Application of near infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP content in red jujube

In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS)...

Full description

Saved in:
Bibliographic Details
Published inOptik (Stuttgart) Vol. 194; p. 163063
Main Authors Chen, Chen, Li, Hongyi, Lv, Xiaoyi, Tang, Jun, Chen, Cheng, Zheng, Xiangxiang
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.10.2019
Subjects
Online AccessGet full text
ISSN0030-4026
1618-1336
DOI10.1016/j.ijleo.2019.163063

Cover

Abstract In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS) model results. The results show that for PLS model, correction coefficient (R2c), correction set root mean square error of calibration (RMSEC), prediction coefficient (R2p) and prediction set root mean square error of prediction (RMSEP) are 0.9076, 25.2625, 0.8323 and 29.0407, respectively. The performance of the SVR model is much better, and its R2c, RMSEC, R2p and RMSEP are0.9850, 11.1233, 0.9388 and 13.0739, respectively. The research indicates that the SVR model can greatly improve the predictive performance and stability of the jujube cAMP quantitative model.
AbstractList In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP) content in red jujube, in this paper, support vector regression (SVR) is used for spectral analysis and compared with partial least squares (PLS) model results. The results show that for PLS model, correction coefficient (R2c), correction set root mean square error of calibration (RMSEC), prediction coefficient (R2p) and prediction set root mean square error of prediction (RMSEP) are 0.9076, 25.2625, 0.8323 and 29.0407, respectively. The performance of the SVR model is much better, and its R2c, RMSEC, R2p and RMSEP are0.9850, 11.1233, 0.9388 and 13.0739, respectively. The research indicates that the SVR model can greatly improve the predictive performance and stability of the jujube cAMP quantitative model.
ArticleNumber 163063
Author Zheng, Xiangxiang
Chen, Chen
Tang, Jun
Lv, Xiaoyi
Li, Hongyi
Chen, Cheng
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0003-1406-5721
  surname: Chen
  fullname: Chen, Chen
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
– sequence: 2
  givenname: Hongyi
  surname: Li
  fullname: Li, Hongyi
  organization: Xinjiang Product Quality Supervision and Inspection Institute, Urumqi, 830011, China
– sequence: 3
  givenname: Xiaoyi
  orcidid: 0000-0002-8023-4119
  surname: Lv
  fullname: Lv, Xiaoyi
  email: xiaoz813@163.com
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
– sequence: 4
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
  email: tangjunwq@163.com
  organization: Physics and Chemistry Detecting Center, Xinjiang University, Urumqi, 830046, China
– sequence: 5
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
– sequence: 6
  givenname: Xiangxiang
  surname: Zheng
  fullname: Zheng, Xiangxiang
  organization: College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
BookMark eNqFkE1LAzEQhoMo2Kq_wEv-wNbJps22Bw9F_IKK4tc1pJNZzbJNlmys-O-NbU8e9DTMMM8L7zNk-z54YuxUwEiAUGfNyDUthVEJYjYSSoKSe2wglJgWQkq1zwYAEooxlOqQDfu-AYCqgmrA1vOuax2a5ILnoeaeTOTO19FEsrzvCFMMPYbui2NYLZ3P10-X3vnT6yM37VuIeVllgkfTOcstpYzswnB-95Axn8inzUuGm4_mY0nH7KA2bU8nu3nEXq4uny9uisX99e3FfFGgBJkKC2RJWKitEaaaTqbKoJzQZDIuZ7WqpCpLgSCQlpVCiTNUdW3Hwk4RxlDRUh6x2TYXc4s-Uq3RpU3ZFI1rtQD9I1A3eiNQ_wjUW4GZlb_YLrqViV__UOdbinKttaOoe3TkkayL2Yy2wf3JfwPCZo-L
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e20973
crossref_primary_10_1039_D4RA00953C
crossref_primary_10_1016_j_eaef_2019_11_006
crossref_primary_10_1016_j_ijleo_2020_164473
crossref_primary_10_1080_10942912_2023_2281883
crossref_primary_10_1371_journal_pone_0238149
crossref_primary_10_1080_10942912_2022_2093361
crossref_primary_10_1016_j_jpha_2023_07_012
crossref_primary_10_3389_fnut_2023_1273374
crossref_primary_10_3390_foods12071463
crossref_primary_10_1016_j_dib_2020_105251
crossref_primary_10_1002_cem_3632
crossref_primary_10_1016_j_asoc_2024_112204
crossref_primary_10_1016_j_microc_2023_109586
crossref_primary_10_1016_j_crfs_2023_100573
crossref_primary_10_1016_j_fochx_2023_100860
crossref_primary_10_1016_j_saa_2022_121839
crossref_primary_10_1007_s11694_022_01605_w
crossref_primary_10_1039_D4AY00656A
crossref_primary_10_1371_journal_pone_0282429
Cites_doi 10.1016/j.saa.2018.11.063
10.1038/s41598-018-24926-7
10.1016/j.microc.2018.10.049
10.1016/j.foodchem.2017.11.015
10.1177/0003702817727016
10.1039/C8JA00219C
10.1002/jcp.27492
10.1016/j.foodchem.2017.09.058
10.1016/j.foodcont.2018.12.033
10.1007/s11801-018-8120-z
10.1016/j.lwt.2017.02.003
10.1016/j.saa.2018.07.094
ContentType Journal Article
Copyright 2019 Elsevier GmbH
Copyright_xml – notice: 2019 Elsevier GmbH
DBID AAYXX
CITATION
DOI 10.1016/j.ijleo.2019.163063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1618-1336
ExternalDocumentID 10_1016_j_ijleo_2019_163063
S0030402619309404
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
TN5
VOH
XOL
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-d0ede1d0fda1a78586ac35e55429f6736221c01ceb76c3c9c6ffd41d8c0407eb3
IEDL.DBID .~1
ISSN 0030-4026
IngestDate Wed Oct 01 05:21:09 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Near infrared (NIR) spectroscopy
Cyclic adenosine monophosphate (cAMP)
Support vector regression (SVR)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-d0ede1d0fda1a78586ac35e55429f6736221c01ceb76c3c9c6ffd41d8c0407eb3
ORCID 0000-0003-1406-5721
0000-0002-8023-4119
ParticipantIDs crossref_citationtrail_10_1016_j_ijleo_2019_163063
crossref_primary_10_1016_j_ijleo_2019_163063
elsevier_sciencedirect_doi_10_1016_j_ijleo_2019_163063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Optik (Stuttgart)
PublicationYear 2019
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Bisgin, Bera, Ding, Semey, Wu, Liu, Barnes, Langley, Pava-Ripoll, Vyas, Tong, Xu (bib0050) 2018; 8
Niu, Shi, Yuan, Wang, Wang, Duan (bib0080) 2018; 33
Giraudo, Grassi, Savorani, Gavoci, Casiraghi, Geobaldo (bib0025) 2019; 99
Liu, Wang, Li, Gao, Tan, Bian (bib0060) 2019; 206
Yan, Ren, Yue, Tang, Chen, Lü, Mo (bib0045) 2018; 14
Xiaori, Xiangrong, Xinyuan, Zhuoyong, Qiao (bib0070) 2009; 29
Genisheva, Quintelas, Mesquita, Ferreira, Oliveira, Amaral (bib0035) 2018; 246
Luo, Wang, Zhao, Liu (bib0005) 2013; 1
Chang, Du (bib0015) 2009; 1
Costa, Morgano, Ferreira, Milani (bib0030) 2017; 80
Wei, Zhong, Hongfu, Chunfeng, Li (bib0075) 2014; 34
Lei, Chen, Huang, Chen (bib0055) 2017; 71
Hu, Huang, Pei, Ouyang, Ding, Jiang, Lu, Kang, Huang, Xiang, Xiao, Zeng, Chen (bib0010) 2019; 234
Biancolillo, Firmani, Bucci, Magrì, Marini (bib0020) 2019; 145
Dankowska, Kowalewski (bib0065) 2019; 211
Sampaio, Soares, Castanho, Almeida, Oliveira, Brites (bib0040) 2018; 242
Genisheva (10.1016/j.ijleo.2019.163063_bib0035) 2018; 246
Sampaio (10.1016/j.ijleo.2019.163063_bib0040) 2018; 242
Wei (10.1016/j.ijleo.2019.163063_bib0075) 2014; 34
Niu (10.1016/j.ijleo.2019.163063_bib0080) 2018; 33
Chang (10.1016/j.ijleo.2019.163063_bib0015) 2009; 1
Yan (10.1016/j.ijleo.2019.163063_bib0045) 2018; 14
Luo (10.1016/j.ijleo.2019.163063_bib0005) 2013; 1
Lei (10.1016/j.ijleo.2019.163063_bib0055) 2017; 71
Giraudo (10.1016/j.ijleo.2019.163063_bib0025) 2019; 99
Xiaori (10.1016/j.ijleo.2019.163063_bib0070) 2009; 29
Hu (10.1016/j.ijleo.2019.163063_bib0010) 2019; 234
Bisgin (10.1016/j.ijleo.2019.163063_bib0050) 2018; 8
Biancolillo (10.1016/j.ijleo.2019.163063_bib0020) 2019; 145
Liu (10.1016/j.ijleo.2019.163063_bib0060) 2019; 206
Dankowska (10.1016/j.ijleo.2019.163063_bib0065) 2019; 211
Costa (10.1016/j.ijleo.2019.163063_bib0030) 2017; 80
References_xml – volume: 211
  start-page: 195
  year: 2019
  end-page: 202
  ident: bib0065
  article-title: Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis
  publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
– volume: 99
  start-page: 137
  year: 2019
  end-page: 145
  ident: bib0025
  article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis
  publication-title: Food Control
– volume: 234
  start-page: 7330
  year: 2019
  end-page: 7340
  ident: bib0010
  article-title: Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways
  publication-title: J. Cell. Physiol.
– volume: 14
  start-page: 380
  year: 2018
  end-page: 383
  ident: bib0045
  article-title: Rapid detection of cAMP content in red jujube using near-infrared spectroscopy
  publication-title: Optoelectron. Lett.
– volume: 71
  start-page: 2427
  year: 2017
  end-page: 2436
  ident: bib0055
  article-title: Determination of magnesium oxide content in mineral medicine talcum using near-infrared spectroscopy integrated with support vector machine
  publication-title: Appl. Spectrosc.
– volume: 145
  start-page: 252
  year: 2019
  end-page: 258
  ident: bib0020
  article-title: Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy
  publication-title: Microchem. J.
– volume: 246
  start-page: 172
  year: 2018
  end-page: 178
  ident: bib0035
  article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)
  publication-title: Food Chem.
– volume: 80
  start-page: 76
  year: 2017
  end-page: 83
  ident: bib0030
  article-title: Analysis of bee pollen constituents from different Brazilian regions: quantification by NIR spectroscopy and PLS regression
  publication-title: LWT-Food Sci. Technol.
– volume: 1
  start-page: 249
  year: 2013
  end-page: 252
  ident: bib0005
  article-title: Spatiotemporal distribution of cAMP in Chinese Jujube
  publication-title: Ii International Jujube Symposium, Int Soc Horticultural Science
– volume: 8
  start-page: 6532
  year: 2018
  ident: bib0050
  article-title: Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles
  publication-title: Sci. Rep.
– volume: 29
  start-page: 964
  year: 2009
  end-page: 968
  ident: bib0070
  publication-title: Spectroscopy and Spectral Analysis, SPXY Sample Partition and Monte Carlo Cross Validation Combined with Near Infrared Spectroscopy for Determination of Hesperidin in Orange Leaves
– volume: 242
  start-page: 196
  year: 2018
  end-page: 204
  ident: bib0040
  article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms
  publication-title: Food Chem.
– volume: 33
  start-page: 1954
  year: 2018
  end-page: 1961
  ident: bib0080
  article-title: Combination of support vector regression (SVR) and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in solid samples using the continuous direct solid sampling (CDSS) technique
  publication-title: J. Anal. At. Spectrom.
– volume: 34
  start-page: 947
  year: 2014
  end-page: 951
  ident: bib0075
  publication-title: Spectroscopy and Spectral Analysis, Spectral Multivariate Analysis Correction Set and Validation Set Sample Distribution Optimization Method
– volume: 1
  start-page: 541
  year: 2009
  end-page: 546
  ident: bib0015
  article-title: Extraction and separation of cAMP from Zizyphus jujuba fruit
  publication-title: I International Jujube Symposium, Int Soc Horticultural Science
– volume: 206
  start-page: 23
  year: 2019
  end-page: 30
  ident: bib0060
  article-title: Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics
  publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
– volume: 29
  start-page: 964
  year: 2009
  ident: 10.1016/j.ijleo.2019.163063_bib0070
– volume: 211
  start-page: 195
  year: 2019
  ident: 10.1016/j.ijleo.2019.163063_bib0065
  article-title: Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis
  publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
  doi: 10.1016/j.saa.2018.11.063
– volume: 8
  start-page: 6532
  year: 2018
  ident: 10.1016/j.ijleo.2019.163063_bib0050
  article-title: Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24926-7
– volume: 145
  start-page: 252
  year: 2019
  ident: 10.1016/j.ijleo.2019.163063_bib0020
  article-title: Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2018.10.049
– volume: 246
  start-page: 172
  year: 2018
  ident: 10.1016/j.ijleo.2019.163063_bib0035
  article-title: New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.11.015
– volume: 1
  start-page: 249
  year: 2013
  ident: 10.1016/j.ijleo.2019.163063_bib0005
  article-title: Spatiotemporal distribution of cAMP in Chinese Jujube
– volume: 71
  start-page: 2427
  year: 2017
  ident: 10.1016/j.ijleo.2019.163063_bib0055
  article-title: Determination of magnesium oxide content in mineral medicine talcum using near-infrared spectroscopy integrated with support vector machine
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702817727016
– volume: 33
  start-page: 1954
  year: 2018
  ident: 10.1016/j.ijleo.2019.163063_bib0080
  article-title: Combination of support vector regression (SVR) and microwave plasma atomic emission spectrometry (MWP-AES) for quantitative elemental analysis in solid samples using the continuous direct solid sampling (CDSS) technique
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C8JA00219C
– volume: 234
  start-page: 7330
  year: 2019
  ident: 10.1016/j.ijleo.2019.163063_bib0010
  article-title: Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27492
– volume: 242
  start-page: 196
  year: 2018
  ident: 10.1016/j.ijleo.2019.163063_bib0040
  article-title: Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.09.058
– volume: 99
  start-page: 137
  year: 2019
  ident: 10.1016/j.ijleo.2019.163063_bib0025
  article-title: Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.12.033
– volume: 14
  start-page: 380
  year: 2018
  ident: 10.1016/j.ijleo.2019.163063_bib0045
  article-title: Rapid detection of cAMP content in red jujube using near-infrared spectroscopy
  publication-title: Optoelectron. Lett.
  doi: 10.1007/s11801-018-8120-z
– volume: 1
  start-page: 541
  year: 2009
  ident: 10.1016/j.ijleo.2019.163063_bib0015
  article-title: Extraction and separation of cAMP from Zizyphus jujuba fruit
– volume: 34
  start-page: 947
  year: 2014
  ident: 10.1016/j.ijleo.2019.163063_bib0075
– volume: 80
  start-page: 76
  year: 2017
  ident: 10.1016/j.ijleo.2019.163063_bib0030
  article-title: Analysis of bee pollen constituents from different Brazilian regions: quantification by NIR spectroscopy and PLS regression
  publication-title: LWT-Food Sci. Technol.
  doi: 10.1016/j.lwt.2017.02.003
– volume: 206
  start-page: 23
  year: 2019
  ident: 10.1016/j.ijleo.2019.163063_bib0060
  article-title: Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics
  publication-title: Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
  doi: 10.1016/j.saa.2018.07.094
SSID ssj0007707
Score 2.325024
Snippet In order to further improve the performance of the near-infrared (NIR) spectroscopy quantitative model for detecting cyclic adenosine monophosphate (cAMP)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 163063
SubjectTerms Cyclic adenosine monophosphate (cAMP)
Near infrared (NIR) spectroscopy
Support vector regression (SVR)
Title Application of near infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP content in red jujube
URI https://dx.doi.org/10.1016/j.ijleo.2019.163063
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1618-1336
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007707
  issn: 0030-4026
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjaPfTTHUixVaRG10lvY7ENaalNqK3jxtzu7SayC9OBxl5mQTIadmeSbbxC61KFhJo2456eh8AgV1Et5mHo6gmRBCG6otA3O_QHrDcntiI4qqFP2wlhYZXH252e6O62LnWZhzeZ8PLY9vlCKuxIisiRwlhOUEG6nGDQ-1zAPzvOWaRC2tRIrmYccxms8mboOwCBuQF7is-jv6PQj4nT30G6RKuJ2fjf7qKJnB2jbQTbl2yF6b6__PePM4Bn4LAZ_WVhIOXYdlJapMpt_YHg4KIBh1351xY_PD1hMX7IFLF5BAy_EfKyw0ksHy3IXk-3-PbYwdohJTgSUJ6vJKtVHaNi9fur0vGKKgichPC095WulA-UbJQLBW7TFhIyopnZQlbGorjAMpB9InXImIxlLZowigWpJsC6HWvsYVWfZTJ8gDFIxowbSBhURX5M4JSo0gVKxT5UirRoKS-slsqAYt5MupkmJJZskzuSJNXmSm7yGrr6V5jnDxmZxVr6W5JejJBADNime_lfxDO3YVY7gO0fV5WKlLyATWaZ152p1tNW-uesNvgDQXd7B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qInoRn1ife_BobB77aI5FLFVbEa3SW9jsQ1pqGmorePG3O7tJfIB48JjNTEgmw85M8n0zCJ3o0DCTRtzz01B4hArqpTxMPR1BsiAEN1RagnPvhnUeyNWADmrovOLCWFhlufcXe7rbrcuVRmnNRj4cWo4vlOKuhIhsEziygJYIDbmtwM7ev3AenBecaZC2xRKrWg85kNdwNHYUwCA-g8TEZ9Hv4elbyGmvo7UyV8St4nY2UE1nm2jZYTblyxZ6bX39fMYTgzNwWgwOM7WYcuwolLZV5SR_w_B0UAHDqv3siu8f77AYP02mcPAMGngq8qHCSs8cLstdTLZ6t9ji2CEoORFQHs1H81Rvo4f2Rf-845VjFDwJ8WnmKV8rHSjfKBEI3qRNJmRENbWTqoyFdYVhIP1A6pQzGclYMmMUCVRTgnk5FNs7aDGbZHoXYZCKGTWQN6iI-JrEKVGhCZSKfaoUadZRWFkvkWWPcTvqYpxUYLJR4kyeWJMnhcnr6PRTKS9abPwtzqrXkvzwlASCwF-Ke_9VPEYrnX6vm3Qvb6730ao9U8D5DtDibDrXh5CWzNIj53YfE6TgVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+near+infrared+spectroscopy+combined+with+SVR+algorithm+in+rapid+detection+of+cAMP+content+in+red+jujube&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Chen%2C+Chen&rft.au=Li%2C+Hongyi&rft.au=Lv%2C+Xiaoyi&rft.au=Tang%2C+Jun&rft.date=2019-10-01&rft.pub=Elsevier+GmbH&rft.issn=0030-4026&rft.eissn=1618-1336&rft.volume=194&rft_id=info:doi/10.1016%2Fj.ijleo.2019.163063&rft.externalDocID=S0030402619309404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon