Automatic segmentation of melanoma using superpixel region growing technique
Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the publ...
Saved in:
Published in | Materials today : proceedings Vol. 45; pp. 1726 - 1732 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-7853 2214-7853 |
DOI | 10.1016/j.matpr.2020.08.618 |
Cover
Abstract | Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the public, calling for initial screenings. However, melanoma screening is considered as a non trivial problem even by expert medical practitioners, in spite of several diagnostic algorithms. There is an enthralling need for automated melanoma detection systems due to the surge in the melanoma population and lack of trained dermatologists. Computational models for Melanoma detection are based on learning from the Region of Interest (RoI). Nevertheless, identification of RoI itself poses several challenges due to the diverse structural and chromatic features on the surface of the skin. This paper proposes a superpixel region growing based approach for segmentation of the melanoma region for further analysis. It is based on the Gaussian Mixture Model superpixels which segment the candidate image into accurate homogenous regions. The superiority of the system is demonstrated with performance metrics and comparisons on a standard dataset. This system is an impending solution to perform melanoma screenings with ease. |
---|---|
AbstractList | Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis and increases survival rates. High infiltration of melanoma and advanced digital imaging technologies have exhilarated concern among the public, calling for initial screenings. However, melanoma screening is considered as a non trivial problem even by expert medical practitioners, in spite of several diagnostic algorithms. There is an enthralling need for automated melanoma detection systems due to the surge in the melanoma population and lack of trained dermatologists. Computational models for Melanoma detection are based on learning from the Region of Interest (RoI). Nevertheless, identification of RoI itself poses several challenges due to the diverse structural and chromatic features on the surface of the skin. This paper proposes a superpixel region growing based approach for segmentation of the melanoma region for further analysis. It is based on the Gaussian Mixture Model superpixels which segment the candidate image into accurate homogenous regions. The superiority of the system is demonstrated with performance metrics and comparisons on a standard dataset. This system is an impending solution to perform melanoma screenings with ease. |
Author | Mohanarathinam, A. Prakash, N.B. Hemalakshmi, G.R. Bama, S. Velumani, R. |
Author_xml | – sequence: 1 givenname: S. surname: Bama fullname: Bama, S. email: bamasrini@yahoo.com organization: Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India – sequence: 2 givenname: R. surname: Velumani fullname: Velumani, R. organization: IEEE, India – sequence: 3 givenname: N.B. surname: Prakash fullname: Prakash, N.B. organization: Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, Tamilnadu, India – sequence: 4 givenname: G.R. surname: Hemalakshmi fullname: Hemalakshmi, G.R. organization: Department of Computer Science and Engineering, National Engineering College, Kovilpatti, Tamilnadu, India – sequence: 5 givenname: A. surname: Mohanarathinam fullname: Mohanarathinam, A. organization: Department of Electronics and Communication Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India |
BookMark | eNqFkMtOwzAQRS0EEqX0C9jkBxL8SFxnwaKqeEmV2MDacpxxcJU4wU54_D0OZYFYwGquNHNGM-cMHbveAUIXBGcEE365zzo1Dj6jmOIMi4wTcYQWlJI8XYuCHf_Ip2gVwh5jTAqOBeELtNtMYx95q5MATQdujLl3SW-SDlrlYi-ZgnVNEqYB_GDfoU08NPNM4_u3uTOCfnb2ZYJzdGJUG2D1XZfo6eb6cXuX7h5u77ebXaoZZmNqeM4FLURpSqJxWZtKk6rO11yUQKtKx1AbpQzTRU1VRXJsDBNmndesMIoTtkTlYa_2fQgejNT2cPfolW0lwXI2I_fyy4yczUgsZDQTWfaLHbztlP_4h7o6UBDferXgZdAWnIbaetCjrHv7J_8JV4KDFw |
CitedBy_id | crossref_primary_10_1007_s13042_025_02575_3 crossref_primary_10_1080_21681163_2023_2300257 crossref_primary_10_1155_2022_7502504 crossref_primary_10_1002_ima_22750 crossref_primary_10_1049_ipr2_12307 crossref_primary_10_1002_ima_22852 crossref_primary_10_1007_s11517_024_03093_0 |
Cites_doi | 10.1016/j.compmedimag.2016.05.002 10.1007/s12652-020-02265-8 10.1166/jmihi.2020.3263 10.3390/s18020556 10.5373/JARDCS/V11/20192665 10.1109/ICIP.2014.7025180 10.1016/j.irbm.2013.12.007 10.1016/j.sder.2007.12.002 10.1016/S0933-3657(02)00087-8 10.1111/j.1600-0846.2008.00301.x 10.1016/j.ins.2017.01.003 10.1016/j.eswa.2011.05.079 10.1109/TIP.2018.2836306 10.1109/TBME.2012.2227478 10.3390/diagnostics9030072 10.1111/j.1600-0846.2012.00636.x 10.1109/TFUZZ.2018.2889018 10.1109/EMBC.2013.6610779 10.1109/CISP.2013.6744054 10.1147/JRD.2017.2708299 10.18576/amis/110331 10.1007/s12652-020-02172-y 10.1016/j.compmedimag.2008.11.002 10.1016/j.compmedimag.2008.06.005 10.1109/42.918473 10.1016/j.compmedimag.2010.09.006 10.1109/TPAMI.2012.120 10.1111/j.1600-0846.2011.00544.x 10.1109/ICACI.2013.6748493 10.1111/j.1600-0846.2005.00092.x 10.1016/j.compmedimag.2010.08.001 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matpr.2020.08.618 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-7853 |
EndPage | 1732 |
ExternalDocumentID | 10_1016_j_matpr_2020_08_618 S2214785320365007 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-f64682589f91c09dfbc1bd47689e2bbc768dfaaf3c5d2ab140ff38f74d35fa613 |
IEDL.DBID | AIKHN |
ISSN | 2214-7853 |
IngestDate | Thu Apr 24 22:56:04 EDT 2025 Tue Jul 01 01:53:17 EDT 2025 Fri Feb 23 02:43:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Superpixels Region growing GMM Melanoma |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-f64682589f91c09dfbc1bd47689e2bbc768dfaaf3c5d2ab140ff38f74d35fa613 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matpr_2020_08_618 crossref_primary_10_1016_j_matpr_2020_08_618 elsevier_sciencedirect_doi_10_1016_j_matpr_2020_08_618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Materials today : proceedings |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Massone, Wurm, Hofmann-Wellenhof, Soyer (b0015) 2008; 27 Sadri, Zekri, Sadri, Gheissari, Mokhtari, Kolahdouzan (b0105) 2012; 60 Emre Celebi, Wen, Hwang, Iyatomi, Schaefer (b0110) 2013; 19 O. Lézoray, M. Revenu, M. Desvignes (2014) Graph-based skin lesion segmentation of multispectral dermoscopic images. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 897-901). IEEE. Q. Wen, D. Ming, J. Chen, W. Liu (2013) A superpixel based post-processing approach for segmenting dermoscopy images. In 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI) (pp. 155-158). IEEE. Lei, Jia, Zhang, Liu, Meng, Nandi (b0175) 2019; 27 Stolz (b0005) 1994; 4 Codella, Nguyen, Pankanti, Gutman, Helba, Halpern, Smith (b0035) 2017; 61 Mokrzycki, Tatol (b0185) 2011; 20 Gao, Zhang, Fleming, Pollak, Cognetta (b0095) 1998 Lei, Zhang, Wang, Liu, Guo (b0180) 2017; 387 Codella, Cai, Abedini, Garnavi, Halpern, Smith (b0030) 2015 Wang, Moss, Chen, Stanley, Stoecker, Celebi, Malters, Grichnik, Marghoob, Rabinovitz, Menzies, Szalapski (b0090) 2011; 35 Cucchiara, Grana, Seidenari, Pellacani (b0075) 2002; 11 Ganster, Pinz, Rohrer, Wildling, Binder, Kittler (b0020) 2001; 20 Iyatomi, Oka, Celebi, Hashimoto, Hagiwara, Tanaka, Ogawa (b0120) 2008; 32 Abbas, Celebi, García (b0080) 2012; 18 D. Ming, Q. Wen, J. Chen, W. Liu (2013) A generalized fusion approach for segmenting dermoscopy images using Markov random field. In 2013 6th International Congress on Image and Signal Processing (CISP) (Vol. 1, pp. 532-537). IEEE. J. Jayanthi, E. Laxmi Lydia, N. Krishnaraj, T. Jayasankar, R. Lenin Babu, R. Adaline Suji, An effective deep learning features based integrated framework for iris detection and recognition, J. Ambient Intell. Human. Comput. (2020). https://doi.org/10.1007/s12652-020-02172-y. Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b0045) 2012; 34 Sylvain Boltz (2019). Image segmentation using statistical region merging (https://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging), MATLAB Central File Exchange. Accessed 11 December 2019. Oliver, Anuradha, Justus, Bellam, Jayasankar (b0145) 2020; 10 Hintz-Madsen, Hansen, Larsen, Drzewiecki (b0070) 2001; 5 Ban, Liu, Cao (b0055) 2018; 27 Zhao Q JSEG method implementation (2001) cs.joensuu.fi/zhao/Software/JSEG.zip. 6 Accessed 24 December 2019. Garnavi, Aldeen, Celebi, Varigos, Finch (b0060) 2011; 35 Emre Celebi, Kingravi, Iyatomi, Alp Aslandogan, Stoecker, Moss (b0085) 2008; 14 Erkol, Moss, Joe Stanley, Stoecker, Hvatum (b0100) 2005; 11 Celebi, Iyatomi, Schaefer, Stoecker (b0065) 2009; 33 Crandall, R.: Level set implementation https://github.com/rcrandall/ ChanVese. 6 Accessed 24 December 2019. Ünver, Ayan (b0025) 2019; 9 Li, Shen (b0040) 2018; 18 Jayasankar, VinothKumar, Arputha Vijayaselvi (b0050) 2017; 11 Sboner, Eccher, Blanzieri, Bauer, Cristofolini, Zumiani, Forti (b0010) 2003; 27 Buyssens, Gardin, Ruan (b0140) 2014; 35 Ruiz, Berenguer, Soriano, Sánchez (b0125) 2011; 38 Pennisi, Bloisi, Nardi, Giampetruzzi, Mondino, Facchiano (b0165) 2016; 52 T. Mendoncÿa, P.M. Ferreira, J. Marques, A.R.S. Marcÿal, J. Rozeira (2013) A dermoscopic image database for research and benchmarking. Presentation in Proceedings of PH, 2. 10.1016/j.matpr.2020.08.618_b0135 Cucchiara (10.1016/j.matpr.2020.08.618_b0075) 2002; 11 Ganster (10.1016/j.matpr.2020.08.618_b0020) 2001; 20 10.1016/j.matpr.2020.08.618_b0155 Codella (10.1016/j.matpr.2020.08.618_b0035) 2017; 61 Sadri (10.1016/j.matpr.2020.08.618_b0105) 2012; 60 Ruiz (10.1016/j.matpr.2020.08.618_b0125) 2011; 38 Mokrzycki (10.1016/j.matpr.2020.08.618_b0185) 2011; 20 10.1016/j.matpr.2020.08.618_b0115 Li (10.1016/j.matpr.2020.08.618_b0040) 2018; 18 Ünver (10.1016/j.matpr.2020.08.618_b0025) 2019; 9 Emre Celebi (10.1016/j.matpr.2020.08.618_b0110) 2013; 19 Hintz-Madsen (10.1016/j.matpr.2020.08.618_b0070) 2001; 5 Iyatomi (10.1016/j.matpr.2020.08.618_b0120) 2008; 32 Ban (10.1016/j.matpr.2020.08.618_b0055) 2018; 27 Celebi (10.1016/j.matpr.2020.08.618_b0065) 2009; 33 10.1016/j.matpr.2020.08.618_b0160 Codella (10.1016/j.matpr.2020.08.618_b0030) 2015 Jayasankar (10.1016/j.matpr.2020.08.618_b0050) 2017; 11 Pennisi (10.1016/j.matpr.2020.08.618_b0165) 2016; 52 Gao (10.1016/j.matpr.2020.08.618_b0095) 1998 Lei (10.1016/j.matpr.2020.08.618_b0175) 2019; 27 Wang (10.1016/j.matpr.2020.08.618_b0090) 2011; 35 Achanta (10.1016/j.matpr.2020.08.618_b0045) 2012; 34 Sboner (10.1016/j.matpr.2020.08.618_b0010) 2003; 27 Garnavi (10.1016/j.matpr.2020.08.618_b0060) 2011; 35 Massone (10.1016/j.matpr.2020.08.618_b0015) 2008; 27 Emre Celebi (10.1016/j.matpr.2020.08.618_b0085) 2008; 14 Buyssens (10.1016/j.matpr.2020.08.618_b0140) 2014; 35 Abbas (10.1016/j.matpr.2020.08.618_b0080) 2012; 18 Oliver (10.1016/j.matpr.2020.08.618_b0145) 2020; 10 Lei (10.1016/j.matpr.2020.08.618_b0180) 2017; 387 10.1016/j.matpr.2020.08.618_b0170 Stolz (10.1016/j.matpr.2020.08.618_b0005) 1994; 4 10.1016/j.matpr.2020.08.618_b0190 10.1016/j.matpr.2020.08.618_b0130 Erkol (10.1016/j.matpr.2020.08.618_b0100) 2005; 11 10.1016/j.matpr.2020.08.618_b0150 10.1016/j.matpr.2020.08.618_b0195 |
References_xml | – volume: 33 start-page: 148 year: 2009 end-page: 153 ident: b0065 article-title: Lesion border detection in dermoscopy images publication-title: Comput. Med. Imaging Graph. – volume: 11 start-page: 169 year: 2002 end-page: 182 ident: b0075 article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means publication-title: Machine Graph. Vision – start-page: 118 year: 2015 end-page: 126 ident: b0030 article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 35 start-page: 105 year: 2011 end-page: 115 ident: b0060 article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels publication-title: Comput. Med. Imaging Graph. – volume: 27 start-page: 101 year: 2008 end-page: 105 ident: b0015 article-title: Teledermatology: an update publication-title: Semin. Cutan. Med. Surg. – volume: 38 start-page: 15217 year: 2011 end-page: 15223 ident: b0125 article-title: A decision support system for the diagnosis of melanoma: a comparative approach publication-title: Expert Syst. Appl. – volume: 5 start-page: 3262 year: 2001 end-page: 3266 ident: b0070 article-title: A probabilistic neural network framework for detection of malignant melanoma publication-title: Artif. Neural Networks Cancer Diagnosis Prognosis Patient Manage. – volume: 35 start-page: 20 year: 2014 end-page: 26 ident: b0140 article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images publication-title: IRBM – reference: D. Ming, Q. Wen, J. Chen, W. Liu (2013) A generalized fusion approach for segmenting dermoscopy images using Markov random field. In 2013 6th International Congress on Image and Signal Processing (CISP) (Vol. 1, pp. 532-537). IEEE. – volume: 20 start-page: 383 year: 2011 end-page: 411 ident: b0185 article-title: Colour difference Δ E-A survey publication-title: Mach. Graph. Vision – reference: Crandall, R.: Level set implementation https://github.com/rcrandall/ ChanVese. 6 Accessed 24 December 2019. – volume: 11 start-page: 907 year: 2017 end-page: 913 ident: b0050 article-title: Automatic gender identification in speech recognition by genetic algorithm publication-title: Appl. Math. Inf. Sci. – reference: Sylvain Boltz (2019). Image segmentation using statistical region merging (https://www.mathworks.com/matlabcentral/fileexchange/25619-image-segmentation-using-statistical-region-merging), MATLAB Central File Exchange. Accessed 11 December 2019. – volume: 52 start-page: 89 year: 2016 end-page: 103 ident: b0165 article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection publication-title: Comput. Med. Imaging Graph. – volume: 19 start-page: e252 year: 2013 end-page: e258 ident: b0110 article-title: Lesion border detection in dermoscopy images using ensembles of thresholding methods publication-title: Skin Res. Technol – volume: 60 start-page: 1134 year: 2012 end-page: 1141 ident: b0105 article-title: Segmentation of dermoscopy images using wavelet networks publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 2628 year: 2020 end-page: 2633 ident: b0145 article-title: An Efficient coding network based feature extraction with support vector machine based classification model for CT lung images publication-title: J. Med. Imaging Hlth. Inform. – volume: 27 start-page: 4105 year: 2018 end-page: 4117 ident: b0055 article-title: Superpixel segmentation using gaussian mixture model publication-title: IEEE Trans. on Image Process. – volume: 387 start-page: 34 year: 2017 end-page: 52 ident: b0180 article-title: A conditionally invariant mathematical morphological framework for color images publication-title: Inf. Sci. – volume: 18 start-page: 556 year: 2018 ident: b0040 article-title: Skin lesion analysis towards melanoma detection using deep learning network publication-title: Sensors – start-page: 823 year: 1998 end-page: 827 ident: b0095 article-title: Segmentation of dermatoscopic images by stabilized inverse diffusion equations publication-title: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269) – reference: O. Lézoray, M. Revenu, M. Desvignes (2014) Graph-based skin lesion segmentation of multispectral dermoscopic images. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 897-901). IEEE. – volume: 18 start-page: 133 year: 2012 end-page: 142 ident: b0080 article-title: Skin tumor area extraction using an improved dynamic programming approach: skin tumor area extraction publication-title: Skin Res. Technol. – volume: 35 start-page: 116 year: 2011 end-page: 120 ident: b0090 article-title: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images publication-title: Comput. Med. Imaging Graph. – volume: 61 start-page: 5:1 year: 2017 end-page: 5:15 ident: b0035 article-title: Deep learning ensembles for melanoma recognition in dermoscopy images publication-title: IBM J. Res. Dev. – reference: Zhao Q JSEG method implementation (2001) cs.joensuu.fi/zhao/Software/JSEG.zip. 6 Accessed 24 December 2019. – reference: T. Mendoncÿa, P.M. Ferreira, J. Marques, A.R.S. Marcÿal, J. Rozeira (2013) A dermoscopic image database for research and benchmarking. Presentation in Proceedings of PH, 2. – volume: 20 start-page: 233 year: 2001 end-page: 239 ident: b0020 article-title: Automated melanoma recognition publication-title: IEEE Trans. Med Imaging – volume: 27 start-page: 29 year: 2003 end-page: 44 ident: b0010 article-title: A multiple classifier system for early melanoma diagnosis publication-title: Artif. Intel. Med. – reference: Q. Wen, D. Ming, J. Chen, W. Liu (2013) A superpixel based post-processing approach for segmenting dermoscopy images. In 2013 Sixth International Conference on Advanced Computational Intelligence (ICACI) (pp. 155-158). IEEE. – volume: 27 start-page: 1753 year: 2019 end-page: 1766 ident: b0175 article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. – reference: J. Jayanthi, E. Laxmi Lydia, N. Krishnaraj, T. Jayasankar, R. Lenin Babu, R. Adaline Suji, An effective deep learning features based integrated framework for iris detection and recognition, J. Ambient Intell. Human. Comput. (2020). https://doi.org/10.1007/s12652-020-02172-y. – volume: 4 start-page: 521 year: 1994 end-page: 527 ident: b0005 article-title: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma publication-title: Eur. J. Dermatol. – volume: 34 start-page: 2274 year: 2012 end-page: 2282 ident: b0045 article-title: SLIC Superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 347 year: 2008 end-page: 353 ident: b0085 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Res. Technol. – volume: 11 start-page: 17 year: 2005 end-page: 26 ident: b0100 article-title: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes publication-title: Skin Res. Technol. – volume: 32 start-page: 566 year: 2008 end-page: 579 ident: b0120 article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Comput. Med. Imaging Graph. – volume: 9 start-page: 72 year: 2019 ident: b0025 article-title: Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm publication-title: Diagnostics – volume: 5 start-page: 3262 year: 2001 ident: 10.1016/j.matpr.2020.08.618_b0070 article-title: A probabilistic neural network framework for detection of malignant melanoma publication-title: Artif. Neural Networks Cancer Diagnosis Prognosis Patient Manage. – volume: 52 start-page: 89 year: 2016 ident: 10.1016/j.matpr.2020.08.618_b0165 article-title: Skin lesion image segmentation using Delaunay Triangulation for melanoma detection publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2016.05.002 – ident: 10.1016/j.matpr.2020.08.618_b0150 – ident: 10.1016/j.matpr.2020.08.618_b0195 doi: 10.1007/s12652-020-02265-8 – volume: 10 start-page: 2628 issue: 11 year: 2020 ident: 10.1016/j.matpr.2020.08.618_b0145 article-title: An Efficient coding network based feature extraction with support vector machine based classification model for CT lung images publication-title: J. Med. Imaging Hlth. Inform. doi: 10.1166/jmihi.2020.3263 – volume: 18 start-page: 556 issue: 2 year: 2018 ident: 10.1016/j.matpr.2020.08.618_b0040 article-title: Skin lesion analysis towards melanoma detection using deep learning network publication-title: Sensors doi: 10.3390/s18020556 – ident: 10.1016/j.matpr.2020.08.618_b0155 doi: 10.5373/JARDCS/V11/20192665 – ident: 10.1016/j.matpr.2020.08.618_b0135 doi: 10.1109/ICIP.2014.7025180 – volume: 35 start-page: 20 issue: 1 year: 2014 ident: 10.1016/j.matpr.2020.08.618_b0140 article-title: Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images publication-title: IRBM doi: 10.1016/j.irbm.2013.12.007 – volume: 27 start-page: 101 issue: 1 year: 2008 ident: 10.1016/j.matpr.2020.08.618_b0015 article-title: Teledermatology: an update publication-title: Semin. Cutan. Med. Surg. doi: 10.1016/j.sder.2007.12.002 – volume: 20 start-page: 383 issue: 4 year: 2011 ident: 10.1016/j.matpr.2020.08.618_b0185 article-title: Colour difference Δ E-A survey publication-title: Mach. Graph. Vision – volume: 27 start-page: 29 issue: 1 year: 2003 ident: 10.1016/j.matpr.2020.08.618_b0010 article-title: A multiple classifier system for early melanoma diagnosis publication-title: Artif. Intel. Med. doi: 10.1016/S0933-3657(02)00087-8 – volume: 4 start-page: 521 year: 1994 ident: 10.1016/j.matpr.2020.08.618_b0005 article-title: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma publication-title: Eur. J. Dermatol. – volume: 14 start-page: 347 issue: 3 year: 2008 ident: 10.1016/j.matpr.2020.08.618_b0085 article-title: Border detection in dermoscopy images using statistical region merging publication-title: Skin Res. Technol. doi: 10.1111/j.1600-0846.2008.00301.x – start-page: 823 year: 1998 ident: 10.1016/j.matpr.2020.08.618_b0095 article-title: Segmentation of dermatoscopic images by stabilized inverse diffusion equations – volume: 387 start-page: 34 year: 2017 ident: 10.1016/j.matpr.2020.08.618_b0180 article-title: A conditionally invariant mathematical morphological framework for color images publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.01.003 – volume: 38 start-page: 15217 issue: 12 year: 2011 ident: 10.1016/j.matpr.2020.08.618_b0125 article-title: A decision support system for the diagnosis of melanoma: a comparative approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.079 – volume: 27 start-page: 4105 issue: 8 year: 2018 ident: 10.1016/j.matpr.2020.08.618_b0055 article-title: Superpixel segmentation using gaussian mixture model publication-title: IEEE Trans. on Image Process. doi: 10.1109/TIP.2018.2836306 – volume: 60 start-page: 1134 issue: 4 year: 2012 ident: 10.1016/j.matpr.2020.08.618_b0105 article-title: Segmentation of dermoscopy images using wavelet networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2227478 – volume: 9 start-page: 72 issue: 3 year: 2019 ident: 10.1016/j.matpr.2020.08.618_b0025 article-title: Skin lesion segmentation in dermoscopic images with combination of YOLO and grabcut algorithm publication-title: Diagnostics doi: 10.3390/diagnostics9030072 – volume: 19 start-page: e252 issue: 1 year: 2013 ident: 10.1016/j.matpr.2020.08.618_b0110 article-title: Lesion border detection in dermoscopy images using ensembles of thresholding methods publication-title: Skin Res. Technol doi: 10.1111/j.1600-0846.2012.00636.x – volume: 27 start-page: 1753 issue: 9 year: 2019 ident: 10.1016/j.matpr.2020.08.618_b0175 article-title: Superpixel-based fast fuzzy C-means clustering for color image segmentation publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2889018 – ident: 10.1016/j.matpr.2020.08.618_b0170 doi: 10.1109/EMBC.2013.6610779 – ident: 10.1016/j.matpr.2020.08.618_b0115 doi: 10.1109/CISP.2013.6744054 – volume: 61 start-page: 5:1 issue: 4/5 year: 2017 ident: 10.1016/j.matpr.2020.08.618_b0035 article-title: Deep learning ensembles for melanoma recognition in dermoscopy images publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2017.2708299 – volume: 11 start-page: 907 issue: 3 year: 2017 ident: 10.1016/j.matpr.2020.08.618_b0050 article-title: Automatic gender identification in speech recognition by genetic algorithm publication-title: Appl. Math. Inf. Sci. doi: 10.18576/amis/110331 – ident: 10.1016/j.matpr.2020.08.618_b0190 doi: 10.1007/s12652-020-02172-y – volume: 33 start-page: 148 issue: 2 year: 2009 ident: 10.1016/j.matpr.2020.08.618_b0065 article-title: Lesion border detection in dermoscopy images publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.11.002 – volume: 32 start-page: 566 issue: 7 year: 2008 ident: 10.1016/j.matpr.2020.08.618_b0120 article-title: An improved Internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2008.06.005 – ident: 10.1016/j.matpr.2020.08.618_b0160 – volume: 20 start-page: 233 year: 2001 ident: 10.1016/j.matpr.2020.08.618_b0020 article-title: Automated melanoma recognition publication-title: IEEE Trans. Med Imaging doi: 10.1109/42.918473 – start-page: 118 year: 2015 ident: 10.1016/j.matpr.2020.08.618_b0030 article-title: Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images – volume: 11 start-page: 169 issue: 2/3 year: 2002 ident: 10.1016/j.matpr.2020.08.618_b0075 