Double yolk duck egg feature discrimination and size grading based on machine vision and CH-GO rule
The internal irregular yolk shape makes it difficult to identify and grading the double yolk duck eggs accurately. In this paper, a machine vision detection method is proposed to realize the automatic detection of double yolk eggs with different sizes. Firstly, a yolk region extraction algorithm bas...
Saved in:
| Published in | Journal of food measurement & characterization Vol. 19; no. 3; pp. 1662 - 1672 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2193-4126 2193-4134 |
| DOI | 10.1007/s11694-024-03062-z |
Cover
| Abstract | The internal irregular yolk shape makes it difficult to identify and grading the double yolk duck eggs accurately. In this paper, a machine vision detection method is proposed to realize the automatic detection of double yolk eggs with different sizes. Firstly, a yolk region extraction algorithm based on green component and threshold segmentation is designed. The yolk image contrast is obtained by extracting single-channel color component, and the preliminary double yolk region is got by adaptive threshold segmentation and morphological processing. Then, the yolk region is divided into separate or connected types, and yolk discrimination rules based on Convex Hull and Green’s Operator (CH-GO) are proposed to discriminate the double yolk features. The dimension parameters of the eggs are extracted and then get graded according to the yolk type and size criterion. Finally, experimental results show that the discrimination rate of double yolk reaches 97.6%, and the size grading accuracy is about 98.4%. The proposed method shows great application potential in the automatic detection and grading of special poultry eggs. |
|---|---|
| AbstractList | The internal irregular yolk shape makes it difficult to identify and grading the double yolk duck eggs accurately. In this paper, a machine vision detection method is proposed to realize the automatic detection of double yolk eggs with different sizes. Firstly, a yolk region extraction algorithm based on green component and threshold segmentation is designed. The yolk image contrast is obtained by extracting single-channel color component, and the preliminary double yolk region is got by adaptive threshold segmentation and morphological processing. Then, the yolk region is divided into separate or connected types, and yolk discrimination rules based on Convex Hull and Green’s Operator (CH-GO) are proposed to discriminate the double yolk features. The dimension parameters of the eggs are extracted and then get graded according to the yolk type and size criterion. Finally, experimental results show that the discrimination rate of double yolk reaches 97.6%, and the size grading accuracy is about 98.4%. The proposed method shows great application potential in the automatic detection and grading of special poultry eggs. |
| Author | Cheng, Wang Jian Le, Chu Jia Jie, Ye Min Dan, Liang |
| Author_xml | – sequence: 1 givenname: Chu Jia surname: Le fullname: Le, Chu Jia organization: School of Mechanical Engineering and Mechanics, Ningbo University – sequence: 2 givenname: Liang orcidid: 0000-0001-5956-6808 surname: Dan fullname: Dan, Liang email: liangdan@nbu.edu.cn organization: Part Rolling Key Laboratory of Zhe Jiang Province, Ningbo University, School of Mechanical Engineering and Mechanics, Ningbo University – sequence: 3 givenname: Wang Jian surname: Cheng fullname: Cheng, Wang Jian organization: School of Mechanical Engineering and Mechanics, Ningbo University – sequence: 4 givenname: Ye Min surname: Jie fullname: Jie, Ye Min organization: School of Mechanical Engineering and Mechanics, Ningbo University |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8BL15WJ5vsZvcoVatQ6EXPIc1O1m232Zp0hfbXG60f4MFDmMD7vMPwnJKB6xwScs7gigHI68BYXooE0vg45GmyPyLDlJU8EYyLwc8_zU_IOIQlADAmhcj5kJjbrl-0SHddu6JVb1YU65pa1NveI62aYHyzbpzeNp2j2lU0NHuktddV42q60AErGpO1Ni-NQ_rWhG9w8pBM59T3LZ6RY6vbgOOvOSLP93dPMZ_Np4-Tm1liOPBtYjk3GVqNBegSuTSlRSklAGdFWUCuFyUKBKlthjEUtjRptWBGM5tlQhg-IpeHvRvfvfYYtmod78e21Q67PiieAqQ5lHkR0Ys_6LLrvYvXKc4ky3jBZR6p9EAZ34Xg0apNtKH9TjFQH-rVQb2K6tWnerWPJX4ohQi7Gv3v6n9a7y9PiFk |
| Cites_doi | 10.1016/j.jfoodeng.2017.04.015 10.1142/S0218001419920034 10.13386/j.issn1002-0306.2018.07.061 10.1007/s11694-021-01269-y 10.3969/j.issn.1003-188X.2012.09.047 10.1371/journal.pone.0190054 10.1371/journal.pone.0241888 10.1016/j.neucom.2017.12.057 10.3969/j.issn.1002-6819.2009.z2.063 10.1002/rob.21902 10.1109/SII46433.2020.9025861 10.3969/j.issn.1000-1298.2006.01.028 10.1080/18756891.2016.1237185 10.1016/j.compag.2013.08.010 10.3969/j.issn.1671-1815.2015.25.013 10.15961/j.jsuese.201601149 10.3390/foods13162562 10.1016/j.compag.2017.09.034 10.13203/j.whugis20120676 10.1109/INDCOMP.2014.7011750 10.13797/j.cnki.jfosu.1008-0171.2021.0023 10.1007/978-1-84882-935-0 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FG 8FH 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO HCIFZ L6V M0K M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
| DOI | 10.1007/s11694-024-03062-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Diet & Clinical Nutrition |
| EISSN | 2193-4134 |
| EndPage | 1672 |
| ExternalDocumentID | 10_1007_s11694_024_03062_z |
| GrantInformation_xml | – fundername: Public Welfare Technology Research Project of Zhejiang Natural Science Foundation grantid: LY23E050005 – fundername: One health Interdisciplinary Research Project, Ningbo University grantid: HY202207 – fundername: Science and Technology Innovation 2025 Major Project of Ningbo grantid: 2022Z062 funderid: http://dx.doi.org/10.13039/501100017549 |
| GroupedDBID | .VR 06C 06D 0R~ 203 2J2 2JY 2KG 2KM 2LR 4.4 406 408 409 40E 5VS 7X2 8FE 8FG 8FH 95- 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACOKC ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AYJHY B-. BENPR BGLVJ BGNMA BHPHI CCPQU CSCUP DDRTE DPUIP EBLON EBS EJD ESBYG FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GQ8 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ IKXTQ IWAJR IXD IZIGR I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV L6V LLZTM M0K M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 PIMPY PROAC PT4 PTHSS QOR R89 ROL RSV S16 SAP SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SZN TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 YLTOR ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 8FK ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c303t-f33c5efae80a9e37c9fe777003189806ab9e4e07af5e7c94f9c2db1ca1f5544c3 |
| IEDL.DBID | BENPR |
| ISSN | 2193-4126 |
| IngestDate | Fri Sep 05 17:15:34 EDT 2025 Fri Jul 25 09:43:04 EDT 2025 Wed Oct 01 06:43:42 EDT 2025 Thu Feb 27 03:09:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Food detection Machine vision Double yolk duck egg Size grading |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-f33c5efae80a9e37c9fe777003189806ab9e4e07af5e7c94f9c2db1ca1f5544c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5956-6808 |
| OpenAccessLink | https://www.proquest.com/docview/3171538376?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3171538376 |
| PQPubID | 2044295 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_3200260968 proquest_journals_3171538376 crossref_primary_10_1007_s11694_024_03062_z springer_journals_10_1007_s11694_024_03062_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of food measurement & characterization |
| PublicationTitleAbbrev | Food Measure |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | L Li (3062_CR16) 2019; 33 N Hni (3062_CR5) 2020; 37 M Hashemzadeh (3062_CR9) 2016; 9 NB Khazaei (3062_CR2) 2013; 98 W Qiping (3062_CR20) 2021; 39 K Sun (3062_CR3) 2017; 142 W Chen (3062_CR1) 2022; 16 MAT Valdez (3062_CR7) 2017; 23 L Yan (3062_CR12) 2015; 15 R Szeliski (3062_CR17) 2011 N Mizuno (3062_CR13) 2020; 2020 W Junde (3062_CR14) 2012; 34 I Thanasan (3062_CR22) 2020 J Priyadumkol (3062_CR10) 2017; 209 C Juntao (3062_CR11) 2013; 08 D Gong (3062_CR23) 2024; 13 H Kuang (3062_CR4) 2018 WC Cheng (3062_CR18) 2015 M Long (3062_CR15) 2017; 12 L Wenkang (3062_CR6) 2018; 39 G Qingsheng (3062_CR21) 2014; 39 L Kai (3062_CR19) 2017; 49 Z Limin (3062_CR8) 2009; 25 |
| References_xml | – volume: 209 start-page: 76 year: 2017 ident: 3062_CR10 publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2017.04.015 – volume: 33 start-page: 199 issue: 7 year: 2019 ident: 3062_CR16 publication-title: Int J Pattern Identification Artif Intell doi: 10.1142/S0218001419920034 – volume: 39 start-page: 340 issue: 07 year: 2018 ident: 3062_CR6 publication-title: Food Ind Technol doi: 10.13386/j.issn1002-0306.2018.07.061 – volume: 16 start-page: 1605 issue: 2 year: 2022 ident: 3062_CR1 publication-title: J. Food Measure Character. doi: 10.1007/s11694-021-01269-y – volume: 08 start-page: 70 year: 2013 ident: 3062_CR11 publication-title: Inf Commun – volume: 34 start-page: 195 issue: 09 year: 2012 ident: 3062_CR14 publication-title: Agric Mechanization doi: 10.3969/j.issn.1003-188X.2012.09.047 – volume: 12 start-page: e0190054 issue: 12 year: 2017 ident: 3062_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0190054 – year: 2020 ident: 3062_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0241888 – year: 2018 ident: 3062_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.057 – volume: 25 start-page: 335 issue: S2 year: 2009 ident: 3062_CR8 publication-title: J Agric Eng doi: 10.3969/j.issn.1002-6819.2009.z2.063 – volume: 37 start-page: 263 issue: 2 year: 2020 ident: 3062_CR5 publication-title: J Field Robot doi: 10.1002/rob.21902 – volume: 2020 start-page: 195 year: 2020 ident: 3062_CR13 publication-title: IEEE/SICE Int Symp Syst Integr doi: 10.1109/SII46433.2020.9025861 – volume: 23 start-page: 5191 issue: 6 year: 2017 ident: 3062_CR7 publication-title: Adv. Sci. Lett. doi: 10.3969/j.issn.1000-1298.2006.01.028 – volume: 9 start-page: 850 issue: 5 year: 2016 ident: 3062_CR9 publication-title: Int J Comput Intell Syst doi: 10.1080/18756891.2016.1237185 – volume: 98 start-page: 205 issue: 7 year: 2013 ident: 3062_CR2 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.08.010 – volume: 15 start-page: 72 issue: 25 year: 2015 ident: 3062_CR12 publication-title: Sci Technol Eng doi: 10.3969/j.issn.1671-1815.2015.25.013 – volume: 49 start-page: 109 issue: 5 year: 2017 ident: 3062_CR19 publication-title: Adv Eng Sci doi: 10.15961/j.jsuese.201601149 – volume: 13 start-page: 2562 year: 2024 ident: 3062_CR23 publication-title: Food doi: 10.3390/foods13162562 – volume: 142 start-page: 429 year: 2017 ident: 3062_CR3 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.09.034 – volume: 39 start-page: 177 issue: 02 year: 2014 ident: 3062_CR21 publication-title: Geomat. Inf. Sci. Wuhan Univ. doi: 10.13203/j.whugis20120676 – year: 2015 ident: 3062_CR18 publication-title: IEEE Int. Symp. Independent Comput. doi: 10.1109/INDCOMP.2014.7011750 – volume: 39 start-page: 39 issue: 02 year: 2021 ident: 3062_CR20 publication-title: J Foshan Univ Sci Technol (Nat. Sci. Ed.) doi: 10.13797/j.cnki.jfosu.1008-0171.2021.0023 – volume-title: Computer vision year: 2011 ident: 3062_CR17 doi: 10.1007/978-1-84882-935-0 |
| SSID | ssj0001174463 |
| Score | 2.3008301 |
| Snippet | The internal irregular yolk shape makes it difficult to identify and grading the double yolk duck eggs accurately. In this paper, a machine vision detection... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1662 |
| SubjectTerms | Algorithms Aquatic birds automatic detection Chemistry Chemistry and Materials Science Chemistry/Food Science color computer vision Convexity duck eggs ducks Eggs Engineering Food Science Image contrast Image processing Image segmentation Machine vision Original Paper Segmentation Vision systems Yolk |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB21y6Hl0JaFilBaGaniUoI2sRPHR0QLqFXphZXoKYqd8QrtNot2kwP79YydpEsRPXDIIfLEccb2zFM88wbgs8tOJBSbhJEp4lBENg1VKTC0SnKeKC1HPsv152V6MRbfr5PrLils2Ue790eS3lKvk92i1NHYxnQRzo3D1UvY8HxbA9g4Of_948G_FYLZwhdRo_3IaQRx2uXLPN3Rvz5pDTQfnY16l3P2Fsb9YNtIk-lxU-tjs3rE4_jcr3kHbzoMyk7aRbMFL7AawqvTvvTbEIKvN1izQ9aRhs7YZc_ZP4TNBwyG22AIgOsZsrv5bMrKxkwZTibMoqcLZS7lty0b5p5lRVWy5c0K2WThI_eZc6Elo5Y_PqQTWZvp7gVPL8LzX2zRzHAHxmffrui-q9sQGnKIdWg5NwnaArNRoZBLoyxKKb39UNkoLbRCgSNZ2ASpUVhl4lLTYoksgRth-HsYVPMKd4EpblBEZZToQotEkjEROrNSc0xjnZUmgC_9zOW3LT1HviZidirOScW5V3G-CmC_n9y826rLnACUs_pkaAM4-NtMCncnJ0WF84ZkYs-9ptIsgKN-Ptdd_P-Ne88T_wCvY1df2Me47cOgXjT4kUBPrT91a_wexa33Cw priority: 102 providerName: Springer Nature |
| Title | Double yolk duck egg feature discrimination and size grading based on machine vision and CH-GO rule |
| URI | https://link.springer.com/article/10.1007/s11694-024-03062-z https://www.proquest.com/docview/3171538376 https://www.proquest.com/docview/3200260968 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2193-4134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001174463 issn: 2193-4126 databaseCode: AFBBN dateStart: 20070301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2193-4134 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001174463 issn: 2193-4126 databaseCode: BENPR dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2193-4134 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001174463 issn: 2193-4126 databaseCode: 8FG dateStart: 20190801 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2193-4134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001174463 issn: 2193-4126 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB21yQUOCAqIbUtkJMQFVmRt74cPCBVIUoEICFGpnFZrexxVDZs2TQ7k1zP27rKABIc9rOz9kMfjebJn3gN46qsTCcWmcWIqHsvEZbGyEmOnciFSpfNxqHL9OM9Oz-T78_R8D-ZdLYxPq-zWxLBQ25Xxe-QvKc555yR_eH11HXvVKH-62kloVK20gn0VKMb2Ycg9M9YAhm8m889f-l0XAuAyyKuRpwr6N561lTRNPV2SeaZcThdBaR7v_oxWPQT969Q0BKPpXbjTokh20pj9HuxhfQDRuwvcsGespfpcsnnHtH8At3_jHbwPhmCzXiL7sVpeMrs1lwwXC-YwkHwyX6jbiH35Z1lVW3ZzsUO2WId8e-YDn2XU8j0kYiJr6tNDx7en8ewTW2-X-ADOppOvdN-qLcSGwtgmdkKYFF2FxbhSKHKjHOZ5HrxeFeOs0goljvPKpUiN0inDrSYTJ44giTTiIQzqVY2PgClhUCY2SXWlZZrTEiB14XItMOO6sCaC592ollcNqUbZ0yd7G5RkgzLYoNxFcNwNfNk62E3ZT4cInvxqJtfw5x1Vjast9eGBMU1lRQQvOoP1r_j3Fw___8UjuMW9CnDIRDuGwWa9xccETTZ6BPvFdDaC4cns24fJqJ19PwEkGuGG |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gA9ICigphQwEnCBiI3tPHyoUKEtW9ouCLVSbyF2xquq22zZh1D3x_HbOnYSAkhw6yEnJ7Yyb9sz3wC8cNWJFMXGYWQKHsrIJqEqJYZWpULESqc9X-V6NEj6J_LTaXy6BD_bWhiXVtnaRG-oy7FxZ-Rvyc855SR9eHf5PXRdo9ztattCo2haK5RbHmKsKew4wKsftIWbbu3vEL9fcr63e_yhHzZdBkJD5nsWWiFMjLbArFcoFKlRFtM09dKusl5SaIUSe2lhY6RBaZXhpaZfiyy5YmkEzXsLVqSQijZ_K-93B1--dqc8FPBL386NLIMgWvCkqdyp6_eixCHzcnoodOfh4k_v2IW8f93Seue3dw_uNlEr267F7D4sYbUGwc4Zztgr1kCLjtigRfZfg9XfcA4fgKEwXY-QXY1H56ycm3OGwyGz6EFFmSsMrpuLuW9ZUZVserZANpz4_H7mHG3JaOTCJ34iq-vh_YtE54-f2WQ-wodwciN0fwTL1bjCdWBKGJRRGcW60DJOyeRIndlUC0y4zkoTwOuWqvllDeKRd3DNjgc58SD3PMgXAWy2hM8bhZ7mnfgF8PzXMKmiu18pKhzP6R3uEdpUkgXwpmVYN8W_V9z4_4rP4Hb_-OgwP9wfHDyGO9x1IPZZcJuwPJvM8QmFRTP9tJE9Bt9uWtyvAZJyHRU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BK_E48FhAhLZgJMQF0m5iJ46PVcu2UFg4UKmcotgZr6pdstU2ObC_vmMnYbcVHBCHHCI7iTN-zJd4vm8A3jh2IqHYJIxMEYcismmoSoGhVZLzRGk59CzXL-P0-FR8OkvO1lj8Ptq935JsOQ1Opamq9y5Ku7civkWpk7SN6SDMG4fL27BJnyaSRvrm_tGPk7X_LAS5hU-oRnOTU2vitOPO_PlG1_3TCnTe2Cf17mf0EIq-4W3UyXS3qfWuWd7QdPyfN3sEDzpsyvbbwfQYbmE1gLsHfUq4AQSH51izt6wTE52xca_lP4D7a8qGT8AQMNczZL_msykrGzNlOJkwi15GlDkqcJtOzF3Liqpkl-dLZJOFj-hnzrWWjEp--lBPZC0D3lc8OA6PvrJFM8OncDr68J3Ou3wOoSFHWYeWc5OgLTAbFgq5NMqilNKvKyobpoVWKHAoC5sgFQqrTFxqGkSRJdAjDH8GG9W8wufAFDcoojJKdKFFImmRETqzUnNMY52VJoB3fS_mF61sR74SaHYmzsnEuTdxvgxgu-_ovJvClzkBK-cNaAEO4PXvYjK421EpKpw3VCf2mmwqzQJ43_ft6hZ_f-KLf6v-Cu58Oxzlnz-OT7bgXuxSEPswuG3YqBcN7hAuqvXLbuhfAUJ_At0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double+yolk+duck+egg+feature+discrimination+and+size+grading+based+on+machine+vision+and+CH-GO+rule&rft.jtitle=Journal+of+food+measurement+%26+characterization&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2193-4126&rft.eissn=2193-4134&rft.volume=19&rft.issue=3&rft.spage=1662&rft.epage=1672&rft_id=info:doi/10.1007%2Fs11694-024-03062-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-4126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-4126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-4126&client=summon |