Structural analysis of a reconstituted DNA containing three histone octamers and histone H5

Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some questio...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 197; no. 3; pp. 485 - 511
Main Authors Drew, Horace R., McCall, Maxine J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 05.10.1987
Subjects
Online AccessGet full text
ISSN0022-2836
1089-8638
DOI10.1016/0022-2836(87)90560-2

Cover

Abstract Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. To learn more about this subject, we reconstituted histone H5 onto the complex of the 440 base-pair DNA containing three histone octamers, and then probed for the locations of histone H5 by digestion with micrococcal nuclease and DNase I. The regions of strongest protection from cleavage upon the addition of histone H5 are found: in the DNA that joins cores 1 and 2, and cores 2 and 3; near the dyads of cores 2 and 3; and at either end of the DNA. When superimposed onto a model of the structure, these patches of protection trace out an image of the histone H5 molecule that is in good agreement with earlier work. It seems plausible that the long carboxy-terminal domain (or “tail”) of each H5 protein associates with the DNA between nucleosome cores, while its central globular domain (or “head”) lies close to a dyad. In the Appendix, the relation between DNase I cutting and the energy of DNA positioning is discussed. In addition, the prospects for assembly of a 300 Å fibre in vitro are considered (1 Å = 0.1 nm).
AbstractList Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. To learn more about this subject, we reconstituted histone H5 onto the complex of the 440 base-pair DNA containing three histone octamers, and then probed for the locations of histone H5 by digestion with micrococcal nuclease and DNase I. The regions of strongest protection from cleavage upon the addition of histone H5 are found: in the DNA that joins cores 1 and 2, and cores 2 and 3; near the dyads of cores 2 and 3; and at either end of the DNA. When superimposed onto a model of the structure, these patches of protection trace out an image of the histone H5 molecule that is in good agreement with earlier work. It seems plausible that the long carboxy-terminal domain (or “tail”) of each H5 protein associates with the DNA between nucleosome cores, while its central globular domain (or “head”) lies close to a dyad. In the Appendix, the relation between DNase I cutting and the energy of DNA positioning is discussed. In addition, the prospects for assembly of a 300 Å fibre in vitro are considered (1 Å = 0.1 nm).
Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex.
The authors describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5.
Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex.Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex.
Author McCall, Maxine J.
Drew, Horace R.
Author_xml – sequence: 1
  givenname: Horace R.
  surname: Drew
  fullname: Drew, Horace R.
  organization: CSIRO Division of Molecular Biology P.O. Box 184, North Ryde 2113, NSW, Australia
– sequence: 2
  givenname: Maxine J.
  surname: McCall
  fullname: McCall, Maxine J.
  organization: Department of Inorganic Chemistry University of Sydney, Sydney 2006, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/3441008$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUha0KBAPlDUDyqqKLwLUdO3YXSCNaChKCRdsVC8vj3ICrTAK2g8Tb18NMWXRRVv655xxdfWePbA3jgIQcMjhhwNQpAOcV10Id6-azAamg4h_IjIE2lVZCb5HZm2SX7KX0GwCkqPUO2RF1zQD0jNz9yHHyeYqup25w_UsKiY4ddTSiH4eUQ54ytvTrzZyWd3ZhCMM9zQ8RkT6ElMtOdPTZLTGmktC-fV7Kj2S7c33Cg825T35dfPt5flld336_Op9fV16AyJX3KOoWOmStEEKiZotykZ3XhksDmglWq4bXaJAtuPJKe6c6rwRy3kmzEPvk0zr3MY5PE6ZslyF57Hs34Dgl2zRGiUbCu0JWG2EkM0V4tBFOiyW29jGGpYsvdoOtzL-s5z6OKUXsrA_Z5VAARRd6y8CuKrIr_nbF3-rGvlZkeTHX_5j_xr9jO1vbsKB8Dhht8gEHj20oVWXbjuH_AX8Aam6nMw
CitedBy_id crossref_primary_10_1002__SICI_1098_2744_199612_17_4_192__AID_MC2_3_0_CO_2_G
crossref_primary_10_1242_jcs_1992_Supplement_16_2
crossref_primary_10_1016_0014_5793_88_80750_6
crossref_primary_10_1038_26521
crossref_primary_10_1016_0167_4781_91_90210_D
crossref_primary_10_1016_S0006_3495_98_77961_5
crossref_primary_10_1074_jbc_271_38_22937
crossref_primary_10_1002__SICI_1097_0282_1997_44_4_423__AID_BIP6_3_0_CO_2_M
crossref_primary_10_1016_j_jmb_2008_12_048
crossref_primary_10_1074_jbc_271_40_24325
crossref_primary_10_1128_mcb_13_6_3434_3444_1993
crossref_primary_10_1002_bip_22411
crossref_primary_10_1016_0167_4781_91_90134_8
crossref_primary_10_1016_S0021_9258_18_42143_6
crossref_primary_10_1074_jbc_270_9_4197
crossref_primary_10_1074_jbc_270_44_26473
crossref_primary_10_1016_j_bpj_2014_05_055
crossref_primary_10_1016_S0021_9258_19_36553_6
crossref_primary_10_1016_j_tig_2015_09_003
crossref_primary_10_1101_gad_5_6_1102
crossref_primary_10_1016_S0304_419X_97_00010_3
crossref_primary_10_1080_07391102_1994_10508742
crossref_primary_10_1016_0092_8674_89_90431_5
crossref_primary_10_1093_nar_gks893
crossref_primary_10_1006_jmbi_1997_0899
crossref_primary_10_1016_0092_8674_88_90240_1
crossref_primary_10_1016_0022_2836_88_90124_6
crossref_primary_10_1016_0022_2836_90_90195_R
crossref_primary_10_1016_S0021_9258_18_51553_2
crossref_primary_10_1016_0022_2836_89_90390_2
crossref_primary_10_1096_fj_01_0345com
crossref_primary_10_1515_bchm_1998_379_4_5_401
Cites_doi 10.1016/0022-2836(87)90333-0
10.1016/0022-2836(86)90278-0
10.1002/j.1460-2075.1987.tb04720.x
10.1016/0022-2836(77)90022-5
10.1002/j.1460-2075.1986.tb04679.x
10.1016/0022-2836(86)90291-3
10.1002/bip.1981.360200513
10.1093/nar/14.17.6785
10.1093/nar/6.5.1805
10.1002/j.1460-2075.1985.tb04106.x
10.1083/jcb.83.2.403
10.1016/0022-2836(86)90280-9
10.1016/0092-8674(86)90814-7
10.1016/0968-0004(87)90050-8
10.1038/305338a0
10.1093/nar/15.8.3563
10.1093/nar/15.3.885
10.1016/0022-2836(86)90036-7
10.1038/311532a0
10.1111/j.1432-1033.1978.tb12457.x
10.1016/0092-8674(84)90379-9
10.1093/nar/9.17.4267
10.1016/0022-2836(78)90306-6
10.1126/science.441739
10.1016/0022-2836(81)90045-0
10.1016/0022-2836(86)90247-0
10.1038/315250a0
10.1016/0022-2836(86)90012-4
10.1093/nar/14.23.9291
10.1002/j.1460-2075.1985.tb04104.x
10.1093/nar/14.22.8735
10.1038/326886a0
10.1016/0022-2836(85)90396-1
10.1042/bj2340213
10.1016/S0092-8674(85)80123-9
10.1002/j.1460-2075.1984.tb02181.x
10.1002/j.1460-2075.1985.tb03734.x
10.1016/0022-2836(80)90268-5
10.1016/S0022-2836(83)80156-9
10.1093/nar/6.4.1387
10.1016/0092-8674(85)90025-X
10.1016/0022-2836(84)90176-1
10.1016/0022-2836(86)90452-3
ContentType Journal Article
Copyright 1987
Copyright_xml – notice: 1987
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
DOI 10.1016/0022-2836(87)90560-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Nucleic Acids Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 511
ExternalDocumentID 3441008
10_1016_0022_2836_87_90560_2
0022283687905602
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.55
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFMIJ
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GX1
HLW
HMG
HVGLF
HX~
HZ~
H~9
IH2
IHE
J1W
K-O
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
MVM
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSI
SSU
SSZ
T5K
TWZ
UQL
VH1
VQA
WH7
WUQ
X7M
XJT
XOL
XPP
Y6R
YQT
YYP
ZGI
ZKB
ZMT
ZU3
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7TM
AGCQF
7X8
ID FETCH-LOGICAL-c303t-cce34d0fe1d3335e81bd335fc892590813146724e9e1b26c68ca6fc63e22f59b3
ISSN 0022-2836
IngestDate Sun Sep 28 06:20:25 EDT 2025
Fri Jul 11 16:52:38 EDT 2025
Wed Feb 19 02:32:54 EST 2025
Wed Oct 01 05:07:42 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Fri Feb 23 02:33:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-cce34d0fe1d3335e81bd335fc892590813146724e9e1b26c68ca6fc63e22f59b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 3441008
PQID 14939519
PQPubID 23462
PageCount 27
ParticipantIDs proquest_miscellaneous_77963750
proquest_miscellaneous_14939519
pubmed_primary_3441008
crossref_citationtrail_10_1016_0022_2836_87_90560_2
crossref_primary_10_1016_0022_2836_87_90560_2
elsevier_sciencedirect_doi_10_1016_0022_2836_87_90560_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1987-10-05
PublicationDateYYYYMMDD 1987-10-05
PublicationDate_xml – month: 10
  year: 1987
  text: 1987-10-05
  day: 05
PublicationDecade 1980
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 1987
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fairall, Rhodes, Klug (BIB13) 1986; 192
Linxweiler, Horz (BIB22) 1985; 42
Widom, Klug (BIB44) 1985; 43
Klug, Lutter (BIB19) 1981; 9
Lennard, Thomas (BIB21) 1985; 4
Satchwell, Drew, Travers (BIB36) 1986; 191
Travers (BIB43) 1987; 12
Widom (BIB45) 1986; 190
Thoma, Simpson (BIB40) 1985; 315
Liu-Johnson, Gartenberg, Crothers (BIB23) 1986; 47
Simpson, Kunzler (BIB37) 1979; 6
Finch, Klug (BIB14) 1976; 73
Dingwall, Dilworth, Black, Kearsey, Cox, Laskey (BIB7) 1987; 6
Drew, Travers (BIB11) 1985; 186
McClellan, Palacek, Lilley (BIB27) 1986; 14
Thoma (BIB39) 1986; 190
Cockell, Rhodes, Klug (BIB6) 1983; 170
Drew, Weeks, Travers (BIB12) 1985; 4
Portugal, Waring (BIB30) 1987; 15
Calladine, Drew (BIB4) 1986; 192
Lutter (BIB25) 1977; 117
Lutter (BIB26) 1978; 124
Butler, Thomas (BIB3) 1980; 140
Drew (BIB8) 1984; 176
Drew, Calladine (BIB9) 1987; 195
Flick, Eissenberg, Elgin (BIB15) 1986; 190
Rhodes (BIB33) 1979; 6
Simpson, Stafford (BIB38) 1983; 80
Portugal, Waring (BIB29) 1986; 14
Thoma, Koller, Klug (BIB41) 1979; 83
Aviles, Chapman, Kneale, Crane-Robinson, Bradbury (BIB1) 1978; 88
Low, Drew, Waring (BIB24) 1986; 14
Drew, Travers (BIB10) 1984; 37
Fox (BIB16) 1986; 234
Koudelka, Harrison, Ptashne (BIB20) 1987; 326
Caron, Thomas (BIB5) 1981; 146
Hill, Stollar (BIB18) 1983; 305
Richmond, Finch, Rushton, Rhodes, Klug (BIB35) 1984; 311
Brown, Sutcliffe (BIB2) 1987; 15
Prunell, Kornberg, Lutter, Klug, Levitt, Crick (BIB31) 1979; 204
Thomas, Wilson (BIB42) 1986; 5
Oefner, Suck (BIB28) 1986; 192
Gotoh, Tagashira (BIB17) 1981; 20
Rhodes (BIB34) 1985; 4
Ramsay, Felsenfeld, Rushton, McGhee (BIB32) 1984; 3
Fox (10.1016/0022-2836(87)90560-2_BIB16) 1986; 234
Rhodes (10.1016/0022-2836(87)90560-2_BIB33) 1979; 6
Thoma (10.1016/0022-2836(87)90560-2_BIB41) 1979; 83
Finch (10.1016/0022-2836(87)90560-2_BIB14) 1976; 73
Simpson (10.1016/0022-2836(87)90560-2_BIB38) 1983; 80
Prunell (10.1016/0022-2836(87)90560-2_BIB31) 1979; 204
Cockell (10.1016/0022-2836(87)90560-2_BIB6) 1983; 170
Koudelka (10.1016/0022-2836(87)90560-2_BIB20) 1987; 326
Klug (10.1016/0022-2836(87)90560-2_BIB19) 1981; 9
Linxweiler (10.1016/0022-2836(87)90560-2_BIB22) 1985; 42
Rhodes (10.1016/0022-2836(87)90560-2_BIB34) 1985; 4
Simpson (10.1016/0022-2836(87)90560-2_BIB37) 1979; 6
Caron (10.1016/0022-2836(87)90560-2_BIB5) 1981; 146
Thoma (10.1016/0022-2836(87)90560-2_BIB39) 1986; 190
Calladine (10.1016/0022-2836(87)90560-2_BIB4) 1986; 192
Portugal (10.1016/0022-2836(87)90560-2_BIB29) 1986; 14
Fairall (10.1016/0022-2836(87)90560-2_BIB13) 1986; 192
Lutter (10.1016/0022-2836(87)90560-2_BIB25) 1977; 117
Lutter (10.1016/0022-2836(87)90560-2_BIB26) 1978; 124
Portugal (10.1016/0022-2836(87)90560-2_BIB30) 1987; 15
Ramsay (10.1016/0022-2836(87)90560-2_BIB32) 1984; 3
Drew (10.1016/0022-2836(87)90560-2_BIB10) 1984; 37
Drew (10.1016/0022-2836(87)90560-2_BIB9) 1987; 195
Gotoh (10.1016/0022-2836(87)90560-2_BIB17) 1981; 20
Drew (10.1016/0022-2836(87)90560-2_BIB12) 1985; 4
Thomas (10.1016/0022-2836(87)90560-2_BIB42) 1986; 5
Butler (10.1016/0022-2836(87)90560-2_BIB3) 1980; 140
Dingwall (10.1016/0022-2836(87)90560-2_BIB7) 1987; 6
McClellan (10.1016/0022-2836(87)90560-2_BIB27) 1986; 14
Oefner (10.1016/0022-2836(87)90560-2_BIB28) 1986; 192
Brown (10.1016/0022-2836(87)90560-2_BIB2) 1987; 15
Richmond (10.1016/0022-2836(87)90560-2_BIB35) 1984; 311
Satchwell (10.1016/0022-2836(87)90560-2_BIB36) 1986; 191
Drew (10.1016/0022-2836(87)90560-2_BIB11) 1985; 186
Travers (10.1016/0022-2836(87)90560-2_BIB43) 1987; 12
Aviles (10.1016/0022-2836(87)90560-2_BIB1) 1978; 88
Hill (10.1016/0022-2836(87)90560-2_BIB18) 1983; 305
Thoma (10.1016/0022-2836(87)90560-2_BIB40) 1985; 315
Widom (10.1016/0022-2836(87)90560-2_BIB44) 1985; 43
Flick (10.1016/0022-2836(87)90560-2_BIB15) 1986; 190
Liu-Johnson (10.1016/0022-2836(87)90560-2_BIB23) 1986; 47
Low (10.1016/0022-2836(87)90560-2_BIB24) 1986; 14
Widom (10.1016/0022-2836(87)90560-2_BIB45) 1986; 190
Drew (10.1016/0022-2836(87)90560-2_BIB8) 1984; 176
Lennard (10.1016/0022-2836(87)90560-2_BIB21) 1985; 4
References_xml – volume: 47
  start-page: 995
  year: 1986
  end-page: 1005
  ident: BIB23
  publication-title: Cell
– volume: 192
  start-page: 907
  year: 1986
  end-page: 918
  ident: BIB4
  publication-title: J. Mol. Biol
– volume: 43
  start-page: 207
  year: 1985
  end-page: 213
  ident: BIB44
  publication-title: Cell
– volume: 190
  start-page: 619
  year: 1986
  end-page: 633
  ident: BIB15
  publication-title: J. Mol. Biol
– volume: 15
  start-page: 885
  year: 1987
  end-page: 903
  ident: BIB30
  publication-title: Nucl. Acids Res
– volume: 117
  start-page: 53
  year: 1977
  end-page: 69
  ident: BIB25
  publication-title: J. Mol. Biol
– volume: 315
  start-page: 250
  year: 1985
  end-page: 252
  ident: BIB40
  publication-title: Nature (London)
– volume: 14
  start-page: 9291
  year: 1986
  end-page: 9309
  ident: BIB27
  publication-title: Nucl. Acids Res
– volume: 176
  start-page: 535
  year: 1984
  end-page: 557
  ident: BIB8
  publication-title: J. Mol. Biol
– volume: 326
  start-page: 886
  year: 1987
  end-page: 888
  ident: BIB20
  publication-title: Nature (London)
– volume: 124
  start-page: 391
  year: 1978
  end-page: 420
  ident: BIB26
  publication-title: J. Mol. Biol
– volume: 9
  start-page: 4267
  year: 1981
  end-page: 4283
  ident: BIB19
  publication-title: Nucl. Acids Res
– volume: 80
  start-page: 51
  year: 1983
  end-page: 55
  ident: BIB38
  publication-title: Proc. Nat. Acad. Sci., U.S.A
– volume: 195
  start-page: 143
  year: 1987
  end-page: 174
  ident: BIB9
  publication-title: J. Mol. Biol
– volume: 4
  start-page: 3473
  year: 1985
  end-page: 3482
  ident: BIB34
  publication-title: EMBO J
– volume: 311
  start-page: 532
  year: 1984
  end-page: 537
  ident: BIB35
  publication-title: Nature (London)
– volume: 4
  start-page: 3455
  year: 1985
  end-page: 3462
  ident: BIB21
  publication-title: EMBO J
– volume: 20
  start-page: 1033
  year: 1981
  end-page: 1042
  ident: BIB17
  publication-title: Biopolymers
– volume: 140
  start-page: 505
  year: 1980
  end-page: 529
  ident: BIB3
  publication-title: J. Mol. Biol
– volume: 37
  start-page: 491
  year: 1984
  end-page: 502
  ident: BIB10
  publication-title: Cell
– volume: 146
  start-page: 513
  year: 1981
  end-page: 537
  ident: BIB5
  publication-title: J. Mol. Biol
– volume: 73
  start-page: 1897
  year: 1976
  end-page: 1901
  ident: BIB14
  publication-title: Proc. Nat. Acad. Sci., U.S.A
– volume: 204
  start-page: 855
  year: 1979
  end-page: 858
  ident: BIB31
  publication-title: Science
– volume: 14
  start-page: 8735
  year: 1986
  end-page: 8754
  ident: BIB29
  publication-title: Nucl. Acids Res
– volume: 6
  start-page: 1805
  year: 1979
  end-page: 1816
  ident: BIB33
  publication-title: Nucl. Acids Res
– volume: 6
  start-page: 69
  year: 1987
  end-page: 74
  ident: BIB7
  publication-title: EMBO J
– volume: 190
  start-page: 177
  year: 1986
  end-page: 190
  ident: BIB39
  publication-title: J. Mol. Biol
– volume: 3
  start-page: 2605
  year: 1984
  end-page: 2611
  ident: BIB32
  publication-title: EMBO J
– volume: 5
  start-page: 3531
  year: 1986
  end-page: 3537
  ident: BIB42
  publication-title: EMBO J
– volume: 192
  start-page: 605
  year: 1986
  end-page: 632
  ident: BIB28
  publication-title: J. Mol. Biol
– volume: 15
  start-page: 3563
  year: 1987
  end-page: 3571
  ident: BIB2
  publication-title: Nucl. Acids Res
– volume: 83
  start-page: 403
  year: 1979
  end-page: 427
  ident: BIB41
  publication-title: J. Cell. Biol
– volume: 88
  start-page: 363
  year: 1978
  end-page: 371
  ident: BIB1
  publication-title: Eur. J. Biochem
– volume: 305
  start-page: 338
  year: 1983
  end-page: 340
  ident: BIB18
  publication-title: Nature (London)
– volume: 12
  start-page: 108
  year: 1987
  end-page: 112
  ident: BIB43
  publication-title: Trends Biochem. Sci
– volume: 186
  start-page: 773
  year: 1985
  end-page: 790
  ident: BIB11
  publication-title: J. Mol. Biol
– volume: 14
  start-page: 6785
  year: 1986
  end-page: 6801
  ident: BIB24
  publication-title: Nucl. Acids Res
– volume: 192
  start-page: 577
  year: 1986
  end-page: 591
  ident: BIB13
  publication-title: J. Mol. Biol
– volume: 234
  start-page: 213
  year: 1986
  end-page: 216
  ident: BIB16
  publication-title: Biochem. J
– volume: 190
  start-page: 411
  year: 1986
  end-page: 424
  ident: BIB45
  publication-title: J. Mol. Biol
– volume: 170
  start-page: 423
  year: 1983
  end-page: 446
  ident: BIB6
  publication-title: J. Mol. Biol
– volume: 42
  start-page: 281
  year: 1985
  end-page: 290
  ident: BIB22
  publication-title: Cell
– volume: 4
  start-page: 1025
  year: 1985
  end-page: 1032
  ident: BIB12
  publication-title: EMBO J
– volume: 191
  start-page: 659
  year: 1986
  end-page: 675
  ident: BIB36
  publication-title: J. Mol. Biol
– volume: 6
  start-page: 1387
  year: 1979
  end-page: 1415
  ident: BIB37
  publication-title: Nucl. Acids Res
– volume: 195
  start-page: 143
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB9
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(87)90333-0
– volume: 192
  start-page: 577
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB13
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90278-0
– volume: 6
  start-page: 69
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB7
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1987.tb04720.x
– volume: 117
  start-page: 53
  year: 1977
  ident: 10.1016/0022-2836(87)90560-2_BIB25
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(77)90022-5
– volume: 5
  start-page: 3531
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB42
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04679.x
– volume: 190
  start-page: 177
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB39
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90291-3
– volume: 20
  start-page: 1033
  year: 1981
  ident: 10.1016/0022-2836(87)90560-2_BIB17
  publication-title: Biopolymers
  doi: 10.1002/bip.1981.360200513
– volume: 14
  start-page: 6785
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB24
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/14.17.6785
– volume: 6
  start-page: 1805
  year: 1979
  ident: 10.1016/0022-2836(87)90560-2_BIB33
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/6.5.1805
– volume: 4
  start-page: 3473
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB34
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb04106.x
– volume: 83
  start-page: 403
  year: 1979
  ident: 10.1016/0022-2836(87)90560-2_BIB41
  publication-title: J. Cell. Biol
  doi: 10.1083/jcb.83.2.403
– volume: 80
  start-page: 51
  year: 1983
  ident: 10.1016/0022-2836(87)90560-2_BIB38
– volume: 192
  start-page: 605
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB28
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90280-9
– volume: 47
  start-page: 995
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB23
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90814-7
– volume: 12
  start-page: 108
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB43
  publication-title: Trends Biochem. Sci
  doi: 10.1016/0968-0004(87)90050-8
– volume: 305
  start-page: 338
  year: 1983
  ident: 10.1016/0022-2836(87)90560-2_BIB18
  publication-title: Nature (London)
  doi: 10.1038/305338a0
– volume: 73
  start-page: 1897
  year: 1976
  ident: 10.1016/0022-2836(87)90560-2_BIB14
– volume: 15
  start-page: 3563
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB2
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/15.8.3563
– volume: 15
  start-page: 885
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB30
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/15.3.885
– volume: 192
  start-page: 907
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB4
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90036-7
– volume: 311
  start-page: 532
  year: 1984
  ident: 10.1016/0022-2836(87)90560-2_BIB35
  publication-title: Nature (London)
  doi: 10.1038/311532a0
– volume: 88
  start-page: 363
  year: 1978
  ident: 10.1016/0022-2836(87)90560-2_BIB1
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1978.tb12457.x
– volume: 37
  start-page: 491
  year: 1984
  ident: 10.1016/0022-2836(87)90560-2_BIB10
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90379-9
– volume: 9
  start-page: 4267
  year: 1981
  ident: 10.1016/0022-2836(87)90560-2_BIB19
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/9.17.4267
– volume: 124
  start-page: 391
  year: 1978
  ident: 10.1016/0022-2836(87)90560-2_BIB26
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(78)90306-6
– volume: 204
  start-page: 855
  year: 1979
  ident: 10.1016/0022-2836(87)90560-2_BIB31
  publication-title: Science
  doi: 10.1126/science.441739
– volume: 146
  start-page: 513
  year: 1981
  ident: 10.1016/0022-2836(87)90560-2_BIB5
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(81)90045-0
– volume: 190
  start-page: 619
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB15
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90247-0
– volume: 315
  start-page: 250
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB40
  publication-title: Nature (London)
  doi: 10.1038/315250a0
– volume: 190
  start-page: 411
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB45
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90012-4
– volume: 14
  start-page: 9291
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB27
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/14.23.9291
– volume: 4
  start-page: 3455
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB21
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb04104.x
– volume: 14
  start-page: 8735
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB29
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/14.22.8735
– volume: 326
  start-page: 886
  year: 1987
  ident: 10.1016/0022-2836(87)90560-2_BIB20
  publication-title: Nature (London)
  doi: 10.1038/326886a0
– volume: 186
  start-page: 773
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB11
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(85)90396-1
– volume: 234
  start-page: 213
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB16
  publication-title: Biochem. J
  doi: 10.1042/bj2340213
– volume: 42
  start-page: 281
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB22
  publication-title: Cell
  doi: 10.1016/S0092-8674(85)80123-9
– volume: 3
  start-page: 2605
  year: 1984
  ident: 10.1016/0022-2836(87)90560-2_BIB32
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1984.tb02181.x
– volume: 4
  start-page: 1025
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB12
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb03734.x
– volume: 140
  start-page: 505
  year: 1980
  ident: 10.1016/0022-2836(87)90560-2_BIB3
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(80)90268-5
– volume: 170
  start-page: 423
  year: 1983
  ident: 10.1016/0022-2836(87)90560-2_BIB6
  publication-title: J. Mol. Biol
  doi: 10.1016/S0022-2836(83)80156-9
– volume: 6
  start-page: 1387
  year: 1979
  ident: 10.1016/0022-2836(87)90560-2_BIB37
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/6.4.1387
– volume: 43
  start-page: 207
  year: 1985
  ident: 10.1016/0022-2836(87)90560-2_BIB44
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90025-X
– volume: 176
  start-page: 535
  year: 1984
  ident: 10.1016/0022-2836(87)90560-2_BIB8
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(84)90176-1
– volume: 191
  start-page: 659
  year: 1986
  ident: 10.1016/0022-2836(87)90560-2_BIB36
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(86)90452-3
SSID ssj0005348
Score 1.4618381
Snippet Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three...
The authors describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5.
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Base Sequence
DNA, Bacterial - metabolism
Genes
Histones - metabolism
Methylation
Models, Molecular
Molecular Sequence Data
Nucleic Acid Conformation
Nucleosomes - ultrastructure
Protein Binding
Protein Conformation
Title Structural analysis of a reconstituted DNA containing three histone octamers and histone H5
URI https://dx.doi.org/10.1016/0022-2836(87)90560-2
https://www.ncbi.nlm.nih.gov/pubmed/3441008
https://www.proquest.com/docview/14939519
https://www.proquest.com/docview/77963750
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AKRWK
  dateStart: 19590401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQKwQXVAoVCxR84ABaZdnEThwfqy0QVWoP0EqVOES245xgF8EiAb-e569kK1gVeokiy4kjz4v9ZjwfhLwwUtU5q_usBxvOuIvLUVr2mRWWM1tarn1U2ulZ1Vzwk8ty46DdR5es9cz8-mtcyU2kijbI1UXJ_odkh5eiAfeQL66QMK7_JOMPPvmrT5yhNpKLqKlXc6MXQDc9PjvyLumhGIQrzWNjomEwzJVZK2e79qcIqbEpt5DWz6ma7jRmbxqI8FfrD4kaQApLxfvZaPBbqHC0cap-OEp7MhstDc4W4X3WytH8lUJgRn-jFA4AjhLzWYdVdF7LrK5C2pZhmQ1-uBFPbGPR5KFoT9x_y7D4_rG0ByvDMBz4t7eWSDC4eYygvJo428f5omctfB_s07uFqCpX5uLd5YYfEON1Sinvuqf4yrx6PbS9rMWrONA2_rJNP_E85XyP3IuyokcBLffJLbvcJ7dDydGf--TOIlX4e0A-jvihCT901VNFr-CHAj90xA_1-KERKjThB2_ohsamfEgu3r45XzRZLLaRGbCYdWaMZbyb9zbvGGOlhTqDG-fhJ6Ehgzgyt6cW3Eqb66IyVW1U1ZuK2aLoS6nZAdlZYoRHhGqWd31hNMevD_W907myHc9FL7guJNcTwtIUtiZmoncFUT61yeXQTXzrJr6tResnvi0mJBue-hIysVzTXyTptJFNBpbYAlHXPPk8CbOFRNwJmlra1fdv0JMlg0oit_cQAjsaWPiEHAQUDN_KoHiAcD--8Wc9IXfHv_Ip2QFE7CEY8Vo_84j-DdePra8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analysis+of+a+reconstituted+DNA+containing+three+histone+octamers+and+histone+H5&rft.jtitle=Journal+of+molecular+biology&rft.au=Drew%2C+Horace+R.&rft.au=McCall%2C+Maxine+J.&rft.date=1987-10-05&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.eissn=1089-8638&rft.volume=197&rft.issue=3&rft.spage=485&rft.epage=511&rft_id=info:doi/10.1016%2F0022-2836%2887%2990560-2&rft.externalDocID=0022283687905602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon