An ADMM-based algorithm for stabilizing distributed model predictive control without terminal cost and constraint

•The stabilizing DMPC algorithms without terminal cost and constraint are limited to the gradient-based approaches.•The distributed version of the alternating direction method of multipliers (ADMM) is an appropriate approach to deal with the DMPC problems.•The superior convergence properties of the...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of control Vol. 73; p. 100881
Main Authors Rostami, Ramin, Görges, Daniel
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2023
Subjects
Online AccessGet full text
ISSN0947-3580
1435-5671
DOI10.1016/j.ejcon.2023.100881

Cover

Abstract •The stabilizing DMPC algorithms without terminal cost and constraint are limited to the gradient-based approaches.•The distributed version of the alternating direction method of multipliers (ADMM) is an appropriate approach to deal with the DMPC problems.•The superior convergence properties of the ADMM algorithm will result in a considerably lower communication load in stabilizing DMPC.•The lower communication burden of the ADMM-based approach can be obtained at the cost of a higher computation load per iteration. The stability assurance is not straightforward for distributed model predictive control (DMPC), since the well-known terminal cost and constraint technique cannot be readily adapted to the distributed schemes. An alternative method to the complicated procedure of splitting the terminal cost function and constraint set to achieve stability, is to calculate a minimum length for the DMPC prediction horizon. It is known that the DMPC cost will then have a relationship to the infinite-horizon cost, which is determined by a so-called performance factor. Moreover, the stopping condition of the distributed optimization algorithm, which for the sake of smooth handling of the coupling constraints is usually a duality-based algorithm, can be formulated using two scalars: an upper bound for the cost of the next sampling period and a lower bound for the optimal cost of the current one. For the duality-based algorithms, feasibility can only be guaranteed in the limit of iterations, thus the constraint tightening technique should be employed to determine the former scalar. The tightening technique, however, impinges upon calculation of the latter one. This problem is already addressed in the literature for gradient-based methods. By contrast, the consensus form of alternating direction method of multipliers (ADMM) is employed in this paper to stabilize the DMPC scheme. Simulation results reveal that this method outperforms the existing gradient-based approaches in terms of the required number of communications.
AbstractList •The stabilizing DMPC algorithms without terminal cost and constraint are limited to the gradient-based approaches.•The distributed version of the alternating direction method of multipliers (ADMM) is an appropriate approach to deal with the DMPC problems.•The superior convergence properties of the ADMM algorithm will result in a considerably lower communication load in stabilizing DMPC.•The lower communication burden of the ADMM-based approach can be obtained at the cost of a higher computation load per iteration. The stability assurance is not straightforward for distributed model predictive control (DMPC), since the well-known terminal cost and constraint technique cannot be readily adapted to the distributed schemes. An alternative method to the complicated procedure of splitting the terminal cost function and constraint set to achieve stability, is to calculate a minimum length for the DMPC prediction horizon. It is known that the DMPC cost will then have a relationship to the infinite-horizon cost, which is determined by a so-called performance factor. Moreover, the stopping condition of the distributed optimization algorithm, which for the sake of smooth handling of the coupling constraints is usually a duality-based algorithm, can be formulated using two scalars: an upper bound for the cost of the next sampling period and a lower bound for the optimal cost of the current one. For the duality-based algorithms, feasibility can only be guaranteed in the limit of iterations, thus the constraint tightening technique should be employed to determine the former scalar. The tightening technique, however, impinges upon calculation of the latter one. This problem is already addressed in the literature for gradient-based methods. By contrast, the consensus form of alternating direction method of multipliers (ADMM) is employed in this paper to stabilize the DMPC scheme. Simulation results reveal that this method outperforms the existing gradient-based approaches in terms of the required number of communications.
ArticleNumber 100881
Author Görges, Daniel
Rostami, Ramin
Author_xml – sequence: 1
  givenname: Ramin
  surname: Rostami
  fullname: Rostami, Ramin
  email: rostami@eit.uni-kl.de
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-5504-0972
  surname: Görges
  fullname: Görges, Daniel
  email: goerges@eit.uni-kl.de
BookMark eNqFkM1OAyEQgImpibX2CbzwAlth6f5w8NDU36SNFz0TFtg6my1UoDX69LLWkwcdDpPAfDPMd45G1lmD0CUlM0poedXNTKecneUkZ-mG1DU9QWM6Z0VWlBUdoTHh8ypjRU3O0DSEjqRgjKYzRm8Lixc363XWyGA0lv3GeYivW9w6j0OUDfTwCXaDNYToodnHVLV12vR4540GFeFgcBofvevxe0LdPuJo_Bas7NNDiFhaPVQkXoKNF-i0lX0w0588QS93t8_Lh2z1dP-4XKwyxQiLWZO3Ja910fJcl5ozXjNCStPWNNe8mue1btICSkqaV5K0NWt4U1SqKlqmCWeaTRA_9lXeheBNKxREGWH4qoReUCIGfaIT3_rEoE8c9SWW_WJ3HrbSf_xDXR8pk9Y6gPEiKDBWJU3eqCi0gz_5L_oXjmc
CitedBy_id crossref_primary_10_1016_j_ejcon_2025_101217
crossref_primary_10_1016_j_oceaneng_2024_119076
Cites_doi 10.1007/s10288-005-0071-0
10.1109/9.587349
10.1109/TAC.2013.2285779
10.1109/TAC.2008.927799
10.1016/j.automatica.2013.01.009
10.1023/B:JOTA.0000004869.66331.5c
10.1109/TAC.1987.1104625
10.1109/TAC.2014.2354892
10.1016/j.automatica.2016.02.009
10.1109/TAC.2006.878720
10.1109/9.272351
10.1016/S0005-1098(00)00004-2
10.1137/070707853
ContentType Journal Article
Copyright 2023 European Control Association
Copyright_xml – notice: 2023 European Control Association
DBID AAYXX
CITATION
DOI 10.1016/j.ejcon.2023.100881
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1435-5671
ExternalDocumentID 10_1016_j_ejcon_2023_100881
S0947358023001097
GroupedDBID --M
.~1
0R~
1~.
29G
3V.
4.4
457
4G.
5GY
7-5
88I
8FE
8FG
8P~
8R4
8R5
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABFRF
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADFRT
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BGLVJ
BJAXD
BKOJK
BLXMC
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
GNUQQ
HCIFZ
HVGLF
HZ~
JJJVA
K6V
K7-
KOM
L6V
M0N
M2P
M41
M7S
MO0
O9-
OAUVE
P-8
P-9
P2P
P62
PC.
PQQKQ
PROAC
PTHSS
Q2X
R2-
RIG
ROL
SDH
SPC
SPCBC
SST
SSZ
T5K
UNMZH
~4P
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c303t-b2f698d5f92d6d93983006ef812d97428db313caa127a0f83b9b57c75f3d093d3
IEDL.DBID .~1
ISSN 0947-3580
IngestDate Thu Apr 24 22:59:34 EDT 2025
Sat Oct 25 05:28:51 EDT 2025
Fri Feb 23 02:35:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed model predictive control
Distributed optimization
Feasibility
Stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-b2f698d5f92d6d93983006ef812d97428db313caa127a0f83b9b57c75f3d093d3
ORCID 0000-0001-5504-0972
ParticipantIDs crossref_citationtrail_10_1016_j_ejcon_2023_100881
crossref_primary_10_1016_j_ejcon_2023_100881
elsevier_sciencedirect_doi_10_1016_j_ejcon_2023_100881
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle European journal of control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barcelli, Bemporad, Ripaccioli (bib0001) 2010
Farokhi, Shames, Johansson (bib0011) 2014
Grüne, Rantzer (bib0018) 2008; 53
Giselsson, Rantzer (bib0015) 2014; 59
Rostami, Costantini, Görges (bib0025) 2019
Conte, Voellmy, Zeilinger, Morari, Jones (bib0009) 2012
Giselsson, Doan, Keviczky, Schutter, Rantzer (bib0013) 2013; 49
Lincoln, Rantzer (bib0021) 2006; 51
Herceg, Kvasnica, Jones, Morari (bib0019) 2013
Costantini, Rostami, Görges (bib0010) 2018
Nesterov (bib0022) 1983; 27
Borrelli, Bemporad, Morari (bib0003) 2003; 118
Primbs, Nevistić (bib0023) 2000; 36
Borrelli, Bemporad, Morari (bib0004) 2017
Ghadimi, Teixeira, Shames, Johansson (bib0012) 2015; 60
Boyd, Vandenberghe (bib0006) 2004
Boyd, Parikh, Chu, Peleato, Eckstein (bib0005) 2011; 3
Conte, Jones, Morari, Zeilinger (bib0008) 2016; 69
[preprint available online; accessed December 29, 2022].
Griva, Nash, Sofer (bib0016) 2009
Grüne (bib0017) 2009; 48
Blanchini (bib0002) 1994; 39
Keerthi, Gilbert (bib0020) 1987; 32
Shamma, Xiong (bib0026) 1997; 42
Colson, Marcotte, Savard (bib0007) 2005; 3
P. Giselsson, A. Rantzer, On feasibility, stability and performance in distributed model predictive control, 2013
Rostami, Costantini, Görges (bib0024) 2017
Boyd (10.1016/j.ejcon.2023.100881_bib0006) 2004
Boyd (10.1016/j.ejcon.2023.100881_bib0005) 2011; 3
Griva (10.1016/j.ejcon.2023.100881_bib0016) 2009
Primbs (10.1016/j.ejcon.2023.100881_bib0023) 2000; 36
Rostami (10.1016/j.ejcon.2023.100881_bib0024) 2017
Barcelli (10.1016/j.ejcon.2023.100881_bib0001) 2010
Keerthi (10.1016/j.ejcon.2023.100881_bib0020) 1987; 32
Giselsson (10.1016/j.ejcon.2023.100881_bib0013) 2013; 49
Shamma (10.1016/j.ejcon.2023.100881_bib0026) 1997; 42
Lincoln (10.1016/j.ejcon.2023.100881_bib0021) 2006; 51
Giselsson (10.1016/j.ejcon.2023.100881_bib0015) 2014; 59
Conte (10.1016/j.ejcon.2023.100881_bib0009) 2012
Grüne (10.1016/j.ejcon.2023.100881_bib0017) 2009; 48
Blanchini (10.1016/j.ejcon.2023.100881_bib0002) 1994; 39
Ghadimi (10.1016/j.ejcon.2023.100881_bib0012) 2015; 60
Nesterov (10.1016/j.ejcon.2023.100881_bib0022) 1983; 27
Conte (10.1016/j.ejcon.2023.100881_bib0008) 2016; 69
10.1016/j.ejcon.2023.100881_bib0014
Rostami (10.1016/j.ejcon.2023.100881_bib0025) 2019
Costantini (10.1016/j.ejcon.2023.100881_bib0010) 2018
Herceg (10.1016/j.ejcon.2023.100881_bib0019) 2013
Farokhi (10.1016/j.ejcon.2023.100881_bib0011) 2014
Borrelli (10.1016/j.ejcon.2023.100881_bib0003) 2003; 118
Grüne (10.1016/j.ejcon.2023.100881_bib0018) 2008; 53
Colson (10.1016/j.ejcon.2023.100881_bib0007) 2005; 3
Borrelli (10.1016/j.ejcon.2023.100881_bib0004) 2017
References_xml – volume: 53
  start-page: 2100
  year: 2008
  end-page: 2111
  ident: bib0018
  article-title: On the infinite horizon performance of receding horizon controllers
  publication-title: IEEE Trans. Autom. Control
– volume: 32
  start-page: 432
  year: 1987
  end-page: 435
  ident: bib0020
  article-title: Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 59
  start-page: 1031
  year: 2014
  end-page: 1036
  ident: bib0015
  article-title: On feasibility, stability and performance in distributed model predictive control
  publication-title: IEEE Trans. Autom. Control
– year: 2017
  ident: bib0004
  article-title: Predictive Control for Linear and Hybrid Systems
– year: 2004
  ident: bib0006
  article-title: Convex Optimization
– volume: 3
  start-page: 87
  year: 2005
  end-page: 107
  ident: bib0007
  article-title: Bilevel programming: a survey
  publication-title: 4OR Q. J. Oper. Res.
– volume: 49
  start-page: 829
  year: 2013
  end-page: 833
  ident: bib0013
  article-title: Accelerated gradient methods and dual decomposition in distributed model predictive control
  publication-title: Automatica
– year: 2009
  ident: bib0016
  article-title: Linear and Nonlinear Optimization
– volume: 39
  start-page: 428
  year: 1994
  end-page: 433
  ident: bib0002
  article-title: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions
  publication-title: IEEE Trans. Autom. Control
– volume: 36
  start-page: 965
  year: 2000
  end-page: 971
  ident: bib0023
  article-title: Feasibility and stability of constrained finite receding horizon control
  publication-title: Automatica
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0005
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– reference: ). [preprint available online; accessed December 29, 2022].
– volume: 42
  start-page: 875
  year: 1997
  end-page: 879
  ident: bib0026
  article-title: Linear nonquadratic optimal control
  publication-title: IEEE Trans. Autom. Control
– start-page: 5216
  year: 2010
  end-page: 5221
  ident: bib0001
  article-title: Hierarchical multi-rate control design for constrained linear systems
  publication-title: Proceedings of the 49th IEEE Conference on Decision and Control (CDC)
– start-page: 502
  year: 2013
  end-page: 510
  ident: bib0019
  article-title: Multi-Parametric Toolbox 3.0
  publication-title: Proceedings of the European Control Conference(ECC)
– volume: 118
  start-page: 515
  year: 2003
  end-page: 540
  ident: bib0003
  article-title: Geometric algorithm for multiparametric linear programming
  publication-title: J. Optim. Theory Appl.
– volume: 69
  start-page: 117
  year: 2016
  end-page: 125
  ident: bib0008
  article-title: Distributed synthesis and stability of cooperative distributed model predictive control for linear systems
  publication-title: Automatica
– start-page: 5635
  year: 2019
  end-page: 5640
  ident: bib0025
  article-title: Stabilizing distributed model predictive control using the consensus form of ADMM
  publication-title: Proceedings of the 58th IEEE Conference on Decision and Control (CDC)
– start-page: 115
  year: 2014
  end-page: 131
  ident: bib0011
  article-title: Distributed MPC via dual decomposition and alternative direction method of multipliers
  publication-title: Distributed Model Predictive Control Made Easy
– volume: 60
  start-page: 644
  year: 2015
  end-page: 658
  ident: bib0012
  article-title: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems
  publication-title: IEEE Trans. Autom. Control
– start-page: 6598
  year: 2017
  end-page: 6603
  ident: bib0024
  article-title: ADMM-based distributed model predictive control: primal and dual approaches
  publication-title: Proceedings of the 56th IEEE Conference on Decision and Control (CDC)
– volume: 48
  start-page: 1206
  year: 2009
  end-page: 1228
  ident: bib0017
  article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems
  publication-title: SIAM J. Optim. Control
– volume: 27
  start-page: 372
  year: 1983
  end-page: 376
  ident: bib0022
  article-title: A method of solving a convex programming problem with convergence rate
  publication-title: Soviet Math. Doklady
– reference: P. Giselsson, A. Rantzer, On feasibility, stability and performance in distributed model predictive control, 2013, (
– volume: 51
  start-page: 1249
  year: 2006
  end-page: 1260
  ident: bib0021
  article-title: Relaxing dynamic programming
  publication-title: IEEE Trans. Autom. Control
– start-page: 5170
  year: 2018
  end-page: 5175
  ident: bib0010
  article-title: Distributed linear quadratic regulator for the synthesis of a separable terminal cost for distributed model predictive control
  publication-title: Proceedings of the 57th IEEE Conference on Decision and Control (CDC)
– start-page: 6017
  year: 2012
  end-page: 6022
  ident: bib0009
  article-title: Distributed synthesis and control of constrained linear systems
  publication-title: Proceedings of the American Control Conference (ACC)
– start-page: 502
  year: 2013
  ident: 10.1016/j.ejcon.2023.100881_bib0019
  article-title: Multi-Parametric Toolbox 3.0
– year: 2017
  ident: 10.1016/j.ejcon.2023.100881_bib0004
– volume: 3
  start-page: 87
  issue: 2
  year: 2005
  ident: 10.1016/j.ejcon.2023.100881_bib0007
  article-title: Bilevel programming: a survey
  publication-title: 4OR Q. J. Oper. Res.
  doi: 10.1007/s10288-005-0071-0
– volume: 42
  start-page: 875
  issue: 6
  year: 1997
  ident: 10.1016/j.ejcon.2023.100881_bib0026
  article-title: Linear nonquadratic optimal control
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.587349
– start-page: 6598
  year: 2017
  ident: 10.1016/j.ejcon.2023.100881_bib0024
  article-title: ADMM-based distributed model predictive control: primal and dual approaches
– year: 2009
  ident: 10.1016/j.ejcon.2023.100881_bib0016
– volume: 59
  start-page: 1031
  issue: 4
  year: 2014
  ident: 10.1016/j.ejcon.2023.100881_bib0015
  article-title: On feasibility, stability and performance in distributed model predictive control
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2285779
– start-page: 5635
  year: 2019
  ident: 10.1016/j.ejcon.2023.100881_bib0025
  article-title: Stabilizing distributed model predictive control using the consensus form of ADMM
– volume: 53
  start-page: 2100
  issue: 9
  year: 2008
  ident: 10.1016/j.ejcon.2023.100881_bib0018
  article-title: On the infinite horizon performance of receding horizon controllers
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.927799
– start-page: 6017
  year: 2012
  ident: 10.1016/j.ejcon.2023.100881_bib0009
  article-title: Distributed synthesis and control of constrained linear systems
– volume: 49
  start-page: 829
  issue: 3
  year: 2013
  ident: 10.1016/j.ejcon.2023.100881_bib0013
  article-title: Accelerated gradient methods and dual decomposition in distributed model predictive control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.01.009
– volume: 118
  start-page: 515
  issue: 3
  year: 2003
  ident: 10.1016/j.ejcon.2023.100881_bib0003
  article-title: Geometric algorithm for multiparametric linear programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000004869.66331.5c
– volume: 32
  start-page: 432
  issue: 5
  year: 1987
  ident: 10.1016/j.ejcon.2023.100881_bib0020
  article-title: Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1987.1104625
– volume: 60
  start-page: 644
  issue: 3
  year: 2015
  ident: 10.1016/j.ejcon.2023.100881_bib0012
  article-title: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2354892
– start-page: 115
  year: 2014
  ident: 10.1016/j.ejcon.2023.100881_bib0011
  article-title: Distributed MPC via dual decomposition and alternative direction method of multipliers
– volume: 69
  start-page: 117
  year: 2016
  ident: 10.1016/j.ejcon.2023.100881_bib0008
  article-title: Distributed synthesis and stability of cooperative distributed model predictive control for linear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.02.009
– ident: 10.1016/j.ejcon.2023.100881_bib0014
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 10.1016/j.ejcon.2023.100881_bib0022
  article-title: A method of solving a convex programming problem with convergence rate O(1/k2)
  publication-title: Soviet Math. Doklady
– volume: 51
  start-page: 1249
  issue: 8
  year: 2006
  ident: 10.1016/j.ejcon.2023.100881_bib0021
  article-title: Relaxing dynamic programming
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2006.878720
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ejcon.2023.100881_bib0005
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– volume: 39
  start-page: 428
  issue: 2
  year: 1994
  ident: 10.1016/j.ejcon.2023.100881_bib0002
  article-title: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.272351
– volume: 36
  start-page: 965
  issue: 7
  year: 2000
  ident: 10.1016/j.ejcon.2023.100881_bib0023
  article-title: Feasibility and stability of constrained finite receding horizon control
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00004-2
– start-page: 5216
  year: 2010
  ident: 10.1016/j.ejcon.2023.100881_bib0001
  article-title: Hierarchical multi-rate control design for constrained linear systems
– year: 2004
  ident: 10.1016/j.ejcon.2023.100881_bib0006
– volume: 48
  start-page: 1206
  issue: 2
  year: 2009
  ident: 10.1016/j.ejcon.2023.100881_bib0017
  article-title: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems
  publication-title: SIAM J. Optim. Control
  doi: 10.1137/070707853
– start-page: 5170
  year: 2018
  ident: 10.1016/j.ejcon.2023.100881_bib0010
  article-title: Distributed linear quadratic regulator for the synthesis of a separable terminal cost for distributed model predictive control
SSID ssj0000331313
Score 2.3533072
Snippet •The stabilizing DMPC algorithms without terminal cost and constraint are limited to the gradient-based approaches.•The distributed version of the alternating...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100881
SubjectTerms Distributed model predictive control
Distributed optimization
Feasibility
Stability
Title An ADMM-based algorithm for stabilizing distributed model predictive control without terminal cost and constraint
URI https://dx.doi.org/10.1016/j.ejcon.2023.100881
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1435-5671
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331313
  issn: 0947-3580
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB4YCY3jPMeoUBVQu0ClbpEdO9CqpKVNFwZ-O3eJUxUJdWBMcpais3X3nf35PkJuGN6vVi6zhJeVEmaZFYlUWJ5gTuDbCkA-7kP2B35v6D6NvFGDdOq7MEirNLG_iulltDZv2sab7fl43H6BwiTAQzwA0Xi-gzfKXTdAFYO7b7beZ7E5Z7xSSQZ7CwfUzYdKmpeeYN2JIuJIGAhD9neC2kg63UNyYNAijasfOiINnR-T_Y0egifkM85pfN_vW5iPFBXTtxnU--8fFNAoBeiH5NcvsKQKW-SiuhVYlfo3dL7AUxqMd9Qw1iluy85WBTUcmSl8WBZU5AotlqWeRHFKht2H107PMjoKVgoJqrCkk_lRqGAyHOWriEcheMzXGeR2BeWEEyoJHkoFTo-ws5DLSHpBGngZV3bEFT8jO_ks1-eEalf4UjHthhJKHa4hlgKiFBxhiLRZ2CRO7bwkNU3G8d-mSc0mmySlxxP0eFJ5vElu14PmVY-N7eZ-PSvJr6WSQBbYNvDivwMvyR4-VdSyK7JTLFb6GrBIIVvlYmuR3fjxuTf4AcIy3bM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YGR0CTOwxmrQlWg7UIrdbOcOIFWJS1tujDw27lLnKpIqAOrfSdZZ-vuO_vzHSG3Fv6vVo5lSDfJW5glRiAjabjSsn3PVADy8R6y2_PaA-d56A4rpFn-hUFapfb9hU_PvbUeqWtr1mejUf0VEhMfH_EAROP7jr9Fth3X9jEDu_-2VhctJmMWK9okg4KBGmX1oZznFY8x8cQu4sgY4Nz6O0KtRZ3WAdnXcJE2ihUdkkqcHpG9tSKCx-SzkdLGQ7drYEBSVE7eppDwv39QgKMUsB-yX79AkiqskYvtrUAqb4BDZ3N8pkGHRzVlneK97HSZUU2SmcDEIqMyVSixyBtKZCdk0HrsN9uGbqRgRBChMiO0Ey_gCnbDVp4KWMDBZF6cQHBXkE_YXIVgoUji_kgz4SwMQtePfDdhygyYYqekmk7T-IzQ2JFeqKzY4SHkOiwGZwqQUjLEIaFp8RqxS-OJSFcZx7VNREknG4vc4gItLgqL18jdSmlWFNnYLO6VuyJ-nRUBYWCT4vl_FW_ITrvf7YjOU-_lguziTMEzuyTVbL6MrwCYZOF1fvB-AACH30g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ADMM-based+algorithm+for+stabilizing+distributed+model+predictive+control+without+terminal+cost+and+constraint&rft.jtitle=European+journal+of+control&rft.au=Rostami%2C+Ramin&rft.au=G%C3%B6rges%2C+Daniel&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=0947-3580&rft.eissn=1435-5671&rft.volume=73&rft_id=info:doi/10.1016%2Fj.ejcon.2023.100881&rft.externalDocID=S0947358023001097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-3580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-3580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-3580&client=summon