Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing

Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing pro...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 35; p. 101197
Main Authors Huang, Jida, Segura, Luis Javier, Wang, Tianjiao, Zhao, Guanglei, Sun, Hongyue, Zhou, Chi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text
ISSN2214-8604
2214-7810
DOI10.1016/j.addma.2020.101197

Cover

Abstract Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing process. Most of the current works use static images for the study of the drop evolution process. The problem of the static images is that the images cannot recognize the motion information (i.e., temporal transformation) of the droplet. Thus the information of the jetting process in the temporal domain will be lost. Instead of using the images, this paper takes the video data as the study subject to investigate the droplet evolution behavior in the inkjet printing process. Moreover, this paper introduces a deep learning method for the study of such video data. Compared to most of the current learning approaches conducted in a supervised/semi-supervised manner for manufacturing process data, we propose an unsupervised learning method for studying the flow pattern of the droplet, which does not require well-defined ground-truth labels. Regarding the spatial and temporal transformation of the droplet in video data, we apply a deep recurrent neural network (DRNN) to implement the proposed unsupervised learning. To verify the hypothesis that the proposed method can learn a latent representation for reproducing original data, the proposed DRNN is trained and tested on both simulation and experimental datasets. Experimental results demonstrate that the proposed method can learn latent representations of the droplet jetting process video data, which is very useful for the prediction of the droplet behavior. Furthermore, through latent space decoding, the learned representations can infer the droplet forming stimulus parameters such as material properties, which would be very helpful for further understanding of the process dynamics and achieving real-time in-situ droplet deposition quality monitoring and control.
AbstractList Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing process. Most of the current works use static images for the study of the drop evolution process. The problem of the static images is that the images cannot recognize the motion information (i.e., temporal transformation) of the droplet. Thus the information of the jetting process in the temporal domain will be lost. Instead of using the images, this paper takes the video data as the study subject to investigate the droplet evolution behavior in the inkjet printing process. Moreover, this paper introduces a deep learning method for the study of such video data. Compared to most of the current learning approaches conducted in a supervised/semi-supervised manner for manufacturing process data, we propose an unsupervised learning method for studying the flow pattern of the droplet, which does not require well-defined ground-truth labels. Regarding the spatial and temporal transformation of the droplet in video data, we apply a deep recurrent neural network (DRNN) to implement the proposed unsupervised learning. To verify the hypothesis that the proposed method can learn a latent representation for reproducing original data, the proposed DRNN is trained and tested on both simulation and experimental datasets. Experimental results demonstrate that the proposed method can learn latent representations of the droplet jetting process video data, which is very useful for the prediction of the droplet behavior. Furthermore, through latent space decoding, the learned representations can infer the droplet forming stimulus parameters such as material properties, which would be very helpful for further understanding of the process dynamics and achieving real-time in-situ droplet deposition quality monitoring and control.
ArticleNumber 101197
Author Segura, Luis Javier
Huang, Jida
Zhou, Chi
Wang, Tianjiao
Sun, Hongyue
Zhao, Guanglei
Author_xml – sequence: 1
  givenname: Jida
  surname: Huang
  fullname: Huang, Jida
  organization: Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
– sequence: 2
  givenname: Luis Javier
  surname: Segura
  fullname: Segura, Luis Javier
  organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States
– sequence: 3
  givenname: Tianjiao
  surname: Wang
  fullname: Wang, Tianjiao
  organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States
– sequence: 4
  givenname: Guanglei
  surname: Zhao
  fullname: Zhao, Guanglei
  organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States
– sequence: 5
  givenname: Hongyue
  surname: Sun
  fullname: Sun, Hongyue
  email: hongyues@buffalo.edu
  organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States
– sequence: 6
  givenname: Chi
  surname: Zhou
  fullname: Zhou, Chi
  email: chizhou@buffalo.edu
  organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States
BookMark eNqFkM1OAyEUhYmpibX2CdzwAlP5GWeGhQvT-Jc0cWPXhMIdZZzCBGiTvr1M25ULTUju5V6-E865RhPnHSB0S8mCElrddQtlzFYtGGHHCRX1BZoyRsuibiiZnPumIuUVmsfYEULoPa9Fw6ZoWLu4GyDsbQSDe1DBWfeJWx9w-gJsgh96SBj2vt8l6x0eAhirj61yJl-9hhixOTi1tTrinTMQYsq7Uce6fL67rDAE61Ie3aDLVvUR5uc6Q-vnp4_la7F6f3lbPq4KzQlPxaampGSmqlTDatoqzYWmRtWkZa2ogJbAs1UtALSCamMqWuYHxAglNsKUNZ8hftLVwccYoJX5B1sVDpISOeYmO3nMTY65yVNumRK_KG2TGt2moGz_D_twYiHb2lsIMmoLTue8Augkjbd_8j_tPY82
CitedBy_id crossref_primary_10_1007_s10845_024_02385_4
crossref_primary_10_1063_5_0217564
crossref_primary_10_1155_2021_9065960
crossref_primary_10_1063_5_0065989
crossref_primary_10_54097_fcis_v2i1_2966
crossref_primary_10_1002_adma_202408032
crossref_primary_10_1080_10408398_2021_1878099
crossref_primary_10_1088_2058_8585_ac518a
crossref_primary_10_1038_s41598_020_79266_2
crossref_primary_10_1088_2058_8585_acee94
crossref_primary_10_1088_1361_665X_ac58d4
crossref_primary_10_1021_acsami_1c04544
crossref_primary_10_1007_s10845_024_02488_y
crossref_primary_10_1063_5_0093835
crossref_primary_10_1080_24725854_2024_2443592
crossref_primary_10_1002_aisy_202100014
crossref_primary_10_32604_fdmp_2023_029243
crossref_primary_10_1088_2631_7990_ad4240
crossref_primary_10_1089_3dp_2023_0023
crossref_primary_10_1080_17452759_2022_2058307
crossref_primary_10_1016_j_cirpj_2023_07_010
crossref_primary_10_1115_1_4066124
crossref_primary_10_1115_1_4066543
crossref_primary_10_1002_inf2_12568
crossref_primary_10_1109_LAWP_2021_3123926
crossref_primary_10_1109_TASE_2022_3215258
crossref_primary_10_1063_5_0147480
crossref_primary_10_1016_j_eswa_2020_114060
crossref_primary_10_1109_JSEN_2024_3444053
crossref_primary_10_1115_1_4057002
crossref_primary_10_1109_TIE_2021_3065619
Cites_doi 10.1080/24725854.2018.1532133
10.1115/1.4028540
10.1016/j.arcontrol.2012.09.004
10.1002/adma.200901141
10.1021/la00076a013
10.1145/2766962
10.1109/TASE.2017.2763609
10.1039/b711984d
10.1088/0957-4484/19/33/335304
10.1016/j.sna.2012.04.009
10.1016/j.matdes.2016.10.003
10.1002/aic.11033
10.1016/j.procir.2018.04.045
10.1016/j.renene.2018.10.047
10.1002/smll.201701756
10.1007/s10895-005-2625-0
10.1115/1.4029823
10.1021/nl903495f
10.1103/PhysRevLett.99.174502
10.1016/j.jmatprotec.2015.12.024
10.1016/j.conengprac.2011.05.009
10.1016/j.ijmultiphaseflow.2010.03.008
10.1017/S0140525X12000477
10.1109/TIP.2003.819861
10.1016/j.matdes.2017.09.044
10.1016/j.ymssp.2018.05.050
10.1108/RPJ-11-2015-0161
10.1126/science.290.5499.2123
10.1016/j.physrep.2010.03.003
10.1115/1.4040619
10.1063/1.2234853
10.1021/acs.langmuir.7b00874
10.1080/24725854.2017.1417656
10.1016/S0167-7799(03)00033-7
10.1146/annurev-fluid-120710-101148
10.1016/j.jmsy.2018.04.003
10.1038/4580
10.1088/1361-6501/aa5c4f
10.1063/1.4742913
10.1016/j.matdes.2016.01.099
10.1021/acsami.5b07006
10.1090/S0025-5718-1968-0242392-2
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2020.101197
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 10_1016_j_addma_2020_101197
S2214860420305698
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c303t-b71042d66a8271fac39c1da70f2f96e14e3101c9eecae6bd6149c10d9a9b9d473
IEDL.DBID AIKHN
ISSN 2214-8604
IngestDate Tue Jul 01 01:47:02 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
Fri Feb 23 02:49:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep recurrent neural network (DRNN)
Inkjet printing
Latent space decoding
Video prediction
Unsupervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-b71042d66a8271fac39c1da70f2f96e14e3101c9eecae6bd6149c10d9a9b9d473
ParticipantIDs crossref_primary_10_1016_j_addma_2020_101197
crossref_citationtrail_10_1016_j_addma_2020_101197
elsevier_sciencedirect_doi_10_1016_j_addma_2020_101197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Additive manufacturing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Barton, Mishra, Alleyne, Ferreira, Rogers (bib0075) 2011; 19
Chalasani, Principe (bib0150) 2013
Santner, Williams, Notz, Williams (bib0300) 2003; 1
Wijshoff (bib0050) 2010; 491
Bartolo, Boudaoud, Narcy, Bonn (bib0060) 2007; 99
Kwon, Choi, Lee, Kim, Kim (bib0210) 2012; 180
Chorin (bib0295) 1968; 22
Sarrazin, Loubiere, Prat, Gourdon, Bonometti, Magnaudet (bib0275) 2006; 52
Wang, Kwok, Zhou (bib0305) 2017; 10
Wang, Denlinger, Michaleris, Stoica, Ma, Beese (bib0195) 2017; 113
Khanzadeh, Chowdhury, Tschopp, Doude, Marufuzzaman, Bian (bib0250) 2019; 51
Wang, Wang, Zhou, Xu, Luban (bib0215) 2017
Sun, Bao, He, Zhou, Song (bib0010) 2015; 7
Yuan, Giera, Guss, Matthews, Mcmains (bib0130) 2019
Groot Wassink (bib0290) 2007
Saxe, Koh, Chen, Bhand, Suresh, Ng (bib0335) 2011
Scime, Beuth (bib0245) 2018; 19
Park, Lee, Unarunotai, Sun, Dunham, Song, Ferreira, Alleyene, Paik, Rogers (bib0030) 2010; 10
Basaran, Gao, Bhat (bib0055) 2013; 45
Hill, Watson, Dunstan (bib0065) 2005; 15
Sirringhaus, Kawase, Friend, Shimoda, Inbasekaran, Wu, Woo (bib0020) 2000; 290
Shevchik, Kenel, Leinenbach, Wasmer (bib0185) 2018; 21
Grasso, Colosimo (bib0165) 2017; 28
Wu, Xu (bib0100) 2018; 140
Kanko, Sibley, Fraser (bib0190) 2016; 231
Tsai, Hwang, Chou, Hsieh (bib0070) 2008; 19
Wang, Kwok, Zhou, Vader (bib0225) 2018; 47
Rao, Ballard (bib0140) 1999; 2
Kim, Baek (bib0285) 2012; 24
Goroshin, Bruna, Tompson, Eigen, LeCun (bib0120) 2015
Shinjo, Umemura (bib0280) 2010; 36
Rao, Liu, Roberson, Kong, Williams (bib0080) 2015; 137
Okaro, Jayasinghe, Sutcliffe, Black, Paoletti, Green (bib0240) 2019; 27
Srivastava, Mansimov, Salakhudinov (bib0310) 2015
Wang, Zhou, Xu (bib0220) 2019; 51
Clark (bib0145) 2013; 36
Lane, Moylan, Whitenton, Ma (bib0175) 2016; 22
Scime, Beuth (bib0125) 2018; 19
Sun, Rao, Kong, Deng, Jin (bib0170) 2017; 15
Tekin, Smith, Schubert (bib0035) 2008; 4
Dong, Carr, Morris (bib0085) 2006; 77
Everton, Hirsch, Stravroulakis, Leach, Clare (bib0155) 2016; 95
Gobert, Reutzel, Petrich, Nassar, Phoha (bib0105) 2018; 21
Yang, He, Tuck, Wildman, Hague (bib0205) 2013
Qin, Zhang, Singh, Zhang, Chen (bib0090) 2019
Yan, Brown, Su, Li, Wang, Xu, Zhou, Lin (bib0025) 2017; 13
Lotter, Kreiman, Cox (bib0135) 2016
Xu, Zhang, Fu, Huang (bib0095) 2017; 33
Gobert, Reutzel, Petrich, Nassar, Phoha (bib0235) 2018; 21
Razvi, Feng, Narayanan, Lee, Witherell (bib0230) 2019
Zhao, Yan, Chen, Mao, Wang, Gao (bib0270) 2019; 115
Mironov, Boland, Trusk, Forgacs, Markwald (bib0015) 2003; 21
Sitthi-Amorn, Ramos, Wangy, Kwan, Lan, Wang, Matusik (bib0200) 2015; 34
Wang, Bovik, Sheikh, Simoncelli (bib0330) 2004; 13
Pesach, Marmur (bib0040) 1987; 3
Kingma, Ba (bib0325) 2014
Qin (bib0265) 2012; 36
Finn, Goodfellow, Levine (bib0315) 2016
Grasso, Gallina, Colosimo (bib0255) 2018; 75
O’Reilly, Wyatte, Rohrlich (bib0115) 2014
Bertoli, Guss, Wu, Matthews, Schoenung (bib0180) 2017; 135
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, Nenadic (bib0260) 2019; 133
Singh, Haverinen, Dhagat, Jabbour (bib0005) 2010; 22
Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0320) 2015
Hoath (bib0045) 2016
Scime, Beuth (bib0110) 2018; 24
Tapia, Elwany (bib0160) 2014; 136
Pesach (10.1016/j.addma.2020.101197_bib0040) 1987; 3
Tekin (10.1016/j.addma.2020.101197_bib0035) 2008; 4
Kingma (10.1016/j.addma.2020.101197_bib0325) 2014
Scime (10.1016/j.addma.2020.101197_bib0110) 2018; 24
Okaro (10.1016/j.addma.2020.101197_bib0240) 2019; 27
Singh (10.1016/j.addma.2020.101197_bib0005) 2010; 22
Sirringhaus (10.1016/j.addma.2020.101197_bib0020) 2000; 290
Razvi (10.1016/j.addma.2020.101197_bib0230) 2019
Kanko (10.1016/j.addma.2020.101197_bib0190) 2016; 231
Qin (10.1016/j.addma.2020.101197_bib0265) 2012; 36
Chalasani (10.1016/j.addma.2020.101197_bib0150) 2013
Bertoli (10.1016/j.addma.2020.101197_bib0180) 2017; 135
Chorin (10.1016/j.addma.2020.101197_bib0295) 1968; 22
Barton (10.1016/j.addma.2020.101197_bib0075) 2011; 19
Sitthi-Amorn (10.1016/j.addma.2020.101197_bib0200) 2015; 34
Rao (10.1016/j.addma.2020.101197_bib0080) 2015; 137
O’Reilly (10.1016/j.addma.2020.101197_bib0115) 2014
Yuan (10.1016/j.addma.2020.101197_bib0130) 2019
Everton (10.1016/j.addma.2020.101197_bib0155) 2016; 95
Khanzadeh (10.1016/j.addma.2020.101197_bib0250) 2019; 51
Wang (10.1016/j.addma.2020.101197_bib0305) 2017; 10
Tsai (10.1016/j.addma.2020.101197_bib0070) 2008; 19
Bartolo (10.1016/j.addma.2020.101197_bib0060) 2007; 99
Wu (10.1016/j.addma.2020.101197_bib0100) 2018; 140
Wang (10.1016/j.addma.2020.101197_bib0225) 2018; 47
