PINN-wf: A PINN-based algorithm for data-driven solution and parameter discovery of the Hirota equation appearing in communications and finance

In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solution...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 190; p. 115669
Main Authors Chen, Yu, Lü, Xing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0960-0779
DOI10.1016/j.chaos.2024.115669

Cover

Abstract In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solutions are derived and the parameters are calibrated through physics-informed neural networks (PINNs), where various complex initial conditions on a continuous wave background are considered and compared. PINNs define the loss function based on the strong form via partial differential equations (PDEs), while it is subject to the diminished accuracy when the PDEs enjoy high-order derivatives or the solutions contain complex functions. We hereby propose a PINN with weak form (PINN-wf), where the weak form residual of PDEs is embedded into the loss function accounting for data errors effectively. The proposed algorithm involves domain decomposition to derive the weak form function, assigning distinct test functions to each sub-domain based on the selected sample points. Two schemes of computational experiments are carried out to provide valuable insights into the dynamic characteristics of solutions to the Hirota equation. These experiments serve as a robust reference for understanding and analyzing the behavior of solutions in practical scenarios. •An extended PINN algorithm defining the loss function based on the weak form is proposed.•Data-driven solutions and parameters discovery of the Hirota equation are given.•The proposed algorithm also benefits from the property of domain decomposition, whereby each sub-domain can be assigned to a distinct test function for deriving the weak form function.
AbstractList In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solutions are derived and the parameters are calibrated through physics-informed neural networks (PINNs), where various complex initial conditions on a continuous wave background are considered and compared. PINNs define the loss function based on the strong form via partial differential equations (PDEs), while it is subject to the diminished accuracy when the PDEs enjoy high-order derivatives or the solutions contain complex functions. We hereby propose a PINN with weak form (PINN-wf), where the weak form residual of PDEs is embedded into the loss function accounting for data errors effectively. The proposed algorithm involves domain decomposition to derive the weak form function, assigning distinct test functions to each sub-domain based on the selected sample points. Two schemes of computational experiments are carried out to provide valuable insights into the dynamic characteristics of solutions to the Hirota equation. These experiments serve as a robust reference for understanding and analyzing the behavior of solutions in practical scenarios. •An extended PINN algorithm defining the loss function based on the weak form is proposed.•Data-driven solutions and parameters discovery of the Hirota equation are given.•The proposed algorithm also benefits from the property of domain decomposition, whereby each sub-domain can be assigned to a distinct test function for deriving the weak form function.
ArticleNumber 115669
Author Chen, Yu
Lü, Xing
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Xing
  surname:
  fullname: Lü, Xing
  email: XLV@bjtu.edu.cn
  organization: Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan 430205, China
BookMark eNqFkD1OAzEQhV2AxO8JaHyBDbY3cdZIFAgBiRQFCqitWe-YOMrawXaCcgquzGZDRQHVjDTve5r3zsiRDx4JueJswBmX18uBWUBIA8HEcMD5SEp1RE6Zkqxg47E6IWcpLRljnElxSr5epvN58Wlv6B3t1xoSNhRW7yG6vGipDZE2kKFootuipymsNtkFT8E3dA0RWszYSVwyYYtxR4OleYF04mLIQPFjAwf5eo0QnX-nzlMT2nbjnelPqbeyzoM3eEGOLawSXv7Mc_L2-PB6Pylmz0_T-7tZYUpW5gKYEqOyrkVtoWKqGqHglguEciTrcYWiMkois1YJaSTKCiQiR8Xt0HbJWXlO1MHXxJBSRKuNy_07OYJbac70vk291H2bet-mPrTZseUvdh1dC3H3D3V7oLCLtXUYdTIOu8iNi2iyboL7k_8GGcuWIg
CitedBy_id crossref_primary_10_1016_j_chaos_2025_116232
crossref_primary_10_1007_s40747_025_01793_0
Cites_doi 10.1063/1.1666399
10.1088/0253-6102/54/5/31
10.1016/j.physd.2021.132982
10.1063/1.1654836
10.1006/acha.1994.1024
10.1016/j.physd.2023.133656
10.1016/j.joes.2019.11.002
10.1103/PhysRevA.41.426
10.1016/j.cma.2020.113028
10.1038/nature14539
10.1103/PhysRevE.81.046602
10.1016/j.jmaa.2007.03.017
10.1016/j.jcp.2018.10.045
10.1103/PhysRevLett.77.3489
10.1007/s11042-016-4159-7
10.1007/s11071-023-09083-5
10.1103/PhysRev.28.1049
10.1103/PhysRevLett.107.255005
10.1016/j.cma.2019.112789
10.1103/PhysRevE.101.010203
10.1016/j.cjph.2023.10.046
10.1103/PhysRevLett.15.240
10.1002/sapm1967461133
10.1038/ncomms10427
10.1016/j.jcp.2021.110318
10.1016/j.chaos.2022.112712
10.1016/j.cma.2020.113547
10.1007/s10773-024-05670-3
10.1007/s11071-023-08595-4
10.1364/OL.18.001388
10.1016/S0370-1573(98)00014-3
10.1145/1390156.1390177
10.1016/j.physd.2022.133562
10.1016/j.jcp.2019.07.048
10.1143/JPSJ.52.4031
10.1016/j.jcp.2017.11.039
10.1007/s12559-009-9031-x
10.7566/JPSJ.89.054004
10.1088/1361-6420/abb447
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2024.115669
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2024_115669
S0960077924012219
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-a09253bb2bfa80985e21f12ea356b78e28c96e0ff926c6e68a6ee1e91f4f01003
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Wed Oct 01 02:44:56 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Sat Dec 21 15:58:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed neural network
Weak form
Hirota equation
Domain decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-a09253bb2bfa80985e21f12ea356b78e28c96e0ff926c6e68a6ee1e91f4f01003
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2024_115669
crossref_primary_10_1016_j_chaos_2024_115669
elsevier_sciencedirect_doi_10_1016_j_chaos_2024_115669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Micchelli, Xu (b50) 1994; 1
Lü, Zhu, Meng, Yang, Tian (b25) 2007; 336
Karniadakis, Sherwin (b48) 2005
Cao, Lü, Zhou, Cheng (b29) 2023; 111
Zakharov (b3) 1967; 24
Wai, Chen, Lee (b11) 1990; 41
Li, Zhang, Xu, Li (b18) 2020; 89
Parkins, Walls (b4) 1998; 303
Blanco-Redondo, de Sterke, Sipe, Krauss, Eggleton, Husko (b17) 2016; 7
Zhang, Ling (b19) 2021; 426
Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. vol. 8, 2008, p. 160–7.
Hasegawa, Tappert (b7) 1973; 23
Weinan, Yu (b56) 2017; 6
Hirota (b15) 1973; 14
Baydin, Pearlmutter, Radul, Siskind (b52) 2017; 18
Zhong, Yan (b45) 2023; 446
Bao, Ye, Zang, Zhou (b57) 2020; 36
Reinbold, Gurevich, Grigoriev (b58) 2020; 101
Lü, Zhang, Ma (b14) 2024; 36
Zhang, Lu, Guo, Karniadakis (b41) 2019; 397
Höök, Karlsson (b12) 1993; 18
Sun, Gao, Pan, Wang (b32) 2020; 364
Xu, Zhang, Rong, Wang (b47) 2021; 436
Schrödinger (b1) 1926; 28
Kharazmi, Zhang, Karniadakis (b49) 2019
Ankiewicz, Soto-Crespo, Akhmediev (b16) 2010; 81
Goldberg (b34) 2016; 57
Chen, Lü (b36) 2024; 12
Zakharov, Manakov, Novikov, Pitaevski (b26) 1980
Vithya, Mani Rajan (b10) 2020; 5
Yin, Lü, Li, Yang, Gao (b35) 2024
Mao, Jagtap, Karniadakis (b42) 2020; 360
Stein (b53) 1987; 27
Raissi, Karniadakis (b39) 2018; 357
Kingma, Ba (b55) 2014
Raissi, Perdikaris, Karniadakis (b38) 2019; 378
Singh, Srivastava (b37) 2017; 76
Peng, Zhao, Lü (b6) 2024; 112
Bailung, Sharma, Nakamura (b21) 2011; 107
Li, Li (b44) 2022; 164
de la Mata, Gijón, Molina-Solana, Gómez-Romero (b43) 2023; 610
Kharazmi, Zhang, Karniadakis (b51) 2021; 374
Li, Chen (b28) 2020; 72
Wang, Lü (b22) 2024; 89
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56.
Ivancevic (b8) 2010; 2
Jagtap, Kharazmi, Karniadakis (b30) 2020; 365
Qin, Li, Xu, Dong (b46) 2023; 443
LeCun, Bengio, Hinton (b31) 2015; 521
Zabusky, Kruskal (b5) 1965; 15
You (b9) 1996; 77
Zhang, Lü, Zhu (b20) 2024; 63
Hirota (b24) 2004
Li, Chen (b27) 2020; 72
Benney, Newell (b2) 1967; 46
Yan (b23) 2010; 54
Lakshmanan, Ganesan (b13) 1983; 52
Raissi, Yazdani, Karniadakis (b40) 2018
Yan (10.1016/j.chaos.2024.115669_b23) 2010; 54
de la Mata (10.1016/j.chaos.2024.115669_b43) 2023; 610
Qin (10.1016/j.chaos.2024.115669_b46) 2023; 443
Stein (10.1016/j.chaos.2024.115669_b53) 1987; 27
Singh (10.1016/j.chaos.2024.115669_b37) 2017; 76
Benney (10.1016/j.chaos.2024.115669_b2) 1967; 46
You (10.1016/j.chaos.2024.115669_b9) 1996; 77
LeCun (10.1016/j.chaos.2024.115669_b31) 2015; 521
Weinan (10.1016/j.chaos.2024.115669_b56) 2017; 6
Sun (10.1016/j.chaos.2024.115669_b32) 2020; 364
Mao (10.1016/j.chaos.2024.115669_b42) 2020; 360
Kharazmi (10.1016/j.chaos.2024.115669_b51) 2021; 374
Zhong (10.1016/j.chaos.2024.115669_b45) 2023; 446
Lü (10.1016/j.chaos.2024.115669_b25) 2007; 336
Li (10.1016/j.chaos.2024.115669_b28) 2020; 72
Yin (10.1016/j.chaos.2024.115669_b35) 2024
Baydin (10.1016/j.chaos.2024.115669_b52) 2017; 18
Lü (10.1016/j.chaos.2024.115669_b14) 2024; 36
Hasegawa (10.1016/j.chaos.2024.115669_b7) 1973; 23
Zhang (10.1016/j.chaos.2024.115669_b41) 2019; 397
Wai (10.1016/j.chaos.2024.115669_b11) 1990; 41
Zhang (10.1016/j.chaos.2024.115669_b19) 2021; 426
Bao (10.1016/j.chaos.2024.115669_b57) 2020; 36
Lakshmanan (10.1016/j.chaos.2024.115669_b13) 1983; 52
Li (10.1016/j.chaos.2024.115669_b44) 2022; 164
Ivancevic (10.1016/j.chaos.2024.115669_b8) 2010; 2
10.1016/j.chaos.2024.115669_b33
Karniadakis (10.1016/j.chaos.2024.115669_b48) 2005
Bailung (10.1016/j.chaos.2024.115669_b21) 2011; 107
Li (10.1016/j.chaos.2024.115669_b27) 2020; 72
Hirota (10.1016/j.chaos.2024.115669_b15) 1973; 14
Micchelli (10.1016/j.chaos.2024.115669_b50) 1994; 1
Hirota (10.1016/j.chaos.2024.115669_b24) 2004
Cao (10.1016/j.chaos.2024.115669_b29) 2023; 111
Wang (10.1016/j.chaos.2024.115669_b22) 2024; 89
Vithya (10.1016/j.chaos.2024.115669_b10) 2020; 5
Zhang (10.1016/j.chaos.2024.115669_b20) 2024; 63
Xu (10.1016/j.chaos.2024.115669_b47) 2021; 436
Höök (10.1016/j.chaos.2024.115669_b12) 1993; 18
Jagtap (10.1016/j.chaos.2024.115669_b30) 2020; 365
Goldberg (10.1016/j.chaos.2024.115669_b34) 2016; 57
Zakharov (10.1016/j.chaos.2024.115669_b3) 1967; 24
Raissi (10.1016/j.chaos.2024.115669_b38) 2019; 378
Ankiewicz (10.1016/j.chaos.2024.115669_b16) 2010; 81
Reinbold (10.1016/j.chaos.2024.115669_b58) 2020; 101
Peng (10.1016/j.chaos.2024.115669_b6) 2024; 112
Raissi (10.1016/j.chaos.2024.115669_b39) 2018; 357
Parkins (10.1016/j.chaos.2024.115669_b4) 1998; 303
Chen (10.1016/j.chaos.2024.115669_b36) 2024; 12
Raissi (10.1016/j.chaos.2024.115669_b40) 2018
Li (10.1016/j.chaos.2024.115669_b18) 2020; 89
Kingma (10.1016/j.chaos.2024.115669_b55) 2014
Kharazmi (10.1016/j.chaos.2024.115669_b49) 2019
Schrödinger (10.1016/j.chaos.2024.115669_b1) 1926; 28
Blanco-Redondo (10.1016/j.chaos.2024.115669_b17) 2016; 7
10.1016/j.chaos.2024.115669_b54
Zabusky (10.1016/j.chaos.2024.115669_b5) 1965; 15
Zakharov (10.1016/j.chaos.2024.115669_b26) 1980
References_xml – volume: 164
  year: 2022
  ident: b44
  article-title: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation
  publication-title: Chaos Solitons Fractals
– reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56.
– volume: 63
  start-page: 160
  year: 2024
  ident: b20
  article-title: Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation
  publication-title: Internat J Theoret Phys
– volume: 27
  year: 1987
  ident: b53
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
– volume: 365
  year: 2020
  ident: b30
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput Methods Appl Mech Engrg
– volume: 41
  start-page: 426
  year: 1990
  end-page: 439
  ident: b11
  article-title: Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers
  publication-title: Phys Rev A
– volume: 81
  year: 2010
  ident: b16
  article-title: Rogue waves and rational solutions of the Hirota equation
  publication-title: Phys Rev E
– volume: 54
  start-page: 947
  year: 2010
  end-page: 949
  ident: b23
  article-title: Financial rogue waves
  publication-title: Commun Theor Phys (Beijing)
– volume: 1
  start-page: 391
  year: 1994
  end-page: 401
  ident: b50
  article-title: Using the matrix refinement equation for the construction of wavelets on invariant sets
  publication-title: Appl Comput Harmon Anal
– year: 1980
  ident: b26
  publication-title: Theory of Solitons: The inverse problem method
– volume: 14
  start-page: 805
  year: 1973
  end-page: 809
  ident: b15
  article-title: Exact envelope-soliton solutions of a nonlinear wave equation
  publication-title: J Math Phys
– volume: 24
  start-page: 740
  year: 1967
  ident: b3
  article-title: The instability of waves in nonlinear dispersive media
  publication-title: Sov J Exp Theor Phys
– volume: 2
  start-page: 17
  year: 2010
  end-page: 30
  ident: b8
  article-title: Adaptive-wave alternative for the Black–Scholes option pricing model
  publication-title: Cogn Comput
– volume: 610
  year: 2023
  ident: b43
  article-title: Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
  publication-title: Phys A
– volume: 446
  year: 2023
  ident: b45
  article-title: Data-driven forward and inverse problems for chaotic and hyperchaotic dynamic systems based on two machine learning architectures
  publication-title: Physica D
– volume: 23
  start-page: 142
  year: 1973
  end-page: 144
  ident: b7
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 10427
  year: 2016
  ident: b17
  article-title: Pure-quartic solitons
  publication-title: Nature Commun
– volume: 426
  year: 2021
  ident: b19
  article-title: Asymptotic analysis of high-order solitons for the Hirota equation
  publication-title: Physica D
– volume: 15
  start-page: 240
  year: 1965
  end-page: 243
  ident: b5
  article-title: Interaction of soliton in a collisionless plasma and the recurrence of initial states
  publication-title: Phys Rev Lett
– volume: 72
  year: 2020
  ident: b28
  article-title: Solving second-order nonlinear evolution partial differential equations using deep learning
  publication-title: Commun Theor Phys (Beijing)
– reference: Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. vol. 8, 2008, p. 160–7.
– volume: 5
  start-page: 205
  year: 2020
  end-page: 213
  ident: b10
  article-title: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients
  publication-title: J Ocean Eng Sci
– volume: 76
  start-page: 18569
  year: 2017
  end-page: 18584
  ident: b37
  article-title: Stock prediction using deep learning multimedia tools applications
  publication-title: Multimedia Tools Appl
– volume: 436
  year: 2021
  ident: b47
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J Comput Phys
– volume: 46
  start-page: 133
  year: 1967
  end-page: 139
  ident: b2
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J Math Phys
– volume: 443
  year: 2023
  ident: b46
  article-title: A-WPINN algorithm for the data-driven vector-soliton solutions and parameter discovery of general coupled nonlinear equations
  publication-title: Physica D
– volume: 303
  start-page: 1
  year: 1998
  end-page: 80
  ident: b4
  article-title: The physics of trapped dilute-gas Bose–Einstein condensates
  publication-title: Phys Rep
– volume: 52
  start-page: 4031
  year: 1983
  end-page: 4033
  ident: b13
  article-title: Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities
  publication-title: J Phys Soc Japan
– year: 2018
  ident: b40
  article-title: Hidden fluid mechanics: A Navier–Stokes informed deep learning framework for assimilating flow visualization data
– year: 2024
  ident: b35
  article-title: Car-following informed neural networks for real-time vehicle trajectory imputation and prediction
  publication-title: Transp A
– volume: 28
  start-page: 1049
  year: 1926
  end-page: 1070
  ident: b1
  article-title: An undulatory theory of the mechanics of atoms and molecules
  publication-title: Phys Rev
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b31
  article-title: Deep learning
  publication-title: Nature
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b39
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 18
  start-page: 5595
  year: 2017
  end-page: 5637
  ident: b52
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J Mach Learn Res
– volume: 107
  year: 2011
  ident: b21
  article-title: Observation of peregrine solitons in a multicomponent plasma with negative ions
  publication-title: Phys Rev Lett
– volume: 112
  start-page: 1291
  year: 2024
  ident: b6
  article-title: Data-driven solutions and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications
  publication-title: Nonlinear Dynam
– volume: 18
  start-page: 1388
  year: 1993
  end-page: 1390
  ident: b12
  article-title: Ultrashort solitons at the minimum-dispersion wavelength: Effects of fourth-order dispersion
  publication-title: Opt Lett
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b38
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 364
  year: 2020
  ident: b32
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput Methods Appl Mech Engrg
– volume: 12
  year: 2024
  ident: b36
  article-title: Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demend model
  publication-title: Transp B
– year: 2005
  ident: b48
  article-title: Spectral/hp element methods for computational fluid dynamics
– year: 2019
  ident: b49
  article-title: Variational physics-informed neural networks for solving partial differential equations
– volume: 374
  year: 2021
  ident: b51
  article-title: Hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput Methods Appl Mech Engrg
– year: 2014
  ident: b55
  article-title: Adam: A method for stochastic optimization
– volume: 6
  start-page: 1
  year: 2017
  end-page: 12
  ident: b56
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun Math Stat
– volume: 101
  year: 2020
  ident: b58
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys Rev E
– volume: 72
  year: 2020
  ident: b27
  article-title: A deep learning method for solving third-order nonlinear evolution equations
  publication-title: Commun Theor Phys (Beijing)
– volume: 36
  year: 2024
  ident: b14
  article-title: Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions
  publication-title: Phys Fluids
– volume: 89
  year: 2020
  ident: b18
  article-title: Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation
  publication-title: J Phys Soc Japan
– volume: 336
  start-page: 1305
  year: 2007
  end-page: 1315
  ident: b25
  article-title: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications
  publication-title: J Math Anal Appl
– volume: 360
  year: 2020
  ident: b42
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput Methods Appl Mech Engrg
– volume: 36
  year: 2020
  ident: b57
  article-title: Numerical solution of inverse problems by weak adversarial networks
  publication-title: Inverse Problems
– year: 2004
  ident: b24
  article-title: Direct methods in soliton theories
– volume: 397
  year: 2019
  ident: b41
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J Comput Phys
– volume: 77
  start-page: 3489
  year: 1996
  end-page: 3493
  ident: b9
  article-title: Quantum phase diffusion of a Bose–Einstein condensate
  publication-title: Phys Rev Lett
– volume: 89
  start-page: 37
  year: 2024
  ident: b22
  article-title: Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients
  publication-title: Chinese J Phys
– volume: 111
  start-page: 14597
  year: 2023
  ident: b29
  article-title: Modified SEIAR infectious disease model for omicron variants spread dynamics
  publication-title: Nonlinear Dynam
– volume: 57
  start-page: 345
  year: 2016
  end-page: 420
  ident: b34
  article-title: A primer on neural network models for natural language processing
  publication-title: J Artif Intell
– volume: 14
  start-page: 805
  issue: 7
  year: 1973
  ident: 10.1016/j.chaos.2024.115669_b15
  article-title: Exact envelope-soliton solutions of a nonlinear wave equation
  publication-title: J Math Phys
  doi: 10.1063/1.1666399
– year: 2018
  ident: 10.1016/j.chaos.2024.115669_b40
– volume: 54
  start-page: 947
  year: 2010
  ident: 10.1016/j.chaos.2024.115669_b23
  article-title: Financial rogue waves
  publication-title: Commun Theor Phys (Beijing)
  doi: 10.1088/0253-6102/54/5/31
– volume: 426
  year: 2021
  ident: 10.1016/j.chaos.2024.115669_b19
  article-title: Asymptotic analysis of high-order solitons for the Hirota equation
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.132982
– volume: 24
  start-page: 740
  year: 1967
  ident: 10.1016/j.chaos.2024.115669_b3
  article-title: The instability of waves in nonlinear dispersive media
  publication-title: Sov J Exp Theor Phys
– volume: 23
  start-page: 142
  issue: 3
  year: 1973
  ident: 10.1016/j.chaos.2024.115669_b7
  article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1654836
– year: 2004
  ident: 10.1016/j.chaos.2024.115669_b24
– volume: 1
  start-page: 391
  year: 1994
  ident: 10.1016/j.chaos.2024.115669_b50
  article-title: Using the matrix refinement equation for the construction of wavelets on invariant sets
  publication-title: Appl Comput Harmon Anal
  doi: 10.1006/acha.1994.1024
– volume: 446
  year: 2023
  ident: 10.1016/j.chaos.2024.115669_b45
  article-title: Data-driven forward and inverse problems for chaotic and hyperchaotic dynamic systems based on two machine learning architectures
  publication-title: Physica D
  doi: 10.1016/j.physd.2023.133656
– volume: 72
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b27
  article-title: A deep learning method for solving third-order nonlinear evolution equations
  publication-title: Commun Theor Phys (Beijing)
– volume: 5
  start-page: 205
  issue: 3
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b10
  article-title: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients
  publication-title: J Ocean Eng Sci
  doi: 10.1016/j.joes.2019.11.002
– volume: 41
  start-page: 426
  issue: 1
  year: 1990
  ident: 10.1016/j.chaos.2024.115669_b11
  article-title: Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.41.426
– volume: 365
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b30
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2020.113028
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.chaos.2024.115669_b31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 364
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b32
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput Methods Appl Mech Engrg
– volume: 12
  year: 2024
  ident: 10.1016/j.chaos.2024.115669_b36
  article-title: Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demend model
  publication-title: Transp B
– volume: 81
  year: 2010
  ident: 10.1016/j.chaos.2024.115669_b16
  article-title: Rogue waves and rational solutions of the Hirota equation
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.81.046602
– volume: 336
  start-page: 1305
  issue: 2
  year: 2007
  ident: 10.1016/j.chaos.2024.115669_b25
  article-title: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2007.03.017
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.chaos.2024.115669_b38
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2018.10.045
– ident: 10.1016/j.chaos.2024.115669_b54
– volume: 57
  start-page: 345
  year: 2016
  ident: 10.1016/j.chaos.2024.115669_b34
  article-title: A primer on neural network models for natural language processing
  publication-title: J Artif Intell
– year: 2024
  ident: 10.1016/j.chaos.2024.115669_b35
  article-title: Car-following informed neural networks for real-time vehicle trajectory imputation and prediction
  publication-title: Transp A
– volume: 77
  start-page: 3489
  issue: 17
  year: 1996
  ident: 10.1016/j.chaos.2024.115669_b9
  article-title: Quantum phase diffusion of a Bose–Einstein condensate
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3489
– volume: 76
  start-page: 18569
  issue: 18
  year: 2017
  ident: 10.1016/j.chaos.2024.115669_b37
  article-title: Stock prediction using deep learning multimedia tools applications
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-016-4159-7
– volume: 112
  start-page: 1291
  year: 2024
  ident: 10.1016/j.chaos.2024.115669_b6
  article-title: Data-driven solutions and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-023-09083-5
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2024.115669_b52
  article-title: Automatic differentiation in machine learning: A survey
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2024.115669_b56
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun Math Stat
– volume: 28
  start-page: 1049
  year: 1926
  ident: 10.1016/j.chaos.2024.115669_b1
  article-title: An undulatory theory of the mechanics of atoms and molecules
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.28.1049
– volume: 107
  year: 2011
  ident: 10.1016/j.chaos.2024.115669_b21
  article-title: Observation of peregrine solitons in a multicomponent plasma with negative ions
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.107.255005
– volume: 72
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b28
  article-title: Solving second-order nonlinear evolution partial differential equations using deep learning
  publication-title: Commun Theor Phys (Beijing)
– volume: 360
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b42
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2019.112789
– volume: 101
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b58
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.101.010203
– volume: 89
  start-page: 37
  year: 2024
  ident: 10.1016/j.chaos.2024.115669_b22
  article-title: Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients
  publication-title: Chinese J Phys
  doi: 10.1016/j.cjph.2023.10.046
– volume: 15
  start-page: 240
  year: 1965
  ident: 10.1016/j.chaos.2024.115669_b5
  article-title: Interaction of soliton in a collisionless plasma and the recurrence of initial states
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.15.240
– year: 2005
  ident: 10.1016/j.chaos.2024.115669_b48
– volume: 46
  start-page: 133
  issue: 1–4
  year: 1967
  ident: 10.1016/j.chaos.2024.115669_b2
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J Math Phys
  doi: 10.1002/sapm1967461133
– volume: 7
  start-page: 10427
  year: 2016
  ident: 10.1016/j.chaos.2024.115669_b17
  article-title: Pure-quartic solitons
  publication-title: Nature Commun
  doi: 10.1038/ncomms10427
– volume: 436
  year: 2021
  ident: 10.1016/j.chaos.2024.115669_b47
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110318
– volume: 164
  year: 2022
  ident: 10.1016/j.chaos.2024.115669_b44
  article-title: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112712
– volume: 374
  year: 2021
  ident: 10.1016/j.chaos.2024.115669_b51
  article-title: Hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2020.113547
– volume: 63
  start-page: 160
  year: 2024
  ident: 10.1016/j.chaos.2024.115669_b20
  article-title: Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation
  publication-title: Internat J Theoret Phys
  doi: 10.1007/s10773-024-05670-3
– volume: 27
  year: 1987
  ident: 10.1016/j.chaos.2024.115669_b53
  article-title: Large sample properties of simulations using latin hypercube sampling
  publication-title: Technometrics
– year: 2014
  ident: 10.1016/j.chaos.2024.115669_b55
– volume: 111
  start-page: 14597
  year: 2023
  ident: 10.1016/j.chaos.2024.115669_b29
  article-title: Modified SEIAR infectious disease model for omicron variants spread dynamics
  publication-title: Nonlinear Dynam
  doi: 10.1007/s11071-023-08595-4
– volume: 36
  year: 2024
  ident: 10.1016/j.chaos.2024.115669_b14
  article-title: Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions
  publication-title: Phys Fluids
– volume: 18
  start-page: 1388
  issue: 17
  year: 1993
  ident: 10.1016/j.chaos.2024.115669_b12
  article-title: Ultrashort solitons at the minimum-dispersion wavelength: Effects of fourth-order dispersion
  publication-title: Opt Lett
  doi: 10.1364/OL.18.001388
– year: 1980
  ident: 10.1016/j.chaos.2024.115669_b26
– volume: 303
  start-page: 1
  year: 1998
  ident: 10.1016/j.chaos.2024.115669_b4
  article-title: The physics of trapped dilute-gas Bose–Einstein condensates
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(98)00014-3
– ident: 10.1016/j.chaos.2024.115669_b33
  doi: 10.1145/1390156.1390177
– volume: 610
  year: 2023
  ident: 10.1016/j.chaos.2024.115669_b43
  article-title: Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
  publication-title: Phys A
– volume: 443
  year: 2023
  ident: 10.1016/j.chaos.2024.115669_b46
  article-title: A-WPINN algorithm for the data-driven vector-soliton solutions and parameter discovery of general coupled nonlinear equations
  publication-title: Physica D
  doi: 10.1016/j.physd.2022.133562
– volume: 397
  year: 2019
  ident: 10.1016/j.chaos.2024.115669_b41
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2019.07.048
– volume: 52
  start-page: 4031
  issue: 12
  year: 1983
  ident: 10.1016/j.chaos.2024.115669_b13
  article-title: Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities
  publication-title: J Phys Soc Japan
  doi: 10.1143/JPSJ.52.4031
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.chaos.2024.115669_b39
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.11.039
– volume: 2
  start-page: 17
  year: 2010
  ident: 10.1016/j.chaos.2024.115669_b8
  article-title: Adaptive-wave alternative for the Black–Scholes option pricing model
  publication-title: Cogn Comput
  doi: 10.1007/s12559-009-9031-x
– year: 2019
  ident: 10.1016/j.chaos.2024.115669_b49
– volume: 89
  issue: 5
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b18
  article-title: Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation
  publication-title: J Phys Soc Japan
  doi: 10.7566/JPSJ.89.054004
– volume: 36
  issue: 11
  year: 2020
  ident: 10.1016/j.chaos.2024.115669_b57
  article-title: Numerical solution of inverse problems by weak adversarial networks
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/abb447
SSID ssj0001062
Score 2.4749646
Snippet In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115669
SubjectTerms Domain decomposition
Hirota equation
Physics-informed neural network
Weak form
Title PINN-wf: A PINN-based algorithm for data-driven solution and parameter discovery of the Hirota equation appearing in communications and finance
URI https://dx.doi.org/10.1016/j.chaos.2024.115669
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0960-0779
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  issn: 0960-0779
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0960-0779
  databaseCode: .~1
  dateStart: 0
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0960-0779
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0960-0779
  databaseCode: AKRWK
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXOihKrRVaQuaQw9FqruJ4zgxtxUCbUHspUXiFtmJXVJBst1NVfXSv8BfZsZJ-JAqDr1FkZ1EnvHMOPPmDWMfqsw4LWXKJWovl5XNucVAnJscY2cldaZLqnc-m6vZuTy5SC_W2OFYC0OwysH29zY9WOvhzmRYzcmiridfKfiOsgwPEJQeCtSfUmbUxeDz33uYBx55QiYBB3MaPTIPBYxXeWla4uwWEk0HBjb6397pgcc5fsGeD6EiTPuv2WJrrtlmz87ueFZX22xr2Jor-DjwR--_ZDd4Up_z3_4AphAuyVNVYK6-t8u6u7wGjFOBkKG8WpKtg1H9wDQVEBf4NWFkgAp2CeD5B1oP-FKY1cu2M-B-9vTgYBYL3Cfo-6BuoHxYabIKj_KBzcO9YufHR98OZ3zou8BLdGgdN5EWaWKtsN7kkc5TJ2IfC2eSVNksdyIvtXKR91qoUjmVG-Vc7HTspcf1jpLXbL1pG_eGgXS2osxgRiw4zuN2V2miYm-TKq7yMtlhYlzvohxIyak3xlUxos9-FEFIBQmp6IW0wz7dTVr0nBxPD1ejIItHqlWg13hq4tv_nfiObQpqExz-1Lxn693yl9vF2KWze0E599jG9MvpbH4Ls8fuKA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigcEG1BFGiZAweQMJs4jhP3VlVUW-jupa3UW2QnNg1qk2U3CHHhL_CXO-MkpUioB25RZCeRZzwfmTfPjL2pMuO0lCmXqL1cVjbnFgNxbnKMnZXUmS6p33k2V9Nz-ekivVhjh2MvDMEqB9vf2_RgrYc7k2E1J4u6npxS8B1lGSYQVB4i6s8HMhUZZWAffv3BeWDOE0oJOJrT8JF6KIC8ykvTEmm3kGg7MLLR_3ZPd1zO0RP2eIgV4aD_nE225pot9mh2S7S62mKbw95cwduBQPrdNvuNqfqc__D7cADhklxVBebqS7usu8trwEAVCBrKqyUZOxj1D0xTAZGBXxNIBqhjlxCeP6H1gC-Fab1sOwPuW88PDmaxwI2Czg_qBsq7rSar8Cgf6DzcU3Z-9PHscMqHgxd4iR6t4ybSIk2sFdabPNJ56kTsY-FMkiqb5U7kpVYu8l4LVSqncqOci52OvfS43lHyjK03beOeM5DOVlQazIgGx3nc7ypNVOxtUsVVXiY7TIzrXZQDKzkdjnFVjPCzr0UQUkFCKnoh7bD3t5MWPSnH_cPVKMjiL90q0G3cN_HF_058zTamZ7OT4uR4_vkleyjozODw2-YVW--W390uBjKd3QuKegM_AO-9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINN-wf%3A+A+PINN-based+algorithm+for+data-driven+solution+and+parameter+discovery+of+the+Hirota+equation+appearing+in+communications+and+finance&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Chen%2C+Yu&rft.au=L%C3%BC%2C+Xing&rft.date=2025-01-01&rft.issn=0960-0779&rft.volume=190&rft.spage=115669&rft_id=info:doi/10.1016%2Fj.chaos.2024.115669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2024_115669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon