion approach for segmenting dermoscopy images using Markov random field. In 2013 6th International Congress on Image and Signal Processing (CISP) (Vol. 1, pp. 532-537). IEEE.
– volume: 20
  start-page: 383
  year: 2011
  end-page: 411
  ident: b0185
  article-title: Colour difference Δ E-A survey
  publication-title: Mach. Graph. Vision
– reference: Crandall, R.: Level set implementation https://github.com/rcrandall/ ChanVese. 6 Accessed 24 December 2019.
– volume: 11
  start-page: 907
  year: 2017
  end-page: 913
  ident: b0050
  article-title: Automatic gender identification in speech recognition by genetic algorithm
  publication-title: Appl. Math. Inf. Sci.
– reference: Sylvain Boltz (2019). Image segmentation using statistical region merging (https://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging), MATLAB Central File Exchange. Accessed 11 December 2019.
– volume: 52
  start-page: 89
  year: 2016
  end-page: 103
  ident: b0165
  article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection
  publication-title: Comput. Med. Imaging Graph.
– volume: 19
  start-page: e252
  year: 2013
  end-page: e258
  ident: b0110
  article-title: Lesion border detection in dermoscopy images using ensembles of thresholding methods
  publication-title: Skin Res. Technol
– volume: 60
  start-page: 1134
  year: 2012
  end-page: 1141
  ident: b0105
  article-title: Segmentation of dermoscopy images using wavelet networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 2628
  year: 2020
  end-page: 2633
  ident: b0145
  article-title: An Efficient coding network based feature extraction with support vector machine based classification model for CT lung images
  publication-title: J. Med. Imaging Hlth. Inform.
– volume: 27
  start-page: 4105
  year: 2018
  end-page: 4117
  ident: b0055
  article-title: Superpixel segmentation using gaussian mixture model
  publication-title: IEEE Trans. on Image Process.
– volume: 387
  start-page: 34
  year: 2017
  end-page: 52
  ident: b0180
  article-title: A conditionally invariant mathematical morphological framework for color images
  publication-title: Inf. Sci.
– volume: 18
  start-page: 556
  year: 2018
  ident: b0040
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
– start-page: 823
  year: 1998
  end-page: 827
  ident: b0095
  article-title: Segmentation of dermatoscopic images by stabilized inverse diffusion equations
  publication-title: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269)
– reference: O. Lézoray, M. Revenu, M. Desvignes (2014) Graph-based skin lesion segmentation of multispectral dermoscopic images. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 897-901). IEEE.
– volume: 18
  start-page: 133
  year: 2012
  end-page: 142
  ident: b0080
  article-title: Skin tumor area extraction using an improved dynamic programming approach: skin tumor area extraction
  publication-title: Skin Res. Technol.
– volume: 35
  start-page: 116
  year: 2011
  end-page: 120
  ident: b0090
  article-title: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
– volume: 61
  start-page: 5:1
  year: 2017
  end-page: 5:15
  ident: b0035
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J. Res. Dev.
– reference: Zhao Q JSEG method implementation (2001) cs.joensuu.fi/zhao/Software/JSEG.zip. 6 Accessed 24 December 2019.
– reference: T. Mendoncÿa, P.M. Ferreira, J. Marques, A.R.S. Marcÿal, J. Rozeira (2013) A dermoscopic image database for research and benchmarking. Presentation in Proceedings of PH, 2.
– volume: 20
  start-page: 233
  year: 2001
  end-page: 239
  ident: b0020
  article-title: Automated melanoma recognition
  publication-title: IEEE Trans. Med Imaging
– volume: 27
  start-page: 29
  year: 2003
  end-page: 44
  ident: b0010
  article-title: A multiple classifier system for early melanoma diagnosis
  publication-title: Artif. Intel. Med.
– reference: Q. Wen, D. Ming, J. Chen, W. Liu (2013) A superpixel based post-processing approach for segmenting dermoscopy images. In 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI) (pp. 155-158). IEEE.