article-title: Exploiting color and topological features for region segmentation with recursive fuzzy C-means publication-title: Machine Graph. Vision – volume: 35 start-page: 116 issue: 2 year: 2011 ident: 10.1016/j.matpr.2020.08.618_b0090 article-title: Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.09.006 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 10.1016/j.matpr.2020.08.618_b0045 article-title: SLIC Superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 18 start-page: 133 issue: 2 year: 2012 ident: 10.1016/j.matpr.2020.08.618_b0080 article-title: Skin tumor area extraction using an improved dynamic programming approach: skin tumor area extraction publication-title: Skin Res. Technol. doi: 10.1111/j.1600-0846.2011.00544.x – ident: 10.1016/j.matpr.2020.08.618_b0130 doi: 10.1109/ICACI.2013.6748493 – volume: 11 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.matpr.2020.08.618_b0100 article-title: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes publication-title: Skin Res. Technol. doi: 10.1111/j.1600-0846.2005.00092.x – volume: 35 start-page: 105 issue: 2 year: 2011 ident: 10.1016/j.matpr.2020.08.618_b0060 article-title: Border detection in dermoscopy images using hybrid thresholding on optimized color channels publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.08.001 |
SSID | ssj0001560816 |
Score | 2.248339 |
Snippet | Melanoma is the most life threatening type of cancer which contributes to the highest mortality rate. Early detection of melanoma facilitates better prognosis... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1726 |
SubjectTerms | GMM Melanoma Region growing Superpixels |
Title | Automatic segmentation of melanoma using superpixel region growing technique |
URI | https://dx.doi.org/10.1016/j.matpr.2020.08.618 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1Ufbg0bV5bNbNsRRLfdCLFnoL-yyVNg1tCp787c6mm6ogHryF7E4IX8J8M8vMNwhdWykCKmNJApYmBBhfEG5ZSLgAOgGjUMtK7XPEhmP6OEkmDdSve2FcWaX3_VufXnlrf6fr0ewWs1n3JXIjdrgbbBBDmOE6ylsRsD1volbv4Wk4-jpqAVbn1RBUZ0KcTa0_VFV6QWhYOGnQKHBqnszN__iNo77xzuAQHfiAEfe273SEGiY_Rs-9TbmsxFbx2kwXvn8ox0uLF2YucljDrqJ9itebwqyK2buZYzeDAfZMIfF2Kzv11hM0Hty_9ofEz0UgCginJJZRBokdT20aqiDVVqpQagqJQ2oiKRVcaCuEjVWiIyEhhbI25vaO6jixAvj7FDXzZW7OEBY6jA2XnEmlqYLH0lRaagAYGcgwZm0U1UhkyouGu9kV86yuDnvLKvgyB18W8Azga6ObnVGx1cz4ezurIc5-fPoMvPpfhuf_NbxA-5ErTalOUi5Rs1xtzBXEFqXsoL3bj7Dj_6BPRz7QRg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCQIAozwyMmObhGGesKqoCpQut1M3ysyoqadSHxMRv5-wmBSTUgS2JfVF0se67s87fh9CNlSIkMpE4pFmKAfEFZpZGmAmAEzCKtPRsn33aHZKnUTqqoXZ1Fsa1VZaxfx3TfbQunzRLbzaLyaT5GjuJHeaEDRJIM9yJ8h3i7mBR331G3xstgOnMS6A6A-wsKvYh3-cFiWHhiEHj0HF5Uqf-8RdC_UCdzgHaL9PFoLX-okNUM_kR6rVWy5mnWg0WZvxenh7Kg5kN3s1U5DAWuH72cbBYFWZeTD7MNHAKDDBnDGW3G9lwtx6jYedh0O7iUhUBK4CbJbaUUCjrWGazSIWZtlJFUhMoGzITS6ngQlshbKJSHQsJBZS1CbP3RCepFYDeJ6iez3JzigKho8QwyahUmih4LcmkJQYcI0MZJbSB4soTXJWU4U65Ysqr3rA37t3Hnft4yDi4r4FuN0bFmjFj-3RauZj_-vEcYvo2w7P_Gl6j3e7gpcd7j_3nc7QXuyYVv6dygerL-cpcQpaxlFd-FX0B9JTRCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+melanoma+using+superpixel+region+growing+technique&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Bama%2C+S.&rft.au=Velumani%2C+R.&rft.au=Prakash%2C+N.B.&rft.au=Hemalakshmi%2C+G.R.&rft.date=2021&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=45&rft.spage=1726&rft.epage=1732&rft_id=info:doi/10.1016%2Fj.matpr.2020.08.618&rft.externalDocID=S2214785320365007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |