A highly accurate and robust prediction framework for drilling rate of penetration based on machine learning ensemble algorithm
The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both hi...
Saved in:
| Published in | Geoenergy Science and Engineering Vol. 244; p. 213423 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2949-8910 2949-8910 |
| DOI | 10.1016/j.geoen.2024.213423 |
Cover
| Abstract | The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both high accuracy and strong robustness remains a challenge. This paper introduces a novel machine learning approach to constructing a ROP prediction model through ensemble learning algorithms. The model is based on field data from oilfields, incorporating 16 input parameters that influence ROP. First, the feasibility of the collected dataset is verified using correlation analysis. Then, ROP prediction models are developed based on various machine learning algorithms, including Decision Tree Regression (DTR), Random Forest (RF), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Regression (SVR), and Backpropagation Neural Network (BPNN). By comparing the performance of these models under noise levels of 0%, 1.7%, and 5.1%, RF, LGBM, XGB, and SVR are selected as base learners. These base learners are then combined to construct multiple ensemble models, and the performance of the optimal ensemble model is evaluated under varying noise levels. The results show that the prediction error of the optimal model remains within 10%, and R2 is greater than 0.96. Finally, the Shapley Additive Explanations (SHAP) method is applied to perform interpretability analysis on the optimal ROP prediction model, examining the impact of different input factors on the model's predictive performance. Compared to single models and other ensemble models, the proposed ensemble model not only achieves higher accuracy but also demonstrates strong robustness and generalization capability.
•Base learners are selected for ensemble models by analyzing the performance of single models.•Compared to other models, the proposed model achieves better performance.•Introduced SHAP method to explore the effect of various factors on model performance.•An ensemble predictive model for ROP is proposed, showing both high accuracy and strong robustness. |
|---|---|
| AbstractList | The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both high accuracy and strong robustness remains a challenge. This paper introduces a novel machine learning approach to constructing a ROP prediction model through ensemble learning algorithms. The model is based on field data from oilfields, incorporating 16 input parameters that influence ROP. First, the feasibility of the collected dataset is verified using correlation analysis. Then, ROP prediction models are developed based on various machine learning algorithms, including Decision Tree Regression (DTR), Random Forest (RF), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Regression (SVR), and Backpropagation Neural Network (BPNN). By comparing the performance of these models under noise levels of 0%, 1.7%, and 5.1%, RF, LGBM, XGB, and SVR are selected as base learners. These base learners are then combined to construct multiple ensemble models, and the performance of the optimal ensemble model is evaluated under varying noise levels. The results show that the prediction error of the optimal model remains within 10%, and R2 is greater than 0.96. Finally, the Shapley Additive Explanations (SHAP) method is applied to perform interpretability analysis on the optimal ROP prediction model, examining the impact of different input factors on the model's predictive performance. Compared to single models and other ensemble models, the proposed ensemble model not only achieves higher accuracy but also demonstrates strong robustness and generalization capability.
•Base learners are selected for ensemble models by analyzing the performance of single models.•Compared to other models, the proposed model achieves better performance.•Introduced SHAP method to explore the effect of various factors on model performance.•An ensemble predictive model for ROP is proposed, showing both high accuracy and strong robustness. |
| ArticleNumber | 213423 |
| Author | Cen, Xiao Yang, Jin Liu, Yibin Hong, Bingyuan Ni, Haocheng Yang, Yuxiang Chen, Zhangxing John |
| Author_xml | – sequence: 1 givenname: Yuxiang surname: Yang fullname: Yang, Yuxiang organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China – sequence: 2 givenname: Xiao surname: Cen fullname: Cen, Xiao organization: National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology/ Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control /School of Petrochemical Engineering & Environment /School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China – sequence: 3 givenname: Haocheng surname: Ni fullname: Ni, Haocheng organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China – sequence: 4 givenname: Yibin surname: Liu fullname: Liu, Yibin organization: CNOOC Research Institute Company Limited, Beijing, 100028, China – sequence: 5 givenname: Zhangxing John orcidid: 0000-0002-9107-1925 surname: Chen fullname: Chen, Zhangxing John organization: Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada – sequence: 6 givenname: Jin surname: Yang fullname: Yang, Jin email: yjin@cup.edu.cn organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China – sequence: 7 givenname: Bingyuan surname: Hong fullname: Hong, Bingyuan email: hongby@zjou.edu.cn organization: National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology/ Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control /School of Petrochemical Engineering & Environment /School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China |
| BookMark | eNqFkDtPwzAQgC1UJErpL2DxH0jwI0mbgaGqeEmVWGC2HPucuCR2ZaegTvx1kpYBMcB0d9J99_gu0cR5BwhdU5JSQoubbVqDB5cywrKUUZ4xfoamrMzKZFlSMvmRX6B5jFtCCGe8JKSYos8VbmzdtAcsldoH2QOWTuPgq33s8S6Atqq33mETZAcfPrxh4wPWwbatdTU-Et7gHTjoh2JsrWQEjYekk6qxDnALMrixG1yErmqHHW3tg-2b7gqdG9lGmH_HGXq9v3tZPyab54en9WqTKE54n1QKKGOyWGRLusikklle5ZXhuVFElwteUK65NAw0p1WeA9FGZcTwspC8IFXGZ6g8zVXBxxjACGX747nD1bYVlIhRptiKo0wxyhQnmQPLf7G7YDsZDv9QtycKhrfeLQQRlQWnBqMBVC-0t3_yX68mlB4 |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_120427 |
| Cites_doi | 10.1016/j.petrol.2021.108787 10.1016/j.energy.2023.129625 10.1016/j.petrol.2019.106200 10.1016/j.petrol.2019.106332 10.1016/j.scitotenv.2020.140317 10.1016/j.jprocont.2021.02.001 10.2118/191141-PA 10.1007/s13202-021-01116-2 10.3390/su16135730 10.1016/j.upstre.2021.100047 10.15628/holos.2023.16306 10.1016/j.petrol.2020.107160 10.1016/j.geoen.2023.212231 10.1016/j.enpol.2011.09.016 10.1016/j.energy.2020.119174 10.1016/j.jngse.2016.08.012 10.1016/j.scitotenv.2024.169886 10.1016/j.petrol.2021.109184 10.1016/j.petrol.2018.08.083 10.1016/j.geoen.2024.213152 10.1016/j.geoen.2023.212303 10.1016/j.jpse.2022.100105 10.1016/j.ress.2021.107458 10.1016/j.petsci.2022.05.002 10.1016/j.conengprac.2020.104633 10.1016/j.energy.2014.06.021 10.1016/j.geoen.2024.213017 10.2118/13259-PA 10.1016/j.cie.2017.10.033 10.1016/j.oceaneng.2023.116375 10.1016/j.oceaneng.2023.115404 10.1016/j.petrol.2017.09.020 10.1016/j.apenergy.2023.121765 10.1016/j.scitotenv.2018.10.064 10.1016/j.jngse.2017.02.019 10.2118/408-PA 10.1016/j.scitotenv.2021.150938 10.1016/j.petrol.2018.09.027 10.1615/JPorMedia.2021025407 10.1016/j.rser.2020.110388 10.1016/j.psep.2021.04.004 10.1016/j.scitotenv.2019.06.205 10.1016/j.petrol.2022.111068 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.geoen.2024.213423 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-8910 |
| ExternalDocumentID | 10_1016_j_geoen_2024_213423 S2949891024007930 |
| GroupedDBID | 0R~ AALRI AAXUO ABJNI ACRLP AEIPS AFJKZ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT BELTK FDB M41 ROL SPC SSE SSR AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c303t-bce122a6748174aca45b5bf35fc0d973613d3af2ed31b55e0dfc40f396a360b43 |
| IEDL.DBID | AIKHN |
| ISSN | 2949-8910 |
| IngestDate | Wed Oct 01 03:05:59 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Sat Feb 15 15:52:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble algorithm Robustness Rate of penetration Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-bce122a6748174aca45b5bf35fc0d973613d3af2ed31b55e0dfc40f396a360b43 |
| ORCID | 0000-0002-9107-1925 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_geoen_2024_213423 crossref_primary_10_1016_j_geoen_2024_213423 elsevier_sciencedirect_doi_10_1016_j_geoen_2024_213423 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Geoenergy Science and Engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nguyen, Fülöp, Breuhaus, Elmegaard (bib33) 2014; 73 Ahmed, Adeniran, Samsuri (bib1) 2019; 172 Gan, Cao, Wu, Chen, Hu, Liu, Wang, Zhang (bib21) 2019; 181 Wang, Ozbayoglu (bib41) 2022 Feng, Duan, Bao, Li (bib19) 2024; 915 Soares, Gray (bib36) 2019; 172 Hegde, Gray (bib25) 2017; 40 Bizhani, Kuru (bib10) 2022; 219 Najjarpour, Jalalifar, Norouzi-Apourvari (bib31) 2022; 208 Hegde, Daigle, Millwater, Gray (bib24) 2017; 159 Hoxha, Çodur, Mustafaraj, Kanj, El Masri (bib27) 2023; 350 Mohammadizadeh, Dalfré Filho, Sampaio Descovi, Murillo Bermúdez, Alfonso Sierra, Corzo Perez (bib29) 2023; 5 Feng, Gani, Damayanti, Gani (bib20) 2023; 231 Gavidia, Mohammadizadeh, Chinelatto, Basso, Da Ponte Souza, Portillo, Eltom, Vidal, Goldstein (bib22) 2024; 241 Yuan, Chen, Liu, Shao, Zhang, Ma (bib44) 2023; 3 Najjarpour, Jalalifar, Norouzi-Apourvari (bib32) 2020; 191 Hegde, Daigle, Gray (bib23) 2018; 23 Mohammadizadeh, Moghaddam, Talebbeydokhti (bib30) 2021; 24 Maurer (bib28) 1962; 14 Cen, Chen, Chen, Ding, Ding, Li, Lou, Zhu, Zhang, Hong (bib12) 2024; 286 Descovi, Zuffo, Mohammadizadeh, Murillo-Bermúdez, Sierra (bib18) 2023 Alkinani, Al-Hameedi, Dunn-Norman (bib2) 2021; 7 Baptista, Sankararaman, De, IvoP, Nascimento, Prendinger, Henriques (bib8) 2018; 115 Zhou, Xie, Li, Wang, Chai (bib45) 2020; 105 Burkett (bib11) 2011; 39 Rangel Gavidia, Furlan Chinelatto, Basso, Da Ponte Souza, Soltanmohammadi, Campane Vidal, Goldstein, Mohammadizadeh (bib34) 2023; 231 Chen, Weng, Du, Yang, Gao, Wang (bib14) 2023; 285 Bani Mustafa, Abbas, Alsaba, Alameen (bib7) 2021; 11 Wang, Ozbayoglu, Baldino, Liu, Zheng (bib40) 2023 Vásconez Garcia, Mohammadizadeh, Avansi, Basilici, Bomfim, Cunha, Soares, Mesquita, Mahjour, Vidal (bib38) 2024; 16 Soares, Daigle, Gray (bib35) 2016; 34 Wang, Li, Cheng, Yu, Cheng, Ozbayoglu, Baldino (bib39) 2024 Da Silva, Ribeiro, Moreno, Mariani, Coelho (bib17) 2021; 216 Chen, Yang, Gao, Hong, Zou, Du (bib15) 2020; 134 Arabameri, Yamani, Pradhan, Melesse, Shirani, Tien Bui (bib5) 2019; 688 Baek, Yun, Pyo, Kang, Cho, Jeon (bib6) 2022; 806 Amin, Khan, Ahmed, Imtiaz (bib4) 2021; 150 Su, Da, Li, Li, Wei (bib37) 2024; 240 Warren (bib43) 1987 Chen, Yuan, Xu, Gao, Zhang, Liu (bib13) 2021; 205 Wang, Liu, Feng, Xu (bib42) 2020; 738 Almotahari, Yazici (bib3) 2021; 209 Barbosa, Nascimento, Mathias, De Carvalho (bib9) 2019; 183 Chen, Du, Weng, Yang, Gao, Su, Wang (bib47) 2024; 291 Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (bib16) 2019; 651 Zhou, Chen, Zhao, Wu, Cao, Zhang, Liu (bib46) 2021; 100 Hong, Liu, Li, Fan, Ji, Chen, Li, Gong (bib26) 2022; 19 Hong (10.1016/j.geoen.2024.213423_bib26) 2022; 19 Baek (10.1016/j.geoen.2024.213423_bib6) 2022; 806 Hegde (10.1016/j.geoen.2024.213423_bib24) 2017; 159 Soares (10.1016/j.geoen.2024.213423_bib35) 2016; 34 Descovi (10.1016/j.geoen.2024.213423_bib18) 2023 Cen (10.1016/j.geoen.2024.213423_bib12) 2024; 286 Gan (10.1016/j.geoen.2024.213423_bib21) 2019; 181 Mohammadizadeh (10.1016/j.geoen.2024.213423_bib30) 2021; 24 Arabameri (10.1016/j.geoen.2024.213423_bib5) 2019; 688 Gavidia (10.1016/j.geoen.2024.213423_bib22) 2024; 241 Alkinani (10.1016/j.geoen.2024.213423_bib2) 2021; 7 Choubin (10.1016/j.geoen.2024.213423_bib16) 2019; 651 Amin (10.1016/j.geoen.2024.213423_bib4) 2021; 150 Mohammadizadeh (10.1016/j.geoen.2024.213423_bib29) 2023; 5 Wang (10.1016/j.geoen.2024.213423_bib40) 2023 Najjarpour (10.1016/j.geoen.2024.213423_bib32) 2020; 191 Hoxha (10.1016/j.geoen.2024.213423_bib27) 2023; 350 Najjarpour (10.1016/j.geoen.2024.213423_bib31) 2022; 208 Bizhani (10.1016/j.geoen.2024.213423_bib10) 2022; 219 Chen (10.1016/j.geoen.2024.213423_bib14) 2023; 285 Burkett (10.1016/j.geoen.2024.213423_bib11) 2011; 39 Feng (10.1016/j.geoen.2024.213423_bib19) 2024; 915 Hegde (10.1016/j.geoen.2024.213423_bib25) 2017; 40 Wang (10.1016/j.geoen.2024.213423_bib42) 2020; 738 Baptista (10.1016/j.geoen.2024.213423_bib8) 2018; 115 Ahmed (10.1016/j.geoen.2024.213423_bib1) 2019; 172 Chen (10.1016/j.geoen.2024.213423_bib47) 2024; 291 Rangel Gavidia (10.1016/j.geoen.2024.213423_bib34) 2023; 231 Zhou (10.1016/j.geoen.2024.213423_bib45) 2020; 105 Zhou (10.1016/j.geoen.2024.213423_bib46) 2021; 100 Maurer (10.1016/j.geoen.2024.213423_bib28) 1962; 14 Su (10.1016/j.geoen.2024.213423_bib37) 2024; 240 Hegde (10.1016/j.geoen.2024.213423_bib23) 2018; 23 Da Silva (10.1016/j.geoen.2024.213423_bib17) 2021; 216 Chen (10.1016/j.geoen.2024.213423_bib13) 2021; 205 Vásconez Garcia (10.1016/j.geoen.2024.213423_bib38) 2024; 16 Warren (10.1016/j.geoen.2024.213423_bib43) 1987 Wang (10.1016/j.geoen.2024.213423_bib41) 2022 Barbosa (10.1016/j.geoen.2024.213423_bib9) 2019; 183 Soares (10.1016/j.geoen.2024.213423_bib36) 2019; 172 Almotahari (10.1016/j.geoen.2024.213423_bib3) 2021; 209 Feng (10.1016/j.geoen.2024.213423_bib20) 2023; 231 Chen (10.1016/j.geoen.2024.213423_bib15) 2020; 134 Wang (10.1016/j.geoen.2024.213423_bib39) 2024 Nguyen (10.1016/j.geoen.2024.213423_bib33) 2014; 73 Bani Mustafa (10.1016/j.geoen.2024.213423_bib7) 2021; 11 Yuan (10.1016/j.geoen.2024.213423_bib44) 2023; 3 |
| References_xml | – year: 2023 ident: bib18 article-title: Utilizing long short-term memory (lstm) networks for river flow prediction publication-title: THE BRAZILIAN PANTANAL BASIN – volume: 172 start-page: 1 year: 2019 end-page: 12 ident: bib1 article-title: Computational intelligence based prediction of drilling rate of penetration: a comparative study publication-title: J. Petrol. Sci. Eng. – volume: 5 year: 2023 ident: bib29 article-title: Assessing cavitation erosion on solid surfaces using a cavitation jet apparatus publication-title: HOLOS – volume: 240 year: 2024 ident: bib37 article-title: Research on a drilling rate of penetration prediction model based on the improved chaos whale optimization and back propagation algorithm publication-title: Geoenergy Science and Engineering – volume: 150 start-page: 110 year: 2021 end-page: 122 ident: bib4 article-title: A data-driven Bayesian network learning method for process fault diagnosis publication-title: Process Saf. Environ. Protect. – volume: 3 year: 2023 ident: bib44 article-title: Physics-informed Student's t mixture regression model applied to predict mixed oil length publication-title: Journal of Pipeline Science and Engineering – volume: 191 year: 2020 ident: bib32 article-title: The effect of formation thickness on the performance of deterministic and machine learning models for rate of penetration management in inclined and horizontal wells publication-title: J. Petrol. Sci. Eng. – volume: 24 start-page: 1 year: 2021 end-page: 15 ident: bib30 article-title: Analysis of flow IN POROUS media using combined pressurized-free surface network publication-title: J Por Media – volume: 39 start-page: 7719 year: 2011 end-page: 7725 ident: bib11 article-title: Global climate change implications for coastal and offshore oil and gas development publication-title: Energy Pol. – volume: 208 year: 2022 ident: bib31 article-title: Fifty years of experience in rate of penetration management: managed pressure drilling technology, mechanical specific energy concept, bit management approach and expert systems - a review publication-title: J. Petrol. Sci. Eng. – volume: 7 year: 2021 ident: bib2 article-title: Data-driven recurrent neural network model to predict the rate of penetration publication-title: Upstream Oil and Gas Technology – volume: 73 start-page: 282 year: 2014 end-page: 301 ident: bib33 article-title: Life performance of oil and gas platforms: site integration and thermodynamic evaluation publication-title: Energy – volume: 16 start-page: 5730 year: 2024 ident: bib38 article-title: Geological insights from porosity analysis for sustainable development of santos basin's presalt carbonate reservoir publication-title: Sustainability – volume: 100 start-page: 30 year: 2021 end-page: 40 ident: bib46 article-title: A novel rate of penetration prediction model with identified condition for the complex geological drilling process publication-title: J. Process Control – volume: 286 year: 2024 ident: bib12 article-title: User repurchase behavior prediction for integrated energy supply stations based on the user profiling method publication-title: Energy – volume: 23 start-page: 1706 year: 2018 end-page: 1722 ident: bib23 article-title: Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models publication-title: SPE J. – volume: 40 start-page: 327 year: 2017 end-page: 335 ident: bib25 article-title: Use of machine learning and data analytics to increase drilling efficiency for nearby wells publication-title: J. Nat. Gas Sci. Eng. – volume: 159 start-page: 295 year: 2017 end-page: 306 ident: bib24 article-title: Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models publication-title: J. Petrol. Sci. Eng. – volume: 205 year: 2021 ident: bib13 article-title: A novel predictive model of mixed oil length of products pipeline driven by traditional model and data publication-title: J. Petrol. Sci. Eng. – volume: 172 start-page: 934 year: 2019 end-page: 959 ident: bib36 article-title: Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models publication-title: J. Petrol. Sci. Eng. – volume: 285 year: 2023 ident: bib14 article-title: Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques publication-title: Ocean Engineering – volume: 181 year: 2019 ident: bib21 article-title: Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area, Central China publication-title: J. Petrol. Sci. Eng. – volume: 14 start-page: 1270 year: 1962 end-page: 1274 ident: bib28 article-title: The “perfect - cleaning” theory of rotary drilling publication-title: J. Petrol. Technol. – volume: 209 year: 2021 ident: bib3 article-title: A computationally efficient metric for identification of critical links in large transportation networks publication-title: Reliab. Eng. Syst. Saf. – volume: 134 year: 2020 ident: bib15 article-title: Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: review and an innovative method publication-title: Renew. Sustain. Energy Rev. – volume: 219 year: 2022 ident: bib10 article-title: Towards drilling rate of penetration prediction: Bayesian neural networks for uncertainty quantification publication-title: J. Petrol. Sci. Eng. – volume: 915 year: 2024 ident: bib19 article-title: An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed publication-title: Sci. Total Environ. – volume: 651 start-page: 2087 year: 2019 end-page: 2096 ident: bib16 article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines publication-title: Sci. Total Environ. – volume: 231 year: 2023 ident: bib20 article-title: An explainable ensemble machine learning model to elucidate the influential drilling parameters based on rate of penetration prediction publication-title: Geoenergy Science and Engineering – volume: 183 year: 2019 ident: bib9 article-title: Machine learning methods applied to drilling rate of penetration prediction and optimization - a review publication-title: J. Petrol. Sci. Eng. – volume: 115 start-page: 41 year: 2018 end-page: 53 ident: bib8 article-title: Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling publication-title: Comput. Ind. Eng. – volume: 291 start-page: 116375 year: 2024 ident: bib47 article-title: A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning publication-title: Ocean Engineering – volume: 216 year: 2021 ident: bib17 article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting publication-title: Energy – year: 2022 ident: bib41 article-title: Application of Recurrent Neural Network Long Short-Term Memory Model on Early Kick Detection – volume: 738 year: 2020 ident: bib42 article-title: BNNmix: a new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network publication-title: Sci. Total Environ. – volume: 241 year: 2024 ident: bib22 article-title: Bridging the gap: integrating static and dynamic data for improved permeability modeling and super k zone detection in vuggy reservoirs publication-title: Geoenergy Science and Engineering – volume: 350 year: 2023 ident: bib27 article-title: Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis publication-title: Appl. Energy – year: 2023 ident: bib40 article-title: Time series data analysis with recurrent neural network for early kick detection publication-title: Day 2 Tue, May 02, 2023. Presented at the Offshore Technology Conference – volume: 19 start-page: 3004 year: 2022 end-page: 3015 ident: bib26 article-title: A liquid loading prediction method of gas pipeline based on machine learning publication-title: Petrol. Sci. – volume: 806 year: 2022 ident: bib6 article-title: Analysis of micropollutants in a marine outfall using network analysis and decision tree publication-title: Sci. Total Environ. – volume: 688 start-page: 903 year: 2019 end-page: 916 ident: bib5 article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility publication-title: Sci. Total Environ. – volume: 231 year: 2023 ident: bib34 article-title: Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation publication-title: Geoenergy Science and Engineering – volume: 34 start-page: 1225 year: 2016 end-page: 1236 ident: bib35 article-title: Evaluation of PDC bit ROP models and the effect of rock strength on model coefficients publication-title: J. Nat. Gas Sci. Eng. – start-page: 9 year: 1987 end-page: 18 ident: bib43 article-title: Penetration-rate performance of roller-cone bits publication-title: SPE Drill. Eng. – volume: 11 start-page: 1223 year: 2021 end-page: 1232 ident: bib7 article-title: Improving drilling performance through optimizing controllable drilling parameters publication-title: J Petrol Explor Prod Technol – year: 2024 ident: bib39 article-title: Data integration enabling advanced machine learning ROP predictions and its applications publication-title: Day 4 Thu, May 09, 2024. Presented at the Offshore Technology Conference – volume: 105 year: 2020 ident: bib45 article-title: Robust neural networks with random weights based on generalized M-estimation and PLS for imperfect industrial data modeling publication-title: Control Eng. Pract. – volume: 205 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib13 article-title: A novel predictive model of mixed oil length of products pipeline driven by traditional model and data publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108787 – volume: 286 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib12 article-title: User repurchase behavior prediction for integrated energy supply stations based on the user profiling method publication-title: Energy doi: 10.1016/j.energy.2023.129625 – volume: 181 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib21 article-title: Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area, Central China publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.106200 – volume: 183 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib9 article-title: Machine learning methods applied to drilling rate of penetration prediction and optimization - a review publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.106332 – volume: 738 year: 2020 ident: 10.1016/j.geoen.2024.213423_bib42 article-title: BNNmix: a new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140317 – volume: 100 start-page: 30 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib46 article-title: A novel rate of penetration prediction model with identified condition for the complex geological drilling process publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.02.001 – volume: 23 start-page: 1706 year: 2018 ident: 10.1016/j.geoen.2024.213423_bib23 article-title: Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models publication-title: SPE J. doi: 10.2118/191141-PA – volume: 11 start-page: 1223 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib7 article-title: Improving drilling performance through optimizing controllable drilling parameters publication-title: J Petrol Explor Prod Technol doi: 10.1007/s13202-021-01116-2 – year: 2023 ident: 10.1016/j.geoen.2024.213423_bib18 article-title: Utilizing long short-term memory (lstm) networks for river flow prediction – volume: 16 start-page: 5730 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib38 article-title: Geological insights from porosity analysis for sustainable development of santos basin's presalt carbonate reservoir publication-title: Sustainability doi: 10.3390/su16135730 – volume: 7 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib2 article-title: Data-driven recurrent neural network model to predict the rate of penetration publication-title: Upstream Oil and Gas Technology doi: 10.1016/j.upstre.2021.100047 – volume: 5 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib29 article-title: Assessing cavitation erosion on solid surfaces using a cavitation jet apparatus publication-title: HOLOS doi: 10.15628/holos.2023.16306 – year: 2022 ident: 10.1016/j.geoen.2024.213423_bib41 – volume: 191 year: 2020 ident: 10.1016/j.geoen.2024.213423_bib32 article-title: The effect of formation thickness on the performance of deterministic and machine learning models for rate of penetration management in inclined and horizontal wells publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.107160 – volume: 231 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib20 article-title: An explainable ensemble machine learning model to elucidate the influential drilling parameters based on rate of penetration prediction publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2023.212231 – volume: 39 start-page: 7719 year: 2011 ident: 10.1016/j.geoen.2024.213423_bib11 article-title: Global climate change implications for coastal and offshore oil and gas development publication-title: Energy Pol. doi: 10.1016/j.enpol.2011.09.016 – volume: 216 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib17 article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting publication-title: Energy doi: 10.1016/j.energy.2020.119174 – volume: 34 start-page: 1225 year: 2016 ident: 10.1016/j.geoen.2024.213423_bib35 article-title: Evaluation of PDC bit ROP models and the effect of rock strength on model coefficients publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.08.012 – volume: 915 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib19 article-title: An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.169886 – volume: 208 year: 2022 ident: 10.1016/j.geoen.2024.213423_bib31 article-title: Fifty years of experience in rate of penetration management: managed pressure drilling technology, mechanical specific energy concept, bit management approach and expert systems - a review publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109184 – volume: 172 start-page: 934 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib36 article-title: Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2018.08.083 – volume: 241 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib22 article-title: Bridging the gap: integrating static and dynamic data for improved permeability modeling and super k zone detection in vuggy reservoirs publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2024.213152 – volume: 231 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib34 article-title: Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2023.212303 – year: 2024 ident: 10.1016/j.geoen.2024.213423_bib39 article-title: Data integration enabling advanced machine learning ROP predictions and its applications – volume: 3 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib44 article-title: Physics-informed Student's t mixture regression model applied to predict mixed oil length publication-title: Journal of Pipeline Science and Engineering doi: 10.1016/j.jpse.2022.100105 – volume: 209 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib3 article-title: A computationally efficient metric for identification of critical links in large transportation networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107458 – volume: 19 start-page: 3004 year: 2022 ident: 10.1016/j.geoen.2024.213423_bib26 article-title: A liquid loading prediction method of gas pipeline based on machine learning publication-title: Petrol. Sci. doi: 10.1016/j.petsci.2022.05.002 – volume: 105 year: 2020 ident: 10.1016/j.geoen.2024.213423_bib45 article-title: Robust neural networks with random weights based on generalized M-estimation and PLS for imperfect industrial data modeling publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104633 – volume: 73 start-page: 282 year: 2014 ident: 10.1016/j.geoen.2024.213423_bib33 article-title: Life performance of oil and gas platforms: site integration and thermodynamic evaluation publication-title: Energy doi: 10.1016/j.energy.2014.06.021 – volume: 240 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib37 article-title: Research on a drilling rate of penetration prediction model based on the improved chaos whale optimization and back propagation algorithm publication-title: Geoenergy Science and Engineering doi: 10.1016/j.geoen.2024.213017 – start-page: 9 year: 1987 ident: 10.1016/j.geoen.2024.213423_bib43 article-title: Penetration-rate performance of roller-cone bits publication-title: SPE Drill. Eng. doi: 10.2118/13259-PA – volume: 115 start-page: 41 year: 2018 ident: 10.1016/j.geoen.2024.213423_bib8 article-title: Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.10.033 – volume: 291 start-page: 116375 year: 2024 ident: 10.1016/j.geoen.2024.213423_bib47 article-title: A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2023.116375 – volume: 285 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib14 article-title: Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2023.115404 – volume: 159 start-page: 295 year: 2017 ident: 10.1016/j.geoen.2024.213423_bib24 article-title: Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.09.020 – volume: 350 year: 2023 ident: 10.1016/j.geoen.2024.213423_bib27 article-title: Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121765 – volume: 651 start-page: 2087 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib16 article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.064 – volume: 40 start-page: 327 year: 2017 ident: 10.1016/j.geoen.2024.213423_bib25 article-title: Use of machine learning and data analytics to increase drilling efficiency for nearby wells publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.02.019 – year: 2023 ident: 10.1016/j.geoen.2024.213423_bib40 article-title: Time series data analysis with recurrent neural network for early kick detection – volume: 14 start-page: 1270 year: 1962 ident: 10.1016/j.geoen.2024.213423_bib28 article-title: The “perfect - cleaning” theory of rotary drilling publication-title: J. Petrol. Technol. doi: 10.2118/408-PA – volume: 806 year: 2022 ident: 10.1016/j.geoen.2024.213423_bib6 article-title: Analysis of micropollutants in a marine outfall using network analysis and decision tree publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150938 – volume: 172 start-page: 1 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib1 article-title: Computational intelligence based prediction of drilling rate of penetration: a comparative study publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2018.09.027 – volume: 24 start-page: 1 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib30 article-title: Analysis of flow IN POROUS media using combined pressurized-free surface network publication-title: J Por Media doi: 10.1615/JPorMedia.2021025407 – volume: 134 year: 2020 ident: 10.1016/j.geoen.2024.213423_bib15 article-title: Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: review and an innovative method publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110388 – volume: 150 start-page: 110 year: 2021 ident: 10.1016/j.geoen.2024.213423_bib4 article-title: A data-driven Bayesian network learning method for process fault diagnosis publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.04.004 – volume: 688 start-page: 903 year: 2019 ident: 10.1016/j.geoen.2024.213423_bib5 article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.205 – volume: 219 year: 2022 ident: 10.1016/j.geoen.2024.213423_bib10 article-title: Towards drilling rate of penetration prediction: Bayesian neural networks for uncertainty quantification publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2022.111068 |
| SSID | ssj0003239006 |
| Score | 2.3081348 |
| Snippet | The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 213423 |
| SubjectTerms | Ensemble algorithm Machine learning Rate of penetration Robustness |
| Title | A highly accurate and robust prediction framework for drilling rate of penetration based on machine learning ensemble algorithm |
| URI | https://dx.doi.org/10.1016/j.geoen.2024.213423 |
| Volume | 244 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: AIKHN dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: ACRLP dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRRcX6KHvwaOx2d5Mmx1KU-iriA7yFfdZK25SYHjz5153dboqCePAWkgwJk2G-md3J9yF0SqQgNlEqklL6pRsbZTaNIyII0RquWr-jezdKhs_8-iV-aaBB_S-MG6sMuX-V0322Dmc6wZudxWTSeaQZz1JAOzcFCVEGffsG4E-aNtFG_-pmOFovtTAKjb1X2XQmkbOp-Yf8pNfYFMZRoVJ-7vjNKPsdo77hzuU22goFI-6v3mkHNcx8F332seMZnn5godTSsT1gMde4LOTyvcKL0u2-OI9jW89eYShOsS4nnoIbe4vC4gVkusCbix2eaQwHMz9faXAQlBhj6HTNTE7hGdNxUU6q19keer68eBoMoyClECnAqCqSynQpFU5ZBFoQoQSPZSwti60iOusxAHXNhKVGs66MY0O0VZxYliWCJURyto-a82JuDhCWUAAJ2eUCUI0nMkul7RqVspQrq3QvbSFaOy9XgWfcyV1M83qg7C33Hs-dx_OVx1vobG20WNFs_H17Un-V_Ee05AAEfxke_tfwCG1Sp_zrF1-OUbMql-YEypFKtiHcBg-39-0Qdl-i5uJM |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBIEC88cBIqGs7aTJWiKql0IUisUV-lqK2qUI6MPHXObtOBRJiYIuSnBKdL_fdnS_fIXRFpCA2USqSUvrSjY0ym8YREYRoDVet39F9HCa9Z37_Er800G39L4xrqwy-f-XTvbcOZ5pBm83FZNJ8ohnPUkA71wUJVgZ5-yaPWRu-zs1Of9AbrkstjEJi76dsOpHIydT8Q77Ta2wK46hQKb9x_GaU_Y5R33Cnu4t2QsCIO6t32kMNM99Hnx3seIanH1gotXRsD1jMNS4LuXyv8KJ0uy9O49jWvVcYglOsy4mn4MZeorB4AZ4u8OZih2caw8HM91caHAZKjDFkumYmp_CM6bgoJ9Xr7AA9d-9Gt70ojFKIFGBUFUllWpQKN1kEUhChBI9lLC2LrSI6azMAdc2EpUazloxjQ7RVnFiWJYIlRHJ2iDbmxdwcISwhABKyxQWgGk9klkrbMiplKVdW6XZ6jGitvFwFnnE37mKa1w1lb7nXeO40nq80foyu10KLFc3G37cn9arkP6wlByD4S_Dkv4KXaKs3enzIH_rDwSnapm4KsC_EnKGNqlyacwhNKnkRTO8LKf7jmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+accurate+and+robust+prediction+framework+for+drilling+rate+of+penetration+based+on+machine+learning+ensemble+algorithm&rft.jtitle=Geoenergy+Science+and+Engineering&rft.au=Yang%2C+Yuxiang&rft.au=Cen%2C+Xiao&rft.au=Ni%2C+Haocheng&rft.au=Liu%2C+Yibin&rft.date=2025-01-01&rft.issn=2949-8910&rft.eissn=2949-8910&rft.volume=244&rft.spage=213423&rft_id=info:doi/10.1016%2Fj.geoen.2024.213423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoen_2024_213423 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8910&client=summon |