– volume: 27
  start-page: 1753
  year: 2019
  end-page: 1766
  ident: b0175
  article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
– reference: J. Jayanthi, E. Laxmi Lydia, N. Krishnaraj, T. Jayasankar, R. Lenin Babu, R. Adaline Suji, An effective deep learning features based integrated framework for iris detection and recognition, J. Ambient Intell. Human. Comput. (2020). https://doi.org/10.1007/s12652-020-02172-y.
– volume: 4
  start-page: 521
  year: 1994
  end-page: 527
  ident: b0005
  article-title: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma
  publication-title: Eur. J. Dermatol.
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b0045
  article-title: SLIC Superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 347
  year: 2008
  end-page: 353
  ident: b0085
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Res. Technol.
– volume: 11
  start-page: 17
  year: 2005
  end-page: 26
  ident: b0100
  article-title: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
  publication-title: Skin Res. Technol.
– volume: 32
  start-page: 566
  year: 2008
  end-page: 579
  ident: b0120
  article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Comput. Med. Imaging Graph.
– volume: 9
  start-page: 72
  year: 2019
  ident: b0025
  article-title: Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm
  publication-title: Diagnostics
– volume: 5
  start-page: 3262
  year: 2001
  ident: 10.1016/j.matpr.2020.08.618_b0070
  article-title: A probabilistic neural network framework for detection of malignant melanoma
  publication-title: Artif. Neural Networks Cancer Diagnosis Prognosis Patient Manage.
– volume: 52
  start-page: 89
  year: 2016
  ident: 10.1016/j.matpr.2020.08.618_b0165
  article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.05.002
– ident: 10.1016/j.matpr.2020.08.618_b0150
– ident: 10.1016/j.matpr.2020.08.618_b0195
  doi: 10.1007/s12652-020-02265-8
– volume: 10
  start-page: 2628
  issue: 11
  year: 2020
  ident: 10.1016/j.matpr.2020.08.618_b0145
  article-title: An Efficient coding network based feature extraction with support vector machine based classification model for CT lung images
  publication-title: J. Med. Imaging Hlth. Inform.
  doi: 10.1166/jmihi.2020.3263
– volume: 18
  start-page: 556
  issue: 2
  year: 2018
  ident: 10.1016/j.matpr.2020.08.618_b0040
  article-title: Skin lesion analysis towards melanoma detection using deep learning network
  publication-title: Sensors
  doi: 10.3390/s18020556
– ident: 10.1016/j.matpr.2020.08.618_b0155
  doi: 10.5373/JARDCS/V11/20192665
– ident: 10.1016/j.matpr.2020.08.618_b0135
  doi: 10.1109/ICIP.2014.7025180
– volume: 35
  start-page: 20
  issue: 1
  year: 2014
  ident: 10.1016/j.matpr.2020.08.618_b0140
  article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images
  publication-title: IRBM
  doi: 10.1016/j.irbm.2013.12.007
– volume: 27
  start-page: 101
  issue: 1
  year: 2008
  ident: 10.1016/j.matpr.2020.08.618_b0015
  article-title: Teledermatology: an update
  publication-title: Semin. Cutan. Med. Surg.
  doi: 10.1016/j.sder.2007.12.002
– volume: 20
  start-page: 383
  issue: 4
  year: 2011
  ident: 10.1016/j.matpr.2020.08.618_b0185
  article-title: Colour difference Δ E-A survey
  publication-title: Mach. Graph. Vision
– volume: 27
  start-page: 29
  issue: 1
  year: 2003
  ident: 10.1016/j.matpr.2020.08.618_b0010
  article-title: A multiple classifier system for early melanoma diagnosis
  publication-title: Artif. Intel. Med.
  doi: 10.1016/S0933-3657(02)00087-8
– volume: 4
  start-page: 521
  year: 1994
  ident: 10.1016/j.matpr.2020.08.618_b0005
  article-title: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma
  publication-title: Eur. J. Dermatol.
– volume: 14
  start-page: 347
  issue: 3
  year: 2008
  ident: 10.1016/j.matpr.2020.08.618_b0085
  article-title: Border detection in dermoscopy images using statistical region merging
  publication-title: Skin Res. Technol.
  doi: 10.1111/j.1600-0846.2008.00301.x
– start-page: 823
  year: 1998
  ident: 10.1016/j.matpr.2020.08.618_b0095
  article-title: Segmentation of dermatoscopic images by stabilized inverse diffusion equations
– volume: 387
  start-page: 34
  year: 2017
  ident: 10.1016/j.matpr.2020.08.618_b0180
  article-title: A conditionally invariant mathematical morphological framework for color images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.01.003
– volume: 38
  start-page: 15217
  issue: 12
  year: 2011
  ident: 10.1016/j.matpr.2020.08.618_b0125
  article-title: A decision support system for the diagnosis of melanoma: a comparative approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.079
– volume: 27
  start-page: 4105
  issue: 8
  year: 2018
  ident: 10.1016/j.matpr.2020.08.618_b0055
  article-title: Superpixel segmentation using gaussian mixture model
  publication-title: IEEE Trans. on Image Process.
  doi: 10.1109/TIP.2018.2836306
– volume: 60
  start-page: 1134
  issue: 4
  year: 2012
  ident: 10.1016/j.matpr.2020.08.618_b0105
  article-title: Segmentation of dermoscopy images using wavelet networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2227478
– volume: 9
  start-page: 72
  issue: 3
  year: 2019
  ident: 10.1016/j.matpr.2020.08.618_b0025
  article-title: Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9030072
– volume: 19
  start-page: e252
  issue: 1
  year: 2013
  ident: 10.1016/j.matpr.2020.08.618_b0110
  article-title: Lesion border detection in dermoscopy images using ensembles of thresholding methods
  publication-title: Skin Res. Technol
  doi: 10.1111/j.1600-0846.2012.00636.x
– volume: 27
  start-page: 1753
  issue: 9
  year: 2019
  ident: 10.1016/j.matpr.2020.08.618_b0175
  article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2018.2889018
– ident: 10.1016/j.matpr.2020.08.618_b0170
  doi: 10.1109/EMBC.2013.6610779
– ident: 10.1016/j.matpr.2020.08.618_b0115
  doi: 10.1109/CISP.2013.6744054
– volume: 61
  start-page: 5:1
  issue: 4/5
  year: 2017
  ident: 10.1016/j.matpr.2020.08.618_b0035
  article-title: Deep learning ensembles for melanoma recognition in dermoscopy images
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2708299
– volume: 11
  start-page: 907
  issue: 3
  year: 2017
  ident: 10.1016/j.matpr.2020.08.618_b0050
  article-title: Automatic gender identification in speech recognition by genetic algorithm
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/110331
– ident: 10.1016/j.matpr.2020.08.618_b0190
  doi: 10.1007/s12652-020-02172-y
– volume: 33
  start-page: 148
  issue: 2
  year: 2009
  ident: 10.1016/j.matpr.2020.08.618_b0065
  article-title: Lesion border detection in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2008.11.002
– volume: 32
  start-page: 566
  issue: 7
  year: 2008
  ident: 10.1016/j.matpr.2020.08.618_b0120
  article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2008.06.005
– ident: 10.1016/j.matpr.2020.08.618_b0160
– volume: 20
  start-page: 233
  year: 2001
  ident: 10.1016/j.matpr.2020.08.618_b0020
  article-title: Automated melanoma recognition
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/42.918473
– start-page: 118
  year: 2015
  ident: 10.1016/j.matpr.2020.08.618_b0030
  article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images
– volume: 11
  start-page: 169
  issue: 2/3
  year: 2002
  ident: 10.1016/j.matpr.2020.08.618_b0075
  article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means
  publication-title: Machine Graph. Vision
– volume: 35
  start-page: 116
  issue: 2
  year: 2011
  ident: 10.1016/j.matpr.2020.08.618_b0090
  article-title: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.09.006
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.matpr.2020.08.618_b0045
  article-title: SLIC Superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 18
  start-page: 133
  issue: 2
  year: 2012
  ident: 10.1016/j.matpr.2020.08.618_b0080
  article-title: Skin tumor area extraction using an improved dynamic programming approach: skin tumor area extraction
  publication-title: Skin Res. Technol.
  doi: 10.1111/j.1600-0846.2011.00544.x
– ident: 10.1016/j.matpr.2020.08.618_b0130
  doi: 10.1109/ICACI.2013.6748493
– volume: 11
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.matpr.2020.08.618_b0100
  article-title: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
  publication-title: Skin Res. Technol.
  doi: 10.1111/j.1600-0846.2005.00092.x
– volume: 35
  start-page: 105
  issue: 2
  year: 2011
  ident: 10.1016/j.matpr.2020.08.618_b0060
  article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.08.001
SSID ssj0001560816
Score 2.248339
Snippet Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1726
SubjectTerms GMM
Melanoma
Region growing
Superpixels
Title Automatic segmentation of melanoma using superpixel region growing technique
URI https://dx.doi.org/10.1016/j.matpr.2020.08.618
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1Ufbg0bV5bNbNsRRLfdCLFnoL-yyVNg1tCp787c6mm6ogHryF7E4IX8J8M8vMNwhdWykCKmNJApYmBBhfEG5ZSLgAOgGjUMtK7XPEhmP6OEkmDdSve2FcWaX3_VufXnlrf6fr0ewWs1n3JXIjdrgbbBBDmOE6ylsRsD1volbv4Wk4-jpqAVbn1RBUZ0KcTa0_VFV6QWhYOGnQKHBqnszN__iNo77xzuAQHfiAEfe273SEGiY_Rs-9TbmsxFbx2kwXvn8ox0uLF2YucljDrqJ9itebwqyK2buZYzeDAfZMIfF2Kzv11hM0Hty_9ofEz0UgCginJJZRBokdT20aqiDVVqpQagqJQ2oiKRVcaCuEjVWiIyEhhbI25vaO6jixAvj7FDXzZW7OEBY6jA2XnEmlqYLH0lRaagAYGcgwZm0U1UhkyouGu9kV86yuDnvLKvgyB18W8Azga6ObnVGx1cz4ezurIc5-fPoMvPpfhuf_NbxA-5ErTalOUi5Rs1xtzBXEFqXsoL3bj7Dj_6BPRz7QRg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCQIAozwyMmObhGGesKqoCpQut1M3ysyoqadSHxMRv5-wmBSTUgS2JfVF0se67s87fh9CNlSIkMpE4pFmKAfEFZpZGmAmAEzCKtPRsn33aHZKnUTqqoXZ1Fsa1VZaxfx3TfbQunzRLbzaLyaT5GjuJHeaEDRJIM9yJ8h3i7mBR331G3xstgOnMS6A6A-wsKvYh3-cFiWHhiEHj0HF5Uqf-8RdC_UCdzgHaL9PFoLX-okNUM_kR6rVWy5mnWg0WZvxenh7Kg5kN3s1U5DAWuH72cbBYFWZeTD7MNHAKDDBnDGW3G9lwtx6jYedh0O7iUhUBK4CbJbaUUCjrWGazSIWZtlJFUhMoGzITS6ngQlshbKJSHQsJBZS1CbP3RCepFYDeJ6iez3JzigKho8QwyahUmih4LcmkJQYcI0MZJbSB4soTXJWU4U65Ysqr3rA37t3Hnft4yDi4r4FuN0bFmjFj-3RauZj_-vEcYvo2w7P_Gl6j3e7gpcd7j_3nc7QXuyYVv6dygerL-cpcQpaxlFd-FX0B9JTRCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+melanoma+using+superpixel+region+growing+technique&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Bama%2C+S.&rft.au=Velumani%2C+R.&rft.au=Prakash%2C+N.B.&rft.au=Hemalakshmi%2C+G.R.&rft.date=2021&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=45&rft.spage=1726&rft.epage=1732&rft_id=info:doi/10.1016%2Fj.matpr.2020.08.618&rft.externalDocID=S2214785320365007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon