A highly accurate and robust prediction framework for drilling rate of penetration based on machine learning ensemble algorithm

The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both hi...

Full description

Saved in:
Bibliographic Details
Published inGeoenergy Science and Engineering Vol. 244; p. 213423
Main Authors Yang, Yuxiang, Cen, Xiao, Ni, Haocheng, Liu, Yibin, Chen, Zhangxing John, Yang, Jin, Hong, Bingyuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text
ISSN2949-8910
2949-8910
DOI10.1016/j.geoen.2024.213423

Cover

Abstract The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both high accuracy and strong robustness remains a challenge. This paper introduces a novel machine learning approach to constructing a ROP prediction model through ensemble learning algorithms. The model is based on field data from oilfields, incorporating 16 input parameters that influence ROP. First, the feasibility of the collected dataset is verified using correlation analysis. Then, ROP prediction models are developed based on various machine learning algorithms, including Decision Tree Regression (DTR), Random Forest (RF), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Regression (SVR), and Backpropagation Neural Network (BPNN). By comparing the performance of these models under noise levels of 0%, 1.7%, and 5.1%, RF, LGBM, XGB, and SVR are selected as base learners. These base learners are then combined to construct multiple ensemble models, and the performance of the optimal ensemble model is evaluated under varying noise levels. The results show that the prediction error of the optimal model remains within 10%, and R2 is greater than 0.96. Finally, the Shapley Additive Explanations (SHAP) method is applied to perform interpretability analysis on the optimal ROP prediction model, examining the impact of different input factors on the model's predictive performance. Compared to single models and other ensemble models, the proposed ensemble model not only achieves higher accuracy but also demonstrates strong robustness and generalization capability. •Base learners are selected for ensemble models by analyzing the performance of single models.•Compared to other models, the proposed model achieves better performance.•Introduced SHAP method to explore the effect of various factors on model performance.•An ensemble predictive model for ROP is proposed, showing both high accuracy and strong robustness.
AbstractList The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction. However, few studies have focused on the robustness of the constructed models, and developing a ROP prediction model that can achieve both high accuracy and strong robustness remains a challenge. This paper introduces a novel machine learning approach to constructing a ROP prediction model through ensemble learning algorithms. The model is based on field data from oilfields, incorporating 16 input parameters that influence ROP. First, the feasibility of the collected dataset is verified using correlation analysis. Then, ROP prediction models are developed based on various machine learning algorithms, including Decision Tree Regression (DTR), Random Forest (RF), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), Support Vector Regression (SVR), and Backpropagation Neural Network (BPNN). By comparing the performance of these models under noise levels of 0%, 1.7%, and 5.1%, RF, LGBM, XGB, and SVR are selected as base learners. These base learners are then combined to construct multiple ensemble models, and the performance of the optimal ensemble model is evaluated under varying noise levels. The results show that the prediction error of the optimal model remains within 10%, and R2 is greater than 0.96. Finally, the Shapley Additive Explanations (SHAP) method is applied to perform interpretability analysis on the optimal ROP prediction model, examining the impact of different input factors on the model's predictive performance. Compared to single models and other ensemble models, the proposed ensemble model not only achieves higher accuracy but also demonstrates strong robustness and generalization capability. •Base learners are selected for ensemble models by analyzing the performance of single models.•Compared to other models, the proposed model achieves better performance.•Introduced SHAP method to explore the effect of various factors on model performance.•An ensemble predictive model for ROP is proposed, showing both high accuracy and strong robustness.
ArticleNumber 213423
Author Cen, Xiao
Yang, Jin
Liu, Yibin
Hong, Bingyuan
Ni, Haocheng
Yang, Yuxiang
Chen, Zhangxing John
Author_xml – sequence: 1
  givenname: Yuxiang
  surname: Yang
  fullname: Yang, Yuxiang
  organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
– sequence: 2
  givenname: Xiao
  surname: Cen
  fullname: Cen, Xiao
  organization: National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology/ Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control /School of Petrochemical Engineering & Environment /School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
– sequence: 3
  givenname: Haocheng
  surname: Ni
  fullname: Ni, Haocheng
  organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
– sequence: 4
  givenname: Yibin
  surname: Liu
  fullname: Liu, Yibin
  organization: CNOOC Research Institute Company Limited, Beijing, 100028, China
– sequence: 5
  givenname: Zhangxing John
  orcidid: 0000-0002-9107-1925
  surname: Chen
  fullname: Chen, Zhangxing John
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
– sequence: 6
  givenname: Jin
  surname: Yang
  fullname: Yang, Jin
  email: yjin@cup.edu.cn
  organization: College of Safety and Ocean Engineering, China University of Petroleum-Beijing, Beijing, 102249, China
– sequence: 7
  givenname: Bingyuan
  surname: Hong
  fullname: Hong, Bingyuan
  email: hongby@zjou.edu.cn
  organization: National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology/ Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control /School of Petrochemical Engineering & Environment /School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
BookMark eNqFkDtPwzAQgC1UJErpL2DxH0jwI0mbgaGqeEmVWGC2HPucuCR2ZaegTvx1kpYBMcB0d9J99_gu0cR5BwhdU5JSQoubbVqDB5cywrKUUZ4xfoamrMzKZFlSMvmRX6B5jFtCCGe8JKSYos8VbmzdtAcsldoH2QOWTuPgq33s8S6Atqq33mETZAcfPrxh4wPWwbatdTU-Et7gHTjoh2JsrWQEjYekk6qxDnALMrixG1yErmqHHW3tg-2b7gqdG9lGmH_HGXq9v3tZPyab54en9WqTKE54n1QKKGOyWGRLusikklle5ZXhuVFElwteUK65NAw0p1WeA9FGZcTwspC8IFXGZ6g8zVXBxxjACGX747nD1bYVlIhRptiKo0wxyhQnmQPLf7G7YDsZDv9QtycKhrfeLQQRlQWnBqMBVC-0t3_yX68mlB4
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_120427
Cites_doi 10.1016/j.petrol.2021.108787
10.1016/j.energy.2023.129625
10.1016/j.petrol.2019.106200
10.1016/j.petrol.2019.106332
10.1016/j.scitotenv.2020.140317
10.1016/j.jprocont.2021.02.001
10.2118/191141-PA
10.1007/s13202-021-01116-2
10.3390/su16135730
10.1016/j.upstre.2021.100047
10.15628/holos.2023.16306
10.1016/j.petrol.2020.107160
10.1016/j.geoen.2023.212231
10.1016/j.enpol.2011.09.016
10.1016/j.energy.2020.119174
10.1016/j.jngse.2016.08.012
10.1016/j.scitotenv.2024.169886
10.1016/j.petrol.2021.109184
10.1016/j.petrol.2018.08.083
10.1016/j.geoen.2024.213152
10.1016/j.geoen.2023.212303
10.1016/j.jpse.2022.100105
10.1016/j.ress.2021.107458
10.1016/j.petsci.2022.05.002
10.1016/j.conengprac.2020.104633
10.1016/j.energy.2014.06.021
10.1016/j.geoen.2024.213017
10.2118/13259-PA
10.1016/j.cie.2017.10.033
10.1016/j.oceaneng.2023.116375
10.1016/j.oceaneng.2023.115404
10.1016/j.petrol.2017.09.020
10.1016/j.apenergy.2023.121765
10.1016/j.scitotenv.2018.10.064
10.1016/j.jngse.2017.02.019
10.2118/408-PA
10.1016/j.scitotenv.2021.150938
10.1016/j.petrol.2018.09.027
10.1615/JPorMedia.2021025407
10.1016/j.rser.2020.110388
10.1016/j.psep.2021.04.004
10.1016/j.scitotenv.2019.06.205
10.1016/j.petrol.2022.111068
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.geoen.2024.213423
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2949-8910
ExternalDocumentID 10_1016_j_geoen_2024_213423
S2949891024007930
GroupedDBID 0R~
AALRI
AAXUO
ABJNI
ACRLP
AEIPS
AFJKZ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
BELTK
FDB
M41
ROL
SPC
SSE
SSR
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c303t-bce122a6748174aca45b5bf35fc0d973613d3af2ed31b55e0dfc40f396a360b43
IEDL.DBID AIKHN
ISSN 2949-8910
IngestDate Wed Oct 01 03:05:59 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Sat Feb 15 15:52:19 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Ensemble algorithm
Robustness
Rate of penetration
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-bce122a6748174aca45b5bf35fc0d973613d3af2ed31b55e0dfc40f396a360b43
ORCID 0000-0002-9107-1925
ParticipantIDs crossref_citationtrail_10_1016_j_geoen_2024_213423
crossref_primary_10_1016_j_geoen_2024_213423
elsevier_sciencedirect_doi_10_1016_j_geoen_2024_213423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Geoenergy Science and Engineering
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nguyen, Fülöp, Breuhaus, Elmegaard (bib33) 2014; 73
Ahmed, Adeniran, Samsuri (bib1) 2019; 172
Gan, Cao, Wu, Chen, Hu, Liu, Wang, Zhang (bib21) 2019; 181
Wang, Ozbayoglu (bib41) 2022
Feng, Duan, Bao, Li (bib19) 2024; 915
Soares, Gray (bib36) 2019; 172
Hegde, Gray (bib25) 2017; 40
Bizhani, Kuru (bib10) 2022; 219
Najjarpour, Jalalifar, Norouzi-Apourvari (bib31) 2022; 208
Hegde, Daigle, Millwater, Gray (bib24) 2017; 159
Hoxha, Çodur, Mustafaraj, Kanj, El Masri (bib27) 2023; 350
Mohammadizadeh, Dalfré Filho, Sampaio Descovi, Murillo Bermúdez, Alfonso Sierra, Corzo Perez (bib29) 2023; 5
Feng, Gani, Damayanti, Gani (bib20) 2023; 231
Gavidia, Mohammadizadeh, Chinelatto, Basso, Da Ponte Souza, Portillo, Eltom, Vidal, Goldstein (bib22) 2024; 241
Yuan, Chen, Liu, Shao, Zhang, Ma (bib44) 2023; 3
Najjarpour, Jalalifar, Norouzi-Apourvari (bib32) 2020; 191
Hegde, Daigle, Gray (bib23) 2018; 23
Mohammadizadeh, Moghaddam, Talebbeydokhti (bib30) 2021; 24
Maurer (bib28) 1962; 14
Cen, Chen, Chen, Ding, Ding, Li, Lou, Zhu, Zhang, Hong (bib12) 2024; 286
Descovi, Zuffo, Mohammadizadeh, Murillo-Bermúdez, Sierra (bib18) 2023
Alkinani, Al-Hameedi, Dunn-Norman (bib2) 2021; 7
Baptista, Sankararaman, De, IvoP, Nascimento, Prendinger, Henriques (bib8) 2018; 115
Zhou, Xie, Li, Wang, Chai (bib45) 2020; 105
Burkett (bib11) 2011; 39
Rangel Gavidia, Furlan Chinelatto, Basso, Da Ponte Souza, Soltanmohammadi, Campane Vidal, Goldstein, Mohammadizadeh (bib34) 2023; 231
Chen, Weng, Du, Yang, Gao, Wang (bib14) 2023; 285
Bani Mustafa, Abbas, Alsaba, Alameen (bib7) 2021; 11
Wang, Ozbayoglu, Baldino, Liu, Zheng (bib40) 2023
Vásconez Garcia, Mohammadizadeh, Avansi, Basilici, Bomfim, Cunha, Soares, Mesquita, Mahjour, Vidal (bib38) 2024; 16
Soares, Daigle, Gray (bib35) 2016; 34
Wang, Li, Cheng, Yu, Cheng, Ozbayoglu, Baldino (bib39) 2024
Da Silva, Ribeiro, Moreno, Mariani, Coelho (bib17) 2021; 216
Chen, Yang, Gao, Hong, Zou, Du (bib15) 2020; 134
Arabameri, Yamani, Pradhan, Melesse, Shirani, Tien Bui (bib5) 2019; 688
Baek, Yun, Pyo, Kang, Cho, Jeon (bib6) 2022; 806
Amin, Khan, Ahmed, Imtiaz (bib4) 2021; 150
Su, Da, Li, Li, Wei (bib37) 2024; 240
Warren (bib43) 1987
Chen, Yuan, Xu, Gao, Zhang, Liu (bib13) 2021; 205
Wang, Liu, Feng, Xu (bib42) 2020; 738
Almotahari, Yazici (bib3) 2021; 209
Barbosa, Nascimento, Mathias, De Carvalho (bib9) 2019; 183
Chen, Du, Weng, Yang, Gao, Su, Wang (bib47) 2024; 291
Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (bib16) 2019; 651
Zhou, Chen, Zhao, Wu, Cao, Zhang, Liu (bib46) 2021; 100
Hong, Liu, Li, Fan, Ji, Chen, Li, Gong (bib26) 2022; 19
Hong (10.1016/j.geoen.2024.213423_bib26) 2022; 19
Baek (10.1016/j.geoen.2024.213423_bib6) 2022; 806
Hegde (10.1016/j.geoen.2024.213423_bib24) 2017; 159
Soares (10.1016/j.geoen.2024.213423_bib35) 2016; 34
Descovi (10.1016/j.geoen.2024.213423_bib18) 2023
Cen (10.1016/j.geoen.2024.213423_bib12) 2024; 286
Gan (10.1016/j.geoen.2024.213423_bib21) 2019; 181
Mohammadizadeh (10.1016/j.geoen.2024.213423_bib30) 2021; 24
Arabameri (10.1016/j.geoen.2024.213423_bib5) 2019; 688
Gavidia (10.1016/j.geoen.2024.213423_bib22) 2024; 241
Alkinani (10.1016/j.geoen.2024.213423_bib2) 2021; 7
Choubin (10.1016/j.geoen.2024.213423_bib16) 2019; 651
Amin (10.1016/j.geoen.2024.213423_bib4) 2021; 150
Mohammadizadeh (10.1016/j.geoen.2024.213423_bib29) 2023; 5
Wang (10.1016/j.geoen.2024.213423_bib40) 2023
Najjarpour (10.1016/j.geoen.2024.213423_bib32) 2020; 191
Hoxha (10.1016/j.geoen.2024.213423_bib27) 2023; 350
Najjarpour (10.1016/j.geoen.2024.213423_bib31) 2022; 208
Bizhani (10.1016/j.geoen.2024.213423_bib10) 2022; 219
Chen (10.1016/j.geoen.2024.213423_bib14) 2023; 285
Burkett (10.1016/j.geoen.2024.213423_bib11) 2011; 39
Feng (10.1016/j.geoen.2024.213423_bib19) 2024; 915
Hegde (10.1016/j.geoen.2024.213423_bib25) 2017; 40
Wang (10.1016/j.geoen.2024.213423_bib42) 2020; 738
Baptista (10.1016/j.geoen.2024.213423_bib8) 2018; 115
Ahmed (10.1016/j.geoen.2024.213423_bib1) 2019; 172
Chen (10.1016/j.geoen.2024.213423_bib47) 2024; 291
Rangel Gavidia (10.1016/j.geoen.2024.213423_bib34) 2023; 231
Zhou (10.1016/j.geoen.2024.213423_bib45) 2020; 105
Zhou (10.1016/j.geoen.2024.213423_bib46) 2021; 100
Maurer (10.1016/j.geoen.2024.213423_bib28) 1962; 14
Su (10.1016/j.geoen.2024.213423_bib37) 2024; 240
Hegde (10.1016/j.geoen.2024.213423_bib23) 2018; 23
Da Silva (10.1016/j.geoen.2024.213423_bib17) 2021; 216
Chen (10.1016/j.geoen.2024.213423_bib13) 2021; 205
Vásconez Garcia (10.1016/j.geoen.2024.213423_bib38) 2024; 16
Warren (10.1016/j.geoen.2024.213423_bib43) 1987
Wang (10.1016/j.geoen.2024.213423_bib41) 2022
Barbosa (10.1016/j.geoen.2024.213423_bib9) 2019; 183
Soares (10.1016/j.geoen.2024.213423_bib36) 2019; 172
Almotahari (10.1016/j.geoen.2024.213423_bib3) 2021; 209
Feng (10.1016/j.geoen.2024.213423_bib20) 2023; 231
Chen (10.1016/j.geoen.2024.213423_bib15) 2020; 134
Wang (10.1016/j.geoen.2024.213423_bib39) 2024
Nguyen (10.1016/j.geoen.2024.213423_bib33) 2014; 73
Bani Mustafa (10.1016/j.geoen.2024.213423_bib7) 2021; 11
Yuan (10.1016/j.geoen.2024.213423_bib44) 2023; 3
References_xml – year: 2023
  ident: bib18
  article-title: Utilizing long short-term memory (lstm) networks for river flow prediction
  publication-title: THE BRAZILIAN PANTANAL BASIN
– volume: 172
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib1
  article-title: Computational intelligence based prediction of drilling rate of penetration: a comparative study
  publication-title: J. Petrol. Sci. Eng.
– volume: 5
  year: 2023
  ident: bib29
  article-title: Assessing cavitation erosion on solid surfaces using a cavitation jet apparatus
  publication-title: HOLOS
– volume: 240
  year: 2024
  ident: bib37
  article-title: Research on a drilling rate of penetration prediction model based on the improved chaos whale optimization and back propagation algorithm
  publication-title: Geoenergy Science and Engineering
– volume: 150
  start-page: 110
  year: 2021
  end-page: 122
  ident: bib4
  article-title: A data-driven Bayesian network learning method for process fault diagnosis
  publication-title: Process Saf. Environ. Protect.
– volume: 3
  year: 2023
  ident: bib44
  article-title: Physics-informed Student's t mixture regression model applied to predict mixed oil length
  publication-title: Journal of Pipeline Science and Engineering
– volume: 191
  year: 2020
  ident: bib32
  article-title: The effect of formation thickness on the performance of deterministic and machine learning models for rate of penetration management in inclined and horizontal wells
  publication-title: J. Petrol. Sci. Eng.
– volume: 24
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib30
  article-title: Analysis of flow IN POROUS media using combined pressurized-free surface network
  publication-title: J Por Media
– volume: 39
  start-page: 7719
  year: 2011
  end-page: 7725
  ident: bib11
  article-title: Global climate change implications for coastal and offshore oil and gas development
  publication-title: Energy Pol.
– volume: 208
  year: 2022
  ident: bib31
  article-title: Fifty years of experience in rate of penetration management: managed pressure drilling technology, mechanical specific energy concept, bit management approach and expert systems - a review
  publication-title: J. Petrol. Sci. Eng.
– volume: 7
  year: 2021
  ident: bib2
  article-title: Data-driven recurrent neural network model to predict the rate of penetration
  publication-title: Upstream Oil and Gas Technology
– volume: 73
  start-page: 282
  year: 2014
  end-page: 301
  ident: bib33
  article-title: Life performance of oil and gas platforms: site integration and thermodynamic evaluation
  publication-title: Energy
– volume: 16
  start-page: 5730
  year: 2024
  ident: bib38
  article-title: Geological insights from porosity analysis for sustainable development of santos basin's presalt carbonate reservoir
  publication-title: Sustainability
– volume: 100
  start-page: 30
  year: 2021
  end-page: 40
  ident: bib46
  article-title: A novel rate of penetration prediction model with identified condition for the complex geological drilling process
  publication-title: J. Process Control
– volume: 286
  year: 2024
  ident: bib12
  article-title: User repurchase behavior prediction for integrated energy supply stations based on the user profiling method
  publication-title: Energy
– volume: 23
  start-page: 1706
  year: 2018
  end-page: 1722
  ident: bib23
  article-title: Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models
  publication-title: SPE J.
– volume: 40
  start-page: 327
  year: 2017
  end-page: 335
  ident: bib25
  article-title: Use of machine learning and data analytics to increase drilling efficiency for nearby wells
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 159
  start-page: 295
  year: 2017
  end-page: 306
  ident: bib24
  article-title: Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models
  publication-title: J. Petrol. Sci. Eng.
– volume: 205
  year: 2021
  ident: bib13
  article-title: A novel predictive model of mixed oil length of products pipeline driven by traditional model and data
  publication-title: J. Petrol. Sci. Eng.
– volume: 172
  start-page: 934
  year: 2019
  end-page: 959
  ident: bib36
  article-title: Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models
  publication-title: J. Petrol. Sci. Eng.
– volume: 285
  year: 2023
  ident: bib14
  article-title: Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques
  publication-title: Ocean Engineering
– volume: 181
  year: 2019
  ident: bib21
  article-title: Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area, Central China
  publication-title: J. Petrol. Sci. Eng.
– volume: 14
  start-page: 1270
  year: 1962
  end-page: 1274
  ident: bib28
  article-title: The “perfect - cleaning” theory of rotary drilling
  publication-title: J. Petrol. Technol.
– volume: 209
  year: 2021
  ident: bib3
  article-title: A computationally efficient metric for identification of critical links in large transportation networks
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 134
  year: 2020
  ident: bib15
  article-title: Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: review and an innovative method
  publication-title: Renew. Sustain. Energy Rev.
– volume: 219
  year: 2022
  ident: bib10
  article-title: Towards drilling rate of penetration prediction: Bayesian neural networks for uncertainty quantification
  publication-title: J. Petrol. Sci. Eng.
– volume: 915
  year: 2024
  ident: bib19
  article-title: An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed
  publication-title: Sci. Total Environ.
– volume: 651
  start-page: 2087
  year: 2019
  end-page: 2096
  ident: bib16
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
– volume: 231
  year: 2023
  ident: bib20
  article-title: An explainable ensemble machine learning model to elucidate the influential drilling parameters based on rate of penetration prediction
  publication-title: Geoenergy Science and Engineering
– volume: 183
  year: 2019
  ident: bib9
  article-title: Machine learning methods applied to drilling rate of penetration prediction and optimization - a review
  publication-title: J. Petrol. Sci. Eng.
– volume: 115
  start-page: 41
  year: 2018
  end-page: 53
  ident: bib8
  article-title: Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling
  publication-title: Comput. Ind. Eng.
– volume: 291
  start-page: 116375
  year: 2024
  ident: bib47
  article-title: A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning
  publication-title: Ocean Engineering
– volume: 216
  year: 2021
  ident: bib17
  article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting
  publication-title: Energy
– year: 2022
  ident: bib41
  article-title: Application of Recurrent Neural Network Long Short-Term Memory Model on Early Kick Detection
– volume: 738
  year: 2020
  ident: bib42
  article-title: BNNmix: a new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network
  publication-title: Sci. Total Environ.
– volume: 241
  year: 2024
  ident: bib22
  article-title: Bridging the gap: integrating static and dynamic data for improved permeability modeling and super k zone detection in vuggy reservoirs
  publication-title: Geoenergy Science and Engineering
– volume: 350
  year: 2023
  ident: bib27
  article-title: Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis
  publication-title: Appl. Energy
– year: 2023
  ident: bib40
  article-title: Time series data analysis with recurrent neural network for early kick detection
  publication-title: Day 2 Tue, May 02, 2023. Presented at the Offshore Technology Conference
– volume: 19
  start-page: 3004
  year: 2022
  end-page: 3015
  ident: bib26
  article-title: A liquid loading prediction method of gas pipeline based on machine learning
  publication-title: Petrol. Sci.
– volume: 806
  year: 2022
  ident: bib6
  article-title: Analysis of micropollutants in a marine outfall using network analysis and decision tree
  publication-title: Sci. Total Environ.
– volume: 688
  start-page: 903
  year: 2019
  end-page: 916
  ident: bib5
  article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility
  publication-title: Sci. Total Environ.
– volume: 231
  year: 2023
  ident: bib34
  article-title: Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation
  publication-title: Geoenergy Science and Engineering
– volume: 34
  start-page: 1225
  year: 2016
  end-page: 1236
  ident: bib35
  article-title: Evaluation of PDC bit ROP models and the effect of rock strength on model coefficients
  publication-title: J. Nat. Gas Sci. Eng.
– start-page: 9
  year: 1987
  end-page: 18
  ident: bib43
  article-title: Penetration-rate performance of roller-cone bits
  publication-title: SPE Drill. Eng.
– volume: 11
  start-page: 1223
  year: 2021
  end-page: 1232
  ident: bib7
  article-title: Improving drilling performance through optimizing controllable drilling parameters
  publication-title: J Petrol Explor Prod Technol
– year: 2024
  ident: bib39
  article-title: Data integration enabling advanced machine learning ROP predictions and its applications
  publication-title: Day 4 Thu, May 09, 2024. Presented at the Offshore Technology Conference
– volume: 105
  year: 2020
  ident: bib45
  article-title: Robust neural networks with random weights based on generalized M-estimation and PLS for imperfect industrial data modeling
  publication-title: Control Eng. Pract.
– volume: 205
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib13
  article-title: A novel predictive model of mixed oil length of products pipeline driven by traditional model and data
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108787
– volume: 286
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib12
  article-title: User repurchase behavior prediction for integrated energy supply stations based on the user profiling method
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129625
– volume: 181
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib21
  article-title: Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area, Central China
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106200
– volume: 183
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib9
  article-title: Machine learning methods applied to drilling rate of penetration prediction and optimization - a review
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106332
– volume: 738
  year: 2020
  ident: 10.1016/j.geoen.2024.213423_bib42
  article-title: BNNmix: a new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140317
– volume: 100
  start-page: 30
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib46
  article-title: A novel rate of penetration prediction model with identified condition for the complex geological drilling process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2021.02.001
– volume: 23
  start-page: 1706
  year: 2018
  ident: 10.1016/j.geoen.2024.213423_bib23
  article-title: Performance comparison of algorithms for real-time rate-of-penetration optimization in drilling using data-driven models
  publication-title: SPE J.
  doi: 10.2118/191141-PA
– volume: 11
  start-page: 1223
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib7
  article-title: Improving drilling performance through optimizing controllable drilling parameters
  publication-title: J Petrol Explor Prod Technol
  doi: 10.1007/s13202-021-01116-2
– year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib18
  article-title: Utilizing long short-term memory (lstm) networks for river flow prediction
– volume: 16
  start-page: 5730
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib38
  article-title: Geological insights from porosity analysis for sustainable development of santos basin's presalt carbonate reservoir
  publication-title: Sustainability
  doi: 10.3390/su16135730
– volume: 7
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib2
  article-title: Data-driven recurrent neural network model to predict the rate of penetration
  publication-title: Upstream Oil and Gas Technology
  doi: 10.1016/j.upstre.2021.100047
– volume: 5
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib29
  article-title: Assessing cavitation erosion on solid surfaces using a cavitation jet apparatus
  publication-title: HOLOS
  doi: 10.15628/holos.2023.16306
– year: 2022
  ident: 10.1016/j.geoen.2024.213423_bib41
– volume: 191
  year: 2020
  ident: 10.1016/j.geoen.2024.213423_bib32
  article-title: The effect of formation thickness on the performance of deterministic and machine learning models for rate of penetration management in inclined and horizontal wells
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107160
– volume: 231
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib20
  article-title: An explainable ensemble machine learning model to elucidate the influential drilling parameters based on rate of penetration prediction
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2023.212231
– volume: 39
  start-page: 7719
  year: 2011
  ident: 10.1016/j.geoen.2024.213423_bib11
  article-title: Global climate change implications for coastal and offshore oil and gas development
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2011.09.016
– volume: 216
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib17
  article-title: A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119174
– volume: 34
  start-page: 1225
  year: 2016
  ident: 10.1016/j.geoen.2024.213423_bib35
  article-title: Evaluation of PDC bit ROP models and the effect of rock strength on model coefficients
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.08.012
– volume: 915
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib19
  article-title: An improved Back Propagation Neural Network framework and its application in the automatic calibration of Storm Water Management Model for an urban river watershed
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.169886
– volume: 208
  year: 2022
  ident: 10.1016/j.geoen.2024.213423_bib31
  article-title: Fifty years of experience in rate of penetration management: managed pressure drilling technology, mechanical specific energy concept, bit management approach and expert systems - a review
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109184
– volume: 172
  start-page: 934
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib36
  article-title: Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2018.08.083
– volume: 241
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib22
  article-title: Bridging the gap: integrating static and dynamic data for improved permeability modeling and super k zone detection in vuggy reservoirs
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2024.213152
– volume: 231
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib34
  article-title: Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2023.212303
– year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib39
  article-title: Data integration enabling advanced machine learning ROP predictions and its applications
– volume: 3
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib44
  article-title: Physics-informed Student's t mixture regression model applied to predict mixed oil length
  publication-title: Journal of Pipeline Science and Engineering
  doi: 10.1016/j.jpse.2022.100105
– volume: 209
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib3
  article-title: A computationally efficient metric for identification of critical links in large transportation networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107458
– volume: 19
  start-page: 3004
  year: 2022
  ident: 10.1016/j.geoen.2024.213423_bib26
  article-title: A liquid loading prediction method of gas pipeline based on machine learning
  publication-title: Petrol. Sci.
  doi: 10.1016/j.petsci.2022.05.002
– volume: 105
  year: 2020
  ident: 10.1016/j.geoen.2024.213423_bib45
  article-title: Robust neural networks with random weights based on generalized M-estimation and PLS for imperfect industrial data modeling
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104633
– volume: 73
  start-page: 282
  year: 2014
  ident: 10.1016/j.geoen.2024.213423_bib33
  article-title: Life performance of oil and gas platforms: site integration and thermodynamic evaluation
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.021
– volume: 240
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib37
  article-title: Research on a drilling rate of penetration prediction model based on the improved chaos whale optimization and back propagation algorithm
  publication-title: Geoenergy Science and Engineering
  doi: 10.1016/j.geoen.2024.213017
– start-page: 9
  year: 1987
  ident: 10.1016/j.geoen.2024.213423_bib43
  article-title: Penetration-rate performance of roller-cone bits
  publication-title: SPE Drill. Eng.
  doi: 10.2118/13259-PA
– volume: 115
  start-page: 41
  year: 2018
  ident: 10.1016/j.geoen.2024.213423_bib8
  article-title: Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2017.10.033
– volume: 291
  start-page: 116375
  year: 2024
  ident: 10.1016/j.geoen.2024.213423_bib47
  article-title: A real-time drilling parameters optimization method for offshore large-scale cluster extended reach drilling based on intelligent optimization algorithm and machine learning
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2023.116375
– volume: 285
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib14
  article-title: Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2023.115404
– volume: 159
  start-page: 295
  year: 2017
  ident: 10.1016/j.geoen.2024.213423_bib24
  article-title: Analysis of rate of penetration (ROP) prediction in drilling using physics-based and data-driven models
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2017.09.020
– volume: 350
  year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib27
  article-title: Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121765
– volume: 651
  start-page: 2087
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib16
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 40
  start-page: 327
  year: 2017
  ident: 10.1016/j.geoen.2024.213423_bib25
  article-title: Use of machine learning and data analytics to increase drilling efficiency for nearby wells
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.02.019
– year: 2023
  ident: 10.1016/j.geoen.2024.213423_bib40
  article-title: Time series data analysis with recurrent neural network for early kick detection
– volume: 14
  start-page: 1270
  year: 1962
  ident: 10.1016/j.geoen.2024.213423_bib28
  article-title: The “perfect - cleaning” theory of rotary drilling
  publication-title: J. Petrol. Technol.
  doi: 10.2118/408-PA
– volume: 806
  year: 2022
  ident: 10.1016/j.geoen.2024.213423_bib6
  article-title: Analysis of micropollutants in a marine outfall using network analysis and decision tree
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150938
– volume: 172
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib1
  article-title: Computational intelligence based prediction of drilling rate of penetration: a comparative study
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2018.09.027
– volume: 24
  start-page: 1
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib30
  article-title: Analysis of flow IN POROUS media using combined pressurized-free surface network
  publication-title: J Por Media
  doi: 10.1615/JPorMedia.2021025407
– volume: 134
  year: 2020
  ident: 10.1016/j.geoen.2024.213423_bib15
  article-title: Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: review and an innovative method
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110388
– volume: 150
  start-page: 110
  year: 2021
  ident: 10.1016/j.geoen.2024.213423_bib4
  article-title: A data-driven Bayesian network learning method for process fault diagnosis
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2021.04.004
– volume: 688
  start-page: 903
  year: 2019
  ident: 10.1016/j.geoen.2024.213423_bib5
  article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.205
– volume: 219
  year: 2022
  ident: 10.1016/j.geoen.2024.213423_bib10
  article-title: Towards drilling rate of penetration prediction: Bayesian neural networks for uncertainty quantification
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2022.111068
SSID ssj0003239006
Score 2.3081348
Snippet The rate of penetration (ROP) is a key indicator of drilling efficiency. Many researchers have explored the application of machine learning in ROP prediction....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 213423
SubjectTerms Ensemble algorithm
Machine learning
Rate of penetration
Robustness
Title A highly accurate and robust prediction framework for drilling rate of penetration based on machine learning ensemble algorithm
URI https://dx.doi.org/10.1016/j.geoen.2024.213423
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 2949-8910
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003239006
  issn: 2949-8910
  databaseCode: AIKHN
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2949-8910
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003239006
  issn: 2949-8910
  databaseCode: ACRLP
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRRcX6KHvwaOx2d5Mmx1KU-iriA7yFfdZK25SYHjz5153dboqCePAWkgwJk2G-md3J9yF0SqQgNlEqklL6pRsbZTaNIyII0RquWr-jezdKhs_8-iV-aaBB_S-MG6sMuX-V0322Dmc6wZudxWTSeaQZz1JAOzcFCVEGffsG4E-aNtFG_-pmOFovtTAKjb1X2XQmkbOp-Yf8pNfYFMZRoVJ-7vjNKPsdo77hzuU22goFI-6v3mkHNcx8F332seMZnn5godTSsT1gMde4LOTyvcKL0u2-OI9jW89eYShOsS4nnoIbe4vC4gVkusCbix2eaQwHMz9faXAQlBhj6HTNTE7hGdNxUU6q19keer68eBoMoyClECnAqCqSynQpFU5ZBFoQoQSPZSwti60iOusxAHXNhKVGs66MY0O0VZxYliWCJURyto-a82JuDhCWUAAJ2eUCUI0nMkul7RqVspQrq3QvbSFaOy9XgWfcyV1M83qg7C33Hs-dx_OVx1vobG20WNFs_H17Un-V_Ee05AAEfxke_tfwCG1Sp_zrF1-OUbMql-YEypFKtiHcBg-39-0Qdl-i5uJM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGBBIEC88cBIqGs7aTJWiKql0IUisUV-lqK2qUI6MPHXObtOBRJiYIuSnBKdL_fdnS_fIXRFpCA2USqSUvrSjY0ym8YREYRoDVet39F9HCa9Z37_Er800G39L4xrqwy-f-XTvbcOZ5pBm83FZNJ8ohnPUkA71wUJVgZ5-yaPWRu-zs1Of9AbrkstjEJi76dsOpHIydT8Q77Ta2wK46hQKb9x_GaU_Y5R33Cnu4t2QsCIO6t32kMNM99Hnx3seIanH1gotXRsD1jMNS4LuXyv8KJ0uy9O49jWvVcYglOsy4mn4MZeorB4AZ4u8OZih2caw8HM91caHAZKjDFkumYmp_CM6bgoJ9Xr7AA9d-9Gt70ojFKIFGBUFUllWpQKN1kEUhChBI9lLC2LrSI6azMAdc2EpUazloxjQ7RVnFiWJYIlRHJ2iDbmxdwcISwhABKyxQWgGk9klkrbMiplKVdW6XZ6jGitvFwFnnE37mKa1w1lb7nXeO40nq80foyu10KLFc3G37cn9arkP6wlByD4S_Dkv4KXaKs3enzIH_rDwSnapm4KsC_EnKGNqlyacwhNKnkRTO8LKf7jmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+accurate+and+robust+prediction+framework+for+drilling+rate+of+penetration+based+on+machine+learning+ensemble+algorithm&rft.jtitle=Geoenergy+Science+and+Engineering&rft.au=Yang%2C+Yuxiang&rft.au=Cen%2C+Xiao&rft.au=Ni%2C+Haocheng&rft.au=Liu%2C+Yibin&rft.date=2025-01-01&rft.issn=2949-8910&rft.eissn=2949-8910&rft.volume=244&rft.spage=213423&rft_id=info:doi/10.1016%2Fj.geoen.2024.213423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoen_2024_213423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8910&client=summon