Hill (10.1016/j.addma.2020.101197_bib0065) 2005; 15
Wang (10.1016/j.addma.2020.101197_bib0220) 2019; 51
Wang (10.1016/j.addma.2020.101197_bib0330) 2004; 13
Stetco (10.1016/j.addma.2020.101197_bib0260) 2019; 133
Yan (10.1016/j.addma.2020.101197_bib0025) 2017; 13
Xingjian (10.1016/j.addma.2020.101197_bib0320) 2015
Gobert (10.1016/j.addma.2020.101197_bib0105) 2018; 21
Kim (10.1016/j.addma.2020.101197_bib0285) 2012; 24
Basaran (10.1016/j.addma.2020.101197_bib0055) 2013; 45
Tapia (10.1016/j.addma.2020.101197_bib0160) 2014; 136
Grasso (10.1016/j.addma.2020.101197_bib0255) 2018; 75
Shevchik (10.1016/j.addma.2020.101197_bib0185) 2018; 21
Lotter (10.1016/j.addma.2020.101197_bib0135) 2016
Wang (10.1016/j.addma.2020.101197_bib0215) 2017
Sun (10.1016/j.addma.2020.101197_bib0010) 2015; 7
Srivastava (10.1016/j.addma.2020.101197_bib0310) 2015
Park (10.1016/j.addma.2020.101197_bib0030) 2010; 10
Scime (10.1016/j.addma.2020.101197_bib0245) 2018; 19
Sarrazin (10.1016/j.addma.2020.101197_bib0275) 2006; 52
Wang (10.1016/j.addma.2020.101197_bib0195) 2017; 113
Hoath (10.1016/j.addma.2020.101197_bib0045) 2016
Santner (10.1016/j.addma.2020.101197_bib0300) 2003; 1
Rao (10.1016/j.addma.2020.101197_bib0140) 1999; 2
Grasso (10.1016/j.addma.2020.101197_bib0165) 2017; 28
Dong (10.1016/j.addma.2020.101197_bib0085) 2006; 77
Lane (10.1016/j.addma.2020.101197_bib0175) 2016; 22
Saxe (10.1016/j.addma.2020.101197_bib0335) 2011
Goroshin (10.1016/j.addma.2020.101197_bib0120) 2015
Groot Wassink (10.1016/j.addma.2020.101197_bib0290) 2007
Scime (10.1016/j.addma.2020.101197_bib0125) 2018; 19
Clark (10.1016/j.addma.2020.101197_bib0145) 2013; 36
Qin (10.1016/j.addma.2020.101197_bib0090) 2019
Mironov (10.1016/j.addma.2020.101197_bib0015) 2003; 21
Finn (10.1016/j.addma.2020.101197_bib0315) 2016
Gobert (10.1016/j.addma.2020.101197_bib0235) 2018; 21
Wijshoff (10.1016/j.addma.2020.101197_bib0050) 2010; 491
Kwon (10.1016/j.addma.2020.101197_bib0210) 2012; 180
Shinjo (10.1016/j.addma.2020.101197_bib0280) 2010; 36
Yang (10.1016/j.addma.2020.101197_bib0205) 2013
Zhao (10.1016/j.addma.2020.101197_bib0270) 2019; 115
Xu (10.1016/j.addma.2020.101197_bib0095) 2017; 33
Sun (10.1016/j.addma.2020.101197_bib0170) 2017; 15
References_xml – volume: 45
  start-page: 85
  year: 2013
  end-page: 113
  ident: bib0055
  article-title: Nonstandard inkjets
  publication-title: Annu. Rev. Fluid Mech.
– volume: 21
  start-page: 598
  year: 2018
  end-page: 604
  ident: bib0185
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit. Manuf.
– volume: 10
  start-page: 584
  year: 2010
  end-page: 591
  ident: bib0030
  article-title: Nanoscale, electrified liquid jets for high-resolution printing of charge
  publication-title: Nano Lett.
– volume: 19
  start-page: 114
  year: 2018
  end-page: 126
  ident: bib0125
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
– year: 2014
  ident: bib0325
  article-title: Adam: A Method for Stochastic Optimization
– volume: 34
  start-page: 129
  year: 2015
  ident: bib0200
  article-title: Multifab: a machine vision assisted platform for multi-material 3d printing
  publication-title: ACM Trans. Graph. (TOG)
– volume: 36
  start-page: 181
  year: 2013
  end-page: 204
  ident: bib0145
  article-title: Whatever next?. Predictive brains, situated agents, and the future of cognitive science
  publication-title: Behav. Brain Sci.
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: bib0270
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 15
  start-page: 393
  year: 2017
  end-page: 403
  ident: bib0170
  article-title: Functional quantitative and qualitative models for quality modeling in a fused deposition modeling process
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 4086
  year: 2015
  end-page: 4093
  ident: bib0120
  article-title: Unsupervised learning of spatiotemporally coherent metrics
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 51
  start-page: 437
  year: 2019
  end-page: 455
  ident: bib0250
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
– volume: 135
  start-page: 385
  year: 2017
  end-page: 396
  ident: bib0180
  article-title: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing
  publication-title: Mater. Des.
– volume: 15
  start-page: 255
  year: 2005
  end-page: 266
  ident: bib0065
  article-title: Rheofluorescence technique for the study of dilute meh-ppv solutions in couette flow
  publication-title: J. Fluoresc.
– start-page: 744
  year: 2019
  end-page: 753
  ident: bib0130
  article-title: Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting
  publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
– year: 2016
  ident: bib0135
  article-title: Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
– volume: 51
  start-page: 153
  year: 2019
  end-page: 167
  ident: bib0220
  article-title: Online droplet monitoring in inkjet 3d printing using catadioptric stereo system
  publication-title: IISE Trans.
– volume: 140
  year: 2018
  ident: bib0100
  article-title: Predictive modeling of droplet formation processes in inkjet-based bioprinting
  publication-title: J. Manuf. Sci. Eng.
– volume: 95
  start-page: 431
  year: 2016
  end-page: 445
  ident: bib0155
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
– year: 2016
  ident: bib0045
  article-title: Fundamentals of Inkjet Printing: the Science of Inkjet and Droplets
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib0320
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: 28
  start-page: 44005
  year: 2017
  ident: bib0165
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
– volume: 491
  start-page: 77
  year: 2010
  end-page: 177
  ident: bib0050
  article-title: The dynamics of the piezo inkjet printhead operation
  publication-title: Phys. Rep.
– volume: 1
  year: 2003
  ident: bib0300
  publication-title: The Design and Analysis of Computer Experiments
– start-page: 505
  year: 2013
  end-page: 513
  ident: bib0205
  article-title: High viscosity jetting system for 3d reactive inkjet printing
  publication-title: Twenty Forth Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
– volume: 4
  start-page: 703
  year: 2008
  end-page: 713
  ident: bib0035
  article-title: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles
  publication-title: Soft Matter
– volume: 27
  start-page: 42
  year: 2019
  end-page: 53
  ident: bib0240
  article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning
  publication-title: Addit. Manuf.
– volume: 77
  start-page: 85101
  year: 2006
  ident: bib0085
  article-title: Visualization of drop-on-demand inkjet: drop formation and deposition
  publication-title: Rev. Sci. Instrum.
– volume: 75
  start-page: 103
  year: 2018
  end-page: 107
  ident: bib0255
  article-title: Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing
  publication-title: Proc. CIRP
– volume: 22
  start-page: 745
  year: 1968
  end-page: 762
  ident: bib0295
  article-title: Numerical solution of the Navier–Stokes equations
  publication-title: Math. Comput.
– volume: 133
  start-page: 620
  year: 2019
  end-page: 635
  ident: bib0260
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energy
– start-page: 843
  year: 2015
  end-page: 852
  ident: bib0310
  article-title: Unsupervised learning of video representations using lstms
  publication-title: International Conference on Machine Learning
– volume: 231
  start-page: 488
  year: 2016
  end-page: 500
  ident: bib0190
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J. Mater. Process. Technol.
– volume: 24
  start-page: 82103
  year: 2012
  ident: bib0285
  article-title: Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model
  publication-title: Phys. Fluids
– volume: 3
  start-page: 519
  year: 1987
  end-page: 524
  ident: bib0040
  article-title: Marangoni effects in the spreading of liquid mixtures on a solid
  publication-title: Langmuir
– volume: 22
  start-page: 673
  year: 2010
  end-page: 685
  ident: bib0005
  article-title: Inkjet printing-process and its applications
  publication-title: Adv. Mater.
– start-page: 70008
  year: 2019
  ident: bib0090
  article-title: In-process monitoring of electrohydrodynamic inkjet printing using machine vision
  publication-title: AIP Conference Proceedings, Vol. 2102
– start-page: 6
  year: 2011
  ident: bib0335
  article-title: On random weights and unsupervised feature learning
  publication-title: ICML, Vol. 2
– volume: 19
  start-page: 335304
  year: 2008
  ident: bib0070
  article-title: Effects of pulse voltage on inkjet printing of a silver nanopowder suspension
  publication-title: Nanotechnology
– volume: 21
  start-page: 517
  year: 2018
  end-page: 528
  ident: bib0105
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit. Manuf.
– start-page: 64
  year: 2016
  end-page: 72
  ident: bib0315
  article-title: Unsupervised learning for physical interaction through video prediction
  publication-title: Advances in Neural Information Processing Systems
– volume: 7
  start-page: 28086
  year: 2015
  end-page: 28099
  ident: bib0010
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 61007
  year: 2015
  ident: bib0080
  article-title: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors
  publication-title: J. Manuf. Sci. Eng.
– volume: 136
  start-page: 60801
  year: 2014
  ident: bib0160
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 22
  start-page: 778
  year: 2016
  end-page: 787
  ident: bib0175
  article-title: Thermographic measurements of the commercial laser powder bed fusion process at nist
  publication-title: Rapid Prototyp. J.
– volume: 10
  start-page: 968
  year: 2017
  end-page: 981
  ident: bib0305
  article-title: In-situ droplet inspection and control system for liquid metal jet 3d printing process
  publication-title: Proc. Manuf.
– volume: 13
  start-page: 1701756
  year: 2017
  ident: bib0025
  article-title: 3d printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio
  publication-title: Small
– year: 2014
  ident: bib0115
  article-title: Learning Through Time in the Thalamocortical Loops
– volume: 19
  start-page: 114
  year: 2018
  end-page: 126
  ident: bib0245
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
– volume: 21
  start-page: 157
  year: 2003
  end-page: 161
  ident: bib0015
  article-title: Organ printing: computer-aided jet-based 3d tissue engineering
  publication-title: Trends Biotechnol.
– year: 2007
  ident: bib0290
  article-title: Inkjet Printhead Performance Enhancement by Feedforward Input Design Based on Two-Port Modeling, Ph.D. Thesis
– volume: 99
  start-page: 174502
  year: 2007
  ident: bib0060
  article-title: Dynamics of non-newtonian droplets
  publication-title: Phys. Rev. Lett.
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: bib0265
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
– volume: 33
  start-page: 5037
  year: 2017
  end-page: 5045
  ident: bib0095
  article-title: Study of pinch-off locations during drop-on-demand inkjet printing of viscoelastic alginate solutions
  publication-title: Langmuir
– volume: 52
  start-page: 4061
  year: 2006
  end-page: 4070
  ident: bib0275
  article-title: Experimental and numerical study of droplets hydrodynamics in microchannels
  publication-title: AIChE J.
– volume: 21
  start-page: 517
  year: 2018
  end-page: 528
  ident: bib0235
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit. Manuf.
– volume: 113
  start-page: 169
  year: 2017
  end-page: 177
  ident: bib0195
  article-title: Residual stress mapping in inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions
  publication-title: Mater. Des.
– volume: 290
  start-page: 2123
  year: 2000
  end-page: 2126
  ident: bib0020
  article-title: High-resolution inkjet printing of all-polymer transistor circuits
  publication-title: Science
– volume: 47
  start-page: 83
  year: 2018
  end-page: 92
  ident: bib0225
  article-title: In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing
  publication-title: J. Manuf. Syst.
– volume: 24
  start-page: 273
  year: 2018
  end-page: 286
  ident: bib0110
  article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
– start-page: 27
  year: 2017
  ident: bib0215
  article-title: Low-cost and in-situ droplet micro-sensing for inkjet 3d printing quality assurance
  publication-title: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems
– volume: 2
  start-page: 79
  year: 1999
  ident: bib0140
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
– volume: 36
  start-page: 513
  year: 2010
  end-page: 532
  ident: bib0280
  article-title: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation
  publication-title: Int. J. Multiph. Flow
– volume: 180
  start-page: 154
  year: 2012
  end-page: 165
  ident: bib0210
  article-title: Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head
  publication-title: Sens. Actuators A: Phys.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0330
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– year: 2013
  ident: bib0150
  article-title: Deep Predictive Coding Networks
– year: 2019
  ident: bib0230
  article-title: A review of machine learning applications in additive manufacturing
  publication-title: International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
– volume: 19
  start-page: 1266
  year: 2011
  end-page: 1273
  ident: bib0075
  article-title: Control of high-resolution electrohydrodynamic jet printing
  publication-title: Control Eng. Pract.
– year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0135
– volume: 51
  start-page: 153
  issue: 2
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0220
  article-title: Online droplet monitoring in inkjet 3d printing using catadioptric stereo system
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2018.1532133
– start-page: 70008
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0090
  article-title: In-process monitoring of electrohydrodynamic inkjet printing using machine vision
  publication-title: AIP Conference Proceedings, Vol. 2102
– volume: 136
  start-page: 60801
  issue: 6
  year: 2014
  ident: 10.1016/j.addma.2020.101197_bib0160
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028540
– volume: 36
  start-page: 220
  issue: 2
  year: 2012
  ident: 10.1016/j.addma.2020.101197_bib0265
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 22
  start-page: 673
  issue: 6
  year: 2010
  ident: 10.1016/j.addma.2020.101197_bib0005
  article-title: Inkjet printing-process and its applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901141
– volume: 3
  start-page: 519
  issue: 4
  year: 1987
  ident: 10.1016/j.addma.2020.101197_bib0040
  article-title: Marangoni effects in the spreading of liquid mixtures on a solid
  publication-title: Langmuir
  doi: 10.1021/la00076a013
– volume: 34
  start-page: 129
  issue: 4
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0200
  article-title: Multifab: a machine vision assisted platform for multi-material 3d printing
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2766962
– volume: 15
  start-page: 393
  issue: 1
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0170
  article-title: Functional quantitative and qualitative models for quality modeling in a fused deposition modeling process
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2763609
– volume: 4
  start-page: 703
  issue: 4
  year: 2008
  ident: 10.1016/j.addma.2020.101197_bib0035
  article-title: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles
  publication-title: Soft Matter
  doi: 10.1039/b711984d
– start-page: 64
  year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0315
  article-title: Unsupervised learning for physical interaction through video prediction
– volume: 1
  year: 2003
  ident: 10.1016/j.addma.2020.101197_bib0300
– volume: 19
  start-page: 335304
  issue: 33
  year: 2008
  ident: 10.1016/j.addma.2020.101197_bib0070
  article-title: Effects of pulse voltage on inkjet printing of a silver nanopowder suspension
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/33/335304
– volume: 180
  start-page: 154
  year: 2012
  ident: 10.1016/j.addma.2020.101197_bib0210
  article-title: Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2012.04.009
– volume: 21
  start-page: 598
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0185
  article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
  publication-title: Addit. Manuf.
– volume: 113
  start-page: 169
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0195
  article-title: Residual stress mapping in inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.10.003
– volume: 52
  start-page: 4061
  issue: 12
  year: 2006
  ident: 10.1016/j.addma.2020.101197_bib0275
  article-title: Experimental and numerical study of droplets hydrodynamics in microchannels
  publication-title: AIChE J.
  doi: 10.1002/aic.11033
– volume: 75
  start-page: 103
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0255
  article-title: Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2018.04.045
– year: 2013
  ident: 10.1016/j.addma.2020.101197_bib0150
– volume: 133
  start-page: 620
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0260
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.047
– volume: 13
  start-page: 1701756
  issue: 38
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0025
  article-title: 3d printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio
  publication-title: Small
  doi: 10.1002/smll.201701756
– volume: 15
  start-page: 255
  issue: 3
  year: 2005
  ident: 10.1016/j.addma.2020.101197_bib0065
  article-title: Rheofluorescence technique for the study of dilute meh-ppv solutions in couette flow
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-005-2625-0
– volume: 137
  start-page: 61007
  issue: 6
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0080
  article-title: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4029823
– volume: 10
  start-page: 584
  issue: 2
  year: 2010
  ident: 10.1016/j.addma.2020.101197_bib0030
  article-title: Nanoscale, electrified liquid jets for high-resolution printing of charge
  publication-title: Nano Lett.
  doi: 10.1021/nl903495f
– year: 2014
  ident: 10.1016/j.addma.2020.101197_bib0115
– volume: 99
  start-page: 174502
  issue: 17
  year: 2007
  ident: 10.1016/j.addma.2020.101197_bib0060
  article-title: Dynamics of non-newtonian droplets
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.174502
– year: 2014
  ident: 10.1016/j.addma.2020.101197_bib0325
– volume: 231
  start-page: 488
  year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0190
  article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.12.024
– volume: 19
  start-page: 1266
  issue: 11
  year: 2011
  ident: 10.1016/j.addma.2020.101197_bib0075
  article-title: Control of high-resolution electrohydrodynamic jet printing
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2011.05.009
– volume: 21
  start-page: 517
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0235
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit. Manuf.
– volume: 36
  start-page: 513
  issue: 7
  year: 2010
  ident: 10.1016/j.addma.2020.101197_bib0280
  article-title: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2010.03.008
– year: 2007
  ident: 10.1016/j.addma.2020.101197_bib0290
– volume: 36
  start-page: 181
  issue: 3
  year: 2013
  ident: 10.1016/j.addma.2020.101197_bib0145
  article-title: Whatever next?. Predictive brains, situated agents, and the future of cognitive science
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X12000477
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.addma.2020.101197_bib0330
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 10
  start-page: 968
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0305
  article-title: In-situ droplet inspection and control system for liquid metal jet 3d printing process
  publication-title: Proc. Manuf.
– volume: 135
  start-page: 385
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0180
  article-title: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.09.044
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0270
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 22
  start-page: 778
  issue: 5
  year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0175
  article-title: Thermographic measurements of the commercial laser powder bed fusion process at nist
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-11-2015-0161
– start-page: 27
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0215
  article-title: Low-cost and in-situ droplet micro-sensing for inkjet 3d printing quality assurance
  publication-title: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems
– volume: 290
  start-page: 2123
  issue: 5499
  year: 2000
  ident: 10.1016/j.addma.2020.101197_bib0020
  article-title: High-resolution inkjet printing of all-polymer transistor circuits
  publication-title: Science
  doi: 10.1126/science.290.5499.2123
– volume: 491
  start-page: 77
  issue: 4–5
  year: 2010
  ident: 10.1016/j.addma.2020.101197_bib0050
  article-title: The dynamics of the piezo inkjet printhead operation
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2010.03.003
– start-page: 802
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0320
  article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting
– volume: 140
  issue: 10
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0100
  article-title: Predictive modeling of droplet formation processes in inkjet-based bioprinting
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4040619
– volume: 77
  start-page: 85101
  issue: 8
  year: 2006
  ident: 10.1016/j.addma.2020.101197_bib0085
  article-title: Visualization of drop-on-demand inkjet: drop formation and deposition
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2234853
– volume: 21
  start-page: 517
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0105
  article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging
  publication-title: Addit. Manuf.
– volume: 19
  start-page: 114
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0245
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
– start-page: 4086
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0120
  article-title: Unsupervised learning of spatiotemporally coherent metrics
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 843
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0310
  article-title: Unsupervised learning of video representations using lstms
  publication-title: International Conference on Machine Learning
– volume: 33
  start-page: 5037
  issue: 20
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0095
  article-title: Study of pinch-off locations during drop-on-demand inkjet printing of viscoelastic alginate solutions
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00874
– volume: 51
  start-page: 437
  issue: 5
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0250
  article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2017.1417656
– volume: 21
  start-page: 157
  issue: 4
  year: 2003
  ident: 10.1016/j.addma.2020.101197_bib0015
  article-title: Organ printing: computer-aided jet-based 3d tissue engineering
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(03)00033-7
– volume: 45
  start-page: 85
  year: 2013
  ident: 10.1016/j.addma.2020.101197_bib0055
  article-title: Nonstandard inkjets
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-120710-101148
– volume: 27
  start-page: 42
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0240
  article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning
  publication-title: Addit. Manuf.
– volume: 47
  start-page: 83
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0225
  article-title: In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.04.003
– volume: 24
  start-page: 273
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0110
  article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process
  publication-title: Addit. Manuf.
– volume: 2
  start-page: 79
  issue: 1
  year: 1999
  ident: 10.1016/j.addma.2020.101197_bib0140
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
  doi: 10.1038/4580
– start-page: 6
  year: 2011
  ident: 10.1016/j.addma.2020.101197_bib0335
  article-title: On random weights and unsupervised feature learning
  publication-title: ICML, Vol. 2
– start-page: 744
  year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0130
  article-title: Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting
– volume: 28
  start-page: 44005
  issue: 4
  year: 2017
  ident: 10.1016/j.addma.2020.101197_bib0165
  article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa5c4f
– volume: 24
  start-page: 82103
  issue: 8
  year: 2012
  ident: 10.1016/j.addma.2020.101197_bib0285
  article-title: Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model
  publication-title: Phys. Fluids
  doi: 10.1063/1.4742913
– start-page: 505
  year: 2013
  ident: 10.1016/j.addma.2020.101197_bib0205
  article-title: High viscosity jetting system for 3d reactive inkjet printing
  publication-title: Twenty Forth Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
– year: 2019
  ident: 10.1016/j.addma.2020.101197_bib0230
  article-title: A review of machine learning applications in additive manufacturing
  publication-title: International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
– year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0045
– volume: 95
  start-page: 431
  year: 2016
  ident: 10.1016/j.addma.2020.101197_bib0155
  article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.099
– volume: 7
  start-page: 28086
  issue: 51
  year: 2015
  ident: 10.1016/j.addma.2020.101197_bib0010
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07006
– volume: 19
  start-page: 114
  year: 2018
  ident: 10.1016/j.addma.2020.101197_bib0125
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manuf.
– volume: 22
  start-page: 745
  issue: 104
  year: 1968
  ident: 10.1016/j.addma.2020.101197_bib0295
  article-title: Numerical solution of the Navier–Stokes equations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1968-0242392-2
SSID ssj0001537982
Score 2.4732568
Snippet Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101197
SubjectTerms Deep recurrent neural network (DRNN)
Inkjet printing
Latent space decoding
Unsupervised learning
Video prediction
Title Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing
URI https://dx.doi.org/10.1016/j.addma.2020.101197
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDwwEho7cRKPVUVVQHSBSt0iO3ZRCwpRmzLy27EdB4qEOiBlSCxfFJ3Pd58v9wC4kjjjVMTSS6jwvZBI7DEmqOfHPBKJyoiyfsjHcTSahPdTOm3AoM6FMWGVTvdXOt1qazfSc9zsFfN574kQbDoohcTCYJY0oU20tU9a0O7fPYzGP64WGsTMto0yJJ6hqesP2UgvvcVtCSJiR7Cp__SXjdqwO8N92HOAEfWrbzqAhsoPYXejjOARFJN8tS7Mpl8piVwfiBek4SjS8A7JpQkSL5H6cGKGiqX5PWNveS5RUSULIFl1p1-h9WbGC5rn-npd6DcYJ6AJkz6GyfD2eTDyXCcFL9MmqvSExhF6HaKIJyTGM54FLMOSx_6MzFikcKg0ysMZUyrjKhJS22w9wZeMM8FkGAcn0Mrfc3UKSBLBYxUIRrkKYw2vKJUCcxmEidCnsaQDpOZdmrky46bbxVtax5MtUsvw1DA8rRjegetvoqKqsrF9elQvSvpLWFJtB7YRnv2X8Bx2zFMVxXcBrXK5VpcajZSiC82bT9x1MvcFH7bgfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YGR0Nqx43hEFVWBtgut1C3yq6gFhahNGfnt2E4CRUIdkDJEji-Kzmff58v5PgCuNVKCSqaDmMpWQLBGAeeSBi0mIhkbhY2PQ_YHUXdEHsd0XAPt6iyMS6ss1_5iTferddnSLLXZzKbT5jPGyDEoEexhMI83wCZxNAfWqG8_0U-ghYaMe9IoJxA4iar6kM_zshPcFyDCvgW56k9_eagVr9PZA7slXIR3xRftg5pJD8DOShHBQ5CN0sUyc1N-YTQsWSBeoAWj0II7qOcuRTyH5qM0MpjN3c8ZfytSDbPiqADUBTf9Ai5Xz7vAaWqv15l9gwsBuiTpIzDq3A_b3aDkUQiUdVB5IC2KsKMQRSLGDE2ECrlCWrDWBE94ZBAxFuMhxY1RwkRSW49tO7Q0F1xyTVh4DOrpe2pOANRYCmZCyakwhFlwRamWSOiQxNLuxeIGwJXuElUWGXdcF29JlU02S7zCE6fwpFB4A9x8C2VFjY313aNqUJJfppJYL7BO8PS_gldgqzvs95Lew-DpDGy7J0U-3zmo5_OlubC4JJeX3u6-AO_K4T4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning+for+the+droplet+evolution+prediction+and+process+dynamics+understanding+in+inkjet+printing&rft.jtitle=Additive+manufacturing&rft.au=Huang%2C+Jida&rft.au=Segura%2C+Luis+Javier&rft.au=Wang%2C+Tianjiao&rft.au=Zhao%2C+Guanglei&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=35&rft_id=info:doi/10.1016%2Fj.addma.2020.101197&rft.externalDocID=S2214860420305698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon