Time-dependent probability density function for general stochastic logistic population model with harvesting effort
We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique...
Saved in:
Published in | Physica A Vol. 573; p. 125931 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2021.125931 |
Cover
Abstract | We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique principal solution of the Fokker–Planck equation corresponding to certain initial value and boundary conditions) is used to describe how the distribution of the population process changes with time. We assume the environment is randomly varying and the population is subject to a continuous spectrum of disturbances, with fluctuations in the intrinsic growth rate and the harvesting effort. The randomness is expressed as independent white noise processes. The effect of changes in the intrinsic growth rate, harvesting effort, and noise intensities on the distribution is investigated. In addition, conditions for the existence of optimal harvesting policy are obtained using properties of the time-dependent probability density function. The results obtained in this work are validated using population and published parameters. |
---|---|
AbstractList | We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique principal solution of the Fokker–Planck equation corresponding to certain initial value and boundary conditions) is used to describe how the distribution of the population process changes with time. We assume the environment is randomly varying and the population is subject to a continuous spectrum of disturbances, with fluctuations in the intrinsic growth rate and the harvesting effort. The randomness is expressed as independent white noise processes. The effect of changes in the intrinsic growth rate, harvesting effort, and noise intensities on the distribution is investigated. In addition, conditions for the existence of optimal harvesting policy are obtained using properties of the time-dependent probability density function. The results obtained in this work are validated using population and published parameters. |
ArticleNumber | 125931 |
Author | Otunuga, Olusegun Michael |
Author_xml | – sequence: 1 givenname: Olusegun Michael surname: Otunuga fullname: Otunuga, Olusegun Michael email: otunuga@marshall.edu organization: Department of Mathematics, Marshall University, One John Marshall Drive, Huntington, WV, USA |
BookMark | eNqFkLtOAzEQRS0UJJLAF9D4B3bxI_sqKFDES4pEE2rLa48TRxt7ZTtB-Xs2GyoKqGY0M-dq7p2hifMOELqnJKeElg-7vN-eoswZYTSnrGg4vUJTWlc8Y5Q2EzQlvKqzBa_oDZrFuCOE0IqzKYpru4dMQw9Og0u4D76Vre1sOuFhEM_VHJxK1jtsfMAbcBBkh2Pyaitjsgp3fmPHpvf9oZPj6d5r6PCXTVu8leEIw95tMJhBIt2iayO7CHc_dY4-X57Xy7ds9fH6vnxaZYoTnjLDC6IA6pIbTpnWTQ2t5KxqgVBdN4NVVgJriTG0KduiLOoCuCnkgrCCkbLic9RcdFXwMQYwQtk0vpeCtJ2gRJzTEzsxpifO6YlLegPLf7F9sHsZTv9QjxcKBltHC0FEZcEp0DaASkJ7-yf_Dcm5j6E |
CitedBy_id | crossref_primary_10_1186_s13662_024_03812_9 crossref_primary_10_1080_23324309_2024_2319237 crossref_primary_10_1007_s10955_023_03157_9 crossref_primary_10_1007_s00285_023_02035_y crossref_primary_10_1016_j_chaos_2021_111762 crossref_primary_10_1038_s41598_024_82882_x crossref_primary_10_1016_j_aml_2021_107519 crossref_primary_10_1016_j_physa_2021_126550 crossref_primary_10_1016_j_cam_2023_115421 crossref_primary_10_1007_s10441_022_09449_z crossref_primary_10_1016_j_physa_2024_129818 crossref_primary_10_1088_1742_5468_ad06a6 |
Cites_doi | 10.1016/S0065-2156(08)70343-0 10.1016/0378-4371(79)90103-1 10.1016/0022-247X(81)90180-3 10.1063/1.1634351 10.1137/10081856X 10.1016/j.cnsns.2015.09.009 10.1063/1.3265924 10.1016/j.jmaa.2010.04.002 10.1111/j.1365-2966.2011.20168.x 10.2307/3213218 10.1016/0020-7462(80)90052-9 10.1016/j.ijnonlinmec.2010.06.002 10.1126/science.197.4302.463 10.1016/j.physa.2019.04.053 10.1016/S0025-5564(97)00029-1 10.1137/S0036139992235706 10.1007/s00332-014-9229-2 10.1007/s00285-019-01374-z 10.1016/j.cnsns.2018.12.013 10.1007/s40314-016-0409-6 10.1063/1.1777094 10.1016/j.ijnonlinmec.2014.06.004 10.1090/psapm/016/0161375 10.1016/j.heliyon.2019.e02499 10.1103/PhysRevE.86.011919 10.1080/10652461003643412 10.1214/aoms/1177699916 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2021.125931 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2021_125931 S037843712100203X |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- RIG SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c303t-f350cee863f312dd98eba327be01d8902126e2b0ff196b56585e3f5a402520673 |
IEDL.DBID | AIKHN |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:26 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Fri Feb 23 02:41:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Logistic population model Fokker–Planck Kummer Probability density function Harvesting effort Hypergeometric Laguerre Whittaker function Stochastic differential equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-f350cee863f312dd98eba327be01d8902126e2b0ff196b56585e3f5a402520673 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2021_125931 crossref_primary_10_1016_j_physa_2021_125931 elsevier_sciencedirect_doi_10_1016_j_physa_2021_125931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica A |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dorini, Bobko, Dorini (b20) 2018; 37 Bhatt, Bhattacharyya (b14) 2012; 420 Caughey, Dienes (b17) 1961; 32 Li, Wang (b5) 2010; 368 Méndez, Campos, Horsthemke (b11) 2012; 86 Jazwinski (b27) 1970 Becker (b41) 2009; 50 Becker (b42) 2004; 45 Jin, Wang, Huang, Paola (b13) 2014; 65 Dorini, Cecconello, Dorini (b21) 2016; 33 Yang, Cai, Wang, Wang (b10) 2019; 526 Zhang, Zhang, Pandey, Zhao (b24) 2010; 45 Uyenoyama (b2) 2004 Wong, Zakai (b30) 1965; 36 Bateman (b33) 1953 McIntosh (b3) 1985 Horsthemke, Lefever (b25) 1984 Gaines, Lyons (b39) 1994; 54 Gardiner (b12) 1985 Johnson, Kotz, Balakrishnan (b44) 1994 Rasala (b36) 1981; 84 Lungu, Oksendal (b7) 1997; 145 Szmytkowski, Bielski (b37) 2010; 21–2010 Buchholz (b38) 1969 Gradshteyn (b40) 1980 Renshaw (b9) 1991 Abramowitz, Stegun (b34) 1965 Otunuga (b47) 2019; 5 Mummert, Otunuga (b48) 2019; 79 Gray, Greenhalgh, Hu, Mao, Pan (b46) 2011; 71 Prajneshu (b8) 1980; 17 Kloeden, Platen (b31) 1995 Lv, Liu, Zou (b6) 2019; 9 Johnson, Scott (b23) 1980; 15 Kingsland (b1) 1995 Beddington, May (b4) 1977; 197 Iyanaga, Kawada (b35) 1980 Lin, Cai (b22) 1995 Schaefer (b45) 1954; 1 Michael Carney, Padraig Cunningham, Stephen Byrne, The Benefits of Using a Complete Probability Distribution when Decision Making: An Example in Anticoagulant Drug Therapy, Medical Decision Making. van Kampen (b28) 1981; 24 Meng Liu, Chuanzhi Bai, Optimal harvesting of a stochastic logistic model with time delay. J. Nonlinear Sci .25, 277-289. West, Bulsara, Lindenberg, Seshadri, Shuler (b29) 1979; 97 Wong (b26) 1964; 16 Tenké, Hollerbach, Kim (b16) 2017; 2017 Cortés, Navarro-Quiles, Romero, Rosello (b19) 2019; 72 Caughey (b18) 1971; 11 Olver, Lozier, Boisvert, Clark (b32) 2010 Méndez (10.1016/j.physa.2021.125931_b11) 2012; 86 Mummert (10.1016/j.physa.2021.125931_b48) 2019; 79 Kloeden (10.1016/j.physa.2021.125931_b31) 1995 Szmytkowski (10.1016/j.physa.2021.125931_b37) 2010; 21–2010 Abramowitz (10.1016/j.physa.2021.125931_b34) 1965 Buchholz (10.1016/j.physa.2021.125931_b38) 1969 van Kampen (10.1016/j.physa.2021.125931_b28) 1981; 24 Prajneshu (10.1016/j.physa.2021.125931_b8) 1980; 17 Olver (10.1016/j.physa.2021.125931_b32) 2010 Gray (10.1016/j.physa.2021.125931_b46) 2011; 71 Bateman (10.1016/j.physa.2021.125931_b33) 1953 Caughey (10.1016/j.physa.2021.125931_b18) 1971; 11 Gaines (10.1016/j.physa.2021.125931_b39) 1994; 54 West (10.1016/j.physa.2021.125931_b29) 1979; 97 10.1016/j.physa.2021.125931_b43 Yang (10.1016/j.physa.2021.125931_b10) 2019; 526 Tenké (10.1016/j.physa.2021.125931_b16) 2017; 2017 Cortés (10.1016/j.physa.2021.125931_b19) 2019; 72 Lin (10.1016/j.physa.2021.125931_b22) 1995 Beddington (10.1016/j.physa.2021.125931_b4) 1977; 197 Caughey (10.1016/j.physa.2021.125931_b17) 1961; 32 McIntosh (10.1016/j.physa.2021.125931_b3) 1985 Johnson (10.1016/j.physa.2021.125931_b23) 1980; 15 Lv (10.1016/j.physa.2021.125931_b6) 2019; 9 Jin (10.1016/j.physa.2021.125931_b13) 2014; 65 Schaefer (10.1016/j.physa.2021.125931_b45) 1954; 1 Lungu (10.1016/j.physa.2021.125931_b7) 1997; 145 Kingsland (10.1016/j.physa.2021.125931_b1) 1995 Li (10.1016/j.physa.2021.125931_b5) 2010; 368 Iyanaga (10.1016/j.physa.2021.125931_b35) 1980 Gardiner (10.1016/j.physa.2021.125931_b12) 1985 Dorini (10.1016/j.physa.2021.125931_b21) 2016; 33 Zhang (10.1016/j.physa.2021.125931_b24) 2010; 45 Uyenoyama (10.1016/j.physa.2021.125931_b2) 2004 Horsthemke (10.1016/j.physa.2021.125931_b25) 1984 Gradshteyn (10.1016/j.physa.2021.125931_b40) 1980 Wong (10.1016/j.physa.2021.125931_b26) 1964; 16 Otunuga (10.1016/j.physa.2021.125931_b47) 2019; 5 Becker (10.1016/j.physa.2021.125931_b41) 2009; 50 Becker (10.1016/j.physa.2021.125931_b42) 2004; 45 Johnson (10.1016/j.physa.2021.125931_b44) 1994 Rasala (10.1016/j.physa.2021.125931_b36) 1981; 84 Renshaw (10.1016/j.physa.2021.125931_b9) 1991 Dorini (10.1016/j.physa.2021.125931_b20) 2018; 37 10.1016/j.physa.2021.125931_b15 Wong (10.1016/j.physa.2021.125931_b30) 1965; 36 Bhatt (10.1016/j.physa.2021.125931_b14) 2012; 420 Jazwinski (10.1016/j.physa.2021.125931_b27) 1970 |
References_xml | – volume: 1 start-page: 27 year: 1954 end-page: 56 ident: b45 article-title: Some aspects of the dynamics of populations important to the management of commercial marine fisheries publication-title: Bull. Inter-American Trop. Tuna Comm. – volume: 36 start-page: 1560 year: 1965 end-page: 1564 ident: b30 article-title: On the convergence of ordinary integrals to stochastic integrals publication-title: Ann. Math. Stat. – year: 1980 ident: b35 article-title: Encyclopedia Dictionary of Mathematics – year: 1970 ident: b27 article-title: Stochastic Processes and Filtering Theory – volume: 50 year: 2009 ident: b41 article-title: Infinite integrals of Whittaker and bessel functions with respect to their index publication-title: Math. Phys. – year: 1984 ident: b25 article-title: Noise-Induced Transitions Theory and Applications in Physics, Chemistry, and Biology – volume: 5 year: 2019 ident: b47 article-title: Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model publication-title: Heliyon – volume: 97 start-page: 211 year: 1979 end-page: 233 ident: b29 article-title: Stochastic processes with non-additive fluctuations: I. Itô and Stratonovich calculus and the effects of correlations publication-title: Phys. A – volume: 45 start-page: 761 year: 2004 end-page: 773 ident: b42 article-title: On the integration of products of Whittaker functions with respect to the second index publication-title: Math. Phys. – start-page: 1 year: 2004 end-page: 19 ident: b2 article-title: The Evolution of Population Biology – volume: 65 start-page: 253 year: 2014 end-page: 259 ident: b13 article-title: Constructing transient response probability density of non-linearsystem through complex fractional moments publication-title: Int. J. Non-Linear Mech. – volume: 16 start-page: 264 year: 1964 ident: b26 article-title: The construction of a class of stationary markoff processes publication-title: Proc. Symp. Appl. Math. – volume: 368 start-page: 420 year: 2010 end-page: 428 ident: b5 article-title: Optimal harvesting policy for general stochastic logistic population model publication-title: J. Math. Anal. Appl. – year: 1965 ident: b34 article-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables – year: 1994 ident: b44 article-title: Continuous UnivariateDistributions, Wiley Series in Probability and Statistics – volume: 79 start-page: 705 year: 2019 end-page: 729 ident: b48 article-title: Parameter identification for a stochastic SEIRS epidemic model: Case study influenza publication-title: J. Math. Biol. – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: b6 article-title: Stationary distribution and persistence of a stochastic predator-prey model with a functional response publication-title: J. Appl. Anal. Comput. – year: 1953 ident: b33 article-title: Higher Transcendental Functions, Vols. 1 & 2 – reference: Michael Carney, Padraig Cunningham, Stephen Byrne, The Benefits of Using a Complete Probability Distribution when Decision Making: An Example in Anticoagulant Drug Therapy, Medical Decision Making. – volume: 71 start-page: 876 year: 2011 end-page: 902 ident: b46 article-title: A stochastic differential equation SIS epidemic model publication-title: SIAM J. Appl. Math. – volume: 86 year: 2012 ident: b11 article-title: Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model publication-title: Phys. Rev. E – volume: 2017 year: 2017 ident: b16 article-title: Time-dependent probability density functions and information geometry in stochastic logistic and gompertz models publication-title: J. Stat. Mech. Theory Exp. – year: 1995 ident: b22 article-title: Probabilistic Structural Dynamics, Advanced Theory and Applications – start-page: 127 year: 1995 end-page: 146 ident: b1 article-title: Modeling Nature: Episodes in the History of Population Ecology – volume: 24 year: 1981 ident: b28 article-title: Itô versus Stratonovich publication-title: J. Stat. Phys. – volume: 21–2010 start-page: 739 year: 2010 end-page: 744 ident: b37 article-title: An orthogonality relation for the whittaker functions of the second kind of imaginary order publication-title: Integral Transforms Spec. Funct. – start-page: 171 year: 1985 end-page: 198 ident: b3 article-title: The Background of Ecology – volume: 72 start-page: 121 year: 2019 end-page: 138 ident: b19 article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loéve expansion and the Random Variable Transformation technique publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 1969 ident: b38 article-title: The Confluent Hypergeometric Function with Special Emphasis on Its Applications – reference: Meng Liu, Chuanzhi Bai, Optimal harvesting of a stochastic logistic model with time delay. J. Nonlinear Sci .25, 277-289. – volume: 54 start-page: 1132 year: 1994 end-page: 1146 ident: b39 article-title: Random generation of stochastic area integrals publication-title: SIAM J. Appl. Math. – volume: 32 start-page: 2476 year: 1961 end-page: 2479 ident: b17 article-title: Analysis of a nonlinear first-order system with a white noise input publication-title: J. Appl. Phys – volume: 37 start-page: 1496 year: 2018 end-page: 1506 ident: b20 article-title: A note on the logistic equation subject to uncertainties in parameters publication-title: Comput. Appl. Math. – volume: 45 start-page: 800 year: 2010 end-page: 808 ident: b24 article-title: Probability density function for stochastic response of non-linear oscillation system under random excitation publication-title: Int. J. Non-Linear Mech. – volume: 197 start-page: 463 year: 1977 end-page: 465 ident: b4 article-title: Harvesting natural populations in a randomly fluctuating environment publication-title: Science – volume: 33 start-page: 160 year: 2016 end-page: 173 ident: b21 article-title: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 17 start-page: 1083 year: 1980 end-page: 1086 ident: b8 article-title: Time dependent solution of the logistic model for population growth in random environment publication-title: J. Appl. Prob. – year: 1985 ident: b12 article-title: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences – volume: 11 start-page: 209 year: 1971 end-page: 253 ident: b18 article-title: Nonlinear theory of random vibrations publication-title: Adv. Appl. Mech. – volume: 15 start-page: 41 year: 1980 end-page: 56 ident: b23 article-title: Extension of eigenfunction-expansion solutions of a fokker-planck equation-II. Second order system publication-title: Int. J. Non-Linear Mech. – volume: 145 start-page: 47 year: 1997 end-page: 75 ident: b7 article-title: Optimal harvesting from a population model in a stochastic crowded environment publication-title: Math. Biosci. – volume: 526 year: 2019 ident: b10 article-title: Optimal harvesting policy of logistic population model in a randomly fluctuating environment publication-title: Phys. A – volume: 420 start-page: 1706 year: 2012 end-page: 1713 ident: b14 article-title: Time evolution of the probability density function of a gamma-ray burst: a possible indication of the turbulent origin of gamma-ray bursts publication-title: Mon. Not. R. Astron. Soc. – volume: 84 start-page: 443 year: 1981 end-page: 482 ident: b36 article-title: The rodrigues formula and polynomial differential operators publication-title: J. Math. Anal. Appl. – start-page: 6 year: 1991 end-page: 9 ident: b9 article-title: Modeling Biological Populations in Space and Time – year: 1980 ident: b40 article-title: Table of Integrals, Series, and Products – year: 2010 ident: b32 article-title: NIST Handbook of Mathematical Functions, National Institute of Sciences and Technology – year: 1995 ident: b31 article-title: Numerical Solution of Stochastic Differential Equations – start-page: 1 year: 2004 ident: 10.1016/j.physa.2021.125931_b2 – volume: 11 start-page: 209 year: 1971 ident: 10.1016/j.physa.2021.125931_b18 article-title: Nonlinear theory of random vibrations publication-title: Adv. Appl. Mech. doi: 10.1016/S0065-2156(08)70343-0 – volume: 24 issue: 175 year: 1981 ident: 10.1016/j.physa.2021.125931_b28 article-title: Itô versus Stratonovich publication-title: J. Stat. Phys. – start-page: 171 year: 1985 ident: 10.1016/j.physa.2021.125931_b3 – start-page: 6 year: 1991 ident: 10.1016/j.physa.2021.125931_b9 – volume: 97 start-page: 211 issue: 2 year: 1979 ident: 10.1016/j.physa.2021.125931_b29 article-title: Stochastic processes with non-additive fluctuations: I. Itô and Stratonovich calculus and the effects of correlations publication-title: Phys. A doi: 10.1016/0378-4371(79)90103-1 – year: 1970 ident: 10.1016/j.physa.2021.125931_b27 – year: 1995 ident: 10.1016/j.physa.2021.125931_b31 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.physa.2021.125931_b6 article-title: Stationary distribution and persistence of a stochastic predator-prey model with a functional response publication-title: J. Appl. Anal. Comput. – volume: 84 start-page: 443 year: 1981 ident: 10.1016/j.physa.2021.125931_b36 article-title: The rodrigues formula and polynomial differential operators publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(81)90180-3 – year: 1995 ident: 10.1016/j.physa.2021.125931_b22 – volume: 45 start-page: 761 issue: 2 year: 2004 ident: 10.1016/j.physa.2021.125931_b42 article-title: On the integration of products of Whittaker functions with respect to the second index publication-title: Math. Phys. doi: 10.1063/1.1634351 – volume: 71 start-page: 876 issue: 3 year: 2011 ident: 10.1016/j.physa.2021.125931_b46 article-title: A stochastic differential equation SIS epidemic model publication-title: SIAM J. Appl. Math. doi: 10.1137/10081856X – volume: 2017 year: 2017 ident: 10.1016/j.physa.2021.125931_b16 article-title: Time-dependent probability density functions and information geometry in stochastic logistic and gompertz models publication-title: J. Stat. Mech. Theory Exp. – ident: 10.1016/j.physa.2021.125931_b15 – volume: 33 start-page: 160 year: 2016 ident: 10.1016/j.physa.2021.125931_b21 article-title: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.09.009 – volume: 50 year: 2009 ident: 10.1016/j.physa.2021.125931_b41 article-title: Infinite integrals of Whittaker and bessel functions with respect to their index publication-title: Math. Phys. doi: 10.1063/1.3265924 – volume: 368 start-page: 420 year: 2010 ident: 10.1016/j.physa.2021.125931_b5 article-title: Optimal harvesting policy for general stochastic logistic population model publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.04.002 – start-page: 127 year: 1995 ident: 10.1016/j.physa.2021.125931_b1 – year: 1980 ident: 10.1016/j.physa.2021.125931_b35 – volume: 420 start-page: 1706 year: 2012 ident: 10.1016/j.physa.2021.125931_b14 article-title: Time evolution of the probability density function of a gamma-ray burst: a possible indication of the turbulent origin of gamma-ray bursts publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2011.20168.x – year: 1965 ident: 10.1016/j.physa.2021.125931_b34 – volume: 17 start-page: 1083 year: 1980 ident: 10.1016/j.physa.2021.125931_b8 article-title: Time dependent solution of the logistic model for population growth in random environment publication-title: J. Appl. Prob. doi: 10.2307/3213218 – volume: 15 start-page: 41 issue: 1 year: 1980 ident: 10.1016/j.physa.2021.125931_b23 article-title: Extension of eigenfunction-expansion solutions of a fokker-planck equation-II. Second order system publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(80)90052-9 – volume: 45 start-page: 800 issue: 8 year: 2010 ident: 10.1016/j.physa.2021.125931_b24 article-title: Probability density function for stochastic response of non-linear oscillation system under random excitation publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2010.06.002 – year: 2010 ident: 10.1016/j.physa.2021.125931_b32 – volume: 197 start-page: 463 year: 1977 ident: 10.1016/j.physa.2021.125931_b4 article-title: Harvesting natural populations in a randomly fluctuating environment publication-title: Science doi: 10.1126/science.197.4302.463 – year: 1969 ident: 10.1016/j.physa.2021.125931_b38 – volume: 1 start-page: 27 issue: 2 year: 1954 ident: 10.1016/j.physa.2021.125931_b45 article-title: Some aspects of the dynamics of populations important to the management of commercial marine fisheries publication-title: Bull. Inter-American Trop. Tuna Comm. – volume: 526 year: 2019 ident: 10.1016/j.physa.2021.125931_b10 article-title: Optimal harvesting policy of logistic population model in a randomly fluctuating environment publication-title: Phys. A doi: 10.1016/j.physa.2019.04.053 – year: 1985 ident: 10.1016/j.physa.2021.125931_b12 – volume: 145 start-page: 47 year: 1997 ident: 10.1016/j.physa.2021.125931_b7 article-title: Optimal harvesting from a population model in a stochastic crowded environment publication-title: Math. Biosci. doi: 10.1016/S0025-5564(97)00029-1 – volume: 54 start-page: 1132 issue: 4 year: 1994 ident: 10.1016/j.physa.2021.125931_b39 article-title: Random generation of stochastic area integrals publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139992235706 – ident: 10.1016/j.physa.2021.125931_b43 doi: 10.1007/s00332-014-9229-2 – volume: 79 start-page: 705 issue: 2 year: 2019 ident: 10.1016/j.physa.2021.125931_b48 article-title: Parameter identification for a stochastic SEIRS epidemic model: Case study influenza publication-title: J. Math. Biol. doi: 10.1007/s00285-019-01374-z – volume: 72 start-page: 121 year: 2019 ident: 10.1016/j.physa.2021.125931_b19 article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loéve expansion and the Random Variable Transformation technique publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.12.013 – volume: 37 start-page: 1496 year: 2018 ident: 10.1016/j.physa.2021.125931_b20 article-title: A note on the logistic equation subject to uncertainties in parameters publication-title: Comput. Appl. Math. doi: 10.1007/s40314-016-0409-6 – volume: 32 start-page: 2476 year: 1961 ident: 10.1016/j.physa.2021.125931_b17 article-title: Analysis of a nonlinear first-order system with a white noise input publication-title: J. Appl. Phys doi: 10.1063/1.1777094 – volume: 65 start-page: 253 year: 2014 ident: 10.1016/j.physa.2021.125931_b13 article-title: Constructing transient response probability density of non-linearsystem through complex fractional moments publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2014.06.004 – volume: 16 start-page: 264 year: 1964 ident: 10.1016/j.physa.2021.125931_b26 article-title: The construction of a class of stationary markoff processes publication-title: Proc. Symp. Appl. Math. doi: 10.1090/psapm/016/0161375 – year: 1953 ident: 10.1016/j.physa.2021.125931_b33 – year: 1984 ident: 10.1016/j.physa.2021.125931_b25 – volume: 5 issue: 9 year: 2019 ident: 10.1016/j.physa.2021.125931_b47 article-title: Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02499 – year: 1980 ident: 10.1016/j.physa.2021.125931_b40 – year: 1994 ident: 10.1016/j.physa.2021.125931_b44 – volume: 86 year: 2012 ident: 10.1016/j.physa.2021.125931_b11 article-title: Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.011919 – volume: 21–2010 start-page: 739 issue: 10 year: 2010 ident: 10.1016/j.physa.2021.125931_b37 article-title: An orthogonality relation for the whittaker functions of the second kind of imaginary order publication-title: Integral Transforms Spec. Funct. doi: 10.1080/10652461003643412 – volume: 36 start-page: 1560 issue: 5 year: 1965 ident: 10.1016/j.physa.2021.125931_b30 article-title: On the convergence of ordinary integrals to stochastic integrals publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177699916 |
SSID | ssj0001732 |
Score | 2.4222927 |
Snippet | We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125931 |
SubjectTerms | Fokker–Planck Harvesting effort Hypergeometric Kummer Laguerre Logistic population model Probability density function Stochastic differential equation Whittaker function |
Title | Time-dependent probability density function for general stochastic logistic population model with harvesting effort |
URI | https://dx.doi.org/10.1016/j.physa.2021.125931 |
Volume | 573 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71ISQWxFOUR-WBkbS1HbvJWFVUBUQXqNQtqh27LUKlasPAwm_HFycVSKgDUx7KRdbFue_OvvsO4CaOUx6HWgeRVSYIdWwDxSMdMB1RzazUkmGB89NIDsfhw0RMKtAva2EwrbKw_d6m59a6uNMutNleLRbt5w7vRiHvIgMWbqdNqlBnPJaiBvXe_eNwtDXItMv9ZoILmFCgJB_K07xwAQH5hxhtOayPOf0boH6AzuAQDgpvkfT8gI6gYpbHsJdnberNCWywgCMo-9hmBLvDeN7tT5JiZro7InCh8onzTsnMk0wT5_Hp-RQpmokvAXInq20rL5K3xyG4REvm03VOxLGcEWPdK7JTGA_uXvrDoOiiEGgHT1lgueg4JIwkt5yyNI0jo6acdZXp0BR3GSmThqmOte5nVM6_i4ThVkxdYCmQ252fQW35vjTnQGKjpUqddCRTrIZWLtqgOlRCSCO01A1gpeoSXVCMY6eLt6TMJXtNcn0nqO_E67sBt1uhlWfY2P24LL9J8muiJA4Ddgle_FfwEvbxyufoXkEtW3-Ya-eJZKoJ1dYXbRbz7Ru3auBS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKEYIF8SnKpwdG0tZ27CQjqqgKtF1opW5R7NilCIWqDQMLvx1fnBSQUAemRIkvii6O39l-9w6h6yhKWeQr5YVGas9XkfEkC5VHVUgUNUIJCgnOg6Hojf2HCZ_UUKfKhQFaZTn2uzG9GK3LK63Sm635bNZ6arMg9FkACliwnTbZQJs-ZwEI6Dc_v3keJGBuK8FOl6B5JT1UkLxg-QDUhyhpWqSPGPkbnn5ATncP7ZaxIr51r7OPajo7QFsFZ1MtD9ES0je8qoptjqE2jFPd_sAp8NLtEWALXI9tbIqnTmIa23hPPScg0IxdApA9ma8KeeGiOA6GBVr8nCwKGY5sirWxj8iP0Lh7N-r0vLKGgqcsOOWeYbxtcTAUzDBC0zQKtUwYDaRukxT2GAkVmsq2MfZXlDa6C7lmhid2WslB2Z0do3r2lukThCOthEytdShSyIWWdq5BlC85F5oroRqIVq6LVSkwDnUuXuOKSfYSF_6Owd-x83cD3ayM5k5fY31zUX2T-Fc3iS0CrDM8_a_hFdrujQb9uH8_fDxDO3DHsXXPUT1fvOsLG5Pk8rLoc1-bquEc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-dependent+probability+density+function+for+general+stochastic+logistic+population+model+with+harvesting+effort&rft.jtitle=Physica+A&rft.au=Otunuga%2C+Olusegun+Michael&rft.date=2021-07-01&rft.issn=0378-4371&rft.volume=573&rft.spage=125931&rft_id=info:doi/10.1016%2Fj.physa.2021.125931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2021_125931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |