Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images

Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, hig...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Indian Society of Remote Sensing Vol. 52; no. 3; pp. 525 - 541
Main Authors Patil, Dhanashri, Jadhav, Sangeeta
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0255-660X
0974-3006
DOI10.1007/s12524-024-01827-z

Cover

Abstract Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A 2 JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity.
AbstractList Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A²JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity.
Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A 2 JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity.
Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A2JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity.
Author Patil, Dhanashri
Jadhav, Sangeeta
Author_xml – sequence: 1
  givenname: Dhanashri
  surname: Patil
  fullname: Patil, Dhanashri
  email: dpdhanashripatil@gmail.com
  organization: Department of Electronics and Telecommunication, D Y Patil College of Engineering, Department of Electronics and Telecommunication, Army Institute of Technology
– sequence: 2
  givenname: Sangeeta
  surname: Jadhav
  fullname: Jadhav, Sangeeta
  organization: Department of Information Technology, Army Institute of Technology
BookMark eNp9kE1Lw0AQhhepYFv9A54CXrxE9yO7SY9SqhZqhWrB27JJZmtqslt3Ez_6601aUfDgYZhheN53hneAesYaQOiU4AuCcXzpCeU0CnFXJKFxuD1AfTyKo5BhLHrtTDkPhcBPR2jg_bpdRpzQPtILq_JgDvW7dS_B5KN2KqsLa4KlL8wquGvKugg3qn4OxspnKodgbM2bLZsdNIfGqfJHrp2tggVUtobgAczOYVqpFfhjdKhV6eHkuw_R8nryOL4NZ_c30_HVLMwYZnUIWOQ6YjjCURoJnkOeZyOdaBWPUkjidBQLBpiIWKSMcYhyxdIk1zolKQUNCRui873vxtnXBnwtq8JnUJbKgG28ZIQzQZlI4hY9-4OubeNM-51kbVicM9peGyK6pzJnvXeg5cYVlXKfkmDZRS_30UvcVRe93LYithf5FjYrcL_W_6i-AHpUikI
Cites_doi 10.1109/ACCESS.2019.2935794
10.1016/j.ins.2021.02.052
10.1109/LGRS.2018.2802944
10.1016/j.rse.2019.04.014
10.1109/TITS.2016.2617202
10.3390/su9112006
10.1016/j.compenvurbsys.2019.101350
10.3390/rs11091015
10.1016/j.compenvurbsys.2022.101794
10.1109/ACCESS.2018.2867210
10.1109/LGRS.2018.2864342
10.1016/j.jksuci.2022.05.020
10.1016/j.isprsjprs.2020.01.013
10.3390/ijgi10060377
10.3390/rs10091461
10.1016/j.ejrs.2021.01.004
10.1155/2017/7090549
10.1016/j.jag.2021.102498
ContentType Journal Article
Copyright Indian Society of Remote Sensing 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Indian Society of Remote Sensing 2024.
Copyright_xml – notice: Indian Society of Remote Sensing 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Indian Society of Remote Sensing 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s12524-024-01827-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 0974-3006
EndPage 541
ExternalDocumentID 10_1007_s12524_024_01827_z
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
5GY
5VS
67M
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AAYIU
AAYQN
AAYZH
ABDZT
ABECU
ABFTV
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACZOJ
ADHHG
ADHIR
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
PF0
PT4
PT5
QOK
QOS
R9I
RHV
ROL
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Z
ZMTXR
~02
~A9
AAYXX
ABDBE
ABFSG
ABRTQ
ACAOD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ID FETCH-LOGICAL-c303t-e06df430404b465deddc9f8fa79be87b9763e01676b335e4da3b8dffb1b2efe83
IEDL.DBID BENPR
ISSN 0255-660X
IngestDate Tue Aug 05 11:15:15 EDT 2025
Wed Oct 01 07:00:38 EDT 2025
Wed Oct 01 03:19:47 EDT 2025
Fri Feb 21 02:39:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
A
Segmentation
JO
Adaptive median filter
Multi-path cascade convolution neural network
Road network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-e06df430404b465deddc9f8fa79be87b9763e01676b335e4da3b8dffb1b2efe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3255553276
PQPubID 2043996
PageCount 17
ParticipantIDs proquest_miscellaneous_3153623687
proquest_journals_3255553276
crossref_primary_10_1007_s12524_024_01827_z
springer_journals_10_1007_s12524_024_01827_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle Journal of the Indian Society of Remote Sensing
PublicationTitleAbbrev J Indian Soc Remote Sens
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Xu, Yu, Wu, Wang, Ma (CR15) 2016; 18
Uhl, Leyk, Chiang, Knoblock (CR12) 2022; 94
Lin, Wan, Zhang, Wei, Ma, Li, Zhao (CR9) 2021; 103
He, Yang, Wang, Wang, Li (CR4) 2019; 11
Srivastava, Vargas-Munoz, Tuia (CR11) 2019; 228
Zhang, Dong, Guo (CR17) 2021; 565
Campbell, Both, Sun (CR1) 2019; 77
Xu, Xie, Feng, Chen (CR14) 2018; 10
Henry, Azimi, Merkle (CR5) 2018; 15
Fernandez, Fernandez-Llorca, Sotelo (CR3) 2017
Wang, Meng, Han (CR13) 2019; 7
Yuan, Li, Liu, Yang (CR16) 2022; 34
Zhang, Liu, Wang (CR18) 2018; 15
Diakogiannis, Waldner, Caccetta, Wu (CR2) 2020; 162
Jamei, Mortimer, Seyedmahmoudian, Horan, Stojcevski (CR7) 2017; 9
Hong, Ming, Zhou, Guo, Lu (CR6) 2018; 6
Kuo, Tsai (CR8) 2021; 10
Soni, Rajpal, Mehta (CR10) 2021; 24
D Zhang (1827_CR17) 2021; 565
E Jamei (1827_CR7) 2017; 9
Y Lin (1827_CR9) 2021; 103
FI Diakogiannis (1827_CR2) 2020; 162
Z Zhang (1827_CR18) 2018; 15
CL Kuo (1827_CR8) 2021; 10
Y Xu (1827_CR15) 2016; 18
Z Hong (1827_CR6) 2018; 6
PK Soni (1827_CR10) 2021; 24
S Srivastava (1827_CR11) 2019; 228
C Henry (1827_CR5) 2018; 15
A Campbell (1827_CR1) 2019; 77
G Wang (1827_CR13) 2019; 7
G Yuan (1827_CR16) 2022; 34
C Fernandez (1827_CR3) 2017
JH Uhl (1827_CR12) 2022; 94
Y Xu (1827_CR14) 2018; 10
H He (1827_CR4) 2019; 11
References_xml – volume: 7
  start-page: 123035
  year: 2019
  end-page: 123048
  ident: CR13
  article-title: Extraction of maritime road networks from large-scale AIS data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935794
– volume: 565
  start-page: 32
  year: 2021
  end-page: 45
  ident: CR17
  article-title: A turning point-based offline map matching algorithm for urban road networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.02.052
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  end-page: 753
  ident: CR18
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2802944
– volume: 228
  start-page: 129
  year: 2019
  end-page: 143
  ident: CR11
  article-title: Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.04.014
– volume: 18
  start-page: 1845
  issue: 7
  year: 2016
  end-page: 1856
  ident: CR15
  article-title: An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2617202
– volume: 9
  start-page: 2006
  issue: 11
  year: 2017
  ident: CR7
  article-title: Investigating the role of virtual reality in planning for sustainable smart cities
  publication-title: Sustainability
  doi: 10.3390/su9112006
– volume: 77
  start-page: 101350
  year: 2019
  ident: CR1
  article-title: Detecting and mapping traffic signs from Google Street View images using deep learning and GIS
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2019.101350
– volume: 11
  start-page: 1015
  issue: 9
  year: 2019
  ident: CR4
  article-title: Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss
  publication-title: Remote Sensing
  doi: 10.3390/rs11091015
– volume: 94
  start-page: 101794
  year: 2022
  ident: CR12
  article-title: Towards the automated large-scale reconstruction of past road networks from historical maps
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2022.101794
– volume: 6
  start-page: 46988
  year: 2018
  end-page: 47000
  ident: CR6
  article-title: Road extraction from a high spatial resolution remote sensing image based on richer convolutional features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867210
– volume: 15
  start-page: 1867
  issue: 12
  year: 2018
  end-page: 1871
  ident: CR5
  article-title: Road segmentation in SAR satellite images with deep fully convolutional neural networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2864342
– volume: 34
  start-page: 7184
  issue: 9
  year: 2022
  end-page: 7199
  ident: CR16
  article-title: Weakly supervised road network extraction for remote sensing image based scribble annotation and adversarial learning
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2022.05.020
– volume: 162
  start-page: 94
  year: 2020
  end-page: 114
  ident: CR2
  article-title: ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.01.013
– volume: 10
  start-page: 377
  issue: 6
  year: 2021
  ident: CR8
  article-title: Road characteristics detection based on joint convolutional neural networks with adaptive squares
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi10060377
– volume: 10
  start-page: 1461
  issue: 9
  year: 2018
  ident: CR14
  article-title: Road extraction from high-resolution remote sensing imagery using deep learning
  publication-title: Remote Sensing
  doi: 10.3390/rs10091461
– volume: 24
  start-page: 211
  issue: 2
  year: 2021
  end-page: 219
  ident: CR10
  article-title: Road network extraction using multi-layered filtering and tensor voting from aerial images
  publication-title: The Egyptian Journal of Remote Sensing and Space Science
  doi: 10.1016/j.ejrs.2021.01.004
– year: 2017
  ident: CR3
  article-title: A hybrid vision-map method for urban road detection
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2017/7090549
– volume: 103
  start-page: 102498
  year: 2021
  ident: CR9
  article-title: Leveraging optical and SAR data with a UU-Net for large-scale road extraction
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2021.102498
– volume: 103
  start-page: 102498
  year: 2021
  ident: 1827_CR9
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2021.102498
– volume: 6
  start-page: 46988
  year: 2018
  ident: 1827_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867210
– volume: 10
  start-page: 1461
  issue: 9
  year: 2018
  ident: 1827_CR14
  publication-title: Remote Sensing
  doi: 10.3390/rs10091461
– volume: 11
  start-page: 1015
  issue: 9
  year: 2019
  ident: 1827_CR4
  publication-title: Remote Sensing
  doi: 10.3390/rs11091015
– volume: 9
  start-page: 2006
  issue: 11
  year: 2017
  ident: 1827_CR7
  publication-title: Sustainability
  doi: 10.3390/su9112006
– volume: 228
  start-page: 129
  year: 2019
  ident: 1827_CR11
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.04.014
– volume: 15
  start-page: 1867
  issue: 12
  year: 2018
  ident: 1827_CR5
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2864342
– volume: 34
  start-page: 7184
  issue: 9
  year: 2022
  ident: 1827_CR16
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2022.05.020
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  ident: 1827_CR18
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2018.2802944
– volume: 24
  start-page: 211
  issue: 2
  year: 2021
  ident: 1827_CR10
  publication-title: The Egyptian Journal of Remote Sensing and Space Science
  doi: 10.1016/j.ejrs.2021.01.004
– volume: 18
  start-page: 1845
  issue: 7
  year: 2016
  ident: 1827_CR15
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2617202
– volume: 10
  start-page: 377
  issue: 6
  year: 2021
  ident: 1827_CR8
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi10060377
– volume: 565
  start-page: 32
  year: 2021
  ident: 1827_CR17
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.02.052
– volume: 162
  start-page: 94
  year: 2020
  ident: 1827_CR2
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.01.013
– volume: 7
  start-page: 123035
  year: 2019
  ident: 1827_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2935794
– volume: 77
  start-page: 101350
  year: 2019
  ident: 1827_CR1
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2019.101350
– year: 2017
  ident: 1827_CR3
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2017/7090549
– volume: 94
  start-page: 101794
  year: 2022
  ident: 1827_CR12
  publication-title: Computers, Environment and Urban Systems
  doi: 10.1016/j.compenvurbsys.2022.101794
SSID ssj0064512
ssj0001852324
Score 2.3126576
Snippet Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 525
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Convolution
Datasets
Deep learning
Earth and Environmental Science
Earth Sciences
Emergency management
Emergency preparedness
Geographic information systems
Image filters
Image resolution
Image segmentation
landscapes
Machine learning
Neural networks
Remote sensing
Remote Sensing/Photogrammetry
Research Article
roads
Roads & highways
sand
Satellite imagery
satellites
Semantics
spatial data
traffic
Urban planning
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lQjeNNDNq-lRFkUFPagreytJOwEPdmW7K-Kvd9KHRdGDh1zaZAozk8lHZ74JIScxAMIMEMwlBpi0Q8uMM45FoLLccRslLhCFb-_01VjeTNSkIYWVbbV7m5KsInVHduOKSxaFgaA4Zh_LZEWFdl7oxWN-3v1ZMYpXPcjreKylqnKeATwzraNJQ535Xeb346nDnD_SpNXpc7lB1hvYSM9rO2-SJSi2yNrTc7mon5bbxN9PbU7v6rJuevE-n9WcBVpVBdCKacvCBcR0ZMtQFU9H0-Kt8TwamnSgqHZ5YJ3Qe0A7An0INe4o4foFY0-5Q8aXF4-jK9bcosAyPJ7mDCKdeylws0ontcohz7PEG29jNIOJHeIRAYGMoJ0QCmRuhTO5927oOHgwYpf0imkBe4QmOhY8MzYRwkovwAoeJVksZSK9U37YJ6et8tLXullG2rVFDqpOozCCqtOPPhm0-k2bjVOmAq2klOCx7pPjr9fo8iGPYQuYLnAORmlEbdrEfXLW2qUT8fcX9_83_YCs8so1QsXZgPTmswUcIgSZu6PK4z4B13DS2g
  priority: 102
  providerName: Springer Nature
Title Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images
URI https://link.springer.com/article/10.1007/s12524-024-01827-z
https://www.proquest.com/docview/3255553276
https://www.proquest.com/docview/3153623687
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0974-3006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064512
  issn: 0255-660X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthc4IJ6i7FIZiRtYpH7FOSBUqnYXEBUqFJVTZMe2tAeSZdOu0P56PHkQgQQHXxzHlsbj8SfPfDMAz1PvI8zwnNpMeyrMzFBttaWJl4WzzCSZRaLwx7U634r3O7k7gnXPhcGwyt4mNobaVQW-kb_iEftKyVmq3lz-oFg1Cr2rfQkN05VWcK-bFGPHMGaYGWsE47fL9afN8OqiJWvyk7e2WgnZ-EMRWFOlkl1Hq2nJdUwyQRNsEYSn9ObPq2vAo3-5UJubaXUX7nSQksxbHbgHR768D7e_XtSHtrd-AGFTGUfWbcg3Wf7cX7V8BtJEDJCGhUuxODFZmBoj5smiKq87rSSYwCNO1f-OjBSy8XGPPfmM8e9xhnffo12qH8J2tfyyOKddhQVaxKtrT32iXBA8HmRhhZLOO1dkQQeTxi3SqY1YhXskKijLufTCGW61C8HOLPPBa_4IRmVV-sdAMpVyVmiTcW5E4N5wlmRFKkQmgpVhNoEXvfDyyzaRRj6kTEZR5wk2FHV-M4HTXr55d6jqfFCBCTz7_TkeB_RxmNJXhzgmWvCI6JROJ_Cy35dhin-v-OT_K57ALdaoAkafncJof3XwTyMc2dspHOvV2RTG87NvH5bTTuNi75bNfwE0Od9V
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKdYKGAkOIFF1q84hwrBstUubVdoadHegh2PJQ4kpdnl0R_Hb2OcBxFIcOshlzzG0Xg8M_bMN0PIkxQA3QwQzGUGmLRjy4wzjiWgCu-4TTIXgcJHCz07kW9XarVFfvZYmJhW2evERlH7qohn5C8E-r5KCZ7ql6dfWOwaFaOrfQsN27VW8HtNibEO2HEAP77hFq7em7_B-X7K-f70eDJjXZcBVqD6XjNItA8Sd_WJdFIrD94XWTDBpvibJnVorwXEZH3thFAgvRXO-BDc2HEIYATSvUR2pJAZbv52Xk8X75bDKY9RvKmH3toGLVUTf42OPNM6WXUwnhbMxxWXLIkXOv0pO__TVA7-718h28YS7l8n1zoXlr5qZe4G2YLyJrn64VO9ae_Wt0hYVtbTRZtiTqff12ctfoI2GQq0Qf2y2AyZTmwdM_TppCq_dquAxoIhSKr_PCJg6BJQpoC-j_n2SGH-GfVgfZucXAiv75DtsirhLqGZTgUvjM2EsDIIsIInWZFKmcngVBiPyLOeeflpW7gjH0o0R1bnSbwiq_PzEdnt-Zt3i7jOB5Ebkce_H-PyizEVW0K1wXfQYqAHqU06Is_7eRlI_HvEe_8f8RG5PDs-OswP54uD--QKb8QiZr7tku312QYeoCu0dg87eaPk40WL-C9yuBq5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEE-xpYCRuIHVrF9xjtXSVctjhQqL9hbZ8VjiQLZqshXqr2ecBwEEBw6-JPZEmhmPP2XmGwO8zBEJZqDkvrDIlZs7br31PENdBS9cVvhEFP6wMidr9XajN7-w-Ltq9zEl2XMaUpemuj08D_FwIr4JLRTP0iCAnPOr63BDpUYJ5NFrcTT9ZbFadP3I-9hslO7ynwlIc2OyzUCj-bvM34-qCX_-kTLtTqLlXbgzQEh21Nv8HlzD-j7c_vK12fVPmwcQz7YusFVf4s2Ov7cXPX-BdRUCrGPd8nQZMVu4JlXIs8W2vhy8kKWGHSRqXJ4YKOwMyabIPqV6d5Jw-o3iUPMQ1svjz4sTPtyowCs6qlqOmQlRSdq4yiujA4ZQFdFGl5NJbO4Jm0hMxATjpdSogpPehhj93AuMaOUj2Ku3NT4GVphcisq6QkqnokQnRVZUuVKFil7H-Qxejcorz_vGGeXUIjmpuszSSKour2ZwMOq3HDZRU0qyktZS5GYGL36-JvdPOQ1X43ZHcyhiE4IzNp_B69Euk4h_f3H__6Y_h5sf3yzL96erd0_glui8JBWiHcBee7HDp4RMWv-sc74fY4HaAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Network+Extraction+Using+Multi-path+Cascade+Convolution+Neural+Network+from+Remote+Sensing+Images&rft.jtitle=Journal+of+the+Indian+Society+of+Remote+Sensing&rft.au=Patil%2C+Dhanashri&rft.au=Jadhav%2C+Sangeeta&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0255-660X&rft.eissn=0974-3006&rft.volume=52&rft.issue=3&rft.spage=525&rft.epage=541&rft_id=info:doi/10.1007%2Fs12524-024-01827-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon