PINN-wf: A PINN-based algorithm for data-driven solution and parameter discovery of the Hirota equation appearing in communications and finance
In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solution...
Saved in:
| Published in | Chaos, solitons and fractals Vol. 190; p. 115669 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-0779 |
| DOI | 10.1016/j.chaos.2024.115669 |
Cover
| Abstract | In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solutions are derived and the parameters are calibrated through physics-informed neural networks (PINNs), where various complex initial conditions on a continuous wave background are considered and compared. PINNs define the loss function based on the strong form via partial differential equations (PDEs), while it is subject to the diminished accuracy when the PDEs enjoy high-order derivatives or the solutions contain complex functions. We hereby propose a PINN with weak form (PINN-wf), where the weak form residual of PDEs is embedded into the loss function accounting for data errors effectively. The proposed algorithm involves domain decomposition to derive the weak form function, assigning distinct test functions to each sub-domain based on the selected sample points. Two schemes of computational experiments are carried out to provide valuable insights into the dynamic characteristics of solutions to the Hirota equation. These experiments serve as a robust reference for understanding and analyzing the behavior of solutions in practical scenarios.
•An extended PINN algorithm defining the loss function based on the weak form is proposed.•Data-driven solutions and parameters discovery of the Hirota equation are given.•The proposed algorithm also benefits from the property of domain decomposition, whereby each sub-domain can be assigned to a distinct test function for deriving the weak form function. |
|---|---|
| AbstractList | In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe the ultrashort pulse transmission in optical fibers, while model the generalized option pricing problem in finance. The data-driven solutions are derived and the parameters are calibrated through physics-informed neural networks (PINNs), where various complex initial conditions on a continuous wave background are considered and compared. PINNs define the loss function based on the strong form via partial differential equations (PDEs), while it is subject to the diminished accuracy when the PDEs enjoy high-order derivatives or the solutions contain complex functions. We hereby propose a PINN with weak form (PINN-wf), where the weak form residual of PDEs is embedded into the loss function accounting for data errors effectively. The proposed algorithm involves domain decomposition to derive the weak form function, assigning distinct test functions to each sub-domain based on the selected sample points. Two schemes of computational experiments are carried out to provide valuable insights into the dynamic characteristics of solutions to the Hirota equation. These experiments serve as a robust reference for understanding and analyzing the behavior of solutions in practical scenarios.
•An extended PINN algorithm defining the loss function based on the weak form is proposed.•Data-driven solutions and parameters discovery of the Hirota equation are given.•The proposed algorithm also benefits from the property of domain decomposition, whereby each sub-domain can be assigned to a distinct test function for deriving the weak form function. |
| ArticleNumber | 115669 |
| Author | Chen, Yu Lü, Xing |
| Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu organization: Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China – sequence: 2 givenname: Xing surname: Lü fullname: Lü, Xing email: XLV@bjtu.edu.cn organization: Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan 430205, China |
| BookMark | eNqFkD1OAzEQhV2AxO8JaHyBDbY3cdZIFAgBiRQFCqitWe-YOMrawXaCcgquzGZDRQHVjDTve5r3zsiRDx4JueJswBmX18uBWUBIA8HEcMD5SEp1RE6Zkqxg47E6IWcpLRljnElxSr5epvN58Wlv6B3t1xoSNhRW7yG6vGipDZE2kKFootuipymsNtkFT8E3dA0RWszYSVwyYYtxR4OleYF04mLIQPFjAwf5eo0QnX-nzlMT2nbjnelPqbeyzoM3eEGOLawSXv7Mc_L2-PB6Pylmz0_T-7tZYUpW5gKYEqOyrkVtoWKqGqHglguEciTrcYWiMkois1YJaSTKCiQiR8Xt0HbJWXlO1MHXxJBSRKuNy_07OYJbac70vk291H2bet-mPrTZseUvdh1dC3H3D3V7oLCLtXUYdTIOu8iNi2iyboL7k_8GGcuWIg |
| CitedBy_id | crossref_primary_10_1016_j_chaos_2025_116232 crossref_primary_10_1007_s40747_025_01793_0 |
| Cites_doi | 10.1063/1.1666399 10.1088/0253-6102/54/5/31 10.1016/j.physd.2021.132982 10.1063/1.1654836 10.1006/acha.1994.1024 10.1016/j.physd.2023.133656 10.1016/j.joes.2019.11.002 10.1103/PhysRevA.41.426 10.1016/j.cma.2020.113028 10.1038/nature14539 10.1103/PhysRevE.81.046602 10.1016/j.jmaa.2007.03.017 10.1016/j.jcp.2018.10.045 10.1103/PhysRevLett.77.3489 10.1007/s11042-016-4159-7 10.1007/s11071-023-09083-5 10.1103/PhysRev.28.1049 10.1103/PhysRevLett.107.255005 10.1016/j.cma.2019.112789 10.1103/PhysRevE.101.010203 10.1016/j.cjph.2023.10.046 10.1103/PhysRevLett.15.240 10.1002/sapm1967461133 10.1038/ncomms10427 10.1016/j.jcp.2021.110318 10.1016/j.chaos.2022.112712 10.1016/j.cma.2020.113547 10.1007/s10773-024-05670-3 10.1007/s11071-023-08595-4 10.1364/OL.18.001388 10.1016/S0370-1573(98)00014-3 10.1145/1390156.1390177 10.1016/j.physd.2022.133562 10.1016/j.jcp.2019.07.048 10.1143/JPSJ.52.4031 10.1016/j.jcp.2017.11.039 10.1007/s12559-009-9031-x 10.7566/JPSJ.89.054004 10.1088/1361-6420/abb447 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2024.115669 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| ExternalDocumentID | 10_1016_j_chaos_2024_115669 S0960077924012219 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABMAC ABNEU ABTAH ABWVN ABXDB ACDAQ ACFVG ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c303t-a09253bb2bfa80985e21f12ea356b78e28c96e0ff926c6e68a6ee1e91f4f01003 |
| IEDL.DBID | .~1 |
| ISSN | 0960-0779 |
| IngestDate | Wed Oct 01 02:44:56 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Sat Dec 21 15:58:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Physics-informed neural network Weak form Hirota equation Domain decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c303t-a09253bb2bfa80985e21f12ea356b78e28c96e0ff926c6e68a6ee1e91f4f01003 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2024_115669 crossref_primary_10_1016_j_chaos_2024_115669 elsevier_sciencedirect_doi_10_1016_j_chaos_2024_115669 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Micchelli, Xu (b50) 1994; 1 Lü, Zhu, Meng, Yang, Tian (b25) 2007; 336 Karniadakis, Sherwin (b48) 2005 Cao, Lü, Zhou, Cheng (b29) 2023; 111 Zakharov (b3) 1967; 24 Wai, Chen, Lee (b11) 1990; 41 Li, Zhang, Xu, Li (b18) 2020; 89 Parkins, Walls (b4) 1998; 303 Blanco-Redondo, de Sterke, Sipe, Krauss, Eggleton, Husko (b17) 2016; 7 Zhang, Ling (b19) 2021; 426 Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. vol. 8, 2008, p. 160–7. Hasegawa, Tappert (b7) 1973; 23 Weinan, Yu (b56) 2017; 6 Hirota (b15) 1973; 14 Baydin, Pearlmutter, Radul, Siskind (b52) 2017; 18 Zhong, Yan (b45) 2023; 446 Bao, Ye, Zang, Zhou (b57) 2020; 36 Reinbold, Gurevich, Grigoriev (b58) 2020; 101 Lü, Zhang, Ma (b14) 2024; 36 Zhang, Lu, Guo, Karniadakis (b41) 2019; 397 Höök, Karlsson (b12) 1993; 18 Sun, Gao, Pan, Wang (b32) 2020; 364 Xu, Zhang, Rong, Wang (b47) 2021; 436 Schrödinger (b1) 1926; 28 Kharazmi, Zhang, Karniadakis (b49) 2019 Ankiewicz, Soto-Crespo, Akhmediev (b16) 2010; 81 Goldberg (b34) 2016; 57 Chen, Lü (b36) 2024; 12 Zakharov, Manakov, Novikov, Pitaevski (b26) 1980 Vithya, Mani Rajan (b10) 2020; 5 Yin, Lü, Li, Yang, Gao (b35) 2024 Mao, Jagtap, Karniadakis (b42) 2020; 360 Stein (b53) 1987; 27 Raissi, Karniadakis (b39) 2018; 357 Kingma, Ba (b55) 2014 Raissi, Perdikaris, Karniadakis (b38) 2019; 378 Singh, Srivastava (b37) 2017; 76 Peng, Zhao, Lü (b6) 2024; 112 Bailung, Sharma, Nakamura (b21) 2011; 107 Li, Li (b44) 2022; 164 de la Mata, Gijón, Molina-Solana, Gómez-Romero (b43) 2023; 610 Kharazmi, Zhang, Karniadakis (b51) 2021; 374 Li, Chen (b28) 2020; 72 Wang, Lü (b22) 2024; 89 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56. Ivancevic (b8) 2010; 2 Jagtap, Kharazmi, Karniadakis (b30) 2020; 365 Qin, Li, Xu, Dong (b46) 2023; 443 LeCun, Bengio, Hinton (b31) 2015; 521 Zabusky, Kruskal (b5) 1965; 15 You (b9) 1996; 77 Zhang, Lü, Zhu (b20) 2024; 63 Hirota (b24) 2004 Li, Chen (b27) 2020; 72 Benney, Newell (b2) 1967; 46 Yan (b23) 2010; 54 Lakshmanan, Ganesan (b13) 1983; 52 Raissi, Yazdani, Karniadakis (b40) 2018 Yan (10.1016/j.chaos.2024.115669_b23) 2010; 54 de la Mata (10.1016/j.chaos.2024.115669_b43) 2023; 610 Qin (10.1016/j.chaos.2024.115669_b46) 2023; 443 Stein (10.1016/j.chaos.2024.115669_b53) 1987; 27 Singh (10.1016/j.chaos.2024.115669_b37) 2017; 76 Benney (10.1016/j.chaos.2024.115669_b2) 1967; 46 You (10.1016/j.chaos.2024.115669_b9) 1996; 77 LeCun (10.1016/j.chaos.2024.115669_b31) 2015; 521 Weinan (10.1016/j.chaos.2024.115669_b56) 2017; 6 Sun (10.1016/j.chaos.2024.115669_b32) 2020; 364 Mao (10.1016/j.chaos.2024.115669_b42) 2020; 360 Kharazmi (10.1016/j.chaos.2024.115669_b51) 2021; 374 Zhong (10.1016/j.chaos.2024.115669_b45) 2023; 446 Lü (10.1016/j.chaos.2024.115669_b25) 2007; 336 Li (10.1016/j.chaos.2024.115669_b28) 2020; 72 Yin (10.1016/j.chaos.2024.115669_b35) 2024 Baydin (10.1016/j.chaos.2024.115669_b52) 2017; 18 Lü (10.1016/j.chaos.2024.115669_b14) 2024; 36 Hasegawa (10.1016/j.chaos.2024.115669_b7) 1973; 23 Zhang (10.1016/j.chaos.2024.115669_b41) 2019; 397 Wai (10.1016/j.chaos.2024.115669_b11) 1990; 41 Zhang (10.1016/j.chaos.2024.115669_b19) 2021; 426 Bao (10.1016/j.chaos.2024.115669_b57) 2020; 36 Lakshmanan (10.1016/j.chaos.2024.115669_b13) 1983; 52 Li (10.1016/j.chaos.2024.115669_b44) 2022; 164 Ivancevic (10.1016/j.chaos.2024.115669_b8) 2010; 2 10.1016/j.chaos.2024.115669_b33 Karniadakis (10.1016/j.chaos.2024.115669_b48) 2005 Bailung (10.1016/j.chaos.2024.115669_b21) 2011; 107 Li (10.1016/j.chaos.2024.115669_b27) 2020; 72 Hirota (10.1016/j.chaos.2024.115669_b15) 1973; 14 Micchelli (10.1016/j.chaos.2024.115669_b50) 1994; 1 Hirota (10.1016/j.chaos.2024.115669_b24) 2004 Cao (10.1016/j.chaos.2024.115669_b29) 2023; 111 Wang (10.1016/j.chaos.2024.115669_b22) 2024; 89 Vithya (10.1016/j.chaos.2024.115669_b10) 2020; 5 Zhang (10.1016/j.chaos.2024.115669_b20) 2024; 63 Xu (10.1016/j.chaos.2024.115669_b47) 2021; 436 Höök (10.1016/j.chaos.2024.115669_b12) 1993; 18 Jagtap (10.1016/j.chaos.2024.115669_b30) 2020; 365 Goldberg (10.1016/j.chaos.2024.115669_b34) 2016; 57 Zakharov (10.1016/j.chaos.2024.115669_b3) 1967; 24 Raissi (10.1016/j.chaos.2024.115669_b38) 2019; 378 Ankiewicz (10.1016/j.chaos.2024.115669_b16) 2010; 81 Reinbold (10.1016/j.chaos.2024.115669_b58) 2020; 101 Peng (10.1016/j.chaos.2024.115669_b6) 2024; 112 Raissi (10.1016/j.chaos.2024.115669_b39) 2018; 357 Parkins (10.1016/j.chaos.2024.115669_b4) 1998; 303 Chen (10.1016/j.chaos.2024.115669_b36) 2024; 12 Raissi (10.1016/j.chaos.2024.115669_b40) 2018 Li (10.1016/j.chaos.2024.115669_b18) 2020; 89 Kingma (10.1016/j.chaos.2024.115669_b55) 2014 Kharazmi (10.1016/j.chaos.2024.115669_b49) 2019 Schrödinger (10.1016/j.chaos.2024.115669_b1) 1926; 28 Blanco-Redondo (10.1016/j.chaos.2024.115669_b17) 2016; 7 10.1016/j.chaos.2024.115669_b54 Zabusky (10.1016/j.chaos.2024.115669_b5) 1965; 15 Zakharov (10.1016/j.chaos.2024.115669_b26) 1980 |
| References_xml | – volume: 164 year: 2022 ident: b44 article-title: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation publication-title: Chaos Solitons Fractals – reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010, p. 249–56. – volume: 63 start-page: 160 year: 2024 ident: b20 article-title: Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation publication-title: Internat J Theoret Phys – volume: 27 year: 1987 ident: b53 article-title: Large sample properties of simulations using latin hypercube sampling publication-title: Technometrics – volume: 365 year: 2020 ident: b30 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput Methods Appl Mech Engrg – volume: 41 start-page: 426 year: 1990 end-page: 439 ident: b11 article-title: Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers publication-title: Phys Rev A – volume: 81 year: 2010 ident: b16 article-title: Rogue waves and rational solutions of the Hirota equation publication-title: Phys Rev E – volume: 54 start-page: 947 year: 2010 end-page: 949 ident: b23 article-title: Financial rogue waves publication-title: Commun Theor Phys (Beijing) – volume: 1 start-page: 391 year: 1994 end-page: 401 ident: b50 article-title: Using the matrix refinement equation for the construction of wavelets on invariant sets publication-title: Appl Comput Harmon Anal – year: 1980 ident: b26 publication-title: Theory of Solitons: The inverse problem method – volume: 14 start-page: 805 year: 1973 end-page: 809 ident: b15 article-title: Exact envelope-soliton solutions of a nonlinear wave equation publication-title: J Math Phys – volume: 24 start-page: 740 year: 1967 ident: b3 article-title: The instability of waves in nonlinear dispersive media publication-title: Sov J Exp Theor Phys – volume: 2 start-page: 17 year: 2010 end-page: 30 ident: b8 article-title: Adaptive-wave alternative for the Black–Scholes option pricing model publication-title: Cogn Comput – volume: 610 year: 2023 ident: b43 article-title: Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities publication-title: Phys A – volume: 446 year: 2023 ident: b45 article-title: Data-driven forward and inverse problems for chaotic and hyperchaotic dynamic systems based on two machine learning architectures publication-title: Physica D – volume: 23 start-page: 142 year: 1973 end-page: 144 ident: b7 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion publication-title: Appl Phys Lett – volume: 7 start-page: 10427 year: 2016 ident: b17 article-title: Pure-quartic solitons publication-title: Nature Commun – volume: 426 year: 2021 ident: b19 article-title: Asymptotic analysis of high-order solitons for the Hirota equation publication-title: Physica D – volume: 15 start-page: 240 year: 1965 end-page: 243 ident: b5 article-title: Interaction of soliton in a collisionless plasma and the recurrence of initial states publication-title: Phys Rev Lett – volume: 72 year: 2020 ident: b28 article-title: Solving second-order nonlinear evolution partial differential equations using deep learning publication-title: Commun Theor Phys (Beijing) – reference: Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. vol. 8, 2008, p. 160–7. – volume: 5 start-page: 205 year: 2020 end-page: 213 ident: b10 article-title: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients publication-title: J Ocean Eng Sci – volume: 76 start-page: 18569 year: 2017 end-page: 18584 ident: b37 article-title: Stock prediction using deep learning multimedia tools applications publication-title: Multimedia Tools Appl – volume: 436 year: 2021 ident: b47 article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow publication-title: J Comput Phys – volume: 46 start-page: 133 year: 1967 end-page: 139 ident: b2 article-title: The propagation of nonlinear wave envelopes publication-title: J Math Phys – volume: 443 year: 2023 ident: b46 article-title: A-WPINN algorithm for the data-driven vector-soliton solutions and parameter discovery of general coupled nonlinear equations publication-title: Physica D – volume: 303 start-page: 1 year: 1998 end-page: 80 ident: b4 article-title: The physics of trapped dilute-gas Bose–Einstein condensates publication-title: Phys Rep – volume: 52 start-page: 4031 year: 1983 end-page: 4033 ident: b13 article-title: Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities publication-title: J Phys Soc Japan – year: 2018 ident: b40 article-title: Hidden fluid mechanics: A Navier–Stokes informed deep learning framework for assimilating flow visualization data – year: 2024 ident: b35 article-title: Car-following informed neural networks for real-time vehicle trajectory imputation and prediction publication-title: Transp A – volume: 28 start-page: 1049 year: 1926 end-page: 1070 ident: b1 article-title: An undulatory theory of the mechanics of atoms and molecules publication-title: Phys Rev – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b31 article-title: Deep learning publication-title: Nature – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: b39 article-title: Hidden physics models: Machine learning of nonlinear partial differential equations publication-title: J Comput Phys – volume: 18 start-page: 5595 year: 2017 end-page: 5637 ident: b52 article-title: Automatic differentiation in machine learning: A survey publication-title: J Mach Learn Res – volume: 107 year: 2011 ident: b21 article-title: Observation of peregrine solitons in a multicomponent plasma with negative ions publication-title: Phys Rev Lett – volume: 112 start-page: 1291 year: 2024 ident: b6 article-title: Data-driven solutions and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications publication-title: Nonlinear Dynam – volume: 18 start-page: 1388 year: 1993 end-page: 1390 ident: b12 article-title: Ultrashort solitons at the minimum-dispersion wavelength: Effects of fourth-order dispersion publication-title: Opt Lett – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b38 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 364 year: 2020 ident: b32 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput Methods Appl Mech Engrg – volume: 12 year: 2024 ident: b36 article-title: Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demend model publication-title: Transp B – year: 2005 ident: b48 article-title: Spectral/hp element methods for computational fluid dynamics – year: 2019 ident: b49 article-title: Variational physics-informed neural networks for solving partial differential equations – volume: 374 year: 2021 ident: b51 article-title: Hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput Methods Appl Mech Engrg – year: 2014 ident: b55 article-title: Adam: A method for stochastic optimization – volume: 6 start-page: 1 year: 2017 end-page: 12 ident: b56 article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems publication-title: Commun Math Stat – volume: 101 year: 2020 ident: b58 article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics publication-title: Phys Rev E – volume: 72 year: 2020 ident: b27 article-title: A deep learning method for solving third-order nonlinear evolution equations publication-title: Commun Theor Phys (Beijing) – volume: 36 year: 2024 ident: b14 article-title: Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions publication-title: Phys Fluids – volume: 89 year: 2020 ident: b18 article-title: Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation publication-title: J Phys Soc Japan – volume: 336 start-page: 1305 year: 2007 end-page: 1315 ident: b25 article-title: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications publication-title: J Math Anal Appl – volume: 360 year: 2020 ident: b42 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput Methods Appl Mech Engrg – volume: 36 year: 2020 ident: b57 article-title: Numerical solution of inverse problems by weak adversarial networks publication-title: Inverse Problems – year: 2004 ident: b24 article-title: Direct methods in soliton theories – volume: 397 year: 2019 ident: b41 article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems publication-title: J Comput Phys – volume: 77 start-page: 3489 year: 1996 end-page: 3493 ident: b9 article-title: Quantum phase diffusion of a Bose–Einstein condensate publication-title: Phys Rev Lett – volume: 89 start-page: 37 year: 2024 ident: b22 article-title: Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients publication-title: Chinese J Phys – volume: 111 start-page: 14597 year: 2023 ident: b29 article-title: Modified SEIAR infectious disease model for omicron variants spread dynamics publication-title: Nonlinear Dynam – volume: 57 start-page: 345 year: 2016 end-page: 420 ident: b34 article-title: A primer on neural network models for natural language processing publication-title: J Artif Intell – volume: 14 start-page: 805 issue: 7 year: 1973 ident: 10.1016/j.chaos.2024.115669_b15 article-title: Exact envelope-soliton solutions of a nonlinear wave equation publication-title: J Math Phys doi: 10.1063/1.1666399 – year: 2018 ident: 10.1016/j.chaos.2024.115669_b40 – volume: 54 start-page: 947 year: 2010 ident: 10.1016/j.chaos.2024.115669_b23 article-title: Financial rogue waves publication-title: Commun Theor Phys (Beijing) doi: 10.1088/0253-6102/54/5/31 – volume: 426 year: 2021 ident: 10.1016/j.chaos.2024.115669_b19 article-title: Asymptotic analysis of high-order solitons for the Hirota equation publication-title: Physica D doi: 10.1016/j.physd.2021.132982 – volume: 24 start-page: 740 year: 1967 ident: 10.1016/j.chaos.2024.115669_b3 article-title: The instability of waves in nonlinear dispersive media publication-title: Sov J Exp Theor Phys – volume: 23 start-page: 142 issue: 3 year: 1973 ident: 10.1016/j.chaos.2024.115669_b7 article-title: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion publication-title: Appl Phys Lett doi: 10.1063/1.1654836 – year: 2004 ident: 10.1016/j.chaos.2024.115669_b24 – volume: 1 start-page: 391 year: 1994 ident: 10.1016/j.chaos.2024.115669_b50 article-title: Using the matrix refinement equation for the construction of wavelets on invariant sets publication-title: Appl Comput Harmon Anal doi: 10.1006/acha.1994.1024 – volume: 446 year: 2023 ident: 10.1016/j.chaos.2024.115669_b45 article-title: Data-driven forward and inverse problems for chaotic and hyperchaotic dynamic systems based on two machine learning architectures publication-title: Physica D doi: 10.1016/j.physd.2023.133656 – volume: 72 year: 2020 ident: 10.1016/j.chaos.2024.115669_b27 article-title: A deep learning method for solving third-order nonlinear evolution equations publication-title: Commun Theor Phys (Beijing) – volume: 5 start-page: 205 issue: 3 year: 2020 ident: 10.1016/j.chaos.2024.115669_b10 article-title: Impact of fifth order dispersion on soliton solution for higher order NLS equation with variable coefficients publication-title: J Ocean Eng Sci doi: 10.1016/j.joes.2019.11.002 – volume: 41 start-page: 426 issue: 1 year: 1990 ident: 10.1016/j.chaos.2024.115669_b11 article-title: Radiations by solitons at the zero group-dispersion wavelength of single-mode optical fibers publication-title: Phys Rev A doi: 10.1103/PhysRevA.41.426 – volume: 365 year: 2020 ident: 10.1016/j.chaos.2024.115669_b30 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113028 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.chaos.2024.115669_b31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 364 year: 2020 ident: 10.1016/j.chaos.2024.115669_b32 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput Methods Appl Mech Engrg – volume: 12 year: 2024 ident: 10.1016/j.chaos.2024.115669_b36 article-title: Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demend model publication-title: Transp B – volume: 81 year: 2010 ident: 10.1016/j.chaos.2024.115669_b16 article-title: Rogue waves and rational solutions of the Hirota equation publication-title: Phys Rev E doi: 10.1103/PhysRevE.81.046602 – volume: 336 start-page: 1305 issue: 2 year: 2007 ident: 10.1016/j.chaos.2024.115669_b25 article-title: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2007.03.017 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.chaos.2024.115669_b38 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2018.10.045 – ident: 10.1016/j.chaos.2024.115669_b54 – volume: 57 start-page: 345 year: 2016 ident: 10.1016/j.chaos.2024.115669_b34 article-title: A primer on neural network models for natural language processing publication-title: J Artif Intell – year: 2024 ident: 10.1016/j.chaos.2024.115669_b35 article-title: Car-following informed neural networks for real-time vehicle trajectory imputation and prediction publication-title: Transp A – volume: 77 start-page: 3489 issue: 17 year: 1996 ident: 10.1016/j.chaos.2024.115669_b9 article-title: Quantum phase diffusion of a Bose–Einstein condensate publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3489 – volume: 76 start-page: 18569 issue: 18 year: 2017 ident: 10.1016/j.chaos.2024.115669_b37 article-title: Stock prediction using deep learning multimedia tools applications publication-title: Multimedia Tools Appl doi: 10.1007/s11042-016-4159-7 – volume: 112 start-page: 1291 year: 2024 ident: 10.1016/j.chaos.2024.115669_b6 article-title: Data-driven solutions and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications publication-title: Nonlinear Dynam doi: 10.1007/s11071-023-09083-5 – volume: 18 start-page: 5595 issue: 1 year: 2017 ident: 10.1016/j.chaos.2024.115669_b52 article-title: Automatic differentiation in machine learning: A survey publication-title: J Mach Learn Res – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.chaos.2024.115669_b56 article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems publication-title: Commun Math Stat – volume: 28 start-page: 1049 year: 1926 ident: 10.1016/j.chaos.2024.115669_b1 article-title: An undulatory theory of the mechanics of atoms and molecules publication-title: Phys Rev doi: 10.1103/PhysRev.28.1049 – volume: 107 year: 2011 ident: 10.1016/j.chaos.2024.115669_b21 article-title: Observation of peregrine solitons in a multicomponent plasma with negative ions publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.107.255005 – volume: 72 year: 2020 ident: 10.1016/j.chaos.2024.115669_b28 article-title: Solving second-order nonlinear evolution partial differential equations using deep learning publication-title: Commun Theor Phys (Beijing) – volume: 360 year: 2020 ident: 10.1016/j.chaos.2024.115669_b42 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2019.112789 – volume: 101 year: 2020 ident: 10.1016/j.chaos.2024.115669_b58 article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics publication-title: Phys Rev E doi: 10.1103/PhysRevE.101.010203 – volume: 89 start-page: 37 year: 2024 ident: 10.1016/j.chaos.2024.115669_b22 article-title: Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients publication-title: Chinese J Phys doi: 10.1016/j.cjph.2023.10.046 – volume: 15 start-page: 240 year: 1965 ident: 10.1016/j.chaos.2024.115669_b5 article-title: Interaction of soliton in a collisionless plasma and the recurrence of initial states publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.15.240 – year: 2005 ident: 10.1016/j.chaos.2024.115669_b48 – volume: 46 start-page: 133 issue: 1–4 year: 1967 ident: 10.1016/j.chaos.2024.115669_b2 article-title: The propagation of nonlinear wave envelopes publication-title: J Math Phys doi: 10.1002/sapm1967461133 – volume: 7 start-page: 10427 year: 2016 ident: 10.1016/j.chaos.2024.115669_b17 article-title: Pure-quartic solitons publication-title: Nature Commun doi: 10.1038/ncomms10427 – volume: 436 year: 2021 ident: 10.1016/j.chaos.2024.115669_b47 article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110318 – volume: 164 year: 2022 ident: 10.1016/j.chaos.2024.115669_b44 article-title: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112712 – volume: 374 year: 2021 ident: 10.1016/j.chaos.2024.115669_b51 article-title: Hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113547 – volume: 63 start-page: 160 year: 2024 ident: 10.1016/j.chaos.2024.115669_b20 article-title: Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation publication-title: Internat J Theoret Phys doi: 10.1007/s10773-024-05670-3 – volume: 27 year: 1987 ident: 10.1016/j.chaos.2024.115669_b53 article-title: Large sample properties of simulations using latin hypercube sampling publication-title: Technometrics – year: 2014 ident: 10.1016/j.chaos.2024.115669_b55 – volume: 111 start-page: 14597 year: 2023 ident: 10.1016/j.chaos.2024.115669_b29 article-title: Modified SEIAR infectious disease model for omicron variants spread dynamics publication-title: Nonlinear Dynam doi: 10.1007/s11071-023-08595-4 – volume: 36 year: 2024 ident: 10.1016/j.chaos.2024.115669_b14 article-title: Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito equation: Painlevé analysis, soliton solutions, and lump solutions publication-title: Phys Fluids – volume: 18 start-page: 1388 issue: 17 year: 1993 ident: 10.1016/j.chaos.2024.115669_b12 article-title: Ultrashort solitons at the minimum-dispersion wavelength: Effects of fourth-order dispersion publication-title: Opt Lett doi: 10.1364/OL.18.001388 – year: 1980 ident: 10.1016/j.chaos.2024.115669_b26 – volume: 303 start-page: 1 year: 1998 ident: 10.1016/j.chaos.2024.115669_b4 article-title: The physics of trapped dilute-gas Bose–Einstein condensates publication-title: Phys Rep doi: 10.1016/S0370-1573(98)00014-3 – ident: 10.1016/j.chaos.2024.115669_b33 doi: 10.1145/1390156.1390177 – volume: 610 year: 2023 ident: 10.1016/j.chaos.2024.115669_b43 article-title: Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities publication-title: Phys A – volume: 443 year: 2023 ident: 10.1016/j.chaos.2024.115669_b46 article-title: A-WPINN algorithm for the data-driven vector-soliton solutions and parameter discovery of general coupled nonlinear equations publication-title: Physica D doi: 10.1016/j.physd.2022.133562 – volume: 397 year: 2019 ident: 10.1016/j.chaos.2024.115669_b41 article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.07.048 – volume: 52 start-page: 4031 issue: 12 year: 1983 ident: 10.1016/j.chaos.2024.115669_b13 article-title: Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities publication-title: J Phys Soc Japan doi: 10.1143/JPSJ.52.4031 – volume: 357 start-page: 125 year: 2018 ident: 10.1016/j.chaos.2024.115669_b39 article-title: Hidden physics models: Machine learning of nonlinear partial differential equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.11.039 – volume: 2 start-page: 17 year: 2010 ident: 10.1016/j.chaos.2024.115669_b8 article-title: Adaptive-wave alternative for the Black–Scholes option pricing model publication-title: Cogn Comput doi: 10.1007/s12559-009-9031-x – year: 2019 ident: 10.1016/j.chaos.2024.115669_b49 – volume: 89 issue: 5 year: 2020 ident: 10.1016/j.chaos.2024.115669_b18 article-title: Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation publication-title: J Phys Soc Japan doi: 10.7566/JPSJ.89.054004 – volume: 36 issue: 11 year: 2020 ident: 10.1016/j.chaos.2024.115669_b57 article-title: Numerical solution of inverse problems by weak adversarial networks publication-title: Inverse Problems doi: 10.1088/1361-6420/abb447 |
| SSID | ssj0001062 |
| Score | 2.4749646 |
| Snippet | In this paper, we focus on the Hirota equation appearing in communications and finance. In the field of communications, the Hirota equation is used to describe... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115669 |
| SubjectTerms | Domain decomposition Hirota equation Physics-informed neural network Weak form |
| Title | PINN-wf: A PINN-based algorithm for data-driven solution and parameter discovery of the Hirota equation appearing in communications and finance |
| URI | https://dx.doi.org/10.1016/j.chaos.2024.115669 |
| Volume | 190 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0960-0779 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK issn: 0960-0779 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0960-0779 databaseCode: .~1 dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0960-0779 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001062 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0960-0779 databaseCode: AKRWK dateStart: 19910101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQXOihKrRVaQuaQw9FqruJ4zgxtxUCbUHspUXiFtmJXVJBst1NVfXSv8BfZsZJ-JAqDr1FkZ1EnvHMOPPmDWMfqsw4LWXKJWovl5XNucVAnJscY2cldaZLqnc-m6vZuTy5SC_W2OFYC0OwysH29zY9WOvhzmRYzcmiridfKfiOsgwPEJQeCtSfUmbUxeDz33uYBx55QiYBB3MaPTIPBYxXeWla4uwWEk0HBjb6397pgcc5fsGeD6EiTPuv2WJrrtlmz87ueFZX22xr2Jor-DjwR--_ZDd4Up_z3_4AphAuyVNVYK6-t8u6u7wGjFOBkKG8WpKtg1H9wDQVEBf4NWFkgAp2CeD5B1oP-FKY1cu2M-B-9vTgYBYL3Cfo-6BuoHxYabIKj_KBzcO9YufHR98OZ3zou8BLdGgdN5EWaWKtsN7kkc5TJ2IfC2eSVNksdyIvtXKR91qoUjmVG-Vc7HTspcf1jpLXbL1pG_eGgXS2osxgRiw4zuN2V2miYm-TKq7yMtlhYlzvohxIyak3xlUxos9-FEFIBQmp6IW0wz7dTVr0nBxPD1ejIItHqlWg13hq4tv_nfiObQpqExz-1Lxn693yl9vF2KWze0E599jG9MvpbH4Ls8fuKA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigcEG1BFGiZAweQMJs4jhP3VlVUW-jupa3UW2QnNg1qk2U3CHHhL_CXO-MkpUioB25RZCeRZzwfmTfPjL2pMuO0lCmXqL1cVjbnFgNxbnKMnZXUmS6p33k2V9Nz-ekivVhjh2MvDMEqB9vf2_RgrYc7k2E1J4u6npxS8B1lGSYQVB4i6s8HMhUZZWAffv3BeWDOE0oJOJrT8JF6KIC8ykvTEmm3kGg7MLLR_3ZPd1zO0RP2eIgV4aD_nE225pot9mh2S7S62mKbw95cwduBQPrdNvuNqfqc__D7cADhklxVBebqS7usu8trwEAVCBrKqyUZOxj1D0xTAZGBXxNIBqhjlxCeP6H1gC-Fab1sOwPuW88PDmaxwI2Czg_qBsq7rSar8Cgf6DzcU3Z-9PHscMqHgxd4iR6t4ybSIk2sFdabPNJ56kTsY-FMkiqb5U7kpVYu8l4LVSqncqOci52OvfS43lHyjK03beOeM5DOVlQazIgGx3nc7ypNVOxtUsVVXiY7TIzrXZQDKzkdjnFVjPCzr0UQUkFCKnoh7bD3t5MWPSnH_cPVKMjiL90q0G3cN_HF_058zTamZ7OT4uR4_vkleyjozODw2-YVW--W390uBjKd3QuKegM_AO-9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINN-wf%3A+A+PINN-based+algorithm+for+data-driven+solution+and+parameter+discovery+of+the+Hirota+equation+appearing+in+communications+and+finance&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Chen%2C+Yu&rft.au=L%C3%BC%2C+Xing&rft.date=2025-01-01&rft.issn=0960-0779&rft.volume=190&rft.spage=115669&rft_id=info:doi/10.1016%2Fj.chaos.2024.115669&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2024_115669 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |