Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing

Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of noniden...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 18; no. 2; pp. 392 - 399
Main Authors Zhang, Rongjing, Toonder, Jaap den, Onck, Patrick R
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.05.2022
Subjects
Online AccessGet full text
ISSN1744-683X
1744-6848
1744-6848
DOI10.1039/d1sm01680f

Cover

Abstract Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns. Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating.
AbstractList Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns. Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating.
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.
Author Onck, Patrick R
Zhang, Rongjing
Toonder, Jaap den
AuthorAffiliation University of Groningen
Zernike Institute for Advanced Materials
Department of Mechanical Engineering and Institute for Complex Molecular Systems
Eindhoven University of Technology
AuthorAffiliation_xml – name: Zernike Institute for Advanced Materials
– name: University of Groningen
– name: Department of Mechanical Engineering and Institute for Complex Molecular Systems
– name: Eindhoven University of Technology
Author_xml – sequence: 1
  givenname: Rongjing
  surname: Zhang
  fullname: Zhang, Rongjing
– sequence: 2
  givenname: Jaap den
  surname: Toonder
  fullname: Toonder, Jaap den
– sequence: 3
  givenname: Patrick R
  surname: Onck
  fullname: Onck, Patrick R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35535750$$D View this record in MEDLINE/PubMed
BookMark eNpt0slrVTEUBvAgFTvoxr0ScCPC1Ux3WkoHLbQIDuDucjI9UzK8Jrm0b-Pf7rWvfUJxlSx-34F8J4doL6ZoEHpJyXtK-PhB0xII7QZin6AD2gvRdIMY9nZ3_nMfHZZyRQgfBO2eoX3etrztW3KAfl-aCupXThE8XkOtJseC5QYHWEVTnQLvN806p1WGEEB6gyFXZ51yS0A57wCXOVtQpmCbMvbpBn81m5i8LjjOQZqMrZ-dxjVDLOuUK4aocXC3Lq6eo6cWfDEv7s8j9OPs9Pvx5-biy6fz448XjeKE10b1jGnJhNS0Z90glWKkI5a1zAhBB8tG241KSkWIJiNTemAjlQDaagLARn6E3m7nLi-5nk2pU3BFGe8hmjSXiXUdHdtW0H6hbx7RqzTnpZ47NQxUCNYt6vW9mmUwelpnFyBvpodmF_BuC1ROpWRjd4SS6e_aphP67fJubWcLJo-wchWqS3Epzfn_R15tI7mo3eh_P4H_ATvqpes
CitedBy_id crossref_primary_10_3390_biomimetics9040198
crossref_primary_10_1017_jfm_2023_739
crossref_primary_10_1016_j_jmmm_2023_171152
crossref_primary_10_1063_5_0226743
crossref_primary_10_1016_j_ceb_2023_102286
crossref_primary_10_1063_5_0253126
crossref_primary_10_1126_sciadv_adf9462
crossref_primary_10_1039_D3SM00376K
crossref_primary_10_1073_pnas_2304519120
crossref_primary_10_1126_sciadv_abq2345
Cites_doi 10.1073/pnas.94.12.6001
10.3389/fphys.2018.00161
10.1038/nrm2278
10.1103/PhysRevE.65.046308
10.1119/1.10903
10.1002/adma.201703554
10.1038/s42005-020-0380-9
10.1021/jz5004582
10.1073/pnas.1005127107
10.1007/s11538-006-9172-y
10.1073/pnas.1218869110
10.1021/la400318f
10.1017/S0022112072001612
10.7567/JJAP.56.06GN15
10.1038/s41578-018-0001-3
10.1002/adfm.201601221
10.1017/S002211207100048X
10.1002/adfm.201900462
10.1073/pnas.96.22.12240
10.1021/la801907x
10.1073/pnas.1323094111
10.1039/C5LC00775E
10.1140/epje/i2008-10388-1
10.1073/pnas.0906819106
10.1021/acsami.1c03009
10.1063/1.4894855
10.1088/0034-4885/78/5/056601
10.1146/annurev.physiol.69.040705.141236
10.1038/s41467-019-13993-7
10.1088/1748-3182/9/3/036007
10.1083/jcb.55.1.250
10.1016/S0955-0674(02)00012-1
10.1038/s41586-019-1479-6
10.1073/pnas.1107889108
10.1038/s42254-019-0129-0
10.1063/5.0054929
10.1126/sciadv.abd2508
10.1172/JCI0215217
10.1021/acsnano.0c03801
10.1017/jfm.2011.355
10.1017/S0305004100049902
10.1039/D0LC00610F
10.1039/C4RA05427J
10.1103/PhysRevE.79.046304
10.1115/1.4035984
10.1098/rspb.1922.0007
10.1038/nphys3981
10.1146/annurev.fluid.36.050802.122124
10.3390/ijms12053263
10.1017/jfm.2012.306
10.1038/s41578-018-0022-y
10.1017/jfm.2017.352
10.1017/CBO9780511569593
10.1039/C8SM00549D
10.1063/1.3642645
10.1126/science.aae0450
10.1063/1.1929547
10.1017/jfm.2014.36
10.1126/sciadv.abc9323
10.1002/adma.201004231
10.1063/1.3507951
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/d1sm01680f
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 399
ExternalDocumentID 35535750
10_1039_D1SM01680F
d1sm01680f
Genre Journal Article
GroupedDBID 0-7
0R
123
1TJ
4.4
70
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
J3I
JG
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SLH
VH6
0R~
70~
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
KZ1
L-8
RAOCF
-JG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c303t-c722db24bd17268bcc2060f252e4418f29f69cbbc00d092cd8291baadfd0aa293
ISSN 1744-683X
1744-6848
IngestDate Fri Jul 11 04:40:15 EDT 2025
Mon Jun 30 11:56:55 EDT 2025
Wed Feb 19 02:26:22 EST 2025
Tue Jul 01 03:13:34 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Thu May 26 04:49:46 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-c722db24bd17268bcc2060f252e4418f29f69cbbc00d092cd8291baadfd0aa293
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d1sm01680f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5632-9727
0000-0002-4654-1609
0000-0002-5923-4456
OpenAccessLink https://research.tue.nl/en/publications/1a30a6df-64f9-44d8-ae73-ec57c4bc0151
PMID 35535750
PQID 2668814426
PQPubID 2047495
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_D1SM01680F
proquest_journals_2668814426
pubmed_primary_35535750
crossref_primary_10_1039_D1SM01680F
rsc_primary_d1sm01680f
proquest_miscellaneous_2661955417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-25
PublicationDateYYYYMMDD 2022-05-25
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Dong (D1SM01680F/cit26/1) 2020; 6
Lee (D1SM01680F/cit21/1) 2011; 12
Zhang (D1SM01680F/cit25/1) 2020; 14
Michelin (D1SM01680F/cit42/1) 2011; 23
Gu (D1SM01680F/cit35/1) 2020; 11
Hanasoge (D1SM01680F/cit57/1) 2018; 14
Khaderi (D1SM01680F/cit61/1) 2009; 79
Satir (D1SM01680F/cit8/1) 2007; 69
Zhang (D1SM01680F/cit22/1) 2020
Gauger (D1SM01680F/cit29/1) 2009; 28
Fliegauf (D1SM01680F/cit5/1) 2007; 8
Stone (D1SM01680F/cit20/1) 2004; 36
Zhang (D1SM01680F/cit54/1) 2021; 33
Milana (D1SM01680F/cit52/1) 2020; 6
Gueron (D1SM01680F/cit3/1) 1999; 96
Chateau (D1SM01680F/cit63/1) 2018; 9
Cianchetti (D1SM01680F/cit17/1) 2018; 3
Gilpin (D1SM01680F/cit6/1) 2020; 2
Zhang (D1SM01680F/cit24/1) 2020; 20
Blake (D1SM01680F/cit40/1) 1971; 46
Cacucciolo (D1SM01680F/cit19/1) 2019; 572
Jiang (D1SM01680F/cit27/1) 2014; 4
Gorissen (D1SM01680F/cit55/1) 2015; 15
Smith (D1SM01680F/cit50/1) 2007; 69
Zhang (D1SM01680F/cit58/1) 2021; 13
Khaderi (D1SM01680F/cit28/1) 2011; 688
Michelin (D1SM01680F/cit41/1) 2010; 22
Guo (D1SM01680F/cit43/1) 2014; 26
Elgeti (D1SM01680F/cit39/1) 2013; 110
Ding (D1SM01680F/cit53/1) 2014; 743
Blake (D1SM01680F/cit59/1) 1971; 70
Banka (D1SM01680F/cit30/1) 2017; 11
Arco (D1SM01680F/cit18/1) 2014; 9
Purcell (D1SM01680F/cit1/1) 1977; 45
Zeng (D1SM01680F/cit31/1) 2018; 30
Weiss (D1SM01680F/cit60/1) 2007
Vilfan (D1SM01680F/cit23/1) 2010; 107
Shields (D1SM01680F/cit10/1) 2010; 107
Guo (D1SM01680F/cit46/1) 2002; 65
Pazour (D1SM01680F/cit9/1) 2003; 15
Gilpin (D1SM01680F/cit12/1) 2017; 13
Gray (D1SM01680F/cit2/1) 1922; 93
Gelebart (D1SM01680F/cit32/1) 2016; 26
Osterman (D1SM01680F/cit51/1) 2011; 108
Shapiro (D1SM01680F/cit11/1) 2014; 111
Zarzar (D1SM01680F/cit33/1) 2011; 23
Milana (D1SM01680F/cit34/1) 2019; 29
Balazs (D1SM01680F/cit44/1) 2014; 5
Knowles (D1SM01680F/cit13/1) 2002; 109
Collard (D1SM01680F/cit36/1) 2020; 3
Blake (D1SM01680F/cit38/1) 1972; 55
Elgeti (D1SM01680F/cit7/1) 2015; 78
Sitti (D1SM01680F/cit16/1) 2018; 3
Stone (D1SM01680F/cit62/1) 2005; 17
Faubel (D1SM01680F/cit14/1) 2016; 353
Gueron (D1SM01680F/cit49/1) 1997; 94
Chateau (D1SM01680F/cit47/1) 2017; 824
Khaderi (D1SM01680F/cit48/1) 2012; 708
Alexeev (D1SM01680F/cit15/1) 2008; 24
Marume (D1SM01680F/cit56/1) 2017; 56
Tripathi (D1SM01680F/cit45/1) 2013; 29
Childress (D1SM01680F/cit37/1) 1981
Tamm (D1SM01680F/cit4/1) 1972; 55
References_xml – issn: 2007
  publication-title: Transport and mixing in geophysical flows
  doi: Weiss Provenzale
– issn: 1981
  publication-title: Mechanics of Swimming and Flying
  doi: Childress
– volume: 94
  start-page: 6001
  year: 1997
  ident: D1SM01680F/cit49/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.12.6001
– volume: 9
  start-page: 161
  year: 2018
  ident: D1SM01680F/cit63/1
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00161
– volume: 8
  start-page: 880
  year: 2007
  ident: D1SM01680F/cit5/1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2278
– volume: 65
  start-page: 046308
  year: 2002
  ident: D1SM01680F/cit46/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.65.046308
– volume: 45
  start-page: 3
  year: 1977
  ident: D1SM01680F/cit1/1
  publication-title: Am. J. Phys.
  doi: 10.1119/1.10903
– volume: 30
  start-page: 1703554
  year: 2018
  ident: D1SM01680F/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703554
– volume: 3
  start-page: 1
  year: 2020
  ident: D1SM01680F/cit36/1
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-020-0380-9
– volume: 5
  start-page: 1691
  year: 2014
  ident: D1SM01680F/cit44/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5004582
– volume: 107
  start-page: 15670
  year: 2010
  ident: D1SM01680F/cit10/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1005127107
– volume: 69
  start-page: 1477
  year: 2007
  ident: D1SM01680F/cit50/1
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-006-9172-y
– volume: 110
  start-page: 4470
  year: 2013
  ident: D1SM01680F/cit39/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1218869110
– volume: 29
  start-page: 4616
  year: 2013
  ident: D1SM01680F/cit45/1
  publication-title: Langmuir
  doi: 10.1021/la400318f
– volume: 55
  start-page: 1
  year: 1972
  ident: D1SM01680F/cit38/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072001612
– volume: 56
  start-page: 06GN15
  year: 2017
  ident: D1SM01680F/cit56/1
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.06GN15
– volume: 3
  start-page: 74
  year: 2018
  ident: D1SM01680F/cit16/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0001-3
– volume: 26
  start-page: 5322
  year: 2016
  ident: D1SM01680F/cit32/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601221
– volume-title: Transport and mixing in geophysical flows
  year: 2007
  ident: D1SM01680F/cit60/1
– volume: 46
  start-page: 199
  year: 1971
  ident: D1SM01680F/cit40/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211207100048X
– volume: 29
  start-page: 1900462
  year: 2019
  ident: D1SM01680F/cit34/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900462
– volume: 96
  start-page: 12240
  year: 1999
  ident: D1SM01680F/cit3/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.22.12240
– volume: 24
  start-page: 12102
  year: 2008
  ident: D1SM01680F/cit15/1
  publication-title: Langmuir
  doi: 10.1021/la801907x
– volume: 111
  start-page: 13391
  year: 2014
  ident: D1SM01680F/cit11/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1323094111
– volume: 15
  start-page: 4348
  year: 2015
  ident: D1SM01680F/cit55/1
  publication-title: Lab Chip
  doi: 10.1039/C5LC00775E
– volume: 28
  start-page: 231
  year: 2009
  ident: D1SM01680F/cit29/1
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2008-10388-1
– volume: 107
  start-page: 1844
  year: 2010
  ident: D1SM01680F/cit23/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0906819106
– volume: 13
  start-page: 20845
  year: 2021
  ident: D1SM01680F/cit58/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03009
– volume: 26
  start-page: 091901
  year: 2014
  ident: D1SM01680F/cit43/1
  publication-title: Phys. Fluids
  doi: 10.1063/1.4894855
– volume: 78
  start-page: 056601
  year: 2015
  ident: D1SM01680F/cit7/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/5/056601
– volume: 69
  start-page: 377
  year: 2007
  ident: D1SM01680F/cit8/1
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.69.040705.141236
– volume: 11
  start-page: 1
  year: 2020
  ident: D1SM01680F/cit35/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 9
  start-page: 036007
  year: 2014
  ident: D1SM01680F/cit18/1
  publication-title: Bioinspiration Biomimetics
  doi: 10.1088/1748-3182/9/3/036007
– volume: 55
  start-page: 250
  year: 1972
  ident: D1SM01680F/cit4/1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.55.1.250
– volume: 15
  start-page: 105
  year: 2003
  ident: D1SM01680F/cit9/1
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00012-1
– volume: 572
  start-page: 516
  year: 2019
  ident: D1SM01680F/cit19/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1479-6
– volume: 108
  start-page: 15727
  year: 2011
  ident: D1SM01680F/cit51/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1107889108
– volume: 2
  start-page: 74
  year: 2020
  ident: D1SM01680F/cit6/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0129-0
– volume: 33
  start-page: 092009
  year: 2021
  ident: D1SM01680F/cit54/1
  publication-title: Phys. Fluids
  doi: 10.1063/5.0054929
– volume: 6
  start-page: eabd2508
  year: 2020
  ident: D1SM01680F/cit52/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd2508
– volume: 109
  start-page: 571
  year: 2002
  ident: D1SM01680F/cit13/1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215217
– start-page: 2000225
  year: 2020
  ident: D1SM01680F/cit22/1
  publication-title: Adv. Intelligent Systems
– volume: 14
  start-page: 10313
  year: 2020
  ident: D1SM01680F/cit25/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03801
– volume: 688
  start-page: 44
  year: 2011
  ident: D1SM01680F/cit28/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.355
– volume: 70
  start-page: 303
  year: 1971
  ident: D1SM01680F/cit59/1
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100049902
– volume: 20
  start-page: 3569
  year: 2020
  ident: D1SM01680F/cit24/1
  publication-title: Lab Chip
  doi: 10.1039/D0LC00610F
– volume: 4
  start-page: 42002
  year: 2014
  ident: D1SM01680F/cit27/1
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05427J
– volume: 79
  start-page: 046304
  year: 2009
  ident: D1SM01680F/cit61/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.79.046304
– volume: 11
  start-page: 031003
  year: 2017
  ident: D1SM01680F/cit30/1
  publication-title: J. Med. Dev.
  doi: 10.1115/1.4035984
– volume: 93
  start-page: 104
  year: 1922
  ident: D1SM01680F/cit2/1
  publication-title: Proc. R. Soc. London, Ser. B
  doi: 10.1098/rspb.1922.0007
– volume: 13
  start-page: 380
  year: 2017
  ident: D1SM01680F/cit12/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3981
– volume: 36
  start-page: 381
  year: 2004
  ident: D1SM01680F/cit20/1
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122124
– volume: 12
  start-page: 3263
  year: 2011
  ident: D1SM01680F/cit21/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12053263
– volume: 708
  start-page: 303
  year: 2012
  ident: D1SM01680F/cit48/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.306
– volume: 3
  start-page: 143
  year: 2018
  ident: D1SM01680F/cit17/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0022-y
– volume: 824
  start-page: 931
  year: 2017
  ident: D1SM01680F/cit47/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.352
– volume-title: Mechanics of Swimming and Flying
  year: 1981
  ident: D1SM01680F/cit37/1
  doi: 10.1017/CBO9780511569593
– volume: 14
  start-page: 3689
  year: 2018
  ident: D1SM01680F/cit57/1
  publication-title: Soft Matter
  doi: 10.1039/C8SM00549D
– volume: 23
  start-page: 101901
  year: 2011
  ident: D1SM01680F/cit42/1
  publication-title: Phys. Fluids
  doi: 10.1063/1.3642645
– volume: 353
  start-page: 176
  year: 2016
  ident: D1SM01680F/cit14/1
  publication-title: Science
  doi: 10.1126/science.aae0450
– volume: 17
  start-page: 063103
  year: 2005
  ident: D1SM01680F/cit62/1
  publication-title: Phys. Fluids
  doi: 10.1063/1.1929547
– volume: 743
  start-page: 124
  year: 2014
  ident: D1SM01680F/cit53/1
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.36
– volume: 6
  start-page: eabc9323
  year: 2020
  ident: D1SM01680F/cit26/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc9323
– volume: 23
  start-page: 1442
  year: 2011
  ident: D1SM01680F/cit33/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004231
– volume: 22
  start-page: 111901
  year: 2010
  ident: D1SM01680F/cit41/1
  publication-title: Phys. Fluids
  doi: 10.1063/1.3507951
SSID ssj0038416
Score 2.459556
Snippet Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 392
SubjectTerms Cilia
Finite element method
Flow distribution
Flow pattern
Fluid dynamics
Fluid flow
Low Reynolds number
Magnetic shielding
Microfluidic devices
Microfluidics
Mimicry
Phase lag
Reynolds number
Secondary flow
Velocity gradient
Wave propagation
Title Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing
URI https://www.ncbi.nlm.nih.gov/pubmed/35535750
https://www.proquest.com/docview/2668814426
https://www.proquest.com/docview/2661955417
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 1744-6848
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038416
  issn: 1744-683X
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExIviNtYYSAjeEFVwHGa2-MEm8ZEQYJN2lvl69SRplOTSpQHfjvHt6SomwS8RJXtJlHO5-Pv2OeC0OuM6DTRJY-kZmCglDGPOFFZpHVWUCa5KpTZ75h8zo7Pxifn6XnvNmajS1r-Vvy8Nq7kf6QKbSBXEyX7D5LtbgoN8BvkC1eQMFz_SsYT1TJhstuacCqbKLNuDJ-cs4vaBSdW68h7YM1tjJS5ic8ZIWbVjI2a1VJbryzjblgtzGHBul5Ushm5WiEjXa1m0lSScDnQ7WHDfPYjrHiXIcpXt_DYdsPZt9uK_rqoLy7DeJfls5YOKSeMXY1kH432pXba2RUO-O69Gf2mBNizJI1cALPXo_l4HGWFLfULy8xmm0usua18OxvYadLElcjzi3Liqiht6XuSmHSpMm7mQF0LovtVrfM17Dtvox2aZxkdoJ2Dw9OPn8KKnZijVxc46146pLFNynf9v_8kLlvWCHCTZagZY7nJ6X10zxsV-MAh5AG6peqH6I517hXNI_RrAyc44ATzNb4RJ7jHCbY4wQEnGHCCASc44AQ7nGCLE9zhBANOsMPJY3R2dHj6_jjydTciAYSmjUROqeR0zCWw26zgQlACc5qmVAF5LjQtdVYKzgUhkpRUyILCHGdMakkYA_64iwb1olZ7CNNUc61jwtMcLPdEAh_KWZGqXFE9llwO0ZvwUafCJ6U3tVGqqXWOSMrph_jbxArgaIhedWOvXCqWa0ftB9lM_VRtpsBCiwJegGZD9LLrBkVqTsdYrRYrOyYugVzH-RA9cTLtHgOkPAG7hgzRLgi5a-7B8fSmjmfobj8_9tGgXa7Uc6CxLX_hUfgbIzulpw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metachronal+patterns+by+magnetically-programmable+artificial+cilia+surfaces+for+low+Reynolds+number+fluid+transport+and+mixing&rft.jtitle=Soft+matter&rft.au=Zhang%2C+Rongjing&rft.au=Toonder%2C+Jaap+den&rft.au=Onck%2C+Patrick+R&rft.date=2022-05-25&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=18&rft.issue=2&rft.spage=392&rft.epage=399&rft_id=info:doi/10.1039%2Fd1sm01680f&rft.externalDocID=d1sm01680f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon