Application of near infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP content in red jujube
In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS)...
Saved in:
| Published in | Optik (Stuttgart) Vol. 194; p. 163063 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier GmbH
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0030-4026 1618-1336 |
| DOI | 10.1016/j.ijleo.2019.163063 |
Cover
| Abstract | In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS) model results. The results show that for PLS model, correction coefficient (R2c), correction set root mean square error of calibration (RMSEC), prediction coefficient (R2p) and prediction set root mean square error of prediction (RMSEP) are 0.9076, 25.2625, 0.8323 and 29.0407, respectively. The performance of the SVR model is much better, and its R2c, RMSEC, R2p and RMSEP are0.9850, 11.1233, 0.9388 and 13.0739, respectively. The research indicates that the SVR model can greatly improve the predictive performance and stability of the jujube cAMP quantitative model. |
|---|---|
| AbstractList | In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS) model results. The results show that for PLS model, correction coefficient (R2c), correction set root mean square error of calibration (RMSEC), prediction coefficient (R2p) and prediction set root mean square error of prediction (RMSEP) are 0.9076, 25.2625, 0.8323 and 29.0407, respectively. The performance of the SVR model is much better, and its R2c, RMSEC, R2p and RMSEP are0.9850, 11.1233, 0.9388 and 13.0739, respectively. The research indicates that the SVR model can greatly improve the predictive performance and stability of the jujube cAMP quantitative model. |
| ArticleNumber | 163063 |
| Author | Zheng, Xiangxiang Chen, Chen Tang, Jun Lv, Xiaoyi Li, Hongyi Chen, Cheng |
| Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0003-1406-5721 surname: Chen fullname: Chen, Chen organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China – sequence: 2 givenname: Hongyi surname: Li fullname: Li, Hongyi organization: Xinjiang Product Quality Supervision and Inspection Institute, Urumqi, 830011, China – sequence: 3 givenname: Xiaoyi orcidid: 0000-0002-8023-4119 surname: Lv fullname: Lv, Xiaoyi email: xiaoz813@163.com organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China – sequence: 4 givenname: Jun surname: Tang fullname: Tang, Jun email: tangjunwq@163.com organization: Physics and Chemistry Detecting Center, Xinjiang University, Urumqi, 830046, China – sequence: 5 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China – sequence: 6 givenname: Xiangxiang surname: Zheng fullname: Zheng, Xiangxiang organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China |
| BookMark | eNqFkE1LAzEQhoMo2Kq_wEv-wNbJps22Bw9F_IKK4tc1pJNZzbJNlmys-O-NbU8e9DTMMM8L7zNk-z54YuxUwEiAUGfNyDUthVEJYjYSSoKSe2wglJgWQkq1zwYAEooxlOqQDfu-AYCqgmrA1vOuax2a5ILnoeaeTOTO19FEsrzvCFMMPYbui2NYLZ3P10-X3vnT6yM37VuIeVllgkfTOcstpYzswnB-95Axn8inzUuGm4_mY0nH7KA2bU8nu3nEXq4uny9uisX99e3FfFGgBJkKC2RJWKitEaaaTqbKoJzQZDIuZ7WqpCpLgSCQlpVCiTNUdW3Hwk4RxlDRUh6x2TYXc4s-Uq3RpU3ZFI1rtQD9I1A3eiNQ_wjUW4GZlb_YLrqViV__UOdbinKttaOoe3TkkayL2Yy2wf3JfwPCZo-L |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e20973 crossref_primary_10_1039_D4RA00953C crossref_primary_10_1016_j_eaef_2019_11_006 crossref_primary_10_1016_j_ijleo_2020_164473 crossref_primary_10_1080_10942912_2023_2281883 crossref_primary_10_1371_journal_pone_0238149 crossref_primary_10_1080_10942912_2022_2093361 crossref_primary_10_1016_j_jpha_2023_07_012 crossref_primary_10_3389_fnut_2023_1273374 crossref_primary_10_3390_foods12071463 crossref_primary_10_1016_j_dib_2020_105251 crossref_primary_10_1002_cem_3632 crossref_primary_10_1016_j_asoc_2024_112204 crossref_primary_10_1016_j_microc_2023_109586 crossref_primary_10_1016_j_crfs_2023_100573 crossref_primary_10_1016_j_fochx_2023_100860 crossref_primary_10_1016_j_saa_2022_121839 crossref_primary_10_1007_s11694_022_01605_w crossref_primary_10_1039_D4AY00656A crossref_primary_10_1371_journal_pone_0282429 |
| Cites_doi | 10.1016/j.saa.2018.11.063 10.1038/s41598-018-24926-7 10.1016/j.microc.2018.10.049 10.1016/j.foodchem.2017.11.015 10.1177/0003702817727016 10.1039/C8JA00219C 10.1002/jcp.27492 10.1016/j.foodchem.2017.09.058 10.1016/j.foodcont.2018.12.033 10.1007/s11801-018-8120-z 10.1016/j.lwt.2017.02.003 10.1016/j.saa.2018.07.094 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier GmbH |
| Copyright_xml | – notice: 2019 Elsevier GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijleo.2019.163063 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1618-1336 |
| ExternalDocumentID | 10_1016_j_ijleo_2019_163063 S0030402619309404 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K TN5 VOH XOL ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-d0ede1d0fda1a78586ac35e55429f6736221c01ceb76c3c9c6ffd41d8c0407eb3 |
| IEDL.DBID | .~1 |
| ISSN | 0030-4026 |
| IngestDate | Wed Oct 01 05:21:09 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 23 02:47:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Near infrared (NIR) spectroscopy Cyclic adenosine monophosphate (cAMP) Support vector regression (SVR) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-d0ede1d0fda1a78586ac35e55429f6736221c01ceb76c3c9c6ffd41d8c0407eb3 |
| ORCID | 0000-0003-1406-5721 0000-0002-8023-4119 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijleo_2019_163063 crossref_primary_10_1016_j_ijleo_2019_163063 elsevier_sciencedirect_doi_10_1016_j_ijleo_2019_163063 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Optik (Stuttgart) |
| PublicationYear | 2019 |
| Publisher | Elsevier GmbH |
| Publisher_xml | – name: Elsevier GmbH |
| References | Bisgin, Bera, Ding, Semey, Wu, Liu, Barnes, Langley, Pava-Ripoll, Vyas, Tong, Xu (bib0050) 2018; 8 Niu, Shi, Yuan, Wang, Wang, Duan (bib0080) 2018; 33 Giraudo, Grassi, Savorani, Gavoci, Casiraghi, Geobaldo (bib0025) 2019; 99 Liu, Wang, Li, Gao, Tan, Bian (bib0060) 2019; 206 Yan, Ren, Yue, Tang, Chen, Lü, Mo (bib0045) 2018; 14 Xiaori, Xiangrong, Xinyuan, Zhuoyong, Qiao (bib0070) 2009; 29 Genisheva, Quintelas, Mesquita, Ferreira, Oliveira, Amaral (bib0035) 2018; 246 Luo, Wang, Zhao, Liu (bib0005) 2013; 1 Chang, Du (bib0015) 2009; 1 Costa, Morgano, Ferreira, Milani (bib0030) 2017; 80 Wei, Zhong, Hongfu, Chunfeng, Li (bib0075) 2014; 34 Lei, Chen, Huang, Chen (bib0055) 2017; 71 Hu, Huang, Pei, Ouyang, Ding, Jiang, Lu, Kang, Huang, Xiang, Xiao, Zeng, Chen (bib0010) 2019; 234 Biancolillo, Firmani, Bucci, Magrì, Marini (bib0020) 2019; 145 Dankowska, Kowalewski (bib0065) 2019; 211 Sampaio, Soares, Castanho, Almeida, Oliveira, Brites (bib0040) 2018; 242 Genisheva (10.1016/j.ijleo.2019.163063_bib0035) 2018; 246 Sampaio (10.1016/j.ijleo.2019.163063_bib0040) 2018; 242 Wei (10.1016/j.ijleo.2019.163063_bib0075) 2014; 34 Niu (10.1016/j.ijleo.2019.163063_bib0080) 2018; 33 Chang (10.1016/j.ijleo.2019.163063_bib0015) 2009; 1 Yan (10.1016/j.ijleo.2019.163063_bib0045) 2018; 14 Luo (10.1016/j.ijleo.2019.163063_bib0005) 2013; 1 Lei (10.1016/j.ijleo.2019.163063_bib0055) 2017; 71 Giraudo (10.1016/j.ijleo.2019.163063_bib0025) 2019; 99 Xiaori (10.1016/j.ijleo.2019.163063_bib0070) 2009; 29 Hu (10.1016/j.ijleo.2019.163063_bib0010) 2019; 234 Bisgin (10.1016/j.ijleo.2019.163063_bib0050) 2018; 8 Biancolillo (10.1016/j.ijleo.2019.163063_bib0020) 2019; 145 Liu (10.1016/j.ijleo.2019.163063_bib0060) 2019; 206 Dankowska (10.1016/j.ijleo.2019.163063_bib0065) 2019; 211 Costa (10.1016/j.ijleo.2019.163063_bib0030) 2017; 80 |
| References_xml | – volume: 211 start-page: 195 year: 2019 end-page: 202 ident: bib0065 article-title: Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. – volume: 99 start-page: 137 year: 2019 end-page: 145 ident: bib0025 article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis publication-title: Food Control – volume: 234 start-page: 7330 year: 2019 end-page: 7340 ident: bib0010 article-title: Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways publication-title: J. Cell. Physiol. – volume: 14 start-page: 380 year: 2018 end-page: 383 ident: bib0045 article-title: Rapid detection of cAMP content in red jujube using near-infrared spectroscopy publication-title: Optoelectron. Lett. – volume: 71 start-page: 2427 year: 2017 end-page: 2436 ident: bib0055 article-title: Determination of magnesium oxide content in mineral medicine talcum using near-infrared spectroscopy integrated with support vector machine publication-title: Appl. Spectrosc. – volume: 145 start-page: 252 year: 2019 end-page: 258 ident: bib0020 article-title: Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy publication-title: Microchem. J. – volume: 246 start-page: 172 year: 2018 end-page: 178 ident: bib0035 article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR) publication-title: Food Chem. – volume: 80 start-page: 76 year: 2017 end-page: 83 ident: bib0030 article-title: Analysis of bee pollen constituents from different Brazilian regions: quantification by NIR spectroscopy and PLS regression publication-title: LWT-Food Sci. Technol. – volume: 1 start-page: 249 year: 2013 end-page: 252 ident: bib0005 article-title: Spatiotemporal distribution of cAMP in Chinese Jujube publication-title: Ii International Jujube Symposium, Int Soc Horticultural Science – volume: 8 start-page: 6532 year: 2018 ident: bib0050 article-title: Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles publication-title: Sci. Rep. – volume: 29 start-page: 964 year: 2009 end-page: 968 ident: bib0070 publication-title: Spectroscopy and Spectral Analysis, SPXY Sample Partition and Monte Carlo Cross Validation Combined with Near Infrared Spectroscopy for Determination of Hesperidin in Orange Leaves – volume: 242 start-page: 196 year: 2018 end-page: 204 ident: bib0040 article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms publication-title: Food Chem. – volume: 33 start-page: 1954 year: 2018 end-page: 1961 ident: bib0080 article-title: Combination of support vector regression (SVR) and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in solid samples using the continuous direct solid sampling (CDSS) technique publication-title: J. Anal. At. Spectrom. – volume: 34 start-page: 947 year: 2014 end-page: 951 ident: bib0075 publication-title: Spectroscopy and Spectral Analysis, Spectral Multivariate Analysis Correction Set and Validation Set Sample Distribution Optimization Method – volume: 1 start-page: 541 year: 2009 end-page: 546 ident: bib0015 article-title: Extraction and separation of cAMP from Zizyphus jujuba fruit publication-title: I International Jujube Symposium, Int Soc Horticultural Science – volume: 206 start-page: 23 year: 2019 end-page: 30 ident: bib0060 article-title: Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. – volume: 29 start-page: 964 year: 2009 ident: 10.1016/j.ijleo.2019.163063_bib0070 – volume: 211 start-page: 195 year: 2019 ident: 10.1016/j.ijleo.2019.163063_bib0065 article-title: Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. doi: 10.1016/j.saa.2018.11.063 – volume: 8 start-page: 6532 year: 2018 ident: 10.1016/j.ijleo.2019.163063_bib0050 article-title: Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles publication-title: Sci. Rep. doi: 10.1038/s41598-018-24926-7 – volume: 145 start-page: 252 year: 2019 ident: 10.1016/j.ijleo.2019.163063_bib0020 article-title: Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy publication-title: Microchem. J. doi: 10.1016/j.microc.2018.10.049 – volume: 246 start-page: 172 year: 2018 ident: 10.1016/j.ijleo.2019.163063_bib0035 article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR) publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.11.015 – volume: 1 start-page: 249 year: 2013 ident: 10.1016/j.ijleo.2019.163063_bib0005 article-title: Spatiotemporal distribution of cAMP in Chinese Jujube – volume: 71 start-page: 2427 year: 2017 ident: 10.1016/j.ijleo.2019.163063_bib0055 article-title: Determination of magnesium oxide content in mineral medicine talcum using near-infrared spectroscopy integrated with support vector machine publication-title: Appl. Spectrosc. doi: 10.1177/0003702817727016 – volume: 33 start-page: 1954 year: 2018 ident: 10.1016/j.ijleo.2019.163063_bib0080 article-title: Combination of support vector regression (SVR) and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in solid samples using the continuous direct solid sampling (CDSS) technique publication-title: J. Anal. At. Spectrom. doi: 10.1039/C8JA00219C – volume: 234 start-page: 7330 year: 2019 ident: 10.1016/j.ijleo.2019.163063_bib0010 article-title: Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27492 – volume: 242 start-page: 196 year: 2018 ident: 10.1016/j.ijleo.2019.163063_bib0040 article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.09.058 – volume: 99 start-page: 137 year: 2019 ident: 10.1016/j.ijleo.2019.163063_bib0025 article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis publication-title: Food Control doi: 10.1016/j.foodcont.2018.12.033 – volume: 14 start-page: 380 year: 2018 ident: 10.1016/j.ijleo.2019.163063_bib0045 article-title: Rapid detection of cAMP content in red jujube using near-infrared spectroscopy publication-title: Optoelectron. Lett. doi: 10.1007/s11801-018-8120-z – volume: 1 start-page: 541 year: 2009 ident: 10.1016/j.ijleo.2019.163063_bib0015 article-title: Extraction and separation of cAMP from Zizyphus jujuba fruit – volume: 34 start-page: 947 year: 2014 ident: 10.1016/j.ijleo.2019.163063_bib0075 – volume: 80 start-page: 76 year: 2017 ident: 10.1016/j.ijleo.2019.163063_bib0030 article-title: Analysis of bee pollen constituents from different Brazilian regions: quantification by NIR spectroscopy and PLS regression publication-title: LWT-Food Sci. Technol. doi: 10.1016/j.lwt.2017.02.003 – volume: 206 start-page: 23 year: 2019 ident: 10.1016/j.ijleo.2019.163063_bib0060 article-title: Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. doi: 10.1016/j.saa.2018.07.094 |
| SSID | ssj0007707 |
| Score | 2.325024 |
| Snippet | In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 163063 |
| SubjectTerms | Cyclic adenosine monophosphate (cAMP) Near infrared (NIR) spectroscopy Support vector regression (SVR) |
| Title | Application of near infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP content in red jujube |
| URI | https://dx.doi.org/10.1016/j.ijleo.2019.163063 |
| Volume | 194 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1618-1336 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007707 issn: 0030-4026 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjaPfTTHUixVaRG10lvY7ENaalNqK3jxtzu7SayC9OBxl5mQTIadmeSbbxC61KFhJo2456eh8AgV1Et5mHo6gmRBCG6otA3O_QHrDcntiI4qqFP2wlhYZXH252e6O62LnWZhzeZ8PLY9vlCKuxIisiRwlhOUEG6nGDQ-1zAPzvOWaRC2tRIrmYccxms8mboOwCBuQF7is-jv6PQj4nT30G6RKuJ2fjf7qKJnB2jbQTbl2yF6b6__PePM4Bn4LAZ_WVhIOXYdlJapMpt_YHg4KIBh1351xY_PD1hMX7IFLF5BAy_EfKyw0ksHy3IXk-3-PbYwdohJTgSUJ6vJKtVHaNi9fur0vGKKgichPC095WulA-UbJQLBW7TFhIyopnZQlbGorjAMpB9InXImIxlLZowigWpJsC6HWvsYVWfZTJ8gDFIxowbSBhURX5M4JSo0gVKxT5UirRoKS-slsqAYt5MupkmJJZskzuSJNXmSm7yGrr6V5jnDxmZxVr6W5JejJBADNime_lfxDO3YVY7gO0fV5WKlLyATWaZ152p1tNW-uesNvgDQXd7B |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qInoRn1ife_BobB77aI5FLFVbEa3SW9jsQ1pqGmorePG3O7tJfIB48JjNTEgmw85M8n0zCJ3o0DCTRtzz01B4hArqpTxMPR1BsiAEN1RagnPvhnUeyNWADmrovOLCWFhlufcXe7rbrcuVRmnNRj4cWo4vlOKuhIhsEziygJYIDbmtwM7ev3AenBecaZC2xRKrWg85kNdwNHYUwCA-g8TEZ9Hv4elbyGmvo7UyV8St4nY2UE1nm2jZYTblyxZ6bX39fMYTgzNwWgwOM7WYcuwolLZV5SR_w_B0UAHDqv3siu8f77AYP02mcPAMGngq8qHCSs8cLstdTLZ6t9ji2CEoORFQHs1H81Rvo4f2Rf-845VjFDwJ8WnmKV8rHSjfKBEI3qRNJmRENbWTqoyFdYVhIP1A6pQzGclYMmMUCVRTgnk5FNs7aDGbZHoXYZCKGTWQN6iI-JrEKVGhCZSKfaoUadZRWFkvkWWPcTvqYpxUYLJR4kyeWJMnhcnr6PRTKS9abPwtzqrXkvzwlASCwF-Ke_9VPEYrnX6vm3Qvb6730ao9U8D5DtDibDrXh5CWzNIj53YfE6TgVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+near+infrared+spectroscopy+combined+with+SVR+algorithm+in+rapid+detection+of+cAMP+content+in+red+jujube&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Chen%2C+Chen&rft.au=Li%2C+Hongyi&rft.au=Lv%2C+Xiaoyi&rft.au=Tang%2C+Jun&rft.date=2019-10-01&rft.pub=Elsevier+GmbH&rft.issn=0030-4026&rft.eissn=1618-1336&rft.volume=194&rft_id=info:doi/10.1016%2Fj.ijleo.2019.163063&rft.externalDocID=S0030402619309404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon |