Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images
Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, hig...
Saved in:
| Published in | Journal of the Indian Society of Remote Sensing Vol. 52; no. 3; pp. 525 - 541 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.03.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0255-660X 0974-3006 |
| DOI | 10.1007/s12524-024-01827-z |
Cover
| Abstract | Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A
2
JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity. |
|---|---|
| AbstractList | Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A²JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity. Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A 2 JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity. Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban planning, management of traffic, emergency management, and automatic vehicle navigation. With the advancement of remote sensing technology, high-resolution satellite images are becoming more readily available and are improving in quality, making it possible to use these images for accurate road location. The challenge of detecting roads in remote sensing images is complicated by the presence of blurred road edges, sand coverage, and massive terrain objects in complex environments. This paper proposes a deep learning algorithm-based method for extracting road information from remote sensing images to resolve the above problems. The proposed approach consist of two stages, namely pre-processing and segmentation. Initially, satellite images are collected. The collected images may contain noise and blur. This will affect the segmentation output. Thus, we apply an adaptive median filter to the input image before segmentation to eliminate the noise present therein. After pre-processing, the pre-processed image is given to the input of the segmentation process. For segmentation, we introduced a novel optimized multi-path cascade convolution neural network. The proposed multi-path cascade convolution neural network is enhanced using the adaptive artificial jelly optimization (A2JO) algorithm. Finally, from the deep learning model, we obtain the segmented road region. The proposed approach is compared with various state-of-the-art approaches in terms of accuracy, precision, sensitivity, F-score, recall, and specificity. |
| Author | Patil, Dhanashri Jadhav, Sangeeta |
| Author_xml | – sequence: 1 givenname: Dhanashri surname: Patil fullname: Patil, Dhanashri email: dpdhanashripatil@gmail.com organization: Department of Electronics and Telecommunication, D Y Patil College of Engineering, Department of Electronics and Telecommunication, Army Institute of Technology – sequence: 2 givenname: Sangeeta surname: Jadhav fullname: Jadhav, Sangeeta organization: Department of Information Technology, Army Institute of Technology |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54CXrxE9yO7SY9SqhZqhWrB27JJZmtqslt3Ez_6601aUfDgYZhheN53hneAesYaQOiU4AuCcXzpCeU0CnFXJKFxuD1AfTyKo5BhLHrtTDkPhcBPR2jg_bpdRpzQPtILq_JgDvW7dS_B5KN2KqsLa4KlL8wquGvKugg3qn4OxspnKodgbM2bLZsdNIfGqfJHrp2tggVUtobgAczOYVqpFfhjdKhV6eHkuw_R8nryOL4NZ_c30_HVLMwYZnUIWOQ6YjjCURoJnkOeZyOdaBWPUkjidBQLBpiIWKSMcYhyxdIk1zolKQUNCRui873vxtnXBnwtq8JnUJbKgG28ZIQzQZlI4hY9-4OubeNM-51kbVicM9peGyK6pzJnvXeg5cYVlXKfkmDZRS_30UvcVRe93LYithf5FjYrcL_W_6i-AHpUikI |
| Cites_doi | 10.1109/ACCESS.2019.2935794 10.1016/j.ins.2021.02.052 10.1109/LGRS.2018.2802944 10.1016/j.rse.2019.04.014 10.1109/TITS.2016.2617202 10.3390/su9112006 10.1016/j.compenvurbsys.2019.101350 10.3390/rs11091015 10.1016/j.compenvurbsys.2022.101794 10.1109/ACCESS.2018.2867210 10.1109/LGRS.2018.2864342 10.1016/j.jksuci.2022.05.020 10.1016/j.isprsjprs.2020.01.013 10.3390/ijgi10060377 10.3390/rs10091461 10.1016/j.ejrs.2021.01.004 10.1155/2017/7090549 10.1016/j.jag.2021.102498 |
| ContentType | Journal Article |
| Copyright | Indian Society of Remote Sensing 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Indian Society of Remote Sensing 2024. |
| Copyright_xml | – notice: Indian Society of Remote Sensing 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Indian Society of Remote Sensing 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. L6V M7S PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
| DOI | 10.1007/s12524-024-01827-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Technology Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts |
| EISSN | 0974-3006 |
| EndPage | 541 |
| ExternalDocumentID | 10_1007_s12524_024_01827_z |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 5GY 5VS 67M 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AAYIU AAYQN AAYZH ABDZT ABECU ABFTV ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACZOJ ADHHG ADHIR ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 H13 HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM MA- N2Q NDZJH NF0 NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P PF0 PT4 PT5 QOK QOS R9I RHV ROL RSV S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7Z ZMTXR ~02 ~A9 AAYXX ABDBE ABFSG ABRTQ ACAOD ACSTC ADHKG AEZWR AFDZB AFHIU AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. L6V M7S PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 |
| ID | FETCH-LOGICAL-c303t-e06df430404b465deddc9f8fa79be87b9763e01676b335e4da3b8dffb1b2efe83 |
| IEDL.DBID | BENPR |
| ISSN | 0255-660X |
| IngestDate | Tue Aug 05 11:15:15 EDT 2025 Wed Oct 01 07:00:38 EDT 2025 Wed Oct 01 03:19:47 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning A Segmentation JO Adaptive median filter Multi-path cascade convolution neural network Road network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-e06df430404b465deddc9f8fa79be87b9763e01676b335e4da3b8dffb1b2efe83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3255553276 |
| PQPubID | 2043996 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3153623687 proquest_journals_3255553276 crossref_primary_10_1007_s12524_024_01827_z springer_journals_10_1007_s12524_024_01827_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationTitle | Journal of the Indian Society of Remote Sensing |
| PublicationTitleAbbrev | J Indian Soc Remote Sens |
| PublicationYear | 2024 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Xu, Yu, Wu, Wang, Ma (CR15) 2016; 18 Uhl, Leyk, Chiang, Knoblock (CR12) 2022; 94 Lin, Wan, Zhang, Wei, Ma, Li, Zhao (CR9) 2021; 103 He, Yang, Wang, Wang, Li (CR4) 2019; 11 Srivastava, Vargas-Munoz, Tuia (CR11) 2019; 228 Zhang, Dong, Guo (CR17) 2021; 565 Campbell, Both, Sun (CR1) 2019; 77 Xu, Xie, Feng, Chen (CR14) 2018; 10 Henry, Azimi, Merkle (CR5) 2018; 15 Fernandez, Fernandez-Llorca, Sotelo (CR3) 2017 Wang, Meng, Han (CR13) 2019; 7 Yuan, Li, Liu, Yang (CR16) 2022; 34 Zhang, Liu, Wang (CR18) 2018; 15 Diakogiannis, Waldner, Caccetta, Wu (CR2) 2020; 162 Jamei, Mortimer, Seyedmahmoudian, Horan, Stojcevski (CR7) 2017; 9 Hong, Ming, Zhou, Guo, Lu (CR6) 2018; 6 Kuo, Tsai (CR8) 2021; 10 Soni, Rajpal, Mehta (CR10) 2021; 24 D Zhang (1827_CR17) 2021; 565 E Jamei (1827_CR7) 2017; 9 Y Lin (1827_CR9) 2021; 103 FI Diakogiannis (1827_CR2) 2020; 162 Z Zhang (1827_CR18) 2018; 15 CL Kuo (1827_CR8) 2021; 10 Y Xu (1827_CR15) 2016; 18 Z Hong (1827_CR6) 2018; 6 PK Soni (1827_CR10) 2021; 24 S Srivastava (1827_CR11) 2019; 228 C Henry (1827_CR5) 2018; 15 A Campbell (1827_CR1) 2019; 77 G Wang (1827_CR13) 2019; 7 G Yuan (1827_CR16) 2022; 34 C Fernandez (1827_CR3) 2017 JH Uhl (1827_CR12) 2022; 94 Y Xu (1827_CR14) 2018; 10 H He (1827_CR4) 2019; 11 |
| References_xml | – volume: 7 start-page: 123035 year: 2019 end-page: 123048 ident: CR13 article-title: Extraction of maritime road networks from large-scale AIS data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935794 – volume: 565 start-page: 32 year: 2021 end-page: 45 ident: CR17 article-title: A turning point-based offline map matching algorithm for urban road networks publication-title: Information Sciences doi: 10.1016/j.ins.2021.02.052 – volume: 15 start-page: 749 issue: 5 year: 2018 end-page: 753 ident: CR18 article-title: Road extraction by deep residual u-net publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2802944 – volume: 228 start-page: 129 year: 2019 end-page: 143 ident: CR11 article-title: Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.04.014 – volume: 18 start-page: 1845 issue: 7 year: 2016 end-page: 1856 ident: CR15 article-title: An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2617202 – volume: 9 start-page: 2006 issue: 11 year: 2017 ident: CR7 article-title: Investigating the role of virtual reality in planning for sustainable smart cities publication-title: Sustainability doi: 10.3390/su9112006 – volume: 77 start-page: 101350 year: 2019 ident: CR1 article-title: Detecting and mapping traffic signs from Google Street View images using deep learning and GIS publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2019.101350 – volume: 11 start-page: 1015 issue: 9 year: 2019 ident: CR4 article-title: Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder network and structural similarity loss publication-title: Remote Sensing doi: 10.3390/rs11091015 – volume: 94 start-page: 101794 year: 2022 ident: CR12 article-title: Towards the automated large-scale reconstruction of past road networks from historical maps publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2022.101794 – volume: 6 start-page: 46988 year: 2018 end-page: 47000 ident: CR6 article-title: Road extraction from a high spatial resolution remote sensing image based on richer convolutional features publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867210 – volume: 15 start-page: 1867 issue: 12 year: 2018 end-page: 1871 ident: CR5 article-title: Road segmentation in SAR satellite images with deep fully convolutional neural networks publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2864342 – volume: 34 start-page: 7184 issue: 9 year: 2022 end-page: 7199 ident: CR16 article-title: Weakly supervised road network extraction for remote sensing image based scribble annotation and adversarial learning publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2022.05.020 – volume: 162 start-page: 94 year: 2020 end-page: 114 ident: CR2 article-title: ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2020.01.013 – volume: 10 start-page: 377 issue: 6 year: 2021 ident: CR8 article-title: Road characteristics detection based on joint convolutional neural networks with adaptive squares publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi10060377 – volume: 10 start-page: 1461 issue: 9 year: 2018 ident: CR14 article-title: Road extraction from high-resolution remote sensing imagery using deep learning publication-title: Remote Sensing doi: 10.3390/rs10091461 – volume: 24 start-page: 211 issue: 2 year: 2021 end-page: 219 ident: CR10 article-title: Road network extraction using multi-layered filtering and tensor voting from aerial images publication-title: The Egyptian Journal of Remote Sensing and Space Science doi: 10.1016/j.ejrs.2021.01.004 – year: 2017 ident: CR3 article-title: A hybrid vision-map method for urban road detection publication-title: Journal of Advanced Transportation doi: 10.1155/2017/7090549 – volume: 103 start-page: 102498 year: 2021 ident: CR9 article-title: Leveraging optical and SAR data with a UU-Net for large-scale road extraction publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2021.102498 – volume: 103 start-page: 102498 year: 2021 ident: 1827_CR9 publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2021.102498 – volume: 6 start-page: 46988 year: 2018 ident: 1827_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867210 – volume: 10 start-page: 1461 issue: 9 year: 2018 ident: 1827_CR14 publication-title: Remote Sensing doi: 10.3390/rs10091461 – volume: 11 start-page: 1015 issue: 9 year: 2019 ident: 1827_CR4 publication-title: Remote Sensing doi: 10.3390/rs11091015 – volume: 9 start-page: 2006 issue: 11 year: 2017 ident: 1827_CR7 publication-title: Sustainability doi: 10.3390/su9112006 – volume: 228 start-page: 129 year: 2019 ident: 1827_CR11 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.04.014 – volume: 15 start-page: 1867 issue: 12 year: 2018 ident: 1827_CR5 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2864342 – volume: 34 start-page: 7184 issue: 9 year: 2022 ident: 1827_CR16 publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2022.05.020 – volume: 15 start-page: 749 issue: 5 year: 2018 ident: 1827_CR18 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2802944 – volume: 24 start-page: 211 issue: 2 year: 2021 ident: 1827_CR10 publication-title: The Egyptian Journal of Remote Sensing and Space Science doi: 10.1016/j.ejrs.2021.01.004 – volume: 18 start-page: 1845 issue: 7 year: 2016 ident: 1827_CR15 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2617202 – volume: 10 start-page: 377 issue: 6 year: 2021 ident: 1827_CR8 publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi10060377 – volume: 565 start-page: 32 year: 2021 ident: 1827_CR17 publication-title: Information Sciences doi: 10.1016/j.ins.2021.02.052 – volume: 162 start-page: 94 year: 2020 ident: 1827_CR2 publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2020.01.013 – volume: 7 start-page: 123035 year: 2019 ident: 1827_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2935794 – volume: 77 start-page: 101350 year: 2019 ident: 1827_CR1 publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2019.101350 – year: 2017 ident: 1827_CR3 publication-title: Journal of Advanced Transportation doi: 10.1155/2017/7090549 – volume: 94 start-page: 101794 year: 2022 ident: 1827_CR12 publication-title: Computers, Environment and Urban Systems doi: 10.1016/j.compenvurbsys.2022.101794 |
| SSID | ssj0064512 ssj0001852324 |
| Score | 2.3126576 |
| Snippet | Geographic information about the road is an important type of basic geographic information. The extraction of road information plays a crucial role in urban... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 525 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Convolution Datasets Deep learning Earth and Environmental Science Earth Sciences Emergency management Emergency preparedness Geographic information systems Image filters Image resolution Image segmentation landscapes Machine learning Neural networks Remote sensing Remote Sensing/Photogrammetry Research Article roads Roads & highways sand Satellite imagery satellites Semantics spatial data traffic Urban planning |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lQjeNNDNq-lRFkUFPagreytJOwEPdmW7K-Kvd9KHRdGDh1zaZAozk8lHZ74JIScxAMIMEMwlBpi0Q8uMM45FoLLccRslLhCFb-_01VjeTNSkIYWVbbV7m5KsInVHduOKSxaFgaA4Zh_LZEWFdl7oxWN-3v1ZMYpXPcjreKylqnKeATwzraNJQ535Xeb346nDnD_SpNXpc7lB1hvYSM9rO2-SJSi2yNrTc7mon5bbxN9PbU7v6rJuevE-n9WcBVpVBdCKacvCBcR0ZMtQFU9H0-Kt8TwamnSgqHZ5YJ3Qe0A7An0INe4o4foFY0-5Q8aXF4-jK9bcosAyPJ7mDCKdeylws0ontcohz7PEG29jNIOJHeIRAYGMoJ0QCmRuhTO5927oOHgwYpf0imkBe4QmOhY8MzYRwkovwAoeJVksZSK9U37YJ6et8tLXullG2rVFDqpOozCCqtOPPhm0-k2bjVOmAq2klOCx7pPjr9fo8iGPYQuYLnAORmlEbdrEfXLW2qUT8fcX9_83_YCs8so1QsXZgPTmswUcIgSZu6PK4z4B13DS2g priority: 102 providerName: Springer Nature |
| Title | Road Network Extraction Using Multi-path Cascade Convolution Neural Network from Remote Sensing Images |
| URI | https://link.springer.com/article/10.1007/s12524-024-01827-z https://www.proquest.com/docview/3255553276 https://www.proquest.com/docview/3153623687 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 0974-3006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0974-3006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0974-3006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064512 issn: 0255-660X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tthc4IJ6i7FIZiRtYpH7FOSBUqnYXEBUqFJVTZMe2tAeSZdOu0P56PHkQgQQHXxzHlsbj8SfPfDMAz1PvI8zwnNpMeyrMzFBttaWJl4WzzCSZRaLwx7U634r3O7k7gnXPhcGwyt4mNobaVQW-kb_iEftKyVmq3lz-oFg1Cr2rfQkN05VWcK-bFGPHMGaYGWsE47fL9afN8OqiJWvyk7e2WgnZ-EMRWFOlkl1Hq2nJdUwyQRNsEYSn9ObPq2vAo3-5UJubaXUX7nSQksxbHbgHR768D7e_XtSHtrd-AGFTGUfWbcg3Wf7cX7V8BtJEDJCGhUuxODFZmBoj5smiKq87rSSYwCNO1f-OjBSy8XGPPfmM8e9xhnffo12qH8J2tfyyOKddhQVaxKtrT32iXBA8HmRhhZLOO1dkQQeTxi3SqY1YhXskKijLufTCGW61C8HOLPPBa_4IRmVV-sdAMpVyVmiTcW5E4N5wlmRFKkQmgpVhNoEXvfDyyzaRRj6kTEZR5wk2FHV-M4HTXr55d6jqfFCBCTz7_TkeB_RxmNJXhzgmWvCI6JROJ_Cy35dhin-v-OT_K57ALdaoAkafncJof3XwTyMc2dspHOvV2RTG87NvH5bTTuNi75bNfwE0Od9V |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKdYKGAkOIFF1q84hwrBstUubVdoadHegh2PJQ4kpdnl0R_Hb2OcBxFIcOshlzzG0Xg8M_bMN0PIkxQA3QwQzGUGmLRjy4wzjiWgCu-4TTIXgcJHCz07kW9XarVFfvZYmJhW2evERlH7qohn5C8E-r5KCZ7ql6dfWOwaFaOrfQsN27VW8HtNibEO2HEAP77hFq7em7_B-X7K-f70eDJjXZcBVqD6XjNItA8Sd_WJdFIrD94XWTDBpvibJnVorwXEZH3thFAgvRXO-BDc2HEIYATSvUR2pJAZbv52Xk8X75bDKY9RvKmH3toGLVUTf42OPNM6WXUwnhbMxxWXLIkXOv0pO__TVA7-718h28YS7l8n1zoXlr5qZe4G2YLyJrn64VO9ae_Wt0hYVtbTRZtiTqff12ctfoI2GQq0Qf2y2AyZTmwdM_TppCq_dquAxoIhSKr_PCJg6BJQpoC-j_n2SGH-GfVgfZucXAiv75DtsirhLqGZTgUvjM2EsDIIsIInWZFKmcngVBiPyLOeeflpW7gjH0o0R1bnSbwiq_PzEdnt-Zt3i7jOB5Ebkce_H-PyizEVW0K1wXfQYqAHqU06Is_7eRlI_HvEe_8f8RG5PDs-OswP54uD--QKb8QiZr7tku312QYeoCu0dg87eaPk40WL-C9yuBq5 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEE-xpYCRuIHVrF9xjtXSVctjhQqL9hbZ8VjiQLZqshXqr2ecBwEEBw6-JPZEmhmPP2XmGwO8zBEJZqDkvrDIlZs7br31PENdBS9cVvhEFP6wMidr9XajN7-w-Ltq9zEl2XMaUpemuj08D_FwIr4JLRTP0iCAnPOr63BDpUYJ5NFrcTT9ZbFadP3I-9hslO7ynwlIc2OyzUCj-bvM34-qCX_-kTLtTqLlXbgzQEh21Nv8HlzD-j7c_vK12fVPmwcQz7YusFVf4s2Ov7cXPX-BdRUCrGPd8nQZMVu4JlXIs8W2vhy8kKWGHSRqXJ4YKOwMyabIPqV6d5Jw-o3iUPMQ1svjz4sTPtyowCs6qlqOmQlRSdq4yiujA4ZQFdFGl5NJbO4Jm0hMxATjpdSogpPehhj93AuMaOUj2Ku3NT4GVphcisq6QkqnokQnRVZUuVKFil7H-Qxejcorz_vGGeXUIjmpuszSSKour2ZwMOq3HDZRU0qyktZS5GYGL36-JvdPOQ1X43ZHcyhiE4IzNp_B69Euk4h_f3H__6Y_h5sf3yzL96erd0_glui8JBWiHcBee7HDp4RMWv-sc74fY4HaAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Network+Extraction+Using+Multi-path+Cascade+Convolution+Neural+Network+from+Remote+Sensing+Images&rft.jtitle=Journal+of+the+Indian+Society+of+Remote+Sensing&rft.au=Patil%2C+Dhanashri&rft.au=Jadhav%2C+Sangeeta&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0255-660X&rft.eissn=0974-3006&rft.volume=52&rft.issue=3&rft.spage=525&rft.epage=541&rft_id=info:doi/10.1007%2Fs12524-024-01827-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0255-660X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0255-660X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0255-660X&client=summon |