Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of noniden...
Saved in:
Published in | Soft matter Vol. 18; no. 2; pp. 392 - 399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
25.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1744-683X 1744-6848 1744-6848 |
DOI | 10.1039/d1sm01680f |
Cover
Abstract | Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. |
---|---|
AbstractList | Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns. Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns. |
Author | Onck, Patrick R Zhang, Rongjing Toonder, Jaap den |
AuthorAffiliation | University of Groningen Zernike Institute for Advanced Materials Department of Mechanical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology |
AuthorAffiliation_xml | – name: Zernike Institute for Advanced Materials – name: University of Groningen – name: Department of Mechanical Engineering and Institute for Complex Molecular Systems – name: Eindhoven University of Technology |
Author_xml | – sequence: 1 givenname: Rongjing surname: Zhang fullname: Zhang, Rongjing – sequence: 2 givenname: Jaap den surname: Toonder fullname: Toonder, Jaap den – sequence: 3 givenname: Patrick R surname: Onck fullname: Onck, Patrick R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35535750$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0slrVTEUBvAgFTvoxr0ScCPC1Ux3WkoHLbQIDuDucjI9UzK8Jrm0b-Pf7rWvfUJxlSx-34F8J4doL6ZoEHpJyXtK-PhB0xII7QZin6AD2gvRdIMY9nZ3_nMfHZZyRQgfBO2eoX3etrztW3KAfl-aCupXThE8XkOtJseC5QYHWEVTnQLvN806p1WGEEB6gyFXZ51yS0A57wCXOVtQpmCbMvbpBn81m5i8LjjOQZqMrZ-dxjVDLOuUK4aocXC3Lq6eo6cWfDEv7s8j9OPs9Pvx5-biy6fz448XjeKE10b1jGnJhNS0Z90glWKkI5a1zAhBB8tG241KSkWIJiNTemAjlQDaagLARn6E3m7nLi-5nk2pU3BFGe8hmjSXiXUdHdtW0H6hbx7RqzTnpZ47NQxUCNYt6vW9mmUwelpnFyBvpodmF_BuC1ROpWRjd4SS6e_aphP67fJubWcLJo-wchWqS3Epzfn_R15tI7mo3eh_P4H_ATvqpes |
CitedBy_id | crossref_primary_10_3390_biomimetics9040198 crossref_primary_10_1017_jfm_2023_739 crossref_primary_10_1016_j_jmmm_2023_171152 crossref_primary_10_1063_5_0226743 crossref_primary_10_1016_j_ceb_2023_102286 crossref_primary_10_1063_5_0253126 crossref_primary_10_1126_sciadv_adf9462 crossref_primary_10_1039_D3SM00376K crossref_primary_10_1073_pnas_2304519120 crossref_primary_10_1126_sciadv_abq2345 |
Cites_doi | 10.1073/pnas.94.12.6001 10.3389/fphys.2018.00161 10.1038/nrm2278 10.1103/PhysRevE.65.046308 10.1119/1.10903 10.1002/adma.201703554 10.1038/s42005-020-0380-9 10.1021/jz5004582 10.1073/pnas.1005127107 10.1007/s11538-006-9172-y 10.1073/pnas.1218869110 10.1021/la400318f 10.1017/S0022112072001612 10.7567/JJAP.56.06GN15 10.1038/s41578-018-0001-3 10.1002/adfm.201601221 10.1017/S002211207100048X 10.1002/adfm.201900462 10.1073/pnas.96.22.12240 10.1021/la801907x 10.1073/pnas.1323094111 10.1039/C5LC00775E 10.1140/epje/i2008-10388-1 10.1073/pnas.0906819106 10.1021/acsami.1c03009 10.1063/1.4894855 10.1088/0034-4885/78/5/056601 10.1146/annurev.physiol.69.040705.141236 10.1038/s41467-019-13993-7 10.1088/1748-3182/9/3/036007 10.1083/jcb.55.1.250 10.1016/S0955-0674(02)00012-1 10.1038/s41586-019-1479-6 10.1073/pnas.1107889108 10.1038/s42254-019-0129-0 10.1063/5.0054929 10.1126/sciadv.abd2508 10.1172/JCI0215217 10.1021/acsnano.0c03801 10.1017/jfm.2011.355 10.1017/S0305004100049902 10.1039/D0LC00610F 10.1039/C4RA05427J 10.1103/PhysRevE.79.046304 10.1115/1.4035984 10.1098/rspb.1922.0007 10.1038/nphys3981 10.1146/annurev.fluid.36.050802.122124 10.3390/ijms12053263 10.1017/jfm.2012.306 10.1038/s41578-018-0022-y 10.1017/jfm.2017.352 10.1017/CBO9780511569593 10.1039/C8SM00549D 10.1063/1.3642645 10.1126/science.aae0450 10.1063/1.1929547 10.1017/jfm.2014.36 10.1126/sciadv.abc9323 10.1002/adma.201004231 10.1063/1.3507951 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/d1sm01680f |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 399 |
ExternalDocumentID | 35535750 10_1039_D1SM01680F d1sm01680f |
Genre | Journal Article |
GroupedDBID | 0-7 0R 123 1TJ 4.4 70 705 7~J AAEMU AAGNR AAIWI AAJAE AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GNO HZ H~N J3I JG N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRC RSCEA SKA SLH VH6 0R~ 70~ AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP H13 HZ~ KZ1 L-8 RAOCF -JG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c303t-c722db24bd17268bcc2060f252e4418f29f69cbbc00d092cd8291baadfd0aa293 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Fri Jul 11 04:40:15 EDT 2025 Mon Jun 30 11:56:55 EDT 2025 Wed Feb 19 02:26:22 EST 2025 Tue Jul 01 03:13:34 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Thu May 26 04:49:46 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-c722db24bd17268bcc2060f252e4418f29f69cbbc00d092cd8291baadfd0aa293 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d1sm01680f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5632-9727 0000-0002-4654-1609 0000-0002-5923-4456 |
OpenAccessLink | https://research.tue.nl/en/publications/1a30a6df-64f9-44d8-ae73-ec57c4bc0151 |
PMID | 35535750 |
PQID | 2668814426 |
PQPubID | 2047495 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_D1SM01680F proquest_journals_2668814426 pubmed_primary_35535750 crossref_primary_10_1039_D1SM01680F rsc_primary_d1sm01680f proquest_miscellaneous_2661955417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-25 |
PublicationDateYYYYMMDD | 2022-05-25 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Dong (D1SM01680F/cit26/1) 2020; 6 Lee (D1SM01680F/cit21/1) 2011; 12 Zhang (D1SM01680F/cit25/1) 2020; 14 Michelin (D1SM01680F/cit42/1) 2011; 23 Gu (D1SM01680F/cit35/1) 2020; 11 Hanasoge (D1SM01680F/cit57/1) 2018; 14 Khaderi (D1SM01680F/cit61/1) 2009; 79 Satir (D1SM01680F/cit8/1) 2007; 69 Zhang (D1SM01680F/cit22/1) 2020 Gauger (D1SM01680F/cit29/1) 2009; 28 Fliegauf (D1SM01680F/cit5/1) 2007; 8 Stone (D1SM01680F/cit20/1) 2004; 36 Zhang (D1SM01680F/cit54/1) 2021; 33 Milana (D1SM01680F/cit52/1) 2020; 6 Gueron (D1SM01680F/cit3/1) 1999; 96 Chateau (D1SM01680F/cit63/1) 2018; 9 Cianchetti (D1SM01680F/cit17/1) 2018; 3 Gilpin (D1SM01680F/cit6/1) 2020; 2 Zhang (D1SM01680F/cit24/1) 2020; 20 Blake (D1SM01680F/cit40/1) 1971; 46 Cacucciolo (D1SM01680F/cit19/1) 2019; 572 Jiang (D1SM01680F/cit27/1) 2014; 4 Gorissen (D1SM01680F/cit55/1) 2015; 15 Smith (D1SM01680F/cit50/1) 2007; 69 Zhang (D1SM01680F/cit58/1) 2021; 13 Khaderi (D1SM01680F/cit28/1) 2011; 688 Michelin (D1SM01680F/cit41/1) 2010; 22 Guo (D1SM01680F/cit43/1) 2014; 26 Elgeti (D1SM01680F/cit39/1) 2013; 110 Ding (D1SM01680F/cit53/1) 2014; 743 Blake (D1SM01680F/cit59/1) 1971; 70 Banka (D1SM01680F/cit30/1) 2017; 11 Arco (D1SM01680F/cit18/1) 2014; 9 Purcell (D1SM01680F/cit1/1) 1977; 45 Zeng (D1SM01680F/cit31/1) 2018; 30 Weiss (D1SM01680F/cit60/1) 2007 Vilfan (D1SM01680F/cit23/1) 2010; 107 Shields (D1SM01680F/cit10/1) 2010; 107 Guo (D1SM01680F/cit46/1) 2002; 65 Pazour (D1SM01680F/cit9/1) 2003; 15 Gilpin (D1SM01680F/cit12/1) 2017; 13 Gray (D1SM01680F/cit2/1) 1922; 93 Gelebart (D1SM01680F/cit32/1) 2016; 26 Osterman (D1SM01680F/cit51/1) 2011; 108 Shapiro (D1SM01680F/cit11/1) 2014; 111 Zarzar (D1SM01680F/cit33/1) 2011; 23 Milana (D1SM01680F/cit34/1) 2019; 29 Balazs (D1SM01680F/cit44/1) 2014; 5 Knowles (D1SM01680F/cit13/1) 2002; 109 Collard (D1SM01680F/cit36/1) 2020; 3 Blake (D1SM01680F/cit38/1) 1972; 55 Elgeti (D1SM01680F/cit7/1) 2015; 78 Sitti (D1SM01680F/cit16/1) 2018; 3 Stone (D1SM01680F/cit62/1) 2005; 17 Faubel (D1SM01680F/cit14/1) 2016; 353 Gueron (D1SM01680F/cit49/1) 1997; 94 Chateau (D1SM01680F/cit47/1) 2017; 824 Khaderi (D1SM01680F/cit48/1) 2012; 708 Alexeev (D1SM01680F/cit15/1) 2008; 24 Marume (D1SM01680F/cit56/1) 2017; 56 Tripathi (D1SM01680F/cit45/1) 2013; 29 Childress (D1SM01680F/cit37/1) 1981 Tamm (D1SM01680F/cit4/1) 1972; 55 |
References_xml | – issn: 2007 publication-title: Transport and mixing in geophysical flows doi: Weiss Provenzale – issn: 1981 publication-title: Mechanics of Swimming and Flying doi: Childress – volume: 94 start-page: 6001 year: 1997 ident: D1SM01680F/cit49/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.12.6001 – volume: 9 start-page: 161 year: 2018 ident: D1SM01680F/cit63/1 publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00161 – volume: 8 start-page: 880 year: 2007 ident: D1SM01680F/cit5/1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2278 – volume: 65 start-page: 046308 year: 2002 ident: D1SM01680F/cit46/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.65.046308 – volume: 45 start-page: 3 year: 1977 ident: D1SM01680F/cit1/1 publication-title: Am. J. Phys. doi: 10.1119/1.10903 – volume: 30 start-page: 1703554 year: 2018 ident: D1SM01680F/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703554 – volume: 3 start-page: 1 year: 2020 ident: D1SM01680F/cit36/1 publication-title: Commun. Phys. doi: 10.1038/s42005-020-0380-9 – volume: 5 start-page: 1691 year: 2014 ident: D1SM01680F/cit44/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5004582 – volume: 107 start-page: 15670 year: 2010 ident: D1SM01680F/cit10/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1005127107 – volume: 69 start-page: 1477 year: 2007 ident: D1SM01680F/cit50/1 publication-title: Bull. Math. Biol. doi: 10.1007/s11538-006-9172-y – volume: 110 start-page: 4470 year: 2013 ident: D1SM01680F/cit39/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1218869110 – volume: 29 start-page: 4616 year: 2013 ident: D1SM01680F/cit45/1 publication-title: Langmuir doi: 10.1021/la400318f – volume: 55 start-page: 1 year: 1972 ident: D1SM01680F/cit38/1 publication-title: J. Fluid Mech. doi: 10.1017/S0022112072001612 – volume: 56 start-page: 06GN15 year: 2017 ident: D1SM01680F/cit56/1 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.06GN15 – volume: 3 start-page: 74 year: 2018 ident: D1SM01680F/cit16/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0001-3 – volume: 26 start-page: 5322 year: 2016 ident: D1SM01680F/cit32/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601221 – volume-title: Transport and mixing in geophysical flows year: 2007 ident: D1SM01680F/cit60/1 – volume: 46 start-page: 199 year: 1971 ident: D1SM01680F/cit40/1 publication-title: J. Fluid Mech. doi: 10.1017/S002211207100048X – volume: 29 start-page: 1900462 year: 2019 ident: D1SM01680F/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900462 – volume: 96 start-page: 12240 year: 1999 ident: D1SM01680F/cit3/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.22.12240 – volume: 24 start-page: 12102 year: 2008 ident: D1SM01680F/cit15/1 publication-title: Langmuir doi: 10.1021/la801907x – volume: 111 start-page: 13391 year: 2014 ident: D1SM01680F/cit11/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1323094111 – volume: 15 start-page: 4348 year: 2015 ident: D1SM01680F/cit55/1 publication-title: Lab Chip doi: 10.1039/C5LC00775E – volume: 28 start-page: 231 year: 2009 ident: D1SM01680F/cit29/1 publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys. doi: 10.1140/epje/i2008-10388-1 – volume: 107 start-page: 1844 year: 2010 ident: D1SM01680F/cit23/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906819106 – volume: 13 start-page: 20845 year: 2021 ident: D1SM01680F/cit58/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03009 – volume: 26 start-page: 091901 year: 2014 ident: D1SM01680F/cit43/1 publication-title: Phys. Fluids doi: 10.1063/1.4894855 – volume: 78 start-page: 056601 year: 2015 ident: D1SM01680F/cit7/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/5/056601 – volume: 69 start-page: 377 year: 2007 ident: D1SM01680F/cit8/1 publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.69.040705.141236 – volume: 11 start-page: 1 year: 2020 ident: D1SM01680F/cit35/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 9 start-page: 036007 year: 2014 ident: D1SM01680F/cit18/1 publication-title: Bioinspiration Biomimetics doi: 10.1088/1748-3182/9/3/036007 – volume: 55 start-page: 250 year: 1972 ident: D1SM01680F/cit4/1 publication-title: J. Cell Biol. doi: 10.1083/jcb.55.1.250 – volume: 15 start-page: 105 year: 2003 ident: D1SM01680F/cit9/1 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00012-1 – volume: 572 start-page: 516 year: 2019 ident: D1SM01680F/cit19/1 publication-title: Nature doi: 10.1038/s41586-019-1479-6 – volume: 108 start-page: 15727 year: 2011 ident: D1SM01680F/cit51/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1107889108 – volume: 2 start-page: 74 year: 2020 ident: D1SM01680F/cit6/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0129-0 – volume: 33 start-page: 092009 year: 2021 ident: D1SM01680F/cit54/1 publication-title: Phys. Fluids doi: 10.1063/5.0054929 – volume: 6 start-page: eabd2508 year: 2020 ident: D1SM01680F/cit52/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd2508 – volume: 109 start-page: 571 year: 2002 ident: D1SM01680F/cit13/1 publication-title: J. Clin. Invest. doi: 10.1172/JCI0215217 – start-page: 2000225 year: 2020 ident: D1SM01680F/cit22/1 publication-title: Adv. Intelligent Systems – volume: 14 start-page: 10313 year: 2020 ident: D1SM01680F/cit25/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c03801 – volume: 688 start-page: 44 year: 2011 ident: D1SM01680F/cit28/1 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.355 – volume: 70 start-page: 303 year: 1971 ident: D1SM01680F/cit59/1 publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100049902 – volume: 20 start-page: 3569 year: 2020 ident: D1SM01680F/cit24/1 publication-title: Lab Chip doi: 10.1039/D0LC00610F – volume: 4 start-page: 42002 year: 2014 ident: D1SM01680F/cit27/1 publication-title: RSC Adv. doi: 10.1039/C4RA05427J – volume: 79 start-page: 046304 year: 2009 ident: D1SM01680F/cit61/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.79.046304 – volume: 11 start-page: 031003 year: 2017 ident: D1SM01680F/cit30/1 publication-title: J. Med. Dev. doi: 10.1115/1.4035984 – volume: 93 start-page: 104 year: 1922 ident: D1SM01680F/cit2/1 publication-title: Proc. R. Soc. London, Ser. B doi: 10.1098/rspb.1922.0007 – volume: 13 start-page: 380 year: 2017 ident: D1SM01680F/cit12/1 publication-title: Nat. Phys. doi: 10.1038/nphys3981 – volume: 36 start-page: 381 year: 2004 ident: D1SM01680F/cit20/1 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122124 – volume: 12 start-page: 3263 year: 2011 ident: D1SM01680F/cit21/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12053263 – volume: 708 start-page: 303 year: 2012 ident: D1SM01680F/cit48/1 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.306 – volume: 3 start-page: 143 year: 2018 ident: D1SM01680F/cit17/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0022-y – volume: 824 start-page: 931 year: 2017 ident: D1SM01680F/cit47/1 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.352 – volume-title: Mechanics of Swimming and Flying year: 1981 ident: D1SM01680F/cit37/1 doi: 10.1017/CBO9780511569593 – volume: 14 start-page: 3689 year: 2018 ident: D1SM01680F/cit57/1 publication-title: Soft Matter doi: 10.1039/C8SM00549D – volume: 23 start-page: 101901 year: 2011 ident: D1SM01680F/cit42/1 publication-title: Phys. Fluids doi: 10.1063/1.3642645 – volume: 353 start-page: 176 year: 2016 ident: D1SM01680F/cit14/1 publication-title: Science doi: 10.1126/science.aae0450 – volume: 17 start-page: 063103 year: 2005 ident: D1SM01680F/cit62/1 publication-title: Phys. Fluids doi: 10.1063/1.1929547 – volume: 743 start-page: 124 year: 2014 ident: D1SM01680F/cit53/1 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.36 – volume: 6 start-page: eabc9323 year: 2020 ident: D1SM01680F/cit26/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc9323 – volume: 23 start-page: 1442 year: 2011 ident: D1SM01680F/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.201004231 – volume: 22 start-page: 111901 year: 2010 ident: D1SM01680F/cit41/1 publication-title: Phys. Fluids doi: 10.1063/1.3507951 |
SSID | ssj0038416 |
Score | 2.459556 |
Snippet | Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 392 |
SubjectTerms | Cilia Finite element method Flow distribution Flow pattern Fluid dynamics Fluid flow Low Reynolds number Magnetic shielding Microfluidic devices Microfluidics Mimicry Phase lag Reynolds number Secondary flow Velocity gradient Wave propagation |
Title | Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35535750 https://www.proquest.com/docview/2668814426 https://www.proquest.com/docview/2661955417 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 1744-6848 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038416 issn: 1744-683X databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExIviNtYYSAjeEFVwHGa2-MEm8ZEQYJN2lvl69SRplOTSpQHfjvHt6SomwS8RJXtJlHO5-Pv2OeC0OuM6DTRJY-kZmCglDGPOFFZpHVWUCa5KpTZ75h8zo7Pxifn6XnvNmajS1r-Vvy8Nq7kf6QKbSBXEyX7D5LtbgoN8BvkC1eQMFz_SsYT1TJhstuacCqbKLNuDJ-cs4vaBSdW68h7YM1tjJS5ic8ZIWbVjI2a1VJbryzjblgtzGHBul5Ushm5WiEjXa1m0lSScDnQ7WHDfPYjrHiXIcpXt_DYdsPZt9uK_rqoLy7DeJfls5YOKSeMXY1kH432pXba2RUO-O69Gf2mBNizJI1cALPXo_l4HGWFLfULy8xmm0usua18OxvYadLElcjzi3Liqiht6XuSmHSpMm7mQF0LovtVrfM17Dtvox2aZxkdoJ2Dw9OPn8KKnZijVxc46146pLFNynf9v_8kLlvWCHCTZagZY7nJ6X10zxsV-MAh5AG6peqH6I517hXNI_RrAyc44ATzNb4RJ7jHCbY4wQEnGHCCASc44AQ7nGCLE9zhBANOsMPJY3R2dHj6_jjydTciAYSmjUROqeR0zCWw26zgQlACc5qmVAF5LjQtdVYKzgUhkpRUyILCHGdMakkYA_64iwb1olZ7CNNUc61jwtMcLPdEAh_KWZGqXFE9llwO0ZvwUafCJ6U3tVGqqXWOSMrph_jbxArgaIhedWOvXCqWa0ftB9lM_VRtpsBCiwJegGZD9LLrBkVqTsdYrRYrOyYugVzH-RA9cTLtHgOkPAG7hgzRLgi5a-7B8fSmjmfobj8_9tGgXa7Uc6CxLX_hUfgbIzulpw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metachronal+patterns+by+magnetically-programmable+artificial+cilia+surfaces+for+low+Reynolds+number+fluid+transport+and+mixing&rft.jtitle=Soft+matter&rft.au=Zhang%2C+Rongjing&rft.au=Toonder%2C+Jaap+den&rft.au=Onck%2C+Patrick+R&rft.date=2022-05-25&rft.issn=1744-683X&rft.eissn=1744-6848&rft.volume=18&rft.issue=2&rft.spage=392&rft.epage=399&rft_id=info:doi/10.1039%2Fd1sm01680f&rft.externalDocID=d1sm01680f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |