N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm
In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scatt...
        Saved in:
      
    
          | Published in | Physica. D Vol. 435; p. 133274 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-2789 | 
| DOI | 10.1016/j.physd.2022.133274 | 
Cover
| Abstract | In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scattering matrix, their symmetry and asymptotic behavior. Then, the Riemann–Hilbert problem with nonzero boundary conditions are constructed and the precise formulae of N-double poles solutions and N-simple poles solutions are written by determinants. Different from the local Hirota equation, the symmetry of scattering data for nonlocal Hirota equation is completely different, which results in disparate discrete spectral distribution. In particular, it could be more complicated and difficult to obtain the symmetry of scattering data under the circumstance of double poles. Besides, we also analyze the asymptotic state of one-double poles solution as t→∞. Whereafter, the multi-layer physics-informed neural networks algorithm is applied to research the data-driven soliton solutions of the nonzero nonlocal Hirota equation by using the training data obtained from the Riemann–Hilbert method. Most strikingly, the integrable nonlocal equation is firstly solved via multi-layer physics-informed neural networks algorithm. As we all know, the nonlocal equations contain the PT symmetry P:x→−x, or T:t→−t, which are different with local ones. Adding the nonlocal term into the neural network, we can successfully solve the integrable nonlocal Hirota equation by multi-layer physics-informed neural networks algorithm. The numerical results show that the algorithm can recover the data-driven soliton solutions of the integrable nonlocal equation well. Noteworthily, the inverse problems of the integrable nonlocal equation are discussed for the first time through applying the physics-informed neural networks algorithm to discover the parameters of the equation in terms of its soliton solution.
•We study the nonlocal Hirota equation with NZBCs, which is more complicated than one with ZBCs.•We give a more complex case of double poles for the nonlocal Hirota equation under ZBCs.•We study this nonlocal system with the PINN method for the first time. | 
    
|---|---|
| AbstractList | In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scattering matrix, their symmetry and asymptotic behavior. Then, the Riemann–Hilbert problem with nonzero boundary conditions are constructed and the precise formulae of N-double poles solutions and N-simple poles solutions are written by determinants. Different from the local Hirota equation, the symmetry of scattering data for nonlocal Hirota equation is completely different, which results in disparate discrete spectral distribution. In particular, it could be more complicated and difficult to obtain the symmetry of scattering data under the circumstance of double poles. Besides, we also analyze the asymptotic state of one-double poles solution as t→∞. Whereafter, the multi-layer physics-informed neural networks algorithm is applied to research the data-driven soliton solutions of the nonzero nonlocal Hirota equation by using the training data obtained from the Riemann–Hilbert method. Most strikingly, the integrable nonlocal equation is firstly solved via multi-layer physics-informed neural networks algorithm. As we all know, the nonlocal equations contain the PT symmetry P:x→−x, or T:t→−t, which are different with local ones. Adding the nonlocal term into the neural network, we can successfully solve the integrable nonlocal Hirota equation by multi-layer physics-informed neural networks algorithm. The numerical results show that the algorithm can recover the data-driven soliton solutions of the integrable nonlocal equation well. Noteworthily, the inverse problems of the integrable nonlocal equation are discussed for the first time through applying the physics-informed neural networks algorithm to discover the parameters of the equation in terms of its soliton solution.
•We study the nonlocal Hirota equation with NZBCs, which is more complicated than one with ZBCs.•We give a more complex case of double poles for the nonlocal Hirota equation under ZBCs.•We study this nonlocal system with the PINN method for the first time. | 
    
| ArticleNumber | 133274 | 
    
| Author | Peng, Wei-Qi Chen, Yong  | 
    
| Author_xml | – sequence: 1 givenname: Wei-Qi surname: Peng fullname: Peng, Wei-Qi organization: School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China – sequence: 2 givenname: Yong orcidid: 0000-0002-6008-6542 surname: Chen fullname: Chen, Yong email: ychen@sei.ecnu.edu.cn organization: School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China  | 
    
| BookMark | eNqFkL1OwzAUhT0UCSg8AYtfIMV_TZqBASGgSKggBLPl2DfUlWsX2wHBxMjOG_IkpC0TA0x3OPqOzv320cAHDwgdUTKihJbHi9Fq_prMiBHGRpRzVokB2uuTqmDVpN5F-yktCCG04tUe-pgVJnSNA7wKDhJOwXXZBp9wGyLuq13QyuGpjSErDE-dWqf4xeb5On2DGHATOm9UfMU6eGO3dJesf8R3FpbK-6_3z6l1DcSMl5DnwWDlDb69ms2wco8h9mXLA7TTKpfg8OcO0cPF-f3ZtLi-ubw6O70uNCc8FzVpW8FpySrKm5Zo0KZhJRPaKDB8wlg55kKMNSXCiIrVpaiFFi1oURMyZooPEd_26hhSitDKVbTLfr2kRK4FyoXcCJRrgXIrsKfqX5S2eaMiR2XdP-zJloX-rWcLUSZtwWswNoLO0gT7J_8NxOmVmA | 
    
| CitedBy_id | crossref_primary_10_1007_s11071_023_08287_z crossref_primary_10_1007_s11071_022_07844_2 crossref_primary_10_1088_1572_9494_ac75b3 crossref_primary_10_1016_j_physd_2023_133656 crossref_primary_10_1088_0256_307X_41_3_030201 crossref_primary_10_1088_1572_9494_ad0960 crossref_primary_10_1140_epjp_s13360_024_04953_2 crossref_primary_10_1002_mma_8498 crossref_primary_10_1088_1572_9494_ad75f7 crossref_primary_10_1007_s11071_024_10093_0 crossref_primary_10_1016_j_nuclphysb_2025_116798 crossref_primary_10_1088_1674_1056_ad0bf4 crossref_primary_10_1007_s11071_024_10074_3 crossref_primary_10_1088_1572_9494_ad6e63 crossref_primary_10_1088_1674_1056_ac70c0 crossref_primary_10_1016_j_physd_2023_133729 crossref_primary_10_1016_j_physd_2022_133629 crossref_primary_10_1007_s11082_023_05440_1 crossref_primary_10_1088_1674_1056_ad4d64 crossref_primary_10_1007_s11071_024_10605_y crossref_primary_10_1007_s11071_023_08388_9 crossref_primary_10_1016_j_chaos_2025_116177 crossref_primary_10_1088_1402_4896_ad6e3c crossref_primary_10_1016_j_nuclphysb_2024_116742 crossref_primary_10_1088_1402_4896_ad3695 crossref_primary_10_1007_s10255_024_1121_8 crossref_primary_10_1007_s11071_024_09648_y crossref_primary_10_1016_j_physd_2023_133851 crossref_primary_10_1016_j_aml_2023_108885 crossref_primary_10_1016_j_physd_2024_134284 crossref_primary_10_1016_j_physd_2022_133430 crossref_primary_10_1016_j_physd_2023_134023 crossref_primary_10_1016_j_chaos_2022_112787 crossref_primary_10_1016_j_jestch_2023_101489 crossref_primary_10_1016_j_physleta_2022_128536 crossref_primary_10_1088_1572_9494_accb8d crossref_primary_10_1007_s11071_023_09192_1 crossref_primary_10_1088_1572_9494_ad6b1c crossref_primary_10_1016_j_chaos_2023_114085 crossref_primary_10_1007_s11071_023_08628_y crossref_primary_10_1016_j_wavemoti_2024_103322 crossref_primary_10_1016_j_physd_2024_134413 crossref_primary_10_1016_j_physleta_2023_128773 crossref_primary_10_1016_j_physleta_2022_128373 crossref_primary_10_1016_j_wavemoti_2023_103243 crossref_primary_10_1016_j_physd_2022_133528 crossref_primary_10_1016_j_physd_2023_133945 crossref_primary_10_1063_5_0197939 crossref_primary_10_1016_j_physd_2023_133986 crossref_primary_10_1016_j_chaos_2023_113362 crossref_primary_10_1088_1572_9494_ad806e crossref_primary_10_1142_S021812742350164X crossref_primary_10_1007_s00033_024_02395_5 crossref_primary_10_1088_1402_4896_acde12 crossref_primary_10_1016_j_physd_2024_134304 crossref_primary_10_1007_s11071_023_09229_5 crossref_primary_10_1016_j_physd_2024_134262 crossref_primary_10_1016_j_rinp_2023_106842  | 
    
| Cites_doi | 10.1016/j.physd.2016.04.003 10.1016/j.geomphys.2019.103508 10.1364/OL.32.002632 10.1111/sapm.12222 10.1007/BF01589116 10.1103/PhysRevLett.110.064105 10.1016/j.nonrwa.2018.08.004 10.1007/s11071-021-06556-3 10.1103/PhysRevLett.19.1095 10.1016/j.jcp.2022.111053 10.1002/cpa.21819 10.1111/sapm.12219 10.1007/s11071-021-06953-8 10.1016/j.aml.2019.06.014 10.1063/5.0046806 10.1080/00401706.1987.10488205 10.1016/j.cnsns.2021.106067 10.1063/1.5018294 10.1134/S0040577918090015 10.1063/1.4732464 10.1016/j.physd.2019.05.008 10.1103/PhysRevA.93.062124 10.1016/j.physleta.2019.125906 10.1016/j.wavemoti.2015.09.003 10.1016/j.physd.2019.132170 10.1063/1.3290736 10.1007/s11071-021-06421-3 10.1016/j.jmaa.2017.04.042 10.1007/s11071-021-06554-5 10.1088/1361-6544/aae031 10.1088/0951-7715/29/2/319 10.1063/1.4868483 10.1016/S0375-9601(00)00512-0 10.1007/s11071-020-05521-w 10.1111/sapm.12178 10.1215/00127094-2019-0066 10.1111/sapm.12153 10.1016/j.jcp.2018.10.045 10.1088/0951-7715/29/3/915 10.1119/1.4789549 10.1063/1.5013154 10.1016/j.physd.2022.133162 10.1111/sapm.12338 10.1016/j.cnsns.2021.105896  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2022 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.physd.2022.133274 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| ExternalDocumentID | 10_1016_j_physd_2022_133274 S0167278922000744  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABAOU ABFNM ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSH SSQ SSW SSZ T5K TN5 TWZ WUQ XJT XPP YNT YYP ~02 ~G- AAYWO AAYXX ACLOT AGQPQ AIIUN APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c303t-90ff43162713bf0cecdb2624cdaed3822653445c104d47296494c4fec490052a3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-2789 | 
    
| IngestDate | Thu Oct 02 04:28:25 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Sun Apr 06 06:54:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Nonlocal Hirota equation Riemann–Hilbert method Physics-informed neural networks Nonzero boundary conditions Simple/double poles solutions  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c303t-90ff43162713bf0cecdb2624cdaed3822653445c104d47296494c4fec490052a3 | 
    
| ORCID | 0000-0002-6008-6542 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_physd_2022_133274 crossref_citationtrail_10_1016_j_physd_2022_133274 elsevier_sciencedirect_doi_10_1016_j_physd_2022_133274  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2022 2022-07-00  | 
    
| PublicationDateYYYYMMDD | 2022-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Physica. D | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Ablowitz, Musslimani (b43) 2013; 110 Zhang, Fan (b18) 2020 Guo, Ling (b8) 2012; 53 Ablowitz, Luo, Musslimani (b52) 2018; 59 Bilman, Ling, Miller (b27) 2020; 169 Zhang, Yan (b56) 2020; 402 Chen, Yan (b20) 2019; 383 Ablowitz, Feng, Luo, Musslimani (b54) 2018; 196 Pu, Li, Chen (b30) 2021; 105 Geng, Wu (b11) 2016; 60 Liu, Nocedal (b63) 1989; 45 Peng, Pu, Chen (b31) 2022; 105 Fokas (b44) 2016; 29 Fang, Wu, Wang, Dai (b34) 2021 Hirota (b2) 2004 El-Ganainy, Makris, Christodoulides, Musslimani (b37) 2007; 32 Ablowitz, Musslimani (b50) 2017; 139 Wang, Yan (b33) 2021 Zhou, Chen (b48) 2021 Xia, Yao, Xin (b60) 2021 Matveev, Salle (b3) 1991 Rao, Cheng, He (b45) 2017; 139 Zhou (b46) 2018; 141 Wang, Chen (b47) 2021; 104 Yang, Tian, Li (b23) 2022; 432 Raissi, Perdikaris, Karniadakis (b28) 2019; 378 Yang (b6) 2010 Li, Chen (b29) 2020; 72 Ji, Zhu (b51) 2017; 453 Zhang, Rao, Cheng, He (b12) 2019; 399 Ablowitz, Musslimani (b49) 2016; 29 Biondini, Kovačič (b14) 2014; 55 Bender, Berntson, Parker, Parker (b38) 2013; 81 Li, Tian, Yang (b7) 2021 Stein (b64) 1987; 29 Liu, Guo (b17) 2020; 100 Gadzhimuradov, Agalarov (b39) 2016; 93 Wang, Tian, Cheng (b24) 2021; 62 Biondini, Fagerstrom, Prinari (b15) 2016; 333 Zhang, Yan (b16) 2019; 402 Ablowitz, Feng, Luo, Musslimani (b53) 2018; 141 Zhang, Chen (b21) 2019; 98 Yang, Chen (b10) 2019; 45 Wang, Ling, Zeng, Feng (b35) 2021; 101 Bender, Boettcher, Jones, Meisinger, Simsek (b40) 2003; 71 Ling, Zhang (b26) 2021 Cen, Francisco, Andreas (b58) 2019; 60 Zakharov, Manakov, Novikov, Pitaevskii (b5) 1984 Bilman, Miller (b19) 2019; 72 Li, Tian (b59) 2021 Lin, Chen (b32) 2022 Feng, Luo, Ablowitz, Musslimani (b55) 2018; 31 Gardner, Greene, Kruskal, Miura (b4) 1967; 19 Peng, Tian, Wang (b9) 2019; 146 Wang, Zhang, Yang (b13) 2010; 51 Ablowitz, Clarkson (b1) 1991 Mo, Ling, Zeng (b36) 2021 Tian (b25) 2021; 51 Bagchi, Quesne (b41) 2000; 273 Zhang, Tian, Yang (b57) 2021 Baydin, Pearlmutter, Radul, Siskind (b62) 2018; 18 Li, Guo (b61) 2021; 105 Mihalache (b42) 2017; 69 Zhang, Tao, Yao, He (b22) 2020; 145 Bender (10.1016/j.physd.2022.133274_b38) 2013; 81 Bagchi (10.1016/j.physd.2022.133274_b41) 2000; 273 Zhang (10.1016/j.physd.2022.133274_b22) 2020; 145 Wang (10.1016/j.physd.2022.133274_b24) 2021; 62 Lin (10.1016/j.physd.2022.133274_b32) 2022 Wang (10.1016/j.physd.2022.133274_b33) 2021 Rao (10.1016/j.physd.2022.133274_b45) 2017; 139 Li (10.1016/j.physd.2022.133274_b29) 2020; 72 El-Ganainy (10.1016/j.physd.2022.133274_b37) 2007; 32 Wang (10.1016/j.physd.2022.133274_b13) 2010; 51 Peng (10.1016/j.physd.2022.133274_b9) 2019; 146 Wang (10.1016/j.physd.2022.133274_b47) 2021; 104 Zhang (10.1016/j.physd.2022.133274_b18) 2020 Yang (10.1016/j.physd.2022.133274_b23) 2022; 432 Pu (10.1016/j.physd.2022.133274_b30) 2021; 105 Zhang (10.1016/j.physd.2022.133274_b12) 2019; 399 Ablowitz (10.1016/j.physd.2022.133274_b53) 2018; 141 Mo (10.1016/j.physd.2022.133274_b36) 2021 Yang (10.1016/j.physd.2022.133274_b6) 2010 Bilman (10.1016/j.physd.2022.133274_b27) 2020; 169 Gadzhimuradov (10.1016/j.physd.2022.133274_b39) 2016; 93 Li (10.1016/j.physd.2022.133274_b61) 2021; 105 Fang (10.1016/j.physd.2022.133274_b34) 2021 Zhang (10.1016/j.physd.2022.133274_b21) 2019; 98 Fokas (10.1016/j.physd.2022.133274_b44) 2016; 29 Ablowitz (10.1016/j.physd.2022.133274_b50) 2017; 139 Ji (10.1016/j.physd.2022.133274_b51) 2017; 453 Zhang (10.1016/j.physd.2022.133274_b56) 2020; 402 Li (10.1016/j.physd.2022.133274_b59) 2021 Wang (10.1016/j.physd.2022.133274_b35) 2021; 101 Stein (10.1016/j.physd.2022.133274_b64) 1987; 29 Yang (10.1016/j.physd.2022.133274_b10) 2019; 45 Gardner (10.1016/j.physd.2022.133274_b4) 1967; 19 Baydin (10.1016/j.physd.2022.133274_b62) 2018; 18 Liu (10.1016/j.physd.2022.133274_b17) 2020; 100 Bender (10.1016/j.physd.2022.133274_b40) 2003; 71 Zhou (10.1016/j.physd.2022.133274_b48) 2021 Ablowitz (10.1016/j.physd.2022.133274_b1) 1991 Cen (10.1016/j.physd.2022.133274_b58) 2019; 60 Zakharov (10.1016/j.physd.2022.133274_b5) 1984 Geng (10.1016/j.physd.2022.133274_b11) 2016; 60 Peng (10.1016/j.physd.2022.133274_b31) 2022; 105 Raissi (10.1016/j.physd.2022.133274_b28) 2019; 378 Ablowitz (10.1016/j.physd.2022.133274_b43) 2013; 110 Chen (10.1016/j.physd.2022.133274_b20) 2019; 383 Guo (10.1016/j.physd.2022.133274_b8) 2012; 53 Mihalache (10.1016/j.physd.2022.133274_b42) 2017; 69 Hirota (10.1016/j.physd.2022.133274_b2) 2004 Zhou (10.1016/j.physd.2022.133274_b46) 2018; 141 Tian (10.1016/j.physd.2022.133274_b25) 2021; 51 Feng (10.1016/j.physd.2022.133274_b55) 2018; 31 Matveev (10.1016/j.physd.2022.133274_b3) 1991 Biondini (10.1016/j.physd.2022.133274_b14) 2014; 55 Ablowitz (10.1016/j.physd.2022.133274_b54) 2018; 196 Ablowitz (10.1016/j.physd.2022.133274_b52) 2018; 59 Xia (10.1016/j.physd.2022.133274_b60) 2021 Ling (10.1016/j.physd.2022.133274_b26) 2021 Ablowitz (10.1016/j.physd.2022.133274_b49) 2016; 29 Biondini (10.1016/j.physd.2022.133274_b15) 2016; 333 Zhang (10.1016/j.physd.2022.133274_b57) 2021 Zhang (10.1016/j.physd.2022.133274_b16) 2019; 402 Bilman (10.1016/j.physd.2022.133274_b19) 2019; 72 Li (10.1016/j.physd.2022.133274_b7) 2021 Liu (10.1016/j.physd.2022.133274_b63) 1989; 45  | 
    
| References_xml | – volume: 51 start-page: 1 year: 2021 end-page: 38 ident: b25 article-title: Riemann-Hilbert problem to a generalized derivative nonlinear Schrödinger equation: Long-time asymptotic behavior publication-title: Sci. Sin Math. – volume: 432 year: 2022 ident: b23 article-title: Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions publication-title: Physica D – volume: 101 year: 2021 ident: b35 article-title: A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrödinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 2021 ident: b60 article-title: Darboux transformation and soliton solutions of a nonlocal Hirota equation publication-title: Chin. Phys. B – volume: 31 start-page: 5385 year: 2018 ident: b55 article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions publication-title: Nonlinearity – volume: 59 year: 2018 ident: b52 article-title: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions publication-title: J. Math. Phys. – year: 2021 ident: b7 article-title: Riemann-Hilbert problem and interactions of solitons in the publication-title: Stud. Appl. Math. – volume: 32 start-page: 2632 year: 2007 ident: b37 article-title: Theory of coupled optical publication-title: Opt. Lett. – volume: 29 start-page: 915 year: 2016 end-page: 946 ident: b49 article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation publication-title: Nonlinearity – volume: 19 start-page: 1095 year: 1967 ident: b4 article-title: Method for solving the KortewegdeVries equation publication-title: Phys. Rev. Lett. – volume: 60 year: 2019 ident: b58 article-title: Integrable nonlocal Hirota equations publication-title: J. Math. Phys. – volume: 45 start-page: 503 year: 1989 end-page: 528 ident: b63 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program – year: 2021 ident: b48 article-title: Breathers and rogue waves on the double-periodic background for the reverse-space–time derivative nonlinear Schrödinger equation publication-title: Nonlinear Dynam. – volume: 81 start-page: 173 year: 2013 ident: b38 article-title: Observation of PT phase transition in a simple mechanical system publication-title: Amer. J. Phys. – volume: 333 start-page: 117 year: 2016 end-page: 136 ident: b15 article-title: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions publication-title: Physica D – volume: 146 year: 2019 ident: b9 article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J. Geom. Phys. – volume: 98 start-page: 306 year: 2019 end-page: 313 ident: b21 article-title: Inverse scattering transformation for generalized nonlinear Schrödinger equation publication-title: Appl. Math. Lett. – volume: 196 start-page: 1241 year: 2018 end-page: 1267 ident: b54 article-title: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation publication-title: Theoret. Math. Phys. – year: 1984 ident: b5 article-title: The Theory of Solitons: The Inverse Scattering Method – volume: 72 start-page: 1722 year: 2019 end-page: 1805 ident: b19 article-title: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation publication-title: Comm. Pure Appl. Math. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b28 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 60 start-page: 62 year: 2016 end-page: 72 ident: b11 article-title: Riemann-Hilbert approach and publication-title: Wave Motion. – volume: 105 year: 2022 ident: b31 article-title: PINN deep learning for the chen-lee-liu equation: rogue wave on the periodic background publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 51 year: 2010 ident: b13 article-title: Integrable properties of the general coupled nonlinear Schrödinger equations publication-title: J. Math. Phys. – year: 2021 ident: b57 article-title: Inverse scattering transform and multiple high-order pole solutions for the nonlocal focusing and defocusing modified Korteweg–de Vries equation with the nonzero boundary conditions – volume: 139 start-page: 7 year: 2017 end-page: 59 ident: b50 article-title: Integrable nonlocal nonlinear equations publication-title: Stud. Appl. Math. – year: 2021 ident: b36 article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm publication-title: Phys. Lett. A – volume: 399 start-page: 173 year: 2019 end-page: 185 ident: b12 article-title: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation N simple poles and one higher-order pole publication-title: Physica D – year: 2021 ident: b33 article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning publication-title: Phys. Lett. A – volume: 453 start-page: 973 year: 2017 end-page: 984 ident: b51 article-title: Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform publication-title: J. Math. Anal. Appl. – start-page: 71 year: 2020 ident: b18 article-title: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions publication-title: Z. Angew. Math. Phys. – volume: 72 year: 2020 ident: b29 article-title: Solving second-order nonlinear evolution partial differential equations using deep learning publication-title: Commun. Theor. Phys. – volume: 45 start-page: 918 year: 2019 end-page: 941 ident: b10 article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem publication-title: Nonlinear Anal. RWA – volume: 110 start-page: 64105 year: 2013 ident: b43 article-title: Integrable nonlocal nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. – volume: 145 start-page: 812 year: 2020 end-page: 827 ident: b22 article-title: The regularity of the multiple higher-order poles solitons of the NLS equation publication-title: Stud. Appl. Math. – volume: 141 start-page: 267 year: 2018 end-page: 307 ident: b53 article-title: Reverse space–time nonlocal sine-gordon/sinh-gordon equations with nonzero boundary conditions publication-title: Stud. Appl. Math. – volume: 55 year: 2014 ident: b14 article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions publication-title: J. Math. Phys. – year: 2021 ident: b26 article-title: Large and infinite order solitons of the coupled nonlinear Schrödinger equation – volume: 139 start-page: 568 year: 2017 ident: b45 article-title: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations publication-title: Stud. Appl. Math. – volume: 141 start-page: 186 year: 2018 ident: b46 article-title: Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation publication-title: Stud. Appl. Math. – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b62 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 402 year: 2020 ident: b56 article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with nonzero boundary conditions publication-title: Physica D – volume: 29 start-page: 143 year: 1987 end-page: 151 ident: b64 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics – volume: 383 year: 2019 ident: b20 article-title: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons publication-title: Phys. Lett. A. – volume: 273 start-page: 285 year: 2000 ident: b41 article-title: Sl(2, C) as a complex Lie algebra and the associated non-hermitian Hamiltonians with real eigenvalues publication-title: Phys. Lett. A. – volume: 62 year: 2021 ident: b24 article-title: The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations publication-title: J. Math. Phys. – volume: 29 start-page: 319 year: 2016 ident: b44 article-title: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation publication-title: Nonlinearity – year: 2010 ident: b6 article-title: Nonlinear waves in integrable and non-integrable systems publication-title: Soc. Ind. Appl. Math. – volume: 100 start-page: 629 year: 2020 end-page: 646 ident: b17 article-title: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach publication-title: Nonlinear. Dyn. – volume: 53 start-page: 133 year: 2012 end-page: 3966 ident: b8 article-title: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation publication-title: J. Math. Phys. – start-page: 1 year: 2021 end-page: 14 ident: b34 article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN publication-title: Nonlinear Dynam. – volume: 93 start-page: 62124 year: 2016 ident: b39 article-title: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation publication-title: Phys. Rev. A. – volume: 71 start-page: 1095 year: 2003 ident: b40 article-title: Bound states of non-Hermitian quantum field theories publication-title: Phys. Lett. A. – volume: 104 start-page: 2621 year: 2021 end-page: 2638 ident: b47 article-title: Dynamic behaviors of general publication-title: Nonlinear Dynam. – year: 2022 ident: b32 article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions publication-title: J. Comput. Phys. – year: 2021 ident: b59 article-title: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation publication-title: Commun. Pure Appl. Anal. – volume: 169 start-page: 671 year: 2020 end-page: 760 ident: b27 article-title: Extreme superposition: Rogue waves of infinite order and the painlev-III hierarchy publication-title: Duke Math. J. – volume: 105 start-page: 617 year: 2021 end-page: 628 ident: b61 article-title: Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions publication-title: Nonlinear Dyn. – volume: 402 year: 2019 ident: b16 article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions publication-title: Physica D. – volume: 69 start-page: 403 year: 2017 ident: b42 article-title: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature publication-title: Rom. Rep. Phys. – year: 1991 ident: b1 article-title: Solitons; Nonlinear Evolution Equations and Inverse Scattering – volume: 105 start-page: 1 year: 2021 end-page: 17 ident: b30 article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method publication-title: Nonlinear Dynam. – year: 2004 ident: b2 article-title: Direct Methods in Soliton Theory – year: 1991 ident: b3 article-title: Darboux Transformation and Solitons – volume: 333 start-page: 117 year: 2016 ident: 10.1016/j.physd.2022.133274_b15 article-title: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions publication-title: Physica D doi: 10.1016/j.physd.2016.04.003 – volume: 146 year: 2019 ident: 10.1016/j.physd.2022.133274_b9 article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2019.103508 – volume: 32 start-page: 2632 year: 2007 ident: 10.1016/j.physd.2022.133274_b37 article-title: Theory of coupled optical PT-symmetric structures publication-title: Opt. Lett. doi: 10.1364/OL.32.002632 – volume: 141 start-page: 267 year: 2018 ident: 10.1016/j.physd.2022.133274_b53 article-title: Reverse space–time nonlocal sine-gordon/sinh-gordon equations with nonzero boundary conditions publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12222 – volume: 45 start-page: 503 year: 1989 ident: 10.1016/j.physd.2022.133274_b63 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program doi: 10.1007/BF01589116 – volume: 110 start-page: 64105 year: 2013 ident: 10.1016/j.physd.2022.133274_b43 article-title: Integrable nonlocal nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.064105 – volume: 45 start-page: 918 year: 2019 ident: 10.1016/j.physd.2022.133274_b10 article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2018.08.004 – volume: 105 start-page: 617 year: 2021 ident: 10.1016/j.physd.2022.133274_b61 article-title: Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06556-3 – volume: 19 start-page: 1095 year: 1967 ident: 10.1016/j.physd.2022.133274_b4 article-title: Method for solving the KortewegdeVries equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.1095 – year: 2010 ident: 10.1016/j.physd.2022.133274_b6 article-title: Nonlinear waves in integrable and non-integrable systems publication-title: Soc. Ind. Appl. Math. – year: 2021 ident: 10.1016/j.physd.2022.133274_b7 article-title: Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations publication-title: Stud. Appl. Math. – year: 2022 ident: 10.1016/j.physd.2022.133274_b32 article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111053 – volume: 72 start-page: 1722 issue: 8 year: 2019 ident: 10.1016/j.physd.2022.133274_b19 article-title: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21819 – year: 2004 ident: 10.1016/j.physd.2022.133274_b2 – volume: 141 start-page: 186 year: 2018 ident: 10.1016/j.physd.2022.133274_b46 article-title: Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12219 – volume: 51 start-page: 1 year: 2021 ident: 10.1016/j.physd.2022.133274_b25 article-title: Riemann-Hilbert problem to a generalized derivative nonlinear Schrödinger equation: Long-time asymptotic behavior publication-title: Sci. Sin Math. – year: 2021 ident: 10.1016/j.physd.2022.133274_b48 article-title: Breathers and rogue waves on the double-periodic background for the reverse-space–time derivative nonlinear Schrödinger equation publication-title: Nonlinear Dynam. doi: 10.1007/s11071-021-06953-8 – volume: 98 start-page: 306 year: 2019 ident: 10.1016/j.physd.2022.133274_b21 article-title: Inverse scattering transformation for generalized nonlinear Schrödinger equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.06.014 – volume: 62 year: 2021 ident: 10.1016/j.physd.2022.133274_b24 article-title: The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations publication-title: J. Math. Phys. doi: 10.1063/5.0046806 – volume: 29 start-page: 143 year: 1987 ident: 10.1016/j.physd.2022.133274_b64 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – year: 2021 ident: 10.1016/j.physd.2022.133274_b26 – volume: 105 year: 2022 ident: 10.1016/j.physd.2022.133274_b31 article-title: PINN deep learning for the chen-lee-liu equation: rogue wave on the periodic background publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.106067 – volume: 59 year: 2018 ident: 10.1016/j.physd.2022.133274_b52 article-title: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions publication-title: J. Math. Phys. doi: 10.1063/1.5018294 – volume: 196 start-page: 1241 issue: 3 year: 2018 ident: 10.1016/j.physd.2022.133274_b54 article-title: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation publication-title: Theoret. Math. Phys. doi: 10.1134/S0040577918090015 – year: 2021 ident: 10.1016/j.physd.2022.133274_b59 article-title: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation publication-title: Commun. Pure Appl. Anal. – volume: 53 start-page: 133 year: 2012 ident: 10.1016/j.physd.2022.133274_b8 article-title: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation publication-title: J. Math. Phys. doi: 10.1063/1.4732464 – volume: 399 start-page: 173 year: 2019 ident: 10.1016/j.physd.2022.133274_b12 article-title: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation N simple poles and one higher-order pole publication-title: Physica D doi: 10.1016/j.physd.2019.05.008 – year: 2021 ident: 10.1016/j.physd.2022.133274_b60 article-title: Darboux transformation and soliton solutions of a nonlocal Hirota equation publication-title: Chin. Phys. B – volume: 93 start-page: 62124 year: 2016 ident: 10.1016/j.physd.2022.133274_b39 article-title: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.93.062124 – volume: 383 issue: 29 year: 2019 ident: 10.1016/j.physd.2022.133274_b20 article-title: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons publication-title: Phys. Lett. A. doi: 10.1016/j.physleta.2019.125906 – volume: 69 start-page: 403 year: 2017 ident: 10.1016/j.physd.2022.133274_b42 article-title: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature publication-title: Rom. Rep. Phys. – volume: 402 year: 2019 ident: 10.1016/j.physd.2022.133274_b16 article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions publication-title: Physica D. – volume: 60 start-page: 62 year: 2016 ident: 10.1016/j.physd.2022.133274_b11 article-title: Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation publication-title: Wave Motion. doi: 10.1016/j.wavemoti.2015.09.003 – year: 2021 ident: 10.1016/j.physd.2022.133274_b36 article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm publication-title: Phys. Lett. A – volume: 402 year: 2020 ident: 10.1016/j.physd.2022.133274_b56 article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with nonzero boundary conditions publication-title: Physica D doi: 10.1016/j.physd.2019.132170 – volume: 72 year: 2020 ident: 10.1016/j.physd.2022.133274_b29 article-title: Solving second-order nonlinear evolution partial differential equations using deep learning publication-title: Commun. Theor. Phys. – volume: 51 year: 2010 ident: 10.1016/j.physd.2022.133274_b13 article-title: Integrable properties of the general coupled nonlinear Schrödinger equations publication-title: J. Math. Phys. doi: 10.1063/1.3290736 – year: 1991 ident: 10.1016/j.physd.2022.133274_b3 – volume: 104 start-page: 2621 year: 2021 ident: 10.1016/j.physd.2022.133274_b47 article-title: Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation publication-title: Nonlinear Dynam. doi: 10.1007/s11071-021-06421-3 – volume: 453 start-page: 973 year: 2017 ident: 10.1016/j.physd.2022.133274_b51 article-title: Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.04.042 – year: 2021 ident: 10.1016/j.physd.2022.133274_b57 – volume: 105 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.physd.2022.133274_b30 article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method publication-title: Nonlinear Dynam. doi: 10.1007/s11071-021-06554-5 – year: 1991 ident: 10.1016/j.physd.2022.133274_b1 – year: 2021 ident: 10.1016/j.physd.2022.133274_b33 article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning publication-title: Phys. Lett. A – volume: 71 start-page: 1095 year: 2003 ident: 10.1016/j.physd.2022.133274_b40 article-title: Bound states of non-Hermitian quantum field theories publication-title: Phys. Lett. A. – volume: 31 start-page: 5385 issue: 12 year: 2018 ident: 10.1016/j.physd.2022.133274_b55 article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions publication-title: Nonlinearity doi: 10.1088/1361-6544/aae031 – start-page: 1 year: 2021 ident: 10.1016/j.physd.2022.133274_b34 article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN publication-title: Nonlinear Dynam. – volume: 29 start-page: 319 year: 2016 ident: 10.1016/j.physd.2022.133274_b44 article-title: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation publication-title: Nonlinearity doi: 10.1088/0951-7715/29/2/319 – volume: 55 year: 2014 ident: 10.1016/j.physd.2022.133274_b14 article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions publication-title: J. Math. Phys. doi: 10.1063/1.4868483 – year: 1984 ident: 10.1016/j.physd.2022.133274_b5 – start-page: 71 year: 2020 ident: 10.1016/j.physd.2022.133274_b18 article-title: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions publication-title: Z. Angew. Math. Phys. – volume: 273 start-page: 285 year: 2000 ident: 10.1016/j.physd.2022.133274_b41 article-title: Sl(2, C) as a complex Lie algebra and the associated non-hermitian Hamiltonians with real eigenvalues publication-title: Phys. Lett. A. doi: 10.1016/S0375-9601(00)00512-0 – volume: 100 start-page: 629 year: 2020 ident: 10.1016/j.physd.2022.133274_b17 article-title: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach publication-title: Nonlinear. Dyn. doi: 10.1007/s11071-020-05521-w – volume: 139 start-page: 568 year: 2017 ident: 10.1016/j.physd.2022.133274_b45 article-title: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12178 – volume: 169 start-page: 671 issue: 4 year: 2020 ident: 10.1016/j.physd.2022.133274_b27 article-title: Extreme superposition: Rogue waves of infinite order and the painlev-III hierarchy publication-title: Duke Math. J. doi: 10.1215/00127094-2019-0066 – volume: 139 start-page: 7 year: 2017 ident: 10.1016/j.physd.2022.133274_b50 article-title: Integrable nonlocal nonlinear equations publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12153 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.physd.2022.133274_b28 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 29 start-page: 915 year: 2016 ident: 10.1016/j.physd.2022.133274_b49 article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/915 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.physd.2022.133274_b62 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 173 year: 2013 ident: 10.1016/j.physd.2022.133274_b38 article-title: Observation of PT phase transition in a simple mechanical system publication-title: Amer. J. Phys. doi: 10.1119/1.4789549 – volume: 60 issue: 8 year: 2019 ident: 10.1016/j.physd.2022.133274_b58 article-title: Integrable nonlocal Hirota equations publication-title: J. Math. Phys. doi: 10.1063/1.5013154 – volume: 432 year: 2022 ident: 10.1016/j.physd.2022.133274_b23 article-title: Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions publication-title: Physica D doi: 10.1016/j.physd.2022.133162 – volume: 145 start-page: 812 issue: 4 year: 2020 ident: 10.1016/j.physd.2022.133274_b22 article-title: The regularity of the multiple higher-order poles solitons of the NLS equation publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12338 – volume: 101 year: 2021 ident: 10.1016/j.physd.2022.133274_b35 article-title: A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrödinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.105896  | 
    
| SSID | ssj0001737 | 
    
| Score | 2.5851564 | 
    
| Snippet | In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 133274 | 
    
| SubjectTerms | Nonlocal Hirota equation Nonzero boundary conditions Physics-informed neural networks Riemann–Hilbert method Simple/double poles solutions  | 
    
| Title | N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.physd.2022.133274 | 
    
| Volume | 435 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0167-2789 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001737 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-2789 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001737 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0167-2789 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001737 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0167-2789 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001737 providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCHoQn7g-ljl4tG43m3bboywuXcUiPsBbafOQyr6s9aAH8ejdf-gvMZO0PkA8eGyblDAT8s0kX74hZI8pHaV7suNoOHAdhulOEArhZCHnbpsrt2skNk5jP7pix9fe9Qzp1XdhkFZZrf12TTerdfWmVVmzNc3z1gUS6PEeJ6UGCFETlLEuVjE4eP6iebS7VjcT9b2xda08ZDheuHuAcqGUHuhcjXbZ7-j0DXH6y2SpChXh0I5mhczI8SpZ_CYguErmDYGT36-R19gRk4dsKGGKEk3wOaVAR6Wgc3wDWhDlxaRMQd5ZhW_AbVj8-iSLCWSmxFLxCDpHFpbKBciLv4HzXI7S8fj95S3KURSrBFt5GtKxgLNBHEM6vJkU-mejdXLVP7rsRU5VZcHhGr5KJ3SVwvvwVKermXK55CKjPmVcpFJ0dPzgex3tTq7zNqHNG_osZJwpyVmIe8ppZ4PM6nHKTQKpp9puwNuBnwZMcRoGCtVi8ChRKF_xBqG1dRNeSZBjJYxhUnPNbhPjkgRdkliXNMj-Z6epVeD4u7lfuy35MZESjRF_ddz6b8dtsoBPlsO7Q2bL4kHu6kilzJpmKjbJ3OHgJIo_AC0X6kQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEKI9oEJblUfLHDg2bNbrvI4IFYVXhChI3KLEDxS07G5DOMCh4sidf8gvqcdOKEiIA9fYjiyP5ZnP_uYbgA2uTZQeqIFn3IHvcYI7cSKlVyZC-H2h_chKbBxmYXrK986CsynY7nJhiFbZnv3uTLendful165mb1JVvd9EoKc8TsasI-TTMMsDFhEC2_z7n-fRj5xwJgl8U_dOesiSvOj6gPRCGds0YI1F_HX39Mzl7HyChTZWxC03nUWYUqMl-PhMQXAJ5iyDU1x9hvvMk-PrcqhwQhpN-LSn0ISlaEC-9VqYVvW4KVD9cRLfSPew1Hqr6jGWtsZSfYMGJEvH5UIixp_jcaUui9Ho8e4hrUgVq0FXehqLkcSj3SzDYng-rs3PLr_A6c6vk-3Ua8sseML4r8ZLfK0pIZ4ZvFpqXyghSxYyLmSh5MAEEGEwMPYUBrhJHtEzbcIF10rwhC6Vi8FXmDHzVN8Ai0D3_Vj047CIuRYsiTXJxdBbotShFsvAutXNRatBTqUwhnlHNrvIrUlyMknuTLIMP58GTZwEx9vdw85s-YudlBsn8dbAlfcOXIf59OTwID_YzfZX4QO1OELvGsw09bX6bsKWpvxht-U_pGvr2Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-double+poles+solutions+for+nonlocal+Hirota+equation+with+nonzero+boundary+conditions+using+Riemann%E2%80%93Hilbert+method+and+PINN+algorithm&rft.jtitle=Physica.+D&rft.au=Peng%2C+Wei-Qi&rft.au=Chen%2C+Yong&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.volume=435&rft_id=info:doi/10.1016%2Fj.physd.2022.133274&rft.externalDocID=S0167278922000744 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |