Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing
Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing pro...
Saved in:
Published in | Additive manufacturing Vol. 35; p. 101197 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2214-8604 2214-7810 |
DOI | 10.1016/j.addma.2020.101197 |
Cover
Abstract | Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing process. Most of the current works use static images for the study of the drop evolution process. The problem of the static images is that the images cannot recognize the motion information (i.e., temporal transformation) of the droplet. Thus the information of the jetting process in the temporal domain will be lost. Instead of using the images, this paper takes the video data as the study subject to investigate the droplet evolution behavior in the inkjet printing process. Moreover, this paper introduces a deep learning method for the study of such video data. Compared to most of the current learning approaches conducted in a supervised/semi-supervised manner for manufacturing process data, we propose an unsupervised learning method for studying the flow pattern of the droplet, which does not require well-defined ground-truth labels. Regarding the spatial and temporal transformation of the droplet in video data, we apply a deep recurrent neural network (DRNN) to implement the proposed unsupervised learning. To verify the hypothesis that the proposed method can learn a latent representation for reproducing original data, the proposed DRNN is trained and tested on both simulation and experimental datasets. Experimental results demonstrate that the proposed method can learn latent representations of the droplet jetting process video data, which is very useful for the prediction of the droplet behavior. Furthermore, through latent space decoding, the learned representations can infer the droplet forming stimulus parameters such as material properties, which would be very helpful for further understanding of the process dynamics and achieving real-time in-situ droplet deposition quality monitoring and control. |
---|---|
AbstractList | Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of great importance for improving the printing quality of the inkjet printing process. Most of the current works use static images for the study of the drop evolution process. The problem of the static images is that the images cannot recognize the motion information (i.e., temporal transformation) of the droplet. Thus the information of the jetting process in the temporal domain will be lost. Instead of using the images, this paper takes the video data as the study subject to investigate the droplet evolution behavior in the inkjet printing process. Moreover, this paper introduces a deep learning method for the study of such video data. Compared to most of the current learning approaches conducted in a supervised/semi-supervised manner for manufacturing process data, we propose an unsupervised learning method for studying the flow pattern of the droplet, which does not require well-defined ground-truth labels. Regarding the spatial and temporal transformation of the droplet in video data, we apply a deep recurrent neural network (DRNN) to implement the proposed unsupervised learning. To verify the hypothesis that the proposed method can learn a latent representation for reproducing original data, the proposed DRNN is trained and tested on both simulation and experimental datasets. Experimental results demonstrate that the proposed method can learn latent representations of the droplet jetting process video data, which is very useful for the prediction of the droplet behavior. Furthermore, through latent space decoding, the learned representations can infer the droplet forming stimulus parameters such as material properties, which would be very helpful for further understanding of the process dynamics and achieving real-time in-situ droplet deposition quality monitoring and control. |
ArticleNumber | 101197 |
Author | Segura, Luis Javier Huang, Jida Zhou, Chi Wang, Tianjiao Sun, Hongyue Zhao, Guanglei |
Author_xml | – sequence: 1 givenname: Jida surname: Huang fullname: Huang, Jida organization: Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States – sequence: 2 givenname: Luis Javier surname: Segura fullname: Segura, Luis Javier organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States – sequence: 3 givenname: Tianjiao surname: Wang fullname: Wang, Tianjiao organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States – sequence: 4 givenname: Guanglei surname: Zhao fullname: Zhao, Guanglei organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States – sequence: 5 givenname: Hongyue surname: Sun fullname: Sun, Hongyue email: hongyues@buffalo.edu organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States – sequence: 6 givenname: Chi surname: Zhou fullname: Zhou, Chi email: chizhou@buffalo.edu organization: Department of Industrial and Systems Engineering, University at Buffalo, SUNY Buffalo, NY 14260, United States |
BookMark | eNqFkM1OAyEUhYmpibX2CdzwAlP5GWeGhQvT-Jc0cWPXhMIdZZzCBGiTvr1M25ULTUju5V6-E865RhPnHSB0S8mCElrddQtlzFYtGGHHCRX1BZoyRsuibiiZnPumIuUVmsfYEULoPa9Fw6ZoWLu4GyDsbQSDe1DBWfeJWx9w-gJsgh96SBj2vt8l6x0eAhirj61yJl-9hhixOTi1tTrinTMQYsq7Uce6fL67rDAE61Ie3aDLVvUR5uc6Q-vnp4_la7F6f3lbPq4KzQlPxaampGSmqlTDatoqzYWmRtWkZa2ogJbAs1UtALSCamMqWuYHxAglNsKUNZ8hftLVwccYoJX5B1sVDpISOeYmO3nMTY65yVNumRK_KG2TGt2moGz_D_twYiHb2lsIMmoLTue8Augkjbd_8j_tPY82 |
CitedBy_id | crossref_primary_10_1007_s10845_024_02385_4 crossref_primary_10_1063_5_0217564 crossref_primary_10_1155_2021_9065960 crossref_primary_10_1063_5_0065989 crossref_primary_10_54097_fcis_v2i1_2966 crossref_primary_10_1002_adma_202408032 crossref_primary_10_1080_10408398_2021_1878099 crossref_primary_10_1088_2058_8585_ac518a crossref_primary_10_1038_s41598_020_79266_2 crossref_primary_10_1088_2058_8585_acee94 crossref_primary_10_1088_1361_665X_ac58d4 crossref_primary_10_1021_acsami_1c04544 crossref_primary_10_1007_s10845_024_02488_y crossref_primary_10_1063_5_0093835 crossref_primary_10_1080_24725854_2024_2443592 crossref_primary_10_1002_aisy_202100014 crossref_primary_10_32604_fdmp_2023_029243 crossref_primary_10_1088_2631_7990_ad4240 crossref_primary_10_1089_3dp_2023_0023 crossref_primary_10_1080_17452759_2022_2058307 crossref_primary_10_1016_j_cirpj_2023_07_010 crossref_primary_10_1115_1_4066124 crossref_primary_10_1115_1_4066543 crossref_primary_10_1002_inf2_12568 crossref_primary_10_1109_LAWP_2021_3123926 crossref_primary_10_1109_TASE_2022_3215258 crossref_primary_10_1063_5_0147480 crossref_primary_10_1016_j_eswa_2020_114060 crossref_primary_10_1109_JSEN_2024_3444053 crossref_primary_10_1115_1_4057002 crossref_primary_10_1109_TIE_2021_3065619 |
Cites_doi | 10.1080/24725854.2018.1532133 10.1115/1.4028540 10.1016/j.arcontrol.2012.09.004 10.1002/adma.200901141 10.1021/la00076a013 10.1145/2766962 10.1109/TASE.2017.2763609 10.1039/b711984d 10.1088/0957-4484/19/33/335304 10.1016/j.sna.2012.04.009 10.1016/j.matdes.2016.10.003 10.1002/aic.11033 10.1016/j.procir.2018.04.045 10.1016/j.renene.2018.10.047 10.1002/smll.201701756 10.1007/s10895-005-2625-0 10.1115/1.4029823 10.1021/nl903495f 10.1103/PhysRevLett.99.174502 10.1016/j.jmatprotec.2015.12.024 10.1016/j.conengprac.2011.05.009 10.1016/j.ijmultiphaseflow.2010.03.008 10.1017/S0140525X12000477 10.1109/TIP.2003.819861 10.1016/j.matdes.2017.09.044 10.1016/j.ymssp.2018.05.050 10.1108/RPJ-11-2015-0161 10.1126/science.290.5499.2123 10.1016/j.physrep.2010.03.003 10.1115/1.4040619 10.1063/1.2234853 10.1021/acs.langmuir.7b00874 10.1080/24725854.2017.1417656 10.1016/S0167-7799(03)00033-7 10.1146/annurev-fluid-120710-101148 10.1016/j.jmsy.2018.04.003 10.1038/4580 10.1088/1361-6501/aa5c4f 10.1063/1.4742913 10.1016/j.matdes.2016.01.099 10.1021/acsami.5b07006 10.1090/S0025-5718-1968-0242392-2 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2020.101197 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 10_1016_j_addma_2020_101197 S2214860420305698 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c303t-b71042d66a8271fac39c1da70f2f96e14e3101c9eecae6bd6149c10d9a9b9d473 |
IEDL.DBID | AIKHN |
ISSN | 2214-8604 |
IngestDate | Tue Jul 01 01:47:02 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 Fri Feb 23 02:49:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep recurrent neural network (DRNN) Inkjet printing Latent space decoding Video prediction Unsupervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c303t-b71042d66a8271fac39c1da70f2f96e14e3101c9eecae6bd6149c10d9a9b9d473 |
ParticipantIDs | crossref_primary_10_1016_j_addma_2020_101197 crossref_citationtrail_10_1016_j_addma_2020_101197 elsevier_sciencedirect_doi_10_1016_j_addma_2020_101197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Barton, Mishra, Alleyne, Ferreira, Rogers (bib0075) 2011; 19 Chalasani, Principe (bib0150) 2013 Santner, Williams, Notz, Williams (bib0300) 2003; 1 Wijshoff (bib0050) 2010; 491 Bartolo, Boudaoud, Narcy, Bonn (bib0060) 2007; 99 Kwon, Choi, Lee, Kim, Kim (bib0210) 2012; 180 Chorin (bib0295) 1968; 22 Sarrazin, Loubiere, Prat, Gourdon, Bonometti, Magnaudet (bib0275) 2006; 52 Wang, Kwok, Zhou (bib0305) 2017; 10 Wang, Denlinger, Michaleris, Stoica, Ma, Beese (bib0195) 2017; 113 Khanzadeh, Chowdhury, Tschopp, Doude, Marufuzzaman, Bian (bib0250) 2019; 51 Wang, Wang, Zhou, Xu, Luban (bib0215) 2017 Sun, Bao, He, Zhou, Song (bib0010) 2015; 7 Yuan, Giera, Guss, Matthews, Mcmains (bib0130) 2019 Groot Wassink (bib0290) 2007 Saxe, Koh, Chen, Bhand, Suresh, Ng (bib0335) 2011 Scime, Beuth (bib0245) 2018; 19 Park, Lee, Unarunotai, Sun, Dunham, Song, Ferreira, Alleyene, Paik, Rogers (bib0030) 2010; 10 Basaran, Gao, Bhat (bib0055) 2013; 45 Hill, Watson, Dunstan (bib0065) 2005; 15 Sirringhaus, Kawase, Friend, Shimoda, Inbasekaran, Wu, Woo (bib0020) 2000; 290 Shevchik, Kenel, Leinenbach, Wasmer (bib0185) 2018; 21 Grasso, Colosimo (bib0165) 2017; 28 Wu, Xu (bib0100) 2018; 140 Kanko, Sibley, Fraser (bib0190) 2016; 231 Tsai, Hwang, Chou, Hsieh (bib0070) 2008; 19 Wang, Kwok, Zhou, Vader (bib0225) 2018; 47 Rao, Ballard (bib0140) 1999; 2 Kim, Baek (bib0285) 2012; 24 Goroshin, Bruna, Tompson, Eigen, LeCun (bib0120) 2015 Shinjo, Umemura (bib0280) 2010; 36 Rao, Liu, Roberson, Kong, Williams (bib0080) 2015; 137 Okaro, Jayasinghe, Sutcliffe, Black, Paoletti, Green (bib0240) 2019; 27 Srivastava, Mansimov, Salakhudinov (bib0310) 2015 Wang, Zhou, Xu (bib0220) 2019; 51 Clark (bib0145) 2013; 36 Lane, Moylan, Whitenton, Ma (bib0175) 2016; 22 Scime, Beuth (bib0125) 2018; 19 Sun, Rao, Kong, Deng, Jin (bib0170) 2017; 15 Tekin, Smith, Schubert (bib0035) 2008; 4 Dong, Carr, Morris (bib0085) 2006; 77 Everton, Hirsch, Stravroulakis, Leach, Clare (bib0155) 2016; 95 Gobert, Reutzel, Petrich, Nassar, Phoha (bib0105) 2018; 21 Yang, He, Tuck, Wildman, Hague (bib0205) 2013 Qin, Zhang, Singh, Zhang, Chen (bib0090) 2019 Yan, Brown, Su, Li, Wang, Xu, Zhou, Lin (bib0025) 2017; 13 Lotter, Kreiman, Cox (bib0135) 2016 Xu, Zhang, Fu, Huang (bib0095) 2017; 33 Gobert, Reutzel, Petrich, Nassar, Phoha (bib0235) 2018; 21 Razvi, Feng, Narayanan, Lee, Witherell (bib0230) 2019 Zhao, Yan, Chen, Mao, Wang, Gao (bib0270) 2019; 115 Mironov, Boland, Trusk, Forgacs, Markwald (bib0015) 2003; 21 Sitthi-Amorn, Ramos, Wangy, Kwan, Lan, Wang, Matusik (bib0200) 2015; 34 Wang, Bovik, Sheikh, Simoncelli (bib0330) 2004; 13 Pesach, Marmur (bib0040) 1987; 3 Kingma, Ba (bib0325) 2014 Qin (bib0265) 2012; 36 Finn, Goodfellow, Levine (bib0315) 2016 Grasso, Gallina, Colosimo (bib0255) 2018; 75 O’Reilly, Wyatte, Rohrlich (bib0115) 2014 Bertoli, Guss, Wu, Matthews, Schoenung (bib0180) 2017; 135 Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, Nenadic (bib0260) 2019; 133 Singh, Haverinen, Dhagat, Jabbour (bib0005) 2010; 22 Xingjian, Chen, Wang, Yeung, Wong, Woo (bib0320) 2015 Hoath (bib0045) 2016 Scime, Beuth (bib0110) 2018; 24 Tapia, Elwany (bib0160) 2014; 136 Pesach (10.1016/j.addma.2020.101197_bib0040) 1987; 3 Tekin (10.1016/j.addma.2020.101197_bib0035) 2008; 4 Kingma (10.1016/j.addma.2020.101197_bib0325) 2014 Scime (10.1016/j.addma.2020.101197_bib0110) 2018; 24 Okaro (10.1016/j.addma.2020.101197_bib0240) 2019; 27 Singh (10.1016/j.addma.2020.101197_bib0005) 2010; 22 Sirringhaus (10.1016/j.addma.2020.101197_bib0020) 2000; 290 Razvi (10.1016/j.addma.2020.101197_bib0230) 2019 Kanko (10.1016/j.addma.2020.101197_bib0190) 2016; 231 Qin (10.1016/j.addma.2020.101197_bib0265) 2012; 36 Chalasani (10.1016/j.addma.2020.101197_bib0150) 2013 Bertoli (10.1016/j.addma.2020.101197_bib0180) 2017; 135 Chorin (10.1016/j.addma.2020.101197_bib0295) 1968; 22 Barton (10.1016/j.addma.2020.101197_bib0075) 2011; 19 Sitthi-Amorn (10.1016/j.addma.2020.101197_bib0200) 2015; 34 Rao (10.1016/j.addma.2020.101197_bib0080) 2015; 137 O’Reilly (10.1016/j.addma.2020.101197_bib0115) 2014 Yuan (10.1016/j.addma.2020.101197_bib0130) 2019 Everton (10.1016/j.addma.2020.101197_bib0155) 2016; 95 Khanzadeh (10.1016/j.addma.2020.101197_bib0250) 2019; 51 Wang (10.1016/j.addma.2020.101197_bib0305) 2017; 10 Tsai (10.1016/j.addma.2020.101197_bib0070) 2008; 19 Bartolo (10.1016/j.addma.2020.101197_bib0060) 2007; 99 Wu (10.1016/j.addma.2020.101197_bib0100) 2018; 140 Wang (10.1016/j.addma.2020.101197_bib0225) 2018; 47 Hill (10.1016/j.addma.2020.101197_bib0065) 2005; 15 Wang (10.1016/j.addma.2020.101197_bib0220) 2019; 51 Wang (10.1016/j.addma.2020.101197_bib0330) 2004; 13 Stetco (10.1016/j.addma.2020.101197_bib0260) 2019; 133 Yan (10.1016/j.addma.2020.101197_bib0025) 2017; 13 Xingjian (10.1016/j.addma.2020.101197_bib0320) 2015 Gobert (10.1016/j.addma.2020.101197_bib0105) 2018; 21 Kim (10.1016/j.addma.2020.101197_bib0285) 2012; 24 Basaran (10.1016/j.addma.2020.101197_bib0055) 2013; 45 Tapia (10.1016/j.addma.2020.101197_bib0160) 2014; 136 Grasso (10.1016/j.addma.2020.101197_bib0255) 2018; 75 Shevchik (10.1016/j.addma.2020.101197_bib0185) 2018; 21 Lotter (10.1016/j.addma.2020.101197_bib0135) 2016 Wang (10.1016/j.addma.2020.101197_bib0215) 2017 Sun (10.1016/j.addma.2020.101197_bib0010) 2015; 7 Srivastava (10.1016/j.addma.2020.101197_bib0310) 2015 Park (10.1016/j.addma.2020.101197_bib0030) 2010; 10 Scime (10.1016/j.addma.2020.101197_bib0245) 2018; 19 Sarrazin (10.1016/j.addma.2020.101197_bib0275) 2006; 52 Wang (10.1016/j.addma.2020.101197_bib0195) 2017; 113 Hoath (10.1016/j.addma.2020.101197_bib0045) 2016 Santner (10.1016/j.addma.2020.101197_bib0300) 2003; 1 Rao (10.1016/j.addma.2020.101197_bib0140) 1999; 2 Grasso (10.1016/j.addma.2020.101197_bib0165) 2017; 28 Dong (10.1016/j.addma.2020.101197_bib0085) 2006; 77 Lane (10.1016/j.addma.2020.101197_bib0175) 2016; 22 Saxe (10.1016/j.addma.2020.101197_bib0335) 2011 Goroshin (10.1016/j.addma.2020.101197_bib0120) 2015 Groot Wassink (10.1016/j.addma.2020.101197_bib0290) 2007 Scime (10.1016/j.addma.2020.101197_bib0125) 2018; 19 Clark (10.1016/j.addma.2020.101197_bib0145) 2013; 36 Qin (10.1016/j.addma.2020.101197_bib0090) 2019 Mironov (10.1016/j.addma.2020.101197_bib0015) 2003; 21 Finn (10.1016/j.addma.2020.101197_bib0315) 2016 Gobert (10.1016/j.addma.2020.101197_bib0235) 2018; 21 Wijshoff (10.1016/j.addma.2020.101197_bib0050) 2010; 491 Kwon (10.1016/j.addma.2020.101197_bib0210) 2012; 180 Shinjo (10.1016/j.addma.2020.101197_bib0280) 2010; 36 Yang (10.1016/j.addma.2020.101197_bib0205) 2013 Zhao (10.1016/j.addma.2020.101197_bib0270) 2019; 115 Xu (10.1016/j.addma.2020.101197_bib0095) 2017; 33 Sun (10.1016/j.addma.2020.101197_bib0170) 2017; 15 |
References_xml | – volume: 45 start-page: 85 year: 2013 end-page: 113 ident: bib0055 article-title: Nonstandard inkjets publication-title: Annu. Rev. Fluid Mech. – volume: 21 start-page: 598 year: 2018 end-page: 604 ident: bib0185 article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks publication-title: Addit. Manuf. – volume: 10 start-page: 584 year: 2010 end-page: 591 ident: bib0030 article-title: Nanoscale, electrified liquid jets for high-resolution printing of charge publication-title: Nano Lett. – volume: 19 start-page: 114 year: 2018 end-page: 126 ident: bib0125 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. – year: 2014 ident: bib0325 article-title: Adam: A Method for Stochastic Optimization – volume: 34 start-page: 129 year: 2015 ident: bib0200 article-title: Multifab: a machine vision assisted platform for multi-material 3d printing publication-title: ACM Trans. Graph. (TOG) – volume: 36 start-page: 181 year: 2013 end-page: 204 ident: bib0145 article-title: Whatever next?. Predictive brains, situated agents, and the future of cognitive science publication-title: Behav. Brain Sci. – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: bib0270 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. – volume: 15 start-page: 393 year: 2017 end-page: 403 ident: bib0170 article-title: Functional quantitative and qualitative models for quality modeling in a fused deposition modeling process publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 4086 year: 2015 end-page: 4093 ident: bib0120 article-title: Unsupervised learning of spatiotemporally coherent metrics publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 51 start-page: 437 year: 2019 end-page: 455 ident: bib0250 article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes publication-title: IISE Trans. – volume: 135 start-page: 385 year: 2017 end-page: 396 ident: bib0180 article-title: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing publication-title: Mater. Des. – volume: 15 start-page: 255 year: 2005 end-page: 266 ident: bib0065 article-title: Rheofluorescence technique for the study of dilute meh-ppv solutions in couette flow publication-title: J. Fluoresc. – start-page: 744 year: 2019 end-page: 753 ident: bib0130 article-title: Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) – year: 2016 ident: bib0135 article-title: Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning – volume: 51 start-page: 153 year: 2019 end-page: 167 ident: bib0220 article-title: Online droplet monitoring in inkjet 3d printing using catadioptric stereo system publication-title: IISE Trans. – volume: 140 year: 2018 ident: bib0100 article-title: Predictive modeling of droplet formation processes in inkjet-based bioprinting publication-title: J. Manuf. Sci. Eng. – volume: 95 start-page: 431 year: 2016 end-page: 445 ident: bib0155 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. – year: 2016 ident: bib0045 article-title: Fundamentals of Inkjet Printing: the Science of Inkjet and Droplets – start-page: 802 year: 2015 end-page: 810 ident: bib0320 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – volume: 28 start-page: 44005 year: 2017 ident: bib0165 article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. – volume: 491 start-page: 77 year: 2010 end-page: 177 ident: bib0050 article-title: The dynamics of the piezo inkjet printhead operation publication-title: Phys. Rep. – volume: 1 year: 2003 ident: bib0300 publication-title: The Design and Analysis of Computer Experiments – start-page: 505 year: 2013 end-page: 513 ident: bib0205 article-title: High viscosity jetting system for 3d reactive inkjet printing publication-title: Twenty Forth Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference – volume: 4 start-page: 703 year: 2008 end-page: 713 ident: bib0035 article-title: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles publication-title: Soft Matter – volume: 27 start-page: 42 year: 2019 end-page: 53 ident: bib0240 article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning publication-title: Addit. Manuf. – volume: 77 start-page: 85101 year: 2006 ident: bib0085 article-title: Visualization of drop-on-demand inkjet: drop formation and deposition publication-title: Rev. Sci. Instrum. – volume: 75 start-page: 103 year: 2018 end-page: 107 ident: bib0255 article-title: Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing publication-title: Proc. CIRP – volume: 22 start-page: 745 year: 1968 end-page: 762 ident: bib0295 article-title: Numerical solution of the Navier–Stokes equations publication-title: Math. Comput. – volume: 133 start-page: 620 year: 2019 end-page: 635 ident: bib0260 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew. Energy – start-page: 843 year: 2015 end-page: 852 ident: bib0310 article-title: Unsupervised learning of video representations using lstms publication-title: International Conference on Machine Learning – volume: 231 start-page: 488 year: 2016 end-page: 500 ident: bib0190 article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging publication-title: J. Mater. Process. Technol. – volume: 24 start-page: 82103 year: 2012 ident: bib0285 article-title: Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model publication-title: Phys. Fluids – volume: 3 start-page: 519 year: 1987 end-page: 524 ident: bib0040 article-title: Marangoni effects in the spreading of liquid mixtures on a solid publication-title: Langmuir – volume: 22 start-page: 673 year: 2010 end-page: 685 ident: bib0005 article-title: Inkjet printing-process and its applications publication-title: Adv. Mater. – start-page: 70008 year: 2019 ident: bib0090 article-title: In-process monitoring of electrohydrodynamic inkjet printing using machine vision publication-title: AIP Conference Proceedings, Vol. 2102 – start-page: 6 year: 2011 ident: bib0335 article-title: On random weights and unsupervised feature learning publication-title: ICML, Vol. 2 – volume: 19 start-page: 335304 year: 2008 ident: bib0070 article-title: Effects of pulse voltage on inkjet printing of a silver nanopowder suspension publication-title: Nanotechnology – volume: 21 start-page: 517 year: 2018 end-page: 528 ident: bib0105 article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging publication-title: Addit. Manuf. – start-page: 64 year: 2016 end-page: 72 ident: bib0315 article-title: Unsupervised learning for physical interaction through video prediction publication-title: Advances in Neural Information Processing Systems – volume: 7 start-page: 28086 year: 2015 end-page: 28099 ident: bib0010 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 61007 year: 2015 ident: bib0080 article-title: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors publication-title: J. Manuf. Sci. Eng. – volume: 136 start-page: 60801 year: 2014 ident: bib0160 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 22 start-page: 778 year: 2016 end-page: 787 ident: bib0175 article-title: Thermographic measurements of the commercial laser powder bed fusion process at nist publication-title: Rapid Prototyp. J. – volume: 10 start-page: 968 year: 2017 end-page: 981 ident: bib0305 article-title: In-situ droplet inspection and control system for liquid metal jet 3d printing process publication-title: Proc. Manuf. – volume: 13 start-page: 1701756 year: 2017 ident: bib0025 article-title: 3d printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio publication-title: Small – year: 2014 ident: bib0115 article-title: Learning Through Time in the Thalamocortical Loops – volume: 19 start-page: 114 year: 2018 end-page: 126 ident: bib0245 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. – volume: 21 start-page: 157 year: 2003 end-page: 161 ident: bib0015 article-title: Organ printing: computer-aided jet-based 3d tissue engineering publication-title: Trends Biotechnol. – year: 2007 ident: bib0290 article-title: Inkjet Printhead Performance Enhancement by Feedforward Input Design Based on Two-Port Modeling, Ph.D. Thesis – volume: 99 start-page: 174502 year: 2007 ident: bib0060 article-title: Dynamics of non-newtonian droplets publication-title: Phys. Rev. Lett. – volume: 36 start-page: 220 year: 2012 end-page: 234 ident: bib0265 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control – volume: 33 start-page: 5037 year: 2017 end-page: 5045 ident: bib0095 article-title: Study of pinch-off locations during drop-on-demand inkjet printing of viscoelastic alginate solutions publication-title: Langmuir – volume: 52 start-page: 4061 year: 2006 end-page: 4070 ident: bib0275 article-title: Experimental and numerical study of droplets hydrodynamics in microchannels publication-title: AIChE J. – volume: 21 start-page: 517 year: 2018 end-page: 528 ident: bib0235 article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging publication-title: Addit. Manuf. – volume: 113 start-page: 169 year: 2017 end-page: 177 ident: bib0195 article-title: Residual stress mapping in inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions publication-title: Mater. Des. – volume: 290 start-page: 2123 year: 2000 end-page: 2126 ident: bib0020 article-title: High-resolution inkjet printing of all-polymer transistor circuits publication-title: Science – volume: 47 start-page: 83 year: 2018 end-page: 92 ident: bib0225 article-title: In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing publication-title: J. Manuf. Syst. – volume: 24 start-page: 273 year: 2018 end-page: 286 ident: bib0110 article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. – start-page: 27 year: 2017 ident: bib0215 article-title: Low-cost and in-situ droplet micro-sensing for inkjet 3d printing quality assurance publication-title: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems – volume: 2 start-page: 79 year: 1999 ident: bib0140 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. – volume: 36 start-page: 513 year: 2010 end-page: 532 ident: bib0280 article-title: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation publication-title: Int. J. Multiph. Flow – volume: 180 start-page: 154 year: 2012 end-page: 165 ident: bib0210 article-title: Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head publication-title: Sens. Actuators A: Phys. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0330 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – year: 2013 ident: bib0150 article-title: Deep Predictive Coding Networks – year: 2019 ident: bib0230 article-title: A review of machine learning applications in additive manufacturing publication-title: International Design Engineering Technical Conferences & Computers and Information in Engineering Conference – volume: 19 start-page: 1266 year: 2011 end-page: 1273 ident: bib0075 article-title: Control of high-resolution electrohydrodynamic jet printing publication-title: Control Eng. Pract. – year: 2016 ident: 10.1016/j.addma.2020.101197_bib0135 – volume: 51 start-page: 153 issue: 2 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0220 article-title: Online droplet monitoring in inkjet 3d printing using catadioptric stereo system publication-title: IISE Trans. doi: 10.1080/24725854.2018.1532133 – start-page: 70008 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0090 article-title: In-process monitoring of electrohydrodynamic inkjet printing using machine vision publication-title: AIP Conference Proceedings, Vol. 2102 – volume: 136 start-page: 60801 issue: 6 year: 2014 ident: 10.1016/j.addma.2020.101197_bib0160 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028540 – volume: 36 start-page: 220 issue: 2 year: 2012 ident: 10.1016/j.addma.2020.101197_bib0265 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – volume: 22 start-page: 673 issue: 6 year: 2010 ident: 10.1016/j.addma.2020.101197_bib0005 article-title: Inkjet printing-process and its applications publication-title: Adv. Mater. doi: 10.1002/adma.200901141 – volume: 3 start-page: 519 issue: 4 year: 1987 ident: 10.1016/j.addma.2020.101197_bib0040 article-title: Marangoni effects in the spreading of liquid mixtures on a solid publication-title: Langmuir doi: 10.1021/la00076a013 – volume: 34 start-page: 129 issue: 4 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0200 article-title: Multifab: a machine vision assisted platform for multi-material 3d printing publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/2766962 – volume: 15 start-page: 393 issue: 1 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0170 article-title: Functional quantitative and qualitative models for quality modeling in a fused deposition modeling process publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2763609 – volume: 4 start-page: 703 issue: 4 year: 2008 ident: 10.1016/j.addma.2020.101197_bib0035 article-title: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles publication-title: Soft Matter doi: 10.1039/b711984d – start-page: 64 year: 2016 ident: 10.1016/j.addma.2020.101197_bib0315 article-title: Unsupervised learning for physical interaction through video prediction – volume: 1 year: 2003 ident: 10.1016/j.addma.2020.101197_bib0300 – volume: 19 start-page: 335304 issue: 33 year: 2008 ident: 10.1016/j.addma.2020.101197_bib0070 article-title: Effects of pulse voltage on inkjet printing of a silver nanopowder suspension publication-title: Nanotechnology doi: 10.1088/0957-4484/19/33/335304 – volume: 180 start-page: 154 year: 2012 ident: 10.1016/j.addma.2020.101197_bib0210 article-title: Low-cost and high speed monitoring system for a multi-nozzle piezo inkjet head publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2012.04.009 – volume: 21 start-page: 598 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0185 article-title: Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks publication-title: Addit. Manuf. – volume: 113 start-page: 169 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0195 article-title: Residual stress mapping in inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.10.003 – volume: 52 start-page: 4061 issue: 12 year: 2006 ident: 10.1016/j.addma.2020.101197_bib0275 article-title: Experimental and numerical study of droplets hydrodynamics in microchannels publication-title: AIChE J. doi: 10.1002/aic.11033 – volume: 75 start-page: 103 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0255 article-title: Data fusion methods for statistical process monitoring and quality characterization in metal additive manufacturing publication-title: Proc. CIRP doi: 10.1016/j.procir.2018.04.045 – year: 2013 ident: 10.1016/j.addma.2020.101197_bib0150 – volume: 133 start-page: 620 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0260 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew. Energy doi: 10.1016/j.renene.2018.10.047 – volume: 13 start-page: 1701756 issue: 38 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0025 article-title: 3d printing hierarchical silver nanowire aerogel with highly compressive resilience and tensile elongation through tunable poisson's ratio publication-title: Small doi: 10.1002/smll.201701756 – volume: 15 start-page: 255 issue: 3 year: 2005 ident: 10.1016/j.addma.2020.101197_bib0065 article-title: Rheofluorescence technique for the study of dilute meh-ppv solutions in couette flow publication-title: J. Fluoresc. doi: 10.1007/s10895-005-2625-0 – volume: 137 start-page: 61007 issue: 6 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0080 article-title: Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4029823 – volume: 10 start-page: 584 issue: 2 year: 2010 ident: 10.1016/j.addma.2020.101197_bib0030 article-title: Nanoscale, electrified liquid jets for high-resolution printing of charge publication-title: Nano Lett. doi: 10.1021/nl903495f – year: 2014 ident: 10.1016/j.addma.2020.101197_bib0115 – volume: 99 start-page: 174502 issue: 17 year: 2007 ident: 10.1016/j.addma.2020.101197_bib0060 article-title: Dynamics of non-newtonian droplets publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.174502 – year: 2014 ident: 10.1016/j.addma.2020.101197_bib0325 – volume: 231 start-page: 488 year: 2016 ident: 10.1016/j.addma.2020.101197_bib0190 article-title: In situ morphology-based defect detection of selective laser melting through inline coherent imaging publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.12.024 – volume: 19 start-page: 1266 issue: 11 year: 2011 ident: 10.1016/j.addma.2020.101197_bib0075 article-title: Control of high-resolution electrohydrodynamic jet printing publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2011.05.009 – volume: 21 start-page: 517 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0235 article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging publication-title: Addit. Manuf. – volume: 36 start-page: 513 issue: 7 year: 2010 ident: 10.1016/j.addma.2020.101197_bib0280 article-title: Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2010.03.008 – year: 2007 ident: 10.1016/j.addma.2020.101197_bib0290 – volume: 36 start-page: 181 issue: 3 year: 2013 ident: 10.1016/j.addma.2020.101197_bib0145 article-title: Whatever next?. Predictive brains, situated agents, and the future of cognitive science publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X12000477 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.addma.2020.101197_bib0330 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 10 start-page: 968 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0305 article-title: In-situ droplet inspection and control system for liquid metal jet 3d printing process publication-title: Proc. Manuf. – volume: 135 start-page: 385 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0180 article-title: In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.044 – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0270 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.05.050 – volume: 22 start-page: 778 issue: 5 year: 2016 ident: 10.1016/j.addma.2020.101197_bib0175 article-title: Thermographic measurements of the commercial laser powder bed fusion process at nist publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-11-2015-0161 – start-page: 27 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0215 article-title: Low-cost and in-situ droplet micro-sensing for inkjet 3d printing quality assurance publication-title: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems – volume: 290 start-page: 2123 issue: 5499 year: 2000 ident: 10.1016/j.addma.2020.101197_bib0020 article-title: High-resolution inkjet printing of all-polymer transistor circuits publication-title: Science doi: 10.1126/science.290.5499.2123 – volume: 491 start-page: 77 issue: 4–5 year: 2010 ident: 10.1016/j.addma.2020.101197_bib0050 article-title: The dynamics of the piezo inkjet printhead operation publication-title: Phys. Rep. doi: 10.1016/j.physrep.2010.03.003 – start-page: 802 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0320 article-title: Convolutional lstm network: a machine learning approach for precipitation nowcasting – volume: 140 issue: 10 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0100 article-title: Predictive modeling of droplet formation processes in inkjet-based bioprinting publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4040619 – volume: 77 start-page: 85101 issue: 8 year: 2006 ident: 10.1016/j.addma.2020.101197_bib0085 article-title: Visualization of drop-on-demand inkjet: drop formation and deposition publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2234853 – volume: 21 start-page: 517 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0105 article-title: Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging publication-title: Addit. Manuf. – volume: 19 start-page: 114 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0245 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. – start-page: 4086 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0120 article-title: Unsupervised learning of spatiotemporally coherent metrics publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 843 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0310 article-title: Unsupervised learning of video representations using lstms publication-title: International Conference on Machine Learning – volume: 33 start-page: 5037 issue: 20 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0095 article-title: Study of pinch-off locations during drop-on-demand inkjet printing of viscoelastic alginate solutions publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00874 – volume: 51 start-page: 437 issue: 5 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0250 article-title: In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes publication-title: IISE Trans. doi: 10.1080/24725854.2017.1417656 – volume: 21 start-page: 157 issue: 4 year: 2003 ident: 10.1016/j.addma.2020.101197_bib0015 article-title: Organ printing: computer-aided jet-based 3d tissue engineering publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(03)00033-7 – volume: 45 start-page: 85 year: 2013 ident: 10.1016/j.addma.2020.101197_bib0055 article-title: Nonstandard inkjets publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-120710-101148 – volume: 27 start-page: 42 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0240 article-title: Automatic fault detection for laser powder-bed fusion using semi-supervised machine learning publication-title: Addit. Manuf. – volume: 47 start-page: 83 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0225 article-title: In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.04.003 – volume: 24 start-page: 273 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0110 article-title: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process publication-title: Addit. Manuf. – volume: 2 start-page: 79 issue: 1 year: 1999 ident: 10.1016/j.addma.2020.101197_bib0140 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. doi: 10.1038/4580 – start-page: 6 year: 2011 ident: 10.1016/j.addma.2020.101197_bib0335 article-title: On random weights and unsupervised feature learning publication-title: ICML, Vol. 2 – start-page: 744 year: 2019 ident: 10.1016/j.addma.2020.101197_bib0130 article-title: Semi-supervised convolutional neural networks for in-situ video monitoring of selective laser melting – volume: 28 start-page: 44005 issue: 4 year: 2017 ident: 10.1016/j.addma.2020.101197_bib0165 article-title: Process defects and in situ monitoring methods in metal powder bed fusion: a review publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa5c4f – volume: 24 start-page: 82103 issue: 8 year: 2012 ident: 10.1016/j.addma.2020.101197_bib0285 article-title: Numerical study on the effects of non-dimensional parameters on drop-on-demand droplet formation dynamics and printability range in the up-scaled model publication-title: Phys. Fluids doi: 10.1063/1.4742913 – start-page: 505 year: 2013 ident: 10.1016/j.addma.2020.101197_bib0205 article-title: High viscosity jetting system for 3d reactive inkjet printing publication-title: Twenty Forth Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference – year: 2019 ident: 10.1016/j.addma.2020.101197_bib0230 article-title: A review of machine learning applications in additive manufacturing publication-title: International Design Engineering Technical Conferences & Computers and Information in Engineering Conference – year: 2016 ident: 10.1016/j.addma.2020.101197_bib0045 – volume: 95 start-page: 431 year: 2016 ident: 10.1016/j.addma.2020.101197_bib0155 article-title: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.099 – volume: 7 start-page: 28086 issue: 51 year: 2015 ident: 10.1016/j.addma.2020.101197_bib0010 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07006 – volume: 19 start-page: 114 year: 2018 ident: 10.1016/j.addma.2020.101197_bib0125 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manuf. – volume: 22 start-page: 745 issue: 104 year: 1968 ident: 10.1016/j.addma.2020.101197_bib0295 article-title: Numerical solution of the Navier–Stokes equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1968-0242392-2 |
SSID | ssj0001537982 |
Score | 2.4732568 |
Snippet | Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process. Forming such behavior is governed by the fluid... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101197 |
SubjectTerms | Deep recurrent neural network (DRNN) Inkjet printing Latent space decoding Unsupervised learning Video prediction |
Title | Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing |
URI | https://dx.doi.org/10.1016/j.addma.2020.101197 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDwwEho7cRKPVUVVQHSBSt0iO3ZRCwpRmzLy27EdB4qEOiBlSCxfFJ3Pd58v9wC4kjjjVMTSS6jwvZBI7DEmqOfHPBKJyoiyfsjHcTSahPdTOm3AoM6FMWGVTvdXOt1qazfSc9zsFfN574kQbDoohcTCYJY0oU20tU9a0O7fPYzGP64WGsTMto0yJJ6hqesP2UgvvcVtCSJiR7Cp__SXjdqwO8N92HOAEfWrbzqAhsoPYXejjOARFJN8tS7Mpl8piVwfiBek4SjS8A7JpQkSL5H6cGKGiqX5PWNveS5RUSULIFl1p1-h9WbGC5rn-npd6DcYJ6AJkz6GyfD2eTDyXCcFL9MmqvSExhF6HaKIJyTGM54FLMOSx_6MzFikcKg0ysMZUyrjKhJS22w9wZeMM8FkGAcn0Mrfc3UKSBLBYxUIRrkKYw2vKJUCcxmEidCnsaQDpOZdmrky46bbxVtax5MtUsvw1DA8rRjegetvoqKqsrF9elQvSvpLWFJtB7YRnv2X8Bx2zFMVxXcBrXK5VpcajZSiC82bT9x1MvcFH7bgfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YGR0Nqx43hEFVWBtgut1C3yq6gFhahNGfnt2E4CRUIdkDJEji-Kzmff58v5PgCuNVKCSqaDmMpWQLBGAeeSBi0mIhkbhY2PQ_YHUXdEHsd0XAPt6iyMS6ss1_5iTferddnSLLXZzKbT5jPGyDEoEexhMI83wCZxNAfWqG8_0U-ghYaMe9IoJxA4iar6kM_zshPcFyDCvgW56k9_eagVr9PZA7slXIR3xRftg5pJD8DOShHBQ5CN0sUyc1N-YTQsWSBeoAWj0II7qOcuRTyH5qM0MpjN3c8ZfytSDbPiqADUBTf9Ai5Xz7vAaWqv15l9gwsBuiTpIzDq3A_b3aDkUQiUdVB5IC2KsKMQRSLGDE2ECrlCWrDWBE94ZBAxFuMhxY1RwkRSW49tO7Q0F1xyTVh4DOrpe2pOANRYCmZCyakwhFlwRamWSOiQxNLuxeIGwJXuElUWGXdcF29JlU02S7zCE6fwpFB4A9x8C2VFjY313aNqUJJfppJYL7BO8PS_gldgqzvs95Lew-DpDGy7J0U-3zmo5_OlubC4JJeX3u6-AO_K4T4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning+for+the+droplet+evolution+prediction+and+process+dynamics+understanding+in+inkjet+printing&rft.jtitle=Additive+manufacturing&rft.au=Huang%2C+Jida&rft.au=Segura%2C+Luis+Javier&rft.au=Wang%2C+Tianjiao&rft.au=Zhao%2C+Guanglei&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=35&rft_id=info:doi/10.1016%2Fj.addma.2020.101197&rft.externalDocID=S2214860420305698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |