Structural analysis of a reconstituted DNA containing three histone octamers and histone H5
Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some questio...
Saved in:
Published in | Journal of molecular biology Vol. 197; no. 3; pp. 485 - 511 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
05.10.1987
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2836 1089-8638 |
DOI | 10.1016/0022-2836(87)90560-2 |
Cover
Abstract | Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5.
First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer.
Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another.
Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. To learn more about this subject, we reconstituted histone H5 onto the complex of the 440 base-pair DNA containing three histone octamers, and then probed for the locations of histone H5 by digestion with micrococcal nuclease and DNase I. The regions of strongest protection from cleavage upon the addition of histone H5 are found: in the DNA that joins cores 1 and 2, and cores 2 and 3; near the dyads of cores 2 and 3; and at either end of the DNA. When superimposed onto a model of the structure, these patches of protection trace out an image of the histone H5 molecule that is in good agreement with earlier work. It seems plausible that the long carboxy-terminal domain (or “tail”) of each H5 protein associates with the DNA between nucleosome cores, while its central globular domain (or “head”) lies close to a dyad.
In the Appendix, the relation between DNase I cutting and the energy of DNA positioning is discussed. In addition, the prospects for assembly of a 300 Å fibre
in vitro are considered (1 Å = 0.1 nm). |
---|---|
AbstractList | Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5.
First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer.
Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another.
Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. To learn more about this subject, we reconstituted histone H5 onto the complex of the 440 base-pair DNA containing three histone octamers, and then probed for the locations of histone H5 by digestion with micrococcal nuclease and DNase I. The regions of strongest protection from cleavage upon the addition of histone H5 are found: in the DNA that joins cores 1 and 2, and cores 2 and 3; near the dyads of cores 2 and 3; and at either end of the DNA. When superimposed onto a model of the structure, these patches of protection trace out an image of the histone H5 molecule that is in good agreement with earlier work. It seems plausible that the long carboxy-terminal domain (or “tail”) of each H5 protein associates with the DNA between nucleosome cores, while its central globular domain (or “head”) lies close to a dyad.
In the Appendix, the relation between DNase I cutting and the energy of DNA positioning is discussed. In addition, the prospects for assembly of a 300 Å fibre
in vitro are considered (1 Å = 0.1 nm). Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. The authors describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex.Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex. |
Author | McCall, Maxine J. Drew, Horace R. |
Author_xml | – sequence: 1 givenname: Horace R. surname: Drew fullname: Drew, Horace R. organization: CSIRO Division of Molecular Biology P.O. Box 184, North Ryde 2113, NSW, Australia – sequence: 2 givenname: Maxine J. surname: McCall fullname: McCall, Maxine J. organization: Department of Inorganic Chemistry University of Sydney, Sydney 2006, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/3441008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUha0KBAPlDUDyqqKLwLUdO3YXSCNaChKCRdsVC8vj3ICrTAK2g8Tb18NMWXRRVv655xxdfWePbA3jgIQcMjhhwNQpAOcV10Id6-azAamg4h_IjIE2lVZCb5HZm2SX7KX0GwCkqPUO2RF1zQD0jNz9yHHyeYqup25w_UsKiY4ddTSiH4eUQ54ytvTrzZyWd3ZhCMM9zQ8RkT6ElMtOdPTZLTGmktC-fV7Kj2S7c33Cg825T35dfPt5flld336_Op9fV16AyJX3KOoWOmStEEKiZotykZ3XhksDmglWq4bXaJAtuPJKe6c6rwRy3kmzEPvk0zr3MY5PE6ZslyF57Hs34Dgl2zRGiUbCu0JWG2EkM0V4tBFOiyW29jGGpYsvdoOtzL-s5z6OKUXsrA_Z5VAARRd6y8CuKrIr_nbF3-rGvlZkeTHX_5j_xr9jO1vbsKB8Dhht8gEHj20oVWXbjuH_AX8Aam6nMw |
CitedBy_id | crossref_primary_10_1002__SICI_1098_2744_199612_17_4_192__AID_MC2_3_0_CO_2_G crossref_primary_10_1242_jcs_1992_Supplement_16_2 crossref_primary_10_1016_0014_5793_88_80750_6 crossref_primary_10_1038_26521 crossref_primary_10_1016_0167_4781_91_90210_D crossref_primary_10_1016_S0006_3495_98_77961_5 crossref_primary_10_1074_jbc_271_38_22937 crossref_primary_10_1002__SICI_1097_0282_1997_44_4_423__AID_BIP6_3_0_CO_2_M crossref_primary_10_1016_j_jmb_2008_12_048 crossref_primary_10_1074_jbc_271_40_24325 crossref_primary_10_1128_mcb_13_6_3434_3444_1993 crossref_primary_10_1002_bip_22411 crossref_primary_10_1016_0167_4781_91_90134_8 crossref_primary_10_1016_S0021_9258_18_42143_6 crossref_primary_10_1074_jbc_270_9_4197 crossref_primary_10_1074_jbc_270_44_26473 crossref_primary_10_1016_j_bpj_2014_05_055 crossref_primary_10_1016_S0021_9258_19_36553_6 crossref_primary_10_1016_j_tig_2015_09_003 crossref_primary_10_1101_gad_5_6_1102 crossref_primary_10_1016_S0304_419X_97_00010_3 crossref_primary_10_1080_07391102_1994_10508742 crossref_primary_10_1016_0092_8674_89_90431_5 crossref_primary_10_1093_nar_gks893 crossref_primary_10_1006_jmbi_1997_0899 crossref_primary_10_1016_0092_8674_88_90240_1 crossref_primary_10_1016_0022_2836_88_90124_6 crossref_primary_10_1016_0022_2836_90_90195_R crossref_primary_10_1016_S0021_9258_18_51553_2 crossref_primary_10_1016_0022_2836_89_90390_2 crossref_primary_10_1096_fj_01_0345com crossref_primary_10_1515_bchm_1998_379_4_5_401 |
Cites_doi | 10.1016/0022-2836(87)90333-0 10.1016/0022-2836(86)90278-0 10.1002/j.1460-2075.1987.tb04720.x 10.1016/0022-2836(77)90022-5 10.1002/j.1460-2075.1986.tb04679.x 10.1016/0022-2836(86)90291-3 10.1002/bip.1981.360200513 10.1093/nar/14.17.6785 10.1093/nar/6.5.1805 10.1002/j.1460-2075.1985.tb04106.x 10.1083/jcb.83.2.403 10.1016/0022-2836(86)90280-9 10.1016/0092-8674(86)90814-7 10.1016/0968-0004(87)90050-8 10.1038/305338a0 10.1093/nar/15.8.3563 10.1093/nar/15.3.885 10.1016/0022-2836(86)90036-7 10.1038/311532a0 10.1111/j.1432-1033.1978.tb12457.x 10.1016/0092-8674(84)90379-9 10.1093/nar/9.17.4267 10.1016/0022-2836(78)90306-6 10.1126/science.441739 10.1016/0022-2836(81)90045-0 10.1016/0022-2836(86)90247-0 10.1038/315250a0 10.1016/0022-2836(86)90012-4 10.1093/nar/14.23.9291 10.1002/j.1460-2075.1985.tb04104.x 10.1093/nar/14.22.8735 10.1038/326886a0 10.1016/0022-2836(85)90396-1 10.1042/bj2340213 10.1016/S0092-8674(85)80123-9 10.1002/j.1460-2075.1984.tb02181.x 10.1002/j.1460-2075.1985.tb03734.x 10.1016/0022-2836(80)90268-5 10.1016/S0022-2836(83)80156-9 10.1093/nar/6.4.1387 10.1016/0092-8674(85)90025-X 10.1016/0022-2836(84)90176-1 10.1016/0022-2836(86)90452-3 |
ContentType | Journal Article |
Copyright | 1987 |
Copyright_xml | – notice: 1987 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
DOI | 10.1016/0022-2836(87)90560-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 511 |
ExternalDocumentID | 3441008 10_1016_0022_2836_87_90560_2 0022283687905602 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M -DZ -ET -~X .55 .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFMIJ AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GX1 HLW HMG HVGLF HX~ HZ~ H~9 IH2 IHE J1W K-O KOM LG5 LUGTX LX2 LZ5 M41 MO0 MVM N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SDF SDG SDP SES SEW SIN SPCBC SSI SSU SSZ T5K TWZ UQL VH1 VQA WH7 WUQ X7M XJT XOL XPP Y6R YQT YYP ZGI ZKB ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7TM AGCQF 7X8 |
ID | FETCH-LOGICAL-c303t-cce34d0fe1d3335e81bd335fc892590813146724e9e1b26c68ca6fc63e22f59b3 |
ISSN | 0022-2836 |
IngestDate | Sun Sep 28 06:20:25 EDT 2025 Fri Jul 11 16:52:38 EDT 2025 Wed Feb 19 02:32:54 EST 2025 Wed Oct 01 05:07:42 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Fri Feb 23 02:33:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-cce34d0fe1d3335e81bd335fc892590813146724e9e1b26c68ca6fc63e22f59b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 3441008 |
PQID | 14939519 |
PQPubID | 23462 |
PageCount | 27 |
ParticipantIDs | proquest_miscellaneous_77963750 proquest_miscellaneous_14939519 pubmed_primary_3441008 crossref_citationtrail_10_1016_0022_2836_87_90560_2 crossref_primary_10_1016_0022_2836_87_90560_2 elsevier_sciencedirect_doi_10_1016_0022_2836_87_90560_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1987-10-05 |
PublicationDateYYYYMMDD | 1987-10-05 |
PublicationDate_xml | – month: 10 year: 1987 text: 1987-10-05 day: 05 |
PublicationDecade | 1980 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 1987 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fairall, Rhodes, Klug (BIB13) 1986; 192 Linxweiler, Horz (BIB22) 1985; 42 Widom, Klug (BIB44) 1985; 43 Klug, Lutter (BIB19) 1981; 9 Lennard, Thomas (BIB21) 1985; 4 Satchwell, Drew, Travers (BIB36) 1986; 191 Travers (BIB43) 1987; 12 Widom (BIB45) 1986; 190 Thoma, Simpson (BIB40) 1985; 315 Liu-Johnson, Gartenberg, Crothers (BIB23) 1986; 47 Simpson, Kunzler (BIB37) 1979; 6 Finch, Klug (BIB14) 1976; 73 Dingwall, Dilworth, Black, Kearsey, Cox, Laskey (BIB7) 1987; 6 Drew, Travers (BIB11) 1985; 186 McClellan, Palacek, Lilley (BIB27) 1986; 14 Thoma (BIB39) 1986; 190 Cockell, Rhodes, Klug (BIB6) 1983; 170 Drew, Weeks, Travers (BIB12) 1985; 4 Portugal, Waring (BIB30) 1987; 15 Calladine, Drew (BIB4) 1986; 192 Lutter (BIB25) 1977; 117 Lutter (BIB26) 1978; 124 Butler, Thomas (BIB3) 1980; 140 Drew (BIB8) 1984; 176 Drew, Calladine (BIB9) 1987; 195 Flick, Eissenberg, Elgin (BIB15) 1986; 190 Rhodes (BIB33) 1979; 6 Simpson, Stafford (BIB38) 1983; 80 Portugal, Waring (BIB29) 1986; 14 Thoma, Koller, Klug (BIB41) 1979; 83 Aviles, Chapman, Kneale, Crane-Robinson, Bradbury (BIB1) 1978; 88 Low, Drew, Waring (BIB24) 1986; 14 Drew, Travers (BIB10) 1984; 37 Fox (BIB16) 1986; 234 Koudelka, Harrison, Ptashne (BIB20) 1987; 326 Caron, Thomas (BIB5) 1981; 146 Hill, Stollar (BIB18) 1983; 305 Richmond, Finch, Rushton, Rhodes, Klug (BIB35) 1984; 311 Brown, Sutcliffe (BIB2) 1987; 15 Prunell, Kornberg, Lutter, Klug, Levitt, Crick (BIB31) 1979; 204 Thomas, Wilson (BIB42) 1986; 5 Oefner, Suck (BIB28) 1986; 192 Gotoh, Tagashira (BIB17) 1981; 20 Rhodes (BIB34) 1985; 4 Ramsay, Felsenfeld, Rushton, McGhee (BIB32) 1984; 3 Fox (10.1016/0022-2836(87)90560-2_BIB16) 1986; 234 Rhodes (10.1016/0022-2836(87)90560-2_BIB33) 1979; 6 Thoma (10.1016/0022-2836(87)90560-2_BIB41) 1979; 83 Finch (10.1016/0022-2836(87)90560-2_BIB14) 1976; 73 Simpson (10.1016/0022-2836(87)90560-2_BIB38) 1983; 80 Prunell (10.1016/0022-2836(87)90560-2_BIB31) 1979; 204 Cockell (10.1016/0022-2836(87)90560-2_BIB6) 1983; 170 Koudelka (10.1016/0022-2836(87)90560-2_BIB20) 1987; 326 Klug (10.1016/0022-2836(87)90560-2_BIB19) 1981; 9 Linxweiler (10.1016/0022-2836(87)90560-2_BIB22) 1985; 42 Rhodes (10.1016/0022-2836(87)90560-2_BIB34) 1985; 4 Simpson (10.1016/0022-2836(87)90560-2_BIB37) 1979; 6 Caron (10.1016/0022-2836(87)90560-2_BIB5) 1981; 146 Thoma (10.1016/0022-2836(87)90560-2_BIB39) 1986; 190 Calladine (10.1016/0022-2836(87)90560-2_BIB4) 1986; 192 Portugal (10.1016/0022-2836(87)90560-2_BIB29) 1986; 14 Fairall (10.1016/0022-2836(87)90560-2_BIB13) 1986; 192 Lutter (10.1016/0022-2836(87)90560-2_BIB25) 1977; 117 Lutter (10.1016/0022-2836(87)90560-2_BIB26) 1978; 124 Portugal (10.1016/0022-2836(87)90560-2_BIB30) 1987; 15 Ramsay (10.1016/0022-2836(87)90560-2_BIB32) 1984; 3 Drew (10.1016/0022-2836(87)90560-2_BIB10) 1984; 37 Drew (10.1016/0022-2836(87)90560-2_BIB9) 1987; 195 Gotoh (10.1016/0022-2836(87)90560-2_BIB17) 1981; 20 Drew (10.1016/0022-2836(87)90560-2_BIB12) 1985; 4 Thomas (10.1016/0022-2836(87)90560-2_BIB42) 1986; 5 Butler (10.1016/0022-2836(87)90560-2_BIB3) 1980; 140 Dingwall (10.1016/0022-2836(87)90560-2_BIB7) 1987; 6 McClellan (10.1016/0022-2836(87)90560-2_BIB27) 1986; 14 Oefner (10.1016/0022-2836(87)90560-2_BIB28) 1986; 192 Brown (10.1016/0022-2836(87)90560-2_BIB2) 1987; 15 Richmond (10.1016/0022-2836(87)90560-2_BIB35) 1984; 311 Satchwell (10.1016/0022-2836(87)90560-2_BIB36) 1986; 191 Drew (10.1016/0022-2836(87)90560-2_BIB11) 1985; 186 Travers (10.1016/0022-2836(87)90560-2_BIB43) 1987; 12 Aviles (10.1016/0022-2836(87)90560-2_BIB1) 1978; 88 Hill (10.1016/0022-2836(87)90560-2_BIB18) 1983; 305 Thoma (10.1016/0022-2836(87)90560-2_BIB40) 1985; 315 Widom (10.1016/0022-2836(87)90560-2_BIB44) 1985; 43 Flick (10.1016/0022-2836(87)90560-2_BIB15) 1986; 190 Liu-Johnson (10.1016/0022-2836(87)90560-2_BIB23) 1986; 47 Low (10.1016/0022-2836(87)90560-2_BIB24) 1986; 14 Widom (10.1016/0022-2836(87)90560-2_BIB45) 1986; 190 Drew (10.1016/0022-2836(87)90560-2_BIB8) 1984; 176 Lennard (10.1016/0022-2836(87)90560-2_BIB21) 1985; 4 |
References_xml | – volume: 47 start-page: 995 year: 1986 end-page: 1005 ident: BIB23 publication-title: Cell – volume: 192 start-page: 907 year: 1986 end-page: 918 ident: BIB4 publication-title: J. Mol. Biol – volume: 43 start-page: 207 year: 1985 end-page: 213 ident: BIB44 publication-title: Cell – volume: 190 start-page: 619 year: 1986 end-page: 633 ident: BIB15 publication-title: J. Mol. Biol – volume: 15 start-page: 885 year: 1987 end-page: 903 ident: BIB30 publication-title: Nucl. Acids Res – volume: 117 start-page: 53 year: 1977 end-page: 69 ident: BIB25 publication-title: J. Mol. Biol – volume: 315 start-page: 250 year: 1985 end-page: 252 ident: BIB40 publication-title: Nature (London) – volume: 14 start-page: 9291 year: 1986 end-page: 9309 ident: BIB27 publication-title: Nucl. Acids Res – volume: 176 start-page: 535 year: 1984 end-page: 557 ident: BIB8 publication-title: J. Mol. Biol – volume: 326 start-page: 886 year: 1987 end-page: 888 ident: BIB20 publication-title: Nature (London) – volume: 124 start-page: 391 year: 1978 end-page: 420 ident: BIB26 publication-title: J. Mol. Biol – volume: 9 start-page: 4267 year: 1981 end-page: 4283 ident: BIB19 publication-title: Nucl. Acids Res – volume: 80 start-page: 51 year: 1983 end-page: 55 ident: BIB38 publication-title: Proc. Nat. Acad. Sci., U.S.A – volume: 195 start-page: 143 year: 1987 end-page: 174 ident: BIB9 publication-title: J. Mol. Biol – volume: 4 start-page: 3473 year: 1985 end-page: 3482 ident: BIB34 publication-title: EMBO J – volume: 311 start-page: 532 year: 1984 end-page: 537 ident: BIB35 publication-title: Nature (London) – volume: 4 start-page: 3455 year: 1985 end-page: 3462 ident: BIB21 publication-title: EMBO J – volume: 20 start-page: 1033 year: 1981 end-page: 1042 ident: BIB17 publication-title: Biopolymers – volume: 140 start-page: 505 year: 1980 end-page: 529 ident: BIB3 publication-title: J. Mol. Biol – volume: 37 start-page: 491 year: 1984 end-page: 502 ident: BIB10 publication-title: Cell – volume: 146 start-page: 513 year: 1981 end-page: 537 ident: BIB5 publication-title: J. Mol. Biol – volume: 73 start-page: 1897 year: 1976 end-page: 1901 ident: BIB14 publication-title: Proc. Nat. Acad. Sci., U.S.A – volume: 204 start-page: 855 year: 1979 end-page: 858 ident: BIB31 publication-title: Science – volume: 14 start-page: 8735 year: 1986 end-page: 8754 ident: BIB29 publication-title: Nucl. Acids Res – volume: 6 start-page: 1805 year: 1979 end-page: 1816 ident: BIB33 publication-title: Nucl. Acids Res – volume: 6 start-page: 69 year: 1987 end-page: 74 ident: BIB7 publication-title: EMBO J – volume: 190 start-page: 177 year: 1986 end-page: 190 ident: BIB39 publication-title: J. Mol. Biol – volume: 3 start-page: 2605 year: 1984 end-page: 2611 ident: BIB32 publication-title: EMBO J – volume: 5 start-page: 3531 year: 1986 end-page: 3537 ident: BIB42 publication-title: EMBO J – volume: 192 start-page: 605 year: 1986 end-page: 632 ident: BIB28 publication-title: J. Mol. Biol – volume: 15 start-page: 3563 year: 1987 end-page: 3571 ident: BIB2 publication-title: Nucl. Acids Res – volume: 83 start-page: 403 year: 1979 end-page: 427 ident: BIB41 publication-title: J. Cell. Biol – volume: 88 start-page: 363 year: 1978 end-page: 371 ident: BIB1 publication-title: Eur. J. Biochem – volume: 305 start-page: 338 year: 1983 end-page: 340 ident: BIB18 publication-title: Nature (London) – volume: 12 start-page: 108 year: 1987 end-page: 112 ident: BIB43 publication-title: Trends Biochem. Sci – volume: 186 start-page: 773 year: 1985 end-page: 790 ident: BIB11 publication-title: J. Mol. Biol – volume: 14 start-page: 6785 year: 1986 end-page: 6801 ident: BIB24 publication-title: Nucl. Acids Res – volume: 192 start-page: 577 year: 1986 end-page: 591 ident: BIB13 publication-title: J. Mol. Biol – volume: 234 start-page: 213 year: 1986 end-page: 216 ident: BIB16 publication-title: Biochem. J – volume: 190 start-page: 411 year: 1986 end-page: 424 ident: BIB45 publication-title: J. Mol. Biol – volume: 170 start-page: 423 year: 1983 end-page: 446 ident: BIB6 publication-title: J. Mol. Biol – volume: 42 start-page: 281 year: 1985 end-page: 290 ident: BIB22 publication-title: Cell – volume: 4 start-page: 1025 year: 1985 end-page: 1032 ident: BIB12 publication-title: EMBO J – volume: 191 start-page: 659 year: 1986 end-page: 675 ident: BIB36 publication-title: J. Mol. Biol – volume: 6 start-page: 1387 year: 1979 end-page: 1415 ident: BIB37 publication-title: Nucl. Acids Res – volume: 195 start-page: 143 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB9 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(87)90333-0 – volume: 192 start-page: 577 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB13 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90278-0 – volume: 6 start-page: 69 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB7 publication-title: EMBO J doi: 10.1002/j.1460-2075.1987.tb04720.x – volume: 117 start-page: 53 year: 1977 ident: 10.1016/0022-2836(87)90560-2_BIB25 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(77)90022-5 – volume: 5 start-page: 3531 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB42 publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04679.x – volume: 190 start-page: 177 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB39 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90291-3 – volume: 20 start-page: 1033 year: 1981 ident: 10.1016/0022-2836(87)90560-2_BIB17 publication-title: Biopolymers doi: 10.1002/bip.1981.360200513 – volume: 14 start-page: 6785 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB24 publication-title: Nucl. Acids Res doi: 10.1093/nar/14.17.6785 – volume: 6 start-page: 1805 year: 1979 ident: 10.1016/0022-2836(87)90560-2_BIB33 publication-title: Nucl. Acids Res doi: 10.1093/nar/6.5.1805 – volume: 4 start-page: 3473 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB34 publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb04106.x – volume: 83 start-page: 403 year: 1979 ident: 10.1016/0022-2836(87)90560-2_BIB41 publication-title: J. Cell. Biol doi: 10.1083/jcb.83.2.403 – volume: 80 start-page: 51 year: 1983 ident: 10.1016/0022-2836(87)90560-2_BIB38 – volume: 192 start-page: 605 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB28 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90280-9 – volume: 47 start-page: 995 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB23 publication-title: Cell doi: 10.1016/0092-8674(86)90814-7 – volume: 12 start-page: 108 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB43 publication-title: Trends Biochem. Sci doi: 10.1016/0968-0004(87)90050-8 – volume: 305 start-page: 338 year: 1983 ident: 10.1016/0022-2836(87)90560-2_BIB18 publication-title: Nature (London) doi: 10.1038/305338a0 – volume: 73 start-page: 1897 year: 1976 ident: 10.1016/0022-2836(87)90560-2_BIB14 – volume: 15 start-page: 3563 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB2 publication-title: Nucl. Acids Res doi: 10.1093/nar/15.8.3563 – volume: 15 start-page: 885 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB30 publication-title: Nucl. Acids Res doi: 10.1093/nar/15.3.885 – volume: 192 start-page: 907 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB4 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90036-7 – volume: 311 start-page: 532 year: 1984 ident: 10.1016/0022-2836(87)90560-2_BIB35 publication-title: Nature (London) doi: 10.1038/311532a0 – volume: 88 start-page: 363 year: 1978 ident: 10.1016/0022-2836(87)90560-2_BIB1 publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1978.tb12457.x – volume: 37 start-page: 491 year: 1984 ident: 10.1016/0022-2836(87)90560-2_BIB10 publication-title: Cell doi: 10.1016/0092-8674(84)90379-9 – volume: 9 start-page: 4267 year: 1981 ident: 10.1016/0022-2836(87)90560-2_BIB19 publication-title: Nucl. Acids Res doi: 10.1093/nar/9.17.4267 – volume: 124 start-page: 391 year: 1978 ident: 10.1016/0022-2836(87)90560-2_BIB26 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(78)90306-6 – volume: 204 start-page: 855 year: 1979 ident: 10.1016/0022-2836(87)90560-2_BIB31 publication-title: Science doi: 10.1126/science.441739 – volume: 146 start-page: 513 year: 1981 ident: 10.1016/0022-2836(87)90560-2_BIB5 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(81)90045-0 – volume: 190 start-page: 619 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB15 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90247-0 – volume: 315 start-page: 250 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB40 publication-title: Nature (London) doi: 10.1038/315250a0 – volume: 190 start-page: 411 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB45 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90012-4 – volume: 14 start-page: 9291 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB27 publication-title: Nucl. Acids Res doi: 10.1093/nar/14.23.9291 – volume: 4 start-page: 3455 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB21 publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb04104.x – volume: 14 start-page: 8735 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB29 publication-title: Nucl. Acids Res doi: 10.1093/nar/14.22.8735 – volume: 326 start-page: 886 year: 1987 ident: 10.1016/0022-2836(87)90560-2_BIB20 publication-title: Nature (London) doi: 10.1038/326886a0 – volume: 186 start-page: 773 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB11 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(85)90396-1 – volume: 234 start-page: 213 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB16 publication-title: Biochem. J doi: 10.1042/bj2340213 – volume: 42 start-page: 281 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB22 publication-title: Cell doi: 10.1016/S0092-8674(85)80123-9 – volume: 3 start-page: 2605 year: 1984 ident: 10.1016/0022-2836(87)90560-2_BIB32 publication-title: EMBO J doi: 10.1002/j.1460-2075.1984.tb02181.x – volume: 4 start-page: 1025 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB12 publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb03734.x – volume: 140 start-page: 505 year: 1980 ident: 10.1016/0022-2836(87)90560-2_BIB3 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(80)90268-5 – volume: 170 start-page: 423 year: 1983 ident: 10.1016/0022-2836(87)90560-2_BIB6 publication-title: J. Mol. Biol doi: 10.1016/S0022-2836(83)80156-9 – volume: 6 start-page: 1387 year: 1979 ident: 10.1016/0022-2836(87)90560-2_BIB37 publication-title: Nucl. Acids Res doi: 10.1093/nar/6.4.1387 – volume: 43 start-page: 207 year: 1985 ident: 10.1016/0022-2836(87)90560-2_BIB44 publication-title: Cell doi: 10.1016/0092-8674(85)90025-X – volume: 176 start-page: 535 year: 1984 ident: 10.1016/0022-2836(87)90560-2_BIB8 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(84)90176-1 – volume: 191 start-page: 659 year: 1986 ident: 10.1016/0022-2836(87)90560-2_BIB36 publication-title: J. Mol. Biol doi: 10.1016/0022-2836(86)90452-3 |
SSID | ssj0005348 |
Score | 1.4618381 |
Snippet | Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three... The authors describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 485 |
SubjectTerms | Base Sequence DNA, Bacterial - metabolism Genes Histones - metabolism Methylation Models, Molecular Molecular Sequence Data Nucleic Acid Conformation Nucleosomes - ultrastructure Protein Binding Protein Conformation |
Title | Structural analysis of a reconstituted DNA containing three histone octamers and histone H5 |
URI | https://dx.doi.org/10.1016/0022-2836(87)90560-2 https://www.ncbi.nlm.nih.gov/pubmed/3441008 https://www.proquest.com/docview/14939519 https://www.proquest.com/docview/77963750 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1089-8638 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AKRWK dateStart: 19590401 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQKwQXVAoVCxR84ABaZdnEThwfqy0QVWoP0EqVOES245xgF8EiAb-e569kK1gVeokiy4kjz4v9ZjwfhLwwUtU5q_usBxvOuIvLUVr2mRWWM1tarn1U2ulZ1Vzwk8ty46DdR5es9cz8-mtcyU2kijbI1UXJ_odkh5eiAfeQL66QMK7_JOMPPvmrT5yhNpKLqKlXc6MXQDc9PjvyLumhGIQrzWNjomEwzJVZK2e79qcIqbEpt5DWz6ma7jRmbxqI8FfrD4kaQApLxfvZaPBbqHC0cap-OEp7MhstDc4W4X3WytH8lUJgRn-jFA4AjhLzWYdVdF7LrK5C2pZhmQ1-uBFPbGPR5KFoT9x_y7D4_rG0ByvDMBz4t7eWSDC4eYygvJo428f5omctfB_s07uFqCpX5uLd5YYfEON1Sinvuqf4yrx6PbS9rMWrONA2_rJNP_E85XyP3IuyokcBLffJLbvcJ7dDydGf--TOIlX4e0A-jvihCT901VNFr-CHAj90xA_1-KERKjThB2_ohsamfEgu3r45XzRZLLaRGbCYdWaMZbyb9zbvGGOlhTqDG-fhJ6Ehgzgyt6cW3Eqb66IyVW1U1ZuK2aLoS6nZAdlZYoRHhGqWd31hNMevD_W907myHc9FL7guJNcTwtIUtiZmoncFUT61yeXQTXzrJr6tResnvi0mJBue-hIysVzTXyTptJFNBpbYAlHXPPk8CbOFRNwJmlra1fdv0JMlg0oit_cQAjsaWPiEHAQUDN_KoHiAcD--8Wc9IXfHv_Ip2QFE7CEY8Vo_84j-DdePra8 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analysis+of+a+reconstituted+DNA+containing+three+histone+octamers+and+histone+H5&rft.jtitle=Journal+of+molecular+biology&rft.au=Drew%2C+Horace+R.&rft.au=McCall%2C+Maxine+J.&rft.date=1987-10-05&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.eissn=1089-8638&rft.volume=197&rft.issue=3&rft.spage=485&rft.epage=511&rft_id=info:doi/10.1016%2F0022-2836%2887%2990560-2&rft.externalDocID=0022283687905602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |