Time-dependent probability density function for general stochastic logistic population model with harvesting effort

We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 573; p. 125931
Main Author Otunuga, Olusegun Michael
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2021.125931

Cover

Abstract We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique principal solution of the Fokker–Planck equation corresponding to certain initial value and boundary conditions) is used to describe how the distribution of the population process changes with time. We assume the environment is randomly varying and the population is subject to a continuous spectrum of disturbances, with fluctuations in the intrinsic growth rate and the harvesting effort. The randomness is expressed as independent white noise processes. The effect of changes in the intrinsic growth rate, harvesting effort, and noise intensities on the distribution is investigated. In addition, conditions for the existence of optimal harvesting policy are obtained using properties of the time-dependent probability density function. The results obtained in this work are validated using population and published parameters.
AbstractList We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic population model with harvesting effort using the Fokker–Planck equation. The time-dependent probability density function (obtained as the unique principal solution of the Fokker–Planck equation corresponding to certain initial value and boundary conditions) is used to describe how the distribution of the population process changes with time. We assume the environment is randomly varying and the population is subject to a continuous spectrum of disturbances, with fluctuations in the intrinsic growth rate and the harvesting effort. The randomness is expressed as independent white noise processes. The effect of changes in the intrinsic growth rate, harvesting effort, and noise intensities on the distribution is investigated. In addition, conditions for the existence of optimal harvesting policy are obtained using properties of the time-dependent probability density function. The results obtained in this work are validated using population and published parameters.
ArticleNumber 125931
Author Otunuga, Olusegun Michael
Author_xml – sequence: 1
  givenname: Olusegun Michael
  surname: Otunuga
  fullname: Otunuga, Olusegun Michael
  email: otunuga@marshall.edu
  organization: Department of Mathematics, Marshall University, One John Marshall Drive, Huntington, WV, USA
BookMark eNqFkLtOAzEQRS0UJJLAF9D4B3bxI_sqKFDES4pEE2rLa48TRxt7ZTtB-Xs2GyoKqGY0M-dq7p2hifMOELqnJKeElg-7vN-eoswZYTSnrGg4vUJTWlc8Y5Q2EzQlvKqzBa_oDZrFuCOE0IqzKYpru4dMQw9Og0u4D76Vre1sOuFhEM_VHJxK1jtsfMAbcBBkh2Pyaitjsgp3fmPHpvf9oZPj6d5r6PCXTVu8leEIw95tMJhBIt2iayO7CHc_dY4-X57Xy7ds9fH6vnxaZYoTnjLDC6IA6pIbTpnWTQ2t5KxqgVBdN4NVVgJriTG0KduiLOoCuCnkgrCCkbLic9RcdFXwMQYwQtk0vpeCtJ2gRJzTEzsxpifO6YlLegPLf7F9sHsZTv9QjxcKBltHC0FEZcEp0DaASkJ7-yf_Dcm5j6E
CitedBy_id crossref_primary_10_1186_s13662_024_03812_9
crossref_primary_10_1080_23324309_2024_2319237
crossref_primary_10_1007_s10955_023_03157_9
crossref_primary_10_1007_s00285_023_02035_y
crossref_primary_10_1016_j_chaos_2021_111762
crossref_primary_10_1038_s41598_024_82882_x
crossref_primary_10_1016_j_aml_2021_107519
crossref_primary_10_1016_j_physa_2021_126550
crossref_primary_10_1016_j_cam_2023_115421
crossref_primary_10_1007_s10441_022_09449_z
crossref_primary_10_1016_j_physa_2024_129818
crossref_primary_10_1088_1742_5468_ad06a6
Cites_doi 10.1016/S0065-2156(08)70343-0
10.1016/0378-4371(79)90103-1
10.1016/0022-247X(81)90180-3
10.1063/1.1634351
10.1137/10081856X
10.1016/j.cnsns.2015.09.009
10.1063/1.3265924
10.1016/j.jmaa.2010.04.002
10.1111/j.1365-2966.2011.20168.x
10.2307/3213218
10.1016/0020-7462(80)90052-9
10.1016/j.ijnonlinmec.2010.06.002
10.1126/science.197.4302.463
10.1016/j.physa.2019.04.053
10.1016/S0025-5564(97)00029-1
10.1137/S0036139992235706
10.1007/s00332-014-9229-2
10.1007/s00285-019-01374-z
10.1016/j.cnsns.2018.12.013
10.1007/s40314-016-0409-6
10.1063/1.1777094
10.1016/j.ijnonlinmec.2014.06.004
10.1090/psapm/016/0161375
10.1016/j.heliyon.2019.e02499
10.1103/PhysRevE.86.011919
10.1080/10652461003643412
10.1214/aoms/1177699916
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2021.125931
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2021_125931
S037843712100203X
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
RIG
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c303t-f350cee863f312dd98eba327be01d8902126e2b0ff196b56585e3f5a402520673
IEDL.DBID AIKHN
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:26 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Fri Feb 23 02:41:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logistic population model
Fokker–Planck
Kummer
Probability density function
Harvesting effort
Hypergeometric
Laguerre
Whittaker function
Stochastic differential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-f350cee863f312dd98eba327be01d8902126e2b0ff196b56585e3f5a402520673
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2021_125931
crossref_primary_10_1016_j_physa_2021_125931
elsevier_sciencedirect_doi_10_1016_j_physa_2021_125931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dorini, Bobko, Dorini (b20) 2018; 37
Bhatt, Bhattacharyya (b14) 2012; 420
Caughey, Dienes (b17) 1961; 32
Li, Wang (b5) 2010; 368
Méndez, Campos, Horsthemke (b11) 2012; 86
Jazwinski (b27) 1970
Becker (b41) 2009; 50
Becker (b42) 2004; 45
Jin, Wang, Huang, Paola (b13) 2014; 65
Dorini, Cecconello, Dorini (b21) 2016; 33
Yang, Cai, Wang, Wang (b10) 2019; 526
Zhang, Zhang, Pandey, Zhao (b24) 2010; 45
Uyenoyama (b2) 2004
Wong, Zakai (b30) 1965; 36
Bateman (b33) 1953
McIntosh (b3) 1985
Horsthemke, Lefever (b25) 1984
Gaines, Lyons (b39) 1994; 54
Gardiner (b12) 1985
Johnson, Kotz, Balakrishnan (b44) 1994
Rasala (b36) 1981; 84
Lungu, Oksendal (b7) 1997; 145
Szmytkowski, Bielski (b37) 2010; 21–2010
Buchholz (b38) 1969
Gradshteyn (b40) 1980
Renshaw (b9) 1991
Abramowitz, Stegun (b34) 1965
Otunuga (b47) 2019; 5
Mummert, Otunuga (b48) 2019; 79
Gray, Greenhalgh, Hu, Mao, Pan (b46) 2011; 71
Prajneshu (b8) 1980; 17
Kloeden, Platen (b31) 1995
Lv, Liu, Zou (b6) 2019; 9
Johnson, Scott (b23) 1980; 15
Kingsland (b1) 1995
Beddington, May (b4) 1977; 197
Iyanaga, Kawada (b35) 1980
Lin, Cai (b22) 1995
Schaefer (b45) 1954; 1
Michael Carney, Padraig Cunningham, Stephen Byrne, The Benefits of Using a Complete Probability Distribution when Decision Making: An Example in Anticoagulant Drug Therapy, Medical Decision Making.
van Kampen (b28) 1981; 24
Meng Liu, Chuanzhi Bai, Optimal harvesting of a stochastic logistic model with time delay. J. Nonlinear Sci .25, 277-289.
West, Bulsara, Lindenberg, Seshadri, Shuler (b29) 1979; 97
Wong (b26) 1964; 16
Tenké, Hollerbach, Kim (b16) 2017; 2017
Cortés, Navarro-Quiles, Romero, Rosello (b19) 2019; 72
Caughey (b18) 1971; 11
Olver, Lozier, Boisvert, Clark (b32) 2010
Méndez (10.1016/j.physa.2021.125931_b11) 2012; 86
Mummert (10.1016/j.physa.2021.125931_b48) 2019; 79
Kloeden (10.1016/j.physa.2021.125931_b31) 1995
Szmytkowski (10.1016/j.physa.2021.125931_b37) 2010; 21–2010
Abramowitz (10.1016/j.physa.2021.125931_b34) 1965
Buchholz (10.1016/j.physa.2021.125931_b38) 1969
van Kampen (10.1016/j.physa.2021.125931_b28) 1981; 24
Prajneshu (10.1016/j.physa.2021.125931_b8) 1980; 17
Olver (10.1016/j.physa.2021.125931_b32) 2010
Gray (10.1016/j.physa.2021.125931_b46) 2011; 71
Bateman (10.1016/j.physa.2021.125931_b33) 1953
Caughey (10.1016/j.physa.2021.125931_b18) 1971; 11
Gaines (10.1016/j.physa.2021.125931_b39) 1994; 54
West (10.1016/j.physa.2021.125931_b29) 1979; 97
10.1016/j.physa.2021.125931_b43
Yang (10.1016/j.physa.2021.125931_b10) 2019; 526
Tenké (10.1016/j.physa.2021.125931_b16) 2017; 2017
Cortés (10.1016/j.physa.2021.125931_b19) 2019; 72
Lin (10.1016/j.physa.2021.125931_b22) 1995
Beddington (10.1016/j.physa.2021.125931_b4) 1977; 197
Caughey (10.1016/j.physa.2021.125931_b17) 1961; 32
McIntosh (10.1016/j.physa.2021.125931_b3) 1985
Johnson (10.1016/j.physa.2021.125931_b23) 1980; 15
Lv (10.1016/j.physa.2021.125931_b6) 2019; 9
Jin (10.1016/j.physa.2021.125931_b13) 2014; 65
Schaefer (10.1016/j.physa.2021.125931_b45) 1954; 1
Lungu (10.1016/j.physa.2021.125931_b7) 1997; 145
Kingsland (10.1016/j.physa.2021.125931_b1) 1995
Li (10.1016/j.physa.2021.125931_b5) 2010; 368
Iyanaga (10.1016/j.physa.2021.125931_b35) 1980
Gardiner (10.1016/j.physa.2021.125931_b12) 1985
Dorini (10.1016/j.physa.2021.125931_b21) 2016; 33
Zhang (10.1016/j.physa.2021.125931_b24) 2010; 45
Uyenoyama (10.1016/j.physa.2021.125931_b2) 2004
Horsthemke (10.1016/j.physa.2021.125931_b25) 1984
Gradshteyn (10.1016/j.physa.2021.125931_b40) 1980
Wong (10.1016/j.physa.2021.125931_b26) 1964; 16
Otunuga (10.1016/j.physa.2021.125931_b47) 2019; 5
Becker (10.1016/j.physa.2021.125931_b41) 2009; 50
Becker (10.1016/j.physa.2021.125931_b42) 2004; 45
Johnson (10.1016/j.physa.2021.125931_b44) 1994
Rasala (10.1016/j.physa.2021.125931_b36) 1981; 84
Renshaw (10.1016/j.physa.2021.125931_b9) 1991
Dorini (10.1016/j.physa.2021.125931_b20) 2018; 37
10.1016/j.physa.2021.125931_b15
Wong (10.1016/j.physa.2021.125931_b30) 1965; 36
Bhatt (10.1016/j.physa.2021.125931_b14) 2012; 420
Jazwinski (10.1016/j.physa.2021.125931_b27) 1970
References_xml – volume: 1
  start-page: 27
  year: 1954
  end-page: 56
  ident: b45
  article-title: Some aspects of the dynamics of populations important to the management of commercial marine fisheries
  publication-title: Bull. Inter-American Trop. Tuna Comm.
– volume: 36
  start-page: 1560
  year: 1965
  end-page: 1564
  ident: b30
  article-title: On the convergence of ordinary integrals to stochastic integrals
  publication-title: Ann. Math. Stat.
– year: 1980
  ident: b35
  article-title: Encyclopedia Dictionary of Mathematics
– year: 1970
  ident: b27
  article-title: Stochastic Processes and Filtering Theory
– volume: 50
  year: 2009
  ident: b41
  article-title: Infinite integrals of Whittaker and bessel functions with respect to their index
  publication-title: Math. Phys.
– year: 1984
  ident: b25
  article-title: Noise-Induced Transitions Theory and Applications in Physics, Chemistry, and Biology
– volume: 5
  year: 2019
  ident: b47
  article-title: Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model
  publication-title: Heliyon
– volume: 97
  start-page: 211
  year: 1979
  end-page: 233
  ident: b29
  article-title: Stochastic processes with non-additive fluctuations: I. Itô and Stratonovich calculus and the effects of correlations
  publication-title: Phys. A
– volume: 45
  start-page: 761
  year: 2004
  end-page: 773
  ident: b42
  article-title: On the integration of products of Whittaker functions with respect to the second index
  publication-title: Math. Phys.
– start-page: 1
  year: 2004
  end-page: 19
  ident: b2
  article-title: The Evolution of Population Biology
– volume: 65
  start-page: 253
  year: 2014
  end-page: 259
  ident: b13
  article-title: Constructing transient response probability density of non-linearsystem through complex fractional moments
  publication-title: Int. J. Non-Linear Mech.
– volume: 16
  start-page: 264
  year: 1964
  ident: b26
  article-title: The construction of a class of stationary markoff processes
  publication-title: Proc. Symp. Appl. Math.
– volume: 368
  start-page: 420
  year: 2010
  end-page: 428
  ident: b5
  article-title: Optimal harvesting policy for general stochastic logistic population model
  publication-title: J. Math. Anal. Appl.
– year: 1965
  ident: b34
  article-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
– year: 1994
  ident: b44
  article-title: Continuous UnivariateDistributions, Wiley Series in Probability and Statistics
– volume: 79
  start-page: 705
  year: 2019
  end-page: 729
  ident: b48
  article-title: Parameter identification for a stochastic SEIRS epidemic model: Case study influenza
  publication-title: J. Math. Biol.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: b6
  article-title: Stationary distribution and persistence of a stochastic predator-prey model with a functional response
  publication-title: J. Appl. Anal. Comput.
– year: 1953
  ident: b33
  article-title: Higher Transcendental Functions, Vols. 1 & 2
– reference: Michael Carney, Padraig Cunningham, Stephen Byrne, The Benefits of Using a Complete Probability Distribution when Decision Making: An Example in Anticoagulant Drug Therapy, Medical Decision Making.
– volume: 71
  start-page: 876
  year: 2011
  end-page: 902
  ident: b46
  article-title: A stochastic differential equation SIS epidemic model
  publication-title: SIAM J. Appl. Math.
– volume: 86
  year: 2012
  ident: b11
  article-title: Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model
  publication-title: Phys. Rev. E
– volume: 2017
  year: 2017
  ident: b16
  article-title: Time-dependent probability density functions and information geometry in stochastic logistic and gompertz models
  publication-title: J. Stat. Mech. Theory Exp.
– year: 1995
  ident: b22
  article-title: Probabilistic Structural Dynamics, Advanced Theory and Applications
– start-page: 127
  year: 1995
  end-page: 146
  ident: b1
  article-title: Modeling Nature: Episodes in the History of Population Ecology
– volume: 24
  year: 1981
  ident: b28
  article-title: Itô versus Stratonovich
  publication-title: J. Stat. Phys.
– volume: 21–2010
  start-page: 739
  year: 2010
  end-page: 744
  ident: b37
  article-title: An orthogonality relation for the whittaker functions of the second kind of imaginary order
  publication-title: Integral Transforms Spec. Funct.
– start-page: 171
  year: 1985
  end-page: 198
  ident: b3
  article-title: The Background of Ecology
– volume: 72
  start-page: 121
  year: 2019
  end-page: 138
  ident: b19
  article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loéve expansion and the Random Variable Transformation technique
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 1969
  ident: b38
  article-title: The Confluent Hypergeometric Function with Special Emphasis on Its Applications
– reference: Meng Liu, Chuanzhi Bai, Optimal harvesting of a stochastic logistic model with time delay. J. Nonlinear Sci .25, 277-289.
– volume: 54
  start-page: 1132
  year: 1994
  end-page: 1146
  ident: b39
  article-title: Random generation of stochastic area integrals
  publication-title: SIAM J. Appl. Math.
– volume: 32
  start-page: 2476
  year: 1961
  end-page: 2479
  ident: b17
  article-title: Analysis of a nonlinear first-order system with a white noise input
  publication-title: J. Appl. Phys
– volume: 37
  start-page: 1496
  year: 2018
  end-page: 1506
  ident: b20
  article-title: A note on the logistic equation subject to uncertainties in parameters
  publication-title: Comput. Appl. Math.
– volume: 45
  start-page: 800
  year: 2010
  end-page: 808
  ident: b24
  article-title: Probability density function for stochastic response of non-linear oscillation system under random excitation
  publication-title: Int. J. Non-Linear Mech.
– volume: 197
  start-page: 463
  year: 1977
  end-page: 465
  ident: b4
  article-title: Harvesting natural populations in a randomly fluctuating environment
  publication-title: Science
– volume: 33
  start-page: 160
  year: 2016
  end-page: 173
  ident: b21
  article-title: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 17
  start-page: 1083
  year: 1980
  end-page: 1086
  ident: b8
  article-title: Time dependent solution of the logistic model for population growth in random environment
  publication-title: J. Appl. Prob.
– year: 1985
  ident: b12
  article-title: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
– volume: 11
  start-page: 209
  year: 1971
  end-page: 253
  ident: b18
  article-title: Nonlinear theory of random vibrations
  publication-title: Adv. Appl. Mech.
– volume: 15
  start-page: 41
  year: 1980
  end-page: 56
  ident: b23
  article-title: Extension of eigenfunction-expansion solutions of a fokker-planck equation-II. Second order system
  publication-title: Int. J. Non-Linear Mech.
– volume: 145
  start-page: 47
  year: 1997
  end-page: 75
  ident: b7
  article-title: Optimal harvesting from a population model in a stochastic crowded environment
  publication-title: Math. Biosci.
– volume: 526
  year: 2019
  ident: b10
  article-title: Optimal harvesting policy of logistic population model in a randomly fluctuating environment
  publication-title: Phys. A
– volume: 420
  start-page: 1706
  year: 2012
  end-page: 1713
  ident: b14
  article-title: Time evolution of the probability density function of a gamma-ray burst: a possible indication of the turbulent origin of gamma-ray bursts
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 84
  start-page: 443
  year: 1981
  end-page: 482
  ident: b36
  article-title: The rodrigues formula and polynomial differential operators
  publication-title: J. Math. Anal. Appl.
– start-page: 6
  year: 1991
  end-page: 9
  ident: b9
  article-title: Modeling Biological Populations in Space and Time
– year: 1980
  ident: b40
  article-title: Table of Integrals, Series, and Products
– year: 2010
  ident: b32
  article-title: NIST Handbook of Mathematical Functions, National Institute of Sciences and Technology
– year: 1995
  ident: b31
  article-title: Numerical Solution of Stochastic Differential Equations
– start-page: 1
  year: 2004
  ident: 10.1016/j.physa.2021.125931_b2
– volume: 11
  start-page: 209
  year: 1971
  ident: 10.1016/j.physa.2021.125931_b18
  article-title: Nonlinear theory of random vibrations
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70343-0
– volume: 24
  issue: 175
  year: 1981
  ident: 10.1016/j.physa.2021.125931_b28
  article-title: Itô versus Stratonovich
  publication-title: J. Stat. Phys.
– start-page: 171
  year: 1985
  ident: 10.1016/j.physa.2021.125931_b3
– start-page: 6
  year: 1991
  ident: 10.1016/j.physa.2021.125931_b9
– volume: 97
  start-page: 211
  issue: 2
  year: 1979
  ident: 10.1016/j.physa.2021.125931_b29
  article-title: Stochastic processes with non-additive fluctuations: I. Itô and Stratonovich calculus and the effects of correlations
  publication-title: Phys. A
  doi: 10.1016/0378-4371(79)90103-1
– year: 1970
  ident: 10.1016/j.physa.2021.125931_b27
– year: 1995
  ident: 10.1016/j.physa.2021.125931_b31
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.physa.2021.125931_b6
  article-title: Stationary distribution and persistence of a stochastic predator-prey model with a functional response
  publication-title: J. Appl. Anal. Comput.
– volume: 84
  start-page: 443
  year: 1981
  ident: 10.1016/j.physa.2021.125931_b36
  article-title: The rodrigues formula and polynomial differential operators
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(81)90180-3
– year: 1995
  ident: 10.1016/j.physa.2021.125931_b22
– volume: 45
  start-page: 761
  issue: 2
  year: 2004
  ident: 10.1016/j.physa.2021.125931_b42
  article-title: On the integration of products of Whittaker functions with respect to the second index
  publication-title: Math. Phys.
  doi: 10.1063/1.1634351
– volume: 71
  start-page: 876
  issue: 3
  year: 2011
  ident: 10.1016/j.physa.2021.125931_b46
  article-title: A stochastic differential equation SIS epidemic model
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/10081856X
– volume: 2017
  year: 2017
  ident: 10.1016/j.physa.2021.125931_b16
  article-title: Time-dependent probability density functions and information geometry in stochastic logistic and gompertz models
  publication-title: J. Stat. Mech. Theory Exp.
– ident: 10.1016/j.physa.2021.125931_b15
– volume: 33
  start-page: 160
  year: 2016
  ident: 10.1016/j.physa.2021.125931_b21
  article-title: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2015.09.009
– volume: 50
  year: 2009
  ident: 10.1016/j.physa.2021.125931_b41
  article-title: Infinite integrals of Whittaker and bessel functions with respect to their index
  publication-title: Math. Phys.
  doi: 10.1063/1.3265924
– volume: 368
  start-page: 420
  year: 2010
  ident: 10.1016/j.physa.2021.125931_b5
  article-title: Optimal harvesting policy for general stochastic logistic population model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.04.002
– start-page: 127
  year: 1995
  ident: 10.1016/j.physa.2021.125931_b1
– year: 1980
  ident: 10.1016/j.physa.2021.125931_b35
– volume: 420
  start-page: 1706
  year: 2012
  ident: 10.1016/j.physa.2021.125931_b14
  article-title: Time evolution of the probability density function of a gamma-ray burst: a possible indication of the turbulent origin of gamma-ray bursts
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1111/j.1365-2966.2011.20168.x
– year: 1965
  ident: 10.1016/j.physa.2021.125931_b34
– volume: 17
  start-page: 1083
  year: 1980
  ident: 10.1016/j.physa.2021.125931_b8
  article-title: Time dependent solution of the logistic model for population growth in random environment
  publication-title: J. Appl. Prob.
  doi: 10.2307/3213218
– volume: 15
  start-page: 41
  issue: 1
  year: 1980
  ident: 10.1016/j.physa.2021.125931_b23
  article-title: Extension of eigenfunction-expansion solutions of a fokker-planck equation-II. Second order system
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(80)90052-9
– volume: 45
  start-page: 800
  issue: 8
  year: 2010
  ident: 10.1016/j.physa.2021.125931_b24
  article-title: Probability density function for stochastic response of non-linear oscillation system under random excitation
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2010.06.002
– year: 2010
  ident: 10.1016/j.physa.2021.125931_b32
– volume: 197
  start-page: 463
  year: 1977
  ident: 10.1016/j.physa.2021.125931_b4
  article-title: Harvesting natural populations in a randomly fluctuating environment
  publication-title: Science
  doi: 10.1126/science.197.4302.463
– year: 1969
  ident: 10.1016/j.physa.2021.125931_b38
– volume: 1
  start-page: 27
  issue: 2
  year: 1954
  ident: 10.1016/j.physa.2021.125931_b45
  article-title: Some aspects of the dynamics of populations important to the management of commercial marine fisheries
  publication-title: Bull. Inter-American Trop. Tuna Comm.
– volume: 526
  year: 2019
  ident: 10.1016/j.physa.2021.125931_b10
  article-title: Optimal harvesting policy of logistic population model in a randomly fluctuating environment
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.04.053
– year: 1985
  ident: 10.1016/j.physa.2021.125931_b12
– volume: 145
  start-page: 47
  year: 1997
  ident: 10.1016/j.physa.2021.125931_b7
  article-title: Optimal harvesting from a population model in a stochastic crowded environment
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(97)00029-1
– volume: 54
  start-page: 1132
  issue: 4
  year: 1994
  ident: 10.1016/j.physa.2021.125931_b39
  article-title: Random generation of stochastic area integrals
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139992235706
– ident: 10.1016/j.physa.2021.125931_b43
  doi: 10.1007/s00332-014-9229-2
– volume: 79
  start-page: 705
  issue: 2
  year: 2019
  ident: 10.1016/j.physa.2021.125931_b48
  article-title: Parameter identification for a stochastic SEIRS epidemic model: Case study influenza
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-019-01374-z
– volume: 72
  start-page: 121
  year: 2019
  ident: 10.1016/j.physa.2021.125931_b19
  article-title: Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loéve expansion and the Random Variable Transformation technique
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.12.013
– volume: 37
  start-page: 1496
  year: 2018
  ident: 10.1016/j.physa.2021.125931_b20
  article-title: A note on the logistic equation subject to uncertainties in parameters
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-016-0409-6
– volume: 32
  start-page: 2476
  year: 1961
  ident: 10.1016/j.physa.2021.125931_b17
  article-title: Analysis of a nonlinear first-order system with a white noise input
  publication-title: J. Appl. Phys
  doi: 10.1063/1.1777094
– volume: 65
  start-page: 253
  year: 2014
  ident: 10.1016/j.physa.2021.125931_b13
  article-title: Constructing transient response probability density of non-linearsystem through complex fractional moments
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2014.06.004
– volume: 16
  start-page: 264
  year: 1964
  ident: 10.1016/j.physa.2021.125931_b26
  article-title: The construction of a class of stationary markoff processes
  publication-title: Proc. Symp. Appl. Math.
  doi: 10.1090/psapm/016/0161375
– year: 1953
  ident: 10.1016/j.physa.2021.125931_b33
– year: 1984
  ident: 10.1016/j.physa.2021.125931_b25
– volume: 5
  issue: 9
  year: 2019
  ident: 10.1016/j.physa.2021.125931_b47
  article-title: Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02499
– year: 1980
  ident: 10.1016/j.physa.2021.125931_b40
– year: 1994
  ident: 10.1016/j.physa.2021.125931_b44
– volume: 86
  year: 2012
  ident: 10.1016/j.physa.2021.125931_b11
  article-title: Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.011919
– volume: 21–2010
  start-page: 739
  issue: 10
  year: 2010
  ident: 10.1016/j.physa.2021.125931_b37
  article-title: An orthogonality relation for the whittaker functions of the second kind of imaginary order
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652461003643412
– volume: 36
  start-page: 1560
  issue: 5
  year: 1965
  ident: 10.1016/j.physa.2021.125931_b30
  article-title: On the convergence of ordinary integrals to stochastic integrals
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177699916
SSID ssj0001732
Score 2.4222927
Snippet We derive and analyze the time-dependent probability density function for the number of individuals in a population at a given time in a general logistic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125931
SubjectTerms Fokker–Planck
Harvesting effort
Hypergeometric
Kummer
Laguerre
Logistic population model
Probability density function
Stochastic differential equation
Whittaker function
Title Time-dependent probability density function for general stochastic logistic population model with harvesting effort
URI https://dx.doi.org/10.1016/j.physa.2021.125931
Volume 573
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71ISQWxFOUR-WBkbS1HbvJWFVUBUQXqNQtqh27LUKlasPAwm_HFycVSKgDUx7KRdbFue_OvvsO4CaOUx6HWgeRVSYIdWwDxSMdMB1RzazUkmGB89NIDsfhw0RMKtAva2EwrbKw_d6m59a6uNMutNleLRbt5w7vRiHvIgMWbqdNqlBnPJaiBvXe_eNwtDXItMv9ZoILmFCgJB_K07xwAQH5hxhtOayPOf0boH6AzuAQDgpvkfT8gI6gYpbHsJdnberNCWywgCMo-9hmBLvDeN7tT5JiZro7InCh8onzTsnMk0wT5_Hp-RQpmokvAXInq20rL5K3xyG4REvm03VOxLGcEWPdK7JTGA_uXvrDoOiiEGgHT1lgueg4JIwkt5yyNI0jo6acdZXp0BR3GSmThqmOte5nVM6_i4ThVkxdYCmQ252fQW35vjTnQGKjpUqddCRTrIZWLtqgOlRCSCO01A1gpeoSXVCMY6eLt6TMJXtNcn0nqO_E67sBt1uhlWfY2P24LL9J8muiJA4Ddgle_FfwEvbxyufoXkEtW3-Ya-eJZKoJ1dYXbRbz7Ru3auBS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKEYIF8SnKpwdG0tZ27CQjqqgKtF1opW5R7NilCIWqDQMLvx1fnBSQUAemRIkvii6O39l-9w6h6yhKWeQr5YVGas9XkfEkC5VHVUgUNUIJCgnOg6Hojf2HCZ_UUKfKhQFaZTn2uzG9GK3LK63Sm635bNZ6arMg9FkACliwnTbZQJs-ZwEI6Dc_v3keJGBuK8FOl6B5JT1UkLxg-QDUhyhpWqSPGPkbnn5ATncP7ZaxIr51r7OPajo7QFsFZ1MtD9ES0je8qoptjqE2jFPd_sAp8NLtEWALXI9tbIqnTmIa23hPPScg0IxdApA9ma8KeeGiOA6GBVr8nCwKGY5sirWxj8iP0Lh7N-r0vLKGgqcsOOWeYbxtcTAUzDBC0zQKtUwYDaRukxT2GAkVmsq2MfZXlDa6C7lmhid2WslB2Z0do3r2lukThCOthEytdShSyIWWdq5BlC85F5oroRqIVq6LVSkwDnUuXuOKSfYSF_6Owd-x83cD3ayM5k5fY31zUX2T-Fc3iS0CrDM8_a_hFdrujQb9uH8_fDxDO3DHsXXPUT1fvOsLG5Pk8rLoc1-bquEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-dependent+probability+density+function+for+general+stochastic+logistic+population+model+with+harvesting+effort&rft.jtitle=Physica+A&rft.au=Otunuga%2C+Olusegun+Michael&rft.date=2021-07-01&rft.issn=0378-4371&rft.volume=573&rft.spage=125931&rft_id=info:doi/10.1016%2Fj.physa.2021.125931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2021_125931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon