Well logs reconstruction of petroleum energy exploration based on bidirectional Long Short-term memory networks with a PSO optimization algorithm
During petroleum energy exploration, estimating missing well logs from existing logging data is very meaningful. Due to a highly nonlinear relationship between various logging data and a challenge to express the complexity of underground geological conditions by deterministic functions, traditional...
Saved in:
| Published in | Geoenergy Science and Engineering Vol. 239; p. 212975 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2949-8910 2949-8910 |
| DOI | 10.1016/j.geoen.2024.212975 |
Cover
| Abstract | During petroleum energy exploration, estimating missing well logs from existing logging data is very meaningful. Due to a highly nonlinear relationship between various logging data and a challenge to express the complexity of underground geological conditions by deterministic functions, traditional methods are difficult to meet the need of accurate interpretations of log data and fine descriptions of reservoirs. Nevertheless, deep learning method provides an advanced means for reconstructing well logs, and can directly map existing logging data to missing well logs. In this paper, we adopt the PSO-BiLSTM network that combines the BiLSTM (Bidirectional Long Short-term Memory) network with the PSO (Particle Swarm Optimization) algorithm. BiLSTM is an excellent data-driven method that can extract bidirectional temporal well logging data. PSO algorithm enhances the performance of BiLSTM model in predicting missing well logs through hyperparameter optimization, global search capability, and adaptive learning. At the same time, RMSE, MAE, and MAPE are used as indicators to evaluate the performance of PSO-BiLSTM model. The results show that when a PSO-BiLSTM model is applied to well logs reconstruction experiments, the reconstructed value of a log curve is in good agreement with its real value. Compared to LSTM and BiLSTM models, a PSO-BiLSTM model provides the best accuracy and stability in predicting missing well logs. The PSO-BiLSTM model strengthens the extraction of relevant logging information and reduces the error of parameter adjustment. It has an important reference significance for the reconstruction of well logs in complex formations.
•A BiLSTM network with PSO optimization is proposed to process logging data.•PSO algorithm is introduced to optimize the hyperparameters of well logs reconstruction model.•The variation trend with depth and bidirectional temporal data of well logs can be considered.•The results confirmed that the proposed method is accurate and reliable. |
|---|---|
| AbstractList | During petroleum energy exploration, estimating missing well logs from existing logging data is very meaningful. Due to a highly nonlinear relationship between various logging data and a challenge to express the complexity of underground geological conditions by deterministic functions, traditional methods are difficult to meet the need of accurate interpretations of log data and fine descriptions of reservoirs. Nevertheless, deep learning method provides an advanced means for reconstructing well logs, and can directly map existing logging data to missing well logs. In this paper, we adopt the PSO-BiLSTM network that combines the BiLSTM (Bidirectional Long Short-term Memory) network with the PSO (Particle Swarm Optimization) algorithm. BiLSTM is an excellent data-driven method that can extract bidirectional temporal well logging data. PSO algorithm enhances the performance of BiLSTM model in predicting missing well logs through hyperparameter optimization, global search capability, and adaptive learning. At the same time, RMSE, MAE, and MAPE are used as indicators to evaluate the performance of PSO-BiLSTM model. The results show that when a PSO-BiLSTM model is applied to well logs reconstruction experiments, the reconstructed value of a log curve is in good agreement with its real value. Compared to LSTM and BiLSTM models, a PSO-BiLSTM model provides the best accuracy and stability in predicting missing well logs. The PSO-BiLSTM model strengthens the extraction of relevant logging information and reduces the error of parameter adjustment. It has an important reference significance for the reconstruction of well logs in complex formations.
•A BiLSTM network with PSO optimization is proposed to process logging data.•PSO algorithm is introduced to optimize the hyperparameters of well logs reconstruction model.•The variation trend with depth and bidirectional temporal data of well logs can be considered.•The results confirmed that the proposed method is accurate and reliable. |
| ArticleNumber | 212975 |
| Author | Zhang, Haoyu Wu, Wensheng Jing, Jin Chen, Zhangxin |
| Author_xml | – sequence: 1 givenname: Haoyu surname: Zhang fullname: Zhang, Haoyu organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, 102249, China – sequence: 2 givenname: Wensheng surname: Wu fullname: Wu, Wensheng email: wwsheng@cup.edu.cn organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, 102249, China – sequence: 3 givenname: Zhangxin surname: Chen fullname: Chen, Zhangxin organization: Eastern Institute of Technology, Ningbo, 315100, China – sequence: 4 givenname: Jin surname: Jing fullname: Jing, Jin organization: Taiyuan Emergency Management Bureau, 030001, China |
| BookMark | eNqFkMlOwzAQhi0EEusTcPELpHhJ0vjAASE2qVKRAHG0XGccXBy7ss1S3oI3pm04IA5wml8z-kYz3z7a9sEDQseUjCih9cl81EEAP2KElSNGmRhXW2iPiVIUjaBk-0feRUcpzQkhnHFBSL2HPh_BOexCl3AEHXzK8UVnGzwOBi8gx-DgpcfgIXZLDO8LF6LazGcqQYvXwbZ2xa6byuFJ8B2-ewoxFxlij3voQ1xiD_ktxOeE32x-wgrf3k1xWGTb249hnXJdiKtZf4h2jHIJjr7rAXq4vLg_vy4m06ub87NJoTnhuTClYTNVCaIqyo0muhZtYzSjFZi2molSl2NimraqBTRNSygXVd0Ar0krlBgzfoDEsFfHkFIEI7XNm1tyVNZJSuRar5zLjV651isHvSuW_2IX0fYqLv-hTgcKVm-9WogyaQtew-BPtsH-yX8B9fmbdQ |
| CitedBy_id | crossref_primary_10_3390_en17236082 crossref_primary_10_3390_pr12081589 |
| Cites_doi | 10.1016/j.petrol.2020.108182 10.1088/1742-2140/aaa4db 10.1111/j.1365-2478.2012.01080.x 10.1109/JSEN.2020.3028738 10.1029/2020GL087685 10.1016/j.cageo.2011.11.024 10.1190/geo2018-0646.1 10.1109/ACCESS.2020.2982418 10.1016/j.cageo.2020.104461 10.1007/s40948-022-00467-2 10.1016/j.jngse.2017.03.010 10.1016/j.petrol.2021.109686 10.1007/s12182-020-00488-0 10.1109/LGRS.2018.2872356 10.1190/geo2019-0282.1 10.1162/089976600300015015 10.1016/j.energy.2022.125270 10.1016/j.petrol.2019.01.042 10.1190/geo2020-0749.1 10.1093/jge/gxy009 10.1144/SP370.14 10.1016/j.neucom.2018.09.082 10.1016/j.ijhydene.2021.02.069 10.1016/j.petrol.2021.109088 10.1016/j.ymssp.2020.107398 10.1016/j.ins.2005.02.003 10.1016/j.energy.2023.127828 10.1016/S1876-3804(21)60001-0 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.geoen.2024.212975 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-8910 |
| ExternalDocumentID | 10_1016_j_geoen_2024_212975 S2949891024003452 |
| GroupedDBID | 0R~ AALRI AAXUO ABJNI ACRLP AEIPS AFJKZ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATOGT BELTK FDB M41 ROL SPC SSE SSR AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP ANKPU APXCP CITATION |
| ID | FETCH-LOGICAL-c303t-f4f2ba590a513fc0c69d8fc215efd5b94c470f8d569e88d0139568e360d9a9723 |
| IEDL.DBID | AIKHN |
| ISSN | 2949-8910 |
| IngestDate | Wed Oct 01 03:05:56 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Sat Feb 01 16:09:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Well logs reconstruction Oil-gas energy exploration Bidirectional long short-term memory neural network PSO algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-f4f2ba590a513fc0c69d8fc215efd5b94c470f8d569e88d0139568e360d9a9723 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_geoen_2024_212975 crossref_primary_10_1016_j_geoen_2024_212975 elsevier_sciencedirect_doi_10_1016_j_geoen_2024_212975 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Geoenergy Science and Engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Dabre, Chu, Kunchukuttan (bib12) 2020; 53 Eskandari, Rezaee, Mohammadnia (bib13) 2014; 29 Atef, Eltawil (bib4) 2020; 187 Yu, Zhao, Wu, Cui (bib47) 2021; 57 Yang, Wang, Chen, Chen, Saad, Chen (bib44) 2023; 88 Wang, Cao, Fu, Xu (bib41) 2022; 261 Gers, Schmidhuber, Cummins (bib15) 2000; 12 Greff, Srivastava, Koutnik (bib16) 2017; 28 Song, Li, Xu (bib40) 2018; 53 He, Li, Liu, Zhang (bib19) 2019; 54 Alizadeh, Najjari, Kadkhodaie-Ilkhchi (bib2) 2012; 45 Jiang, He, Ye, Zhang (bib23) 2021; 8 Huang, Gao (bib21) 2010; 21 Chen, Wang (bib9) 2015; 28 Bhaskar, Suchetha, Philip (bib7) 2021; 21 Kuang, Liu, Ren, Luo, Shi (bib26) 2021; 48 Wu, Liang, Shi (bib42) 2019; 84 Liu, Chen, Li (bib29) 2021; 37 Zhang, Li, Wang (bib48) 2022; 57 Otchere, Ganat, Gholami (bib35) 2021; 200 Gao, Jia, Wang, Xing (bib14) 2022; Ed. 06 Kiranyaz, Avci, Abdeljaber, Ince, Gabbouj, Inman (bib25) 2021; 151 Chen, Zhang (bib11) 2020; 47 Asquith, Krygowski (bib3) 2004 Nitish, Geoffrey, Alex, Ilya, Ruslan (bib33) 2014; 15 Palangi, Deng, Shen (bib37) 2016; 24 Huang, Wei, Wang, Yang, Xu (bib20) 2022; 208 Ma, Luo, Liao (bib32) 2020; 173 Zuo, Cheng, Zhang (bib50) 2021; 46 Pham, Wu, Naeini (bib38) 2020; 85 Luo, Lai, Dong (bib30) 2018; 15 Ji, Yang, Chen, Yang (bib22) 2021; 52 Yang, Yin, Gao (bib45) 2019; 16 Guo, Zhou, Zeng (bib18) 2020; 17 Yang, Zhang (bib43) 2023; 44 Burchette (bib8) 2012; 370 Li, Miska (bib28) 2019; 16 Zhou, Zhang, Zhu (bib49) 2021; 45 Ma, Xiang, Shi, Liu (bib31) 2022; 8 Gu, Bao, Lin (bib17) 2017; 42 Yang, Zhou, Peng (bib46) 2008; Ed. Bhardwaj, Chandrasekhar, Padiyar, Gadre (bib6) 2020; 138 Chen, Gao, Wang (bib10) 2022; 14 Palamy, Rongrit (bib36) 2023; 9 Kim, Lee, Choe (bib24) 2021; 207 Sagheer, Mostafa (bib39) 2019; 323 Lavanya, Murukesh, Shanker (bib27) 2023; 278 Onalo, Oloruntobi, Adedigba, Khan, James, Butt (bib34) 2019; 175 Ahmadi, Zendehboudi, Lohi, Elkamel, Chatzis (bib1) 2013; 61 Bergh, Engelbrecht (bib5) 2006; 176 He (10.1016/j.geoen.2024.212975_bib19) 2019; 54 Huang (10.1016/j.geoen.2024.212975_bib21) 2010; 21 Ma (10.1016/j.geoen.2024.212975_bib32) 2020; 173 Wu (10.1016/j.geoen.2024.212975_bib42) 2019; 84 Chen (10.1016/j.geoen.2024.212975_bib10) 2022; 14 Jiang (10.1016/j.geoen.2024.212975_bib23) 2021; 8 Palangi (10.1016/j.geoen.2024.212975_bib37) 2016; 24 Ma (10.1016/j.geoen.2024.212975_bib31) 2022; 8 Yang (10.1016/j.geoen.2024.212975_bib43) 2023; 44 Gu (10.1016/j.geoen.2024.212975_bib17) 2017; 42 Pham (10.1016/j.geoen.2024.212975_bib38) 2020; 85 Gers (10.1016/j.geoen.2024.212975_bib15) 2000; 12 Chen (10.1016/j.geoen.2024.212975_bib9) 2015; 28 Yang (10.1016/j.geoen.2024.212975_bib44) 2023; 88 Eskandari (10.1016/j.geoen.2024.212975_bib13) 2014; 29 Bhardwaj (10.1016/j.geoen.2024.212975_bib6) 2020; 138 Burchette (10.1016/j.geoen.2024.212975_bib8) 2012; 370 Asquith (10.1016/j.geoen.2024.212975_bib3) 2004 Ji (10.1016/j.geoen.2024.212975_bib22) 2021; 52 Kiranyaz (10.1016/j.geoen.2024.212975_bib25) 2021; 151 Li (10.1016/j.geoen.2024.212975_bib28) 2019; 16 Dabre (10.1016/j.geoen.2024.212975_bib12) 2020; 53 Huang (10.1016/j.geoen.2024.212975_bib20) 2022; 208 Kuang (10.1016/j.geoen.2024.212975_bib26) 2021; 48 Bergh (10.1016/j.geoen.2024.212975_bib5) 2006; 176 Ahmadi (10.1016/j.geoen.2024.212975_bib1) 2013; 61 Kim (10.1016/j.geoen.2024.212975_bib24) 2021; 207 Song (10.1016/j.geoen.2024.212975_bib40) 2018; 53 Zhou (10.1016/j.geoen.2024.212975_bib49) 2021; 45 Zhang (10.1016/j.geoen.2024.212975_bib48) 2022; 57 Sagheer (10.1016/j.geoen.2024.212975_bib39) 2019; 323 Chen (10.1016/j.geoen.2024.212975_bib11) 2020; 47 Yu (10.1016/j.geoen.2024.212975_bib47) 2021; 57 Palamy (10.1016/j.geoen.2024.212975_bib36) 2023; 9 Zuo (10.1016/j.geoen.2024.212975_bib50) 2021; 46 Luo (10.1016/j.geoen.2024.212975_bib30) 2018; 15 Wang (10.1016/j.geoen.2024.212975_bib41) 2022; 261 Atef (10.1016/j.geoen.2024.212975_bib4) 2020; 187 Lavanya (10.1016/j.geoen.2024.212975_bib27) 2023; 278 Onalo (10.1016/j.geoen.2024.212975_bib34) 2019; 175 Alizadeh (10.1016/j.geoen.2024.212975_bib2) 2012; 45 Greff (10.1016/j.geoen.2024.212975_bib16) 2017; 28 Yang (10.1016/j.geoen.2024.212975_bib46) 2008; Ed. Yang (10.1016/j.geoen.2024.212975_bib45) 2019; 16 Liu (10.1016/j.geoen.2024.212975_bib29) 2021; 37 Otchere (10.1016/j.geoen.2024.212975_bib35) 2021; 200 Gao (10.1016/j.geoen.2024.212975_bib14) 2022; Ed. 06 Bhaskar (10.1016/j.geoen.2024.212975_bib7) 2021; 21 Nitish (10.1016/j.geoen.2024.212975_bib33) 2014; 15 Guo (10.1016/j.geoen.2024.212975_bib18) 2020; 17 |
| References_xml | – volume: 323 start-page: 203 year: 2019 end-page: 213 ident: bib39 article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks publication-title: Neurocomputing – volume: 37 start-page: 878 year: 2021 end-page: 886 ident: bib29 article-title: Prediction of reservoir physical parameters based on kernel bayesian discriminant method publication-title: Acta Pet. Sin. – volume: 151 year: 2021 ident: bib25 article-title: 1D convolutional neural networks and applications: a survey publication-title: Mech. Syst. Signal Process. – volume: Ed. start-page: 63 year: 2008 end-page: 66 ident: bib46 article-title: Application of BP neural network technology in acoustic logging curve reconstruction publication-title: J. Southwest Pet. Univ., Sci. Technol. – volume: 44 year: 2023 ident: bib43 article-title: Stress prediction of fuselage tube section based on PSO-BiLSTM neural network publication-title: Acta Aeronautica Astronautica Sinica – volume: 47 start-page: 12 year: 2020 end-page: 19 ident: bib11 article-title: Well log generation via ensemble long short-term memory (EnLSTM) network publication-title: Geophys. Res. Lett. – volume: 57 start-page: 12 year: 2022 end-page: 25 ident: bib48 article-title: Robust seismic data denoising based on deep learning publication-title: Oil Geophys. Prospect. – volume: 21 start-page: 4811 year: 2021 end-page: 4818 ident: bib7 article-title: Time series classification-based correlational neural network with bidirectional LSTM for automated detection of kidney disease publication-title: IEEE Sensor. J. – volume: 45 start-page: 261 year: 2012 end-page: 269 ident: bib2 article-title: Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: a case study of the South Pars Gas Field, Persian Gulf, Iran publication-title: Comput. Geosci. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib33 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 138 year: 2020 ident: bib6 article-title: A comparative study of wavelet-based ANN and classical techniques for geophysical time-series forecasting publication-title: Comput. Geosci. – volume: 16 start-page: 192 year: 2019 end-page: 195 ident: bib28 article-title: Long short-term memory and variational autoencoder with convolutional neural networks for generating NMR 72 distribution publication-title: Geosci. Rem. Sens. Lett. IEEE – volume: 9 start-page: 1145 year: 2023 end-page: 1153 ident: bib36 article-title: Transmission expansion planning considering solar photovoltaic using novel binary particle swarm optimization publication-title: Energy Rep. – volume: 48 start-page: 1 year: 2021 end-page: 11 ident: bib26 article-title: Application status and development trends of artificial intelligence in petroleum exploration and development publication-title: Pet. Explor. Dev. – volume: 88 start-page: D31 year: 2023 end-page: D48 ident: bib44 article-title: Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism publication-title: Geophysics – volume: 370 start-page: 17 year: 2012 end-page: 37 ident: bib8 article-title: Carbonate rocks and petroleum reservoirs: a geological perspective from the industry publication-title: Geological Society – volume: 261 year: 2022 ident: bib41 article-title: Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism publication-title: Energy – volume: 85 start-page: WA159 year: 2020 end-page: 171 ident: bib38 article-title: Missing well log prediction using convolutional long short-term memory network publication-title: Geophysics – volume: 208 year: 2022 ident: bib20 article-title: Well performance prediction based on long short-term memory (LSTM) neural network publication-title: J. Pet. Sci. Eng. – volume: 29 start-page: 12 year: 2014 end-page: 48 ident: bib13 article-title: Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran publication-title: Can. Soc. Explor. Geophys. – volume: 54 start-page: 1159 year: 2019 end-page: 1165 ident: bib19 article-title: Application of convolutional neural networks to identify well logging facies publication-title: Oil Geophys. Prospect. – volume: 46 start-page: 15928 year: 2021 end-page: 15937 ident: bib50 article-title: Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter publication-title: Int. J. Hydrogen Energ. – volume: 173 year: 2020 ident: bib32 article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning publication-title: Measurement – volume: 52 start-page: 49 year: 2021 end-page: 57+87 ident: bib22 article-title: Research on the optimal allocation model of regional water resources based on IABC-PSO algorithm publication-title: Yangtze River – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib15 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. – volume: 278 year: 2023 ident: bib27 article-title: Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller publication-title: Energy – start-page: 11 year: 2004 end-page: 13 ident: bib3 article-title: Basic well log analysis, seconded publication-title: AAPG Methods in Exploration Series – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: bib16 article-title: LSTM: a search space odyssey publication-title: IEEE T. Neur. Net. Lear. – volume: 42 start-page: 99 year: 2017 end-page: 119 ident: bib17 article-title: The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data: stepwise regression vs. N-way analysis of variance publication-title: J. Nat. Gas Sci. Eng. – volume: 53 start-page: l year: 2020 end-page: 38 ident: bib12 article-title: A survey of multilingual neural machine translation publication-title: ACM Comput. Surv. – volume: 84 start-page: 35 year: 2019 end-page: 45 ident: bib42 article-title: FaullSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation publication-title: Geophysics – volume: 53 start-page: 8 year: 2018 end-page: 16 ident: bib40 article-title: Improved neural network cascading algorithm and its application in first break picking publication-title: Oil Geophys. Prospect. – volume: 24 start-page: 694 year: 2016 end-page: 707 ident: bib37 article-title: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval publication-title: IEEE-ACM T. Audio Spe. – volume: 17 start-page: 1281 year: 2020 end-page: 1297 ident: bib18 article-title: Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review publication-title: Pet. Sci. – volume: 16 start-page: 105 year: 2019 end-page: 115 ident: bib45 article-title: Shear-wave velocity estimation for calciferous sandy shale formation publication-title: J. Geophys. Eng. – volume: 61 start-page: 582 year: 2013 end-page: 598 ident: bib1 article-title: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization publication-title: Geophys. Prospect. – volume: 28 start-page: 125 year: 2015 end-page: 128 ident: bib9 article-title: The application of Faust formula in acoustic curve reconstruction. Pet. Reservoir Eval publication-title: Devenir – volume: 8 start-page: 152 year: 2022 ident: bib31 article-title: Horizontal in situ stresses prediction using a CNN-BiLSTM-Attention hybrid neural network publication-title: Geomech. Geophys. Geo. – volume: 57 start-page: 154 year: 2021 end-page: 162 ident: bib47 article-title: Improvement of QPSO algorithm and its application in DBN parameter optimization publication-title: Comput. Eng. Appl. – volume: 21 start-page: 233 year: 2010 end-page: 234 ident: bib21 article-title: Discussion on the application condition of Garden formula. Xinjiang Pet publication-title: Geol. – volume: 14 year: 2022 ident: bib10 article-title: Prediction of shear wave velocity based on a hybrid network of two-dimensional convolutional neural network and gated recurrent unit publication-title: Geofluids – volume: 15 start-page: 895 year: 2018 end-page: 908 ident: bib30 article-title: A lithology identification method for continental shale oil reservoir based on BP neural network publication-title: J. Geophys. Eng. – volume: 175 year: 2019 ident: bib34 article-title: Dynamic data driven sonic well log model for formation evaluation publication-title: J. Pet. Sci. Eng. – volume: 45 start-page: 69 year: 2021 end-page: 76 ident: bib49 article-title: A new method for high-precision fluid identification based on bidirectional long short-term memory network publication-title: J. China Univ. Pet – volume: Ed. 06 start-page: 1 year: 2022 end-page: 10 ident: bib14 article-title: PEMFC degradation trend prediction based on PSO-LSTM publication-title: J. Jilin Univ., Eng. Technol. – volume: 187 year: 2020 ident: bib4 article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting publication-title: Elec. Power Syst. Res. – volume: 8 start-page: 58392 year: 2021 end-page: 58401 ident: bib23 article-title: Network Intrusion detection based on PSO-XGBoost model publication-title: IEEE Access – volume: 176 start-page: 937 year: 2006 end-page: 971 ident: bib5 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. – volume: 207 start-page: 254 year: 2021 end-page: 264 ident: bib24 article-title: Efficient and robust optimization for well patterns using a PSO algorithm with a CNN-based proxy model publication-title: J. Pet. Sci. Eng. – volume: 200 year: 2021 ident: bib35 article-title: Application of supervised machine learning paradigmsin the predict ion of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Pet. Sci. Eng. – volume: 200 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib35 article-title: Application of supervised machine learning paradigmsin the predict ion of petroleum reservoir properties: comparative analysis of ANN and SVM models publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108182 – volume: 29 start-page: 12 issue: 7 year: 2014 ident: 10.1016/j.geoen.2024.212975_bib13 article-title: Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir South-West Iran publication-title: Can. Soc. Explor. Geophys. – volume: 24 start-page: 694 issue: 4 year: 2016 ident: 10.1016/j.geoen.2024.212975_bib37 article-title: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval publication-title: IEEE-ACM T. Audio Spe. – volume: 187 issue: 5 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib4 article-title: Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting publication-title: Elec. Power Syst. Res. – volume: 15 start-page: 895 issue: 3 year: 2018 ident: 10.1016/j.geoen.2024.212975_bib30 article-title: A lithology identification method for continental shale oil reservoir based on BP neural network publication-title: J. Geophys. Eng. doi: 10.1088/1742-2140/aaa4db – volume: 21 start-page: 233 issue: 3 year: 2010 ident: 10.1016/j.geoen.2024.212975_bib21 article-title: Discussion on the application condition of Garden formula. Xinjiang Pet publication-title: Geol. – volume: 53 start-page: 8 issue: 1 year: 2018 ident: 10.1016/j.geoen.2024.212975_bib40 article-title: Improved neural network cascading algorithm and its application in first break picking publication-title: Oil Geophys. Prospect. – volume: 61 start-page: 582 issue: 3 year: 2013 ident: 10.1016/j.geoen.2024.212975_bib1 article-title: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2012.01080.x – volume: 21 start-page: 4811 issue: 1 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib7 article-title: Time series classification-based correlational neural network with bidirectional LSTM for automated detection of kidney disease publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2020.3028738 – volume: 47 start-page: 12 issue: 23 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib11 article-title: Well log generation via ensemble long short-term memory (EnLSTM) network publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087685 – volume: 45 start-page: 261 year: 2012 ident: 10.1016/j.geoen.2024.212975_bib2 article-title: Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: a case study of the South Pars Gas Field, Persian Gulf, Iran publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.11.024 – volume: Ed. start-page: 63 issue: 1 year: 2008 ident: 10.1016/j.geoen.2024.212975_bib46 article-title: Application of BP neural network technology in acoustic logging curve reconstruction publication-title: J. Southwest Pet. Univ., Sci. Technol. – volume: 84 start-page: 35 issue: 3 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib42 article-title: FaullSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation publication-title: Geophysics doi: 10.1190/geo2018-0646.1 – volume: 57 start-page: 154 issue: 10 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib47 article-title: Improvement of QPSO algorithm and its application in DBN parameter optimization publication-title: Comput. Eng. Appl. – volume: 8 start-page: 58392 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib23 article-title: Network Intrusion detection based on PSO-XGBoost model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982418 – volume: 138 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib6 article-title: A comparative study of wavelet-based ANN and classical techniques for geophysical time-series forecasting publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2020.104461 – volume: 8 start-page: 152 issue: 5 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib31 article-title: Horizontal in situ stresses prediction using a CNN-BiLSTM-Attention hybrid neural network publication-title: Geomech. Geophys. Geo. doi: 10.1007/s40948-022-00467-2 – volume: 42 start-page: 99 year: 2017 ident: 10.1016/j.geoen.2024.212975_bib17 article-title: The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data: stepwise regression vs. N-way analysis of variance publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.03.010 – volume: 208 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib20 article-title: Well performance prediction based on long short-term memory (LSTM) neural network publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109686 – volume: 17 start-page: 1281 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib18 article-title: Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review publication-title: Pet. Sci. doi: 10.1007/s12182-020-00488-0 – volume: 16 start-page: 192 issue: 2 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib28 article-title: Long short-term memory and variational autoencoder with convolutional neural networks for generating NMR 72 distribution publication-title: Geosci. Rem. Sens. Lett. IEEE doi: 10.1109/LGRS.2018.2872356 – volume: 85 start-page: WA159 issue: 4 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib38 article-title: Missing well log prediction using convolutional long short-term memory network publication-title: Geophysics doi: 10.1190/geo2019-0282.1 – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.geoen.2024.212975_bib15 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 52 start-page: 49 issue: 6 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib22 article-title: Research on the optimal allocation model of regional water resources based on IABC-PSO algorithm publication-title: Yangtze River – volume: 261 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib41 article-title: Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism publication-title: Energy doi: 10.1016/j.energy.2022.125270 – volume: 175 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib34 article-title: Dynamic data driven sonic well log model for formation evaluation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.01.042 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 10.1016/j.geoen.2024.212975_bib16 article-title: LSTM: a search space odyssey publication-title: IEEE T. Neur. Net. Lear. – volume: 88 start-page: D31 issue: 1 year: 2023 ident: 10.1016/j.geoen.2024.212975_bib44 article-title: Deep-learning missing well-log prediction via long short-term memory network with attention-period mechanism publication-title: Geophysics doi: 10.1190/geo2020-0749.1 – volume: 45 start-page: 69 issue: 1 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib49 article-title: A new method for high-precision fluid identification based on bidirectional long short-term memory network publication-title: J. China Univ. Pet – volume: 9 start-page: 1145 issue: S10 year: 2023 ident: 10.1016/j.geoen.2024.212975_bib36 article-title: Transmission expansion planning considering solar photovoltaic using novel binary particle swarm optimization publication-title: Energy Rep. – volume: 16 start-page: 105 issue: 1 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib45 article-title: Shear-wave velocity estimation for calciferous sandy shale formation publication-title: J. Geophys. Eng. doi: 10.1093/jge/gxy009 – volume: 370 start-page: 17 issue: 1 year: 2012 ident: 10.1016/j.geoen.2024.212975_bib8 article-title: Carbonate rocks and petroleum reservoirs: a geological perspective from the industry publication-title: Geological Society doi: 10.1144/SP370.14 – volume: 323 start-page: 203 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib39 article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.082 – volume: 173 issue: 1 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib32 article-title: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning publication-title: Measurement – start-page: 11 year: 2004 ident: 10.1016/j.geoen.2024.212975_bib3 article-title: Basic well log analysis, seconded – volume: 46 start-page: 15928 issue: 29 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib50 article-title: Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and Savitzky-Golay filter publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.02.069 – volume: 54 start-page: 1159 issue: 5 year: 2019 ident: 10.1016/j.geoen.2024.212975_bib19 article-title: Application of convolutional neural networks to identify well logging facies publication-title: Oil Geophys. Prospect. – volume: 207 start-page: 254 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib24 article-title: Efficient and robust optimization for well patterns using a PSO algorithm with a CNN-based proxy model publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109088 – volume: 151 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib25 article-title: 1D convolutional neural networks and applications: a survey publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107398 – volume: Ed. 06 start-page: 1 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib14 article-title: PEMFC degradation trend prediction based on PSO-LSTM publication-title: J. Jilin Univ., Eng. Technol. – volume: 14 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib10 article-title: Prediction of shear wave velocity based on a hybrid network of two-dimensional convolutional neural network and gated recurrent unit publication-title: Geofluids – volume: 37 start-page: 878 issue: 7 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib29 article-title: Prediction of reservoir physical parameters based on kernel bayesian discriminant method publication-title: Acta Pet. Sin. – volume: 28 start-page: 125 issue: 2 year: 2015 ident: 10.1016/j.geoen.2024.212975_bib9 article-title: The application of Faust formula in acoustic curve reconstruction. Pet. Reservoir Eval publication-title: Devenir – volume: 44 issue: 7 year: 2023 ident: 10.1016/j.geoen.2024.212975_bib43 article-title: Stress prediction of fuselage tube section based on PSO-BiLSTM neural network publication-title: Acta Aeronautica Astronautica Sinica – volume: 176 start-page: 937 issue: 8 year: 2006 ident: 10.1016/j.geoen.2024.212975_bib5 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.02.003 – volume: 278 year: 2023 ident: 10.1016/j.geoen.2024.212975_bib27 article-title: Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller publication-title: Energy doi: 10.1016/j.energy.2023.127828 – volume: 53 start-page: l issue: 5 year: 2020 ident: 10.1016/j.geoen.2024.212975_bib12 article-title: A survey of multilingual neural machine translation publication-title: ACM Comput. Surv. – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.geoen.2024.212975_bib33 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 48 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.geoen.2024.212975_bib26 article-title: Application status and development trends of artificial intelligence in petroleum exploration and development publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(21)60001-0 – volume: 57 start-page: 12 issue: 1 year: 2022 ident: 10.1016/j.geoen.2024.212975_bib48 article-title: Robust seismic data denoising based on deep learning publication-title: Oil Geophys. Prospect. |
| SSID | ssj0003239006 |
| Score | 2.3183837 |
| Snippet | During petroleum energy exploration, estimating missing well logs from existing logging data is very meaningful. Due to a highly nonlinear relationship between... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 212975 |
| SubjectTerms | Bidirectional long short-term memory neural network Deep learning Oil-gas energy exploration PSO algorithm Well logs reconstruction |
| Title | Well logs reconstruction of petroleum energy exploration based on bidirectional Long Short-term memory networks with a PSO optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.geoen.2024.212975 |
| Volume | 239 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: ACRLP dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: AIKHN dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF2hcOmloioVlBbNoUfcOM7uZvcYRaBAw4caonKz1vuRBiV2VODAz-Afd2ZtRyAhDtz8NZLtWb33dvV2hrEf2qKmMLyX9DJZJFySCSDYNBEoTkLmpLPR7X5-IcczfnYjbrbYqN0LQ7bKBvtrTI9o3VzpNn-zu14sutNMc62Q7cgF2ecCcXgb-UepDtsenv4aX2yWWvoZTuxjl00KSSimrT8UnV5zX3kqhZrxnwjkmiyHr3HUM9452WEfG8EIw_qdPrEtX35mT3_8cgkIW3cQZ7SbKrBQBUAdTJ7BhxX4uLEPfPTZxRQAsZYDOljUXx6XAmFSlXOY_kUtnhBWw4oMuI9Q1ibxO6DlWjBwNb2ECkFm1ezeBLOcV__w3mqXzU6Or0fjpGmukFhkrfsk8JAVRujUiF4fs2OldipYVAA-OFFobvkgDcoJqb1SjpSikMr3Zeq0oVZlX1inrEq_x8CmZtCzhprF4OQyHRTGmTQIXyivTSEG-yxrf2dum8rj1ABjmbcWs9s85iCnHOR1DvbZ0SZoXRfeePtx2eYpfzF-cqSGtwK_vjfwgH2gs9oM-I11MNH-OwqU--IQB-Do9-TqsBmI_wGYp-iD |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0hcmgvVRFUpeVjDhwxcezdtfeIIlCAkCIFVG7Wej_SVIkdAT3wM_jHzKztqJUqDtwsr0eyd9Zv3o7ezjB2pAxyCs0H0SCRZcQliQC8iSOB5MQnVloT1O7XEzm645f34n6DDbuzMCSrbLG_wfSA1u2dfjub_dV83p8miqscox2pIFMuEId7XKQZ_p2904ur0WSdakkT3NiHLptkEpFNV38oKL1mrnZUCjXhJwjkiiSH_4tRf8Wd88_sU0sY4bR5py224apt9vLTLRaAsPUIYUe7rgILtQfkwaQZ_LMEFw72gQs6u-ACoKhlgS7mzZeHVCCM62oG01_IxSPCaliSAPcZqkYk_giUrgUNN9MfUCPILNvTm6AXs_oBx5Y77O787HY4itrmCpHBqPUUee6TUgsVazFI0TtGKpt7gwzAeStKxQ3PYp9bIZXLc0tMUcjcpTK2SlOrsi9ss6or95WBiXU2MJqaxeDmMs5KbXXshStzp3Qpsl2WdNNZmLbyODXAWBSdxOx3EXxQkA-Kxge77HhttGoKb7z9uOz8VPyzfgoMDW8Zfnuv4SH7MLq9Hhfji8nVd_aRRhph4B7bRKe7fSQrT-VBuxhfATex6c8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well+logs+reconstruction+of+petroleum+energy+exploration+based+on+bidirectional+Long+Short-term+memory+networks+with+a+PSO+optimization+algorithm&rft.jtitle=Geoenergy+Science+and+Engineering&rft.au=Zhang%2C+Haoyu&rft.au=Wu%2C+Wensheng&rft.au=Chen%2C+Zhangxin&rft.au=Jing%2C+Jin&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=2949-8910&rft.eissn=2949-8910&rft.volume=239&rft_id=info:doi/10.1016%2Fj.geoen.2024.212975&rft.externalDocID=S2949891024003452 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8910&client=summon |