N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm

In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scatt...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 435; p. 133274
Main Authors Peng, Wei-Qi, Chen, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text
ISSN0167-2789
DOI10.1016/j.physd.2022.133274

Cover

Abstract In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scattering matrix, their symmetry and asymptotic behavior. Then, the Riemann–Hilbert problem with nonzero boundary conditions are constructed and the precise formulae of N-double poles solutions and N-simple poles solutions are written by determinants. Different from the local Hirota equation, the symmetry of scattering data for nonlocal Hirota equation is completely different, which results in disparate discrete spectral distribution. In particular, it could be more complicated and difficult to obtain the symmetry of scattering data under the circumstance of double poles. Besides, we also analyze the asymptotic state of one-double poles solution as t→∞. Whereafter, the multi-layer physics-informed neural networks algorithm is applied to research the data-driven soliton solutions of the nonzero nonlocal Hirota equation by using the training data obtained from the Riemann–Hilbert method. Most strikingly, the integrable nonlocal equation is firstly solved via multi-layer physics-informed neural networks algorithm. As we all know, the nonlocal equations contain the PT symmetry P:x→−x, or T:t→−t, which are different with local ones. Adding the nonlocal term into the neural network, we can successfully solve the integrable nonlocal Hirota equation by multi-layer physics-informed neural networks algorithm. The numerical results show that the algorithm can recover the data-driven soliton solutions of the integrable nonlocal equation well. Noteworthily, the inverse problems of the integrable nonlocal equation are discussed for the first time through applying the physics-informed neural networks algorithm to discover the parameters of the equation in terms of its soliton solution. •We study the nonlocal Hirota equation with NZBCs, which is more complicated than one with ZBCs.•We give a more complex case of double poles for the nonlocal Hirota equation under ZBCs.•We study this nonlocal system with the PINN method for the first time.
AbstractList In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer physics-informed neural networks algorithm. Starting from the Lax pair of nonzero nonlocal Hirota equation, we first give out the Jost function, scattering matrix, their symmetry and asymptotic behavior. Then, the Riemann–Hilbert problem with nonzero boundary conditions are constructed and the precise formulae of N-double poles solutions and N-simple poles solutions are written by determinants. Different from the local Hirota equation, the symmetry of scattering data for nonlocal Hirota equation is completely different, which results in disparate discrete spectral distribution. In particular, it could be more complicated and difficult to obtain the symmetry of scattering data under the circumstance of double poles. Besides, we also analyze the asymptotic state of one-double poles solution as t→∞. Whereafter, the multi-layer physics-informed neural networks algorithm is applied to research the data-driven soliton solutions of the nonzero nonlocal Hirota equation by using the training data obtained from the Riemann–Hilbert method. Most strikingly, the integrable nonlocal equation is firstly solved via multi-layer physics-informed neural networks algorithm. As we all know, the nonlocal equations contain the PT symmetry P:x→−x, or T:t→−t, which are different with local ones. Adding the nonlocal term into the neural network, we can successfully solve the integrable nonlocal Hirota equation by multi-layer physics-informed neural networks algorithm. The numerical results show that the algorithm can recover the data-driven soliton solutions of the integrable nonlocal equation well. Noteworthily, the inverse problems of the integrable nonlocal equation are discussed for the first time through applying the physics-informed neural networks algorithm to discover the parameters of the equation in terms of its soliton solution. •We study the nonlocal Hirota equation with NZBCs, which is more complicated than one with ZBCs.•We give a more complex case of double poles for the nonlocal Hirota equation under ZBCs.•We study this nonlocal system with the PINN method for the first time.
ArticleNumber 133274
Author Peng, Wei-Qi
Chen, Yong
Author_xml – sequence: 1
  givenname: Wei-Qi
  surname: Peng
  fullname: Peng, Wei-Qi
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0002-6008-6542
  surname: Chen
  fullname: Chen, Yong
  email: ychen@sei.ecnu.edu.cn
  organization: School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, China
BookMark eNqFkL1OwzAUhT0UCSg8AYtfIMV_TZqBASGgSKggBLPl2DfUlWsX2wHBxMjOG_IkpC0TA0x3OPqOzv320cAHDwgdUTKihJbHi9Fq_prMiBHGRpRzVokB2uuTqmDVpN5F-yktCCG04tUe-pgVJnSNA7wKDhJOwXXZBp9wGyLuq13QyuGpjSErDE-dWqf4xeb5On2DGHATOm9UfMU6eGO3dJesf8R3FpbK-6_3z6l1DcSMl5DnwWDlDb69ms2wco8h9mXLA7TTKpfg8OcO0cPF-f3ZtLi-ubw6O70uNCc8FzVpW8FpySrKm5Zo0KZhJRPaKDB8wlg55kKMNSXCiIrVpaiFFi1oURMyZooPEd_26hhSitDKVbTLfr2kRK4FyoXcCJRrgXIrsKfqX5S2eaMiR2XdP-zJloX-rWcLUSZtwWswNoLO0gT7J_8NxOmVmA
CitedBy_id crossref_primary_10_1007_s11071_023_08287_z
crossref_primary_10_1007_s11071_022_07844_2
crossref_primary_10_1088_1572_9494_ac75b3
crossref_primary_10_1016_j_physd_2023_133656
crossref_primary_10_1088_0256_307X_41_3_030201
crossref_primary_10_1088_1572_9494_ad0960
crossref_primary_10_1140_epjp_s13360_024_04953_2
crossref_primary_10_1002_mma_8498
crossref_primary_10_1088_1572_9494_ad75f7
crossref_primary_10_1007_s11071_024_10093_0
crossref_primary_10_1016_j_nuclphysb_2025_116798
crossref_primary_10_1088_1674_1056_ad0bf4
crossref_primary_10_1007_s11071_024_10074_3
crossref_primary_10_1088_1572_9494_ad6e63
crossref_primary_10_1088_1674_1056_ac70c0
crossref_primary_10_1016_j_physd_2023_133729
crossref_primary_10_1016_j_physd_2022_133629
crossref_primary_10_1007_s11082_023_05440_1
crossref_primary_10_1088_1674_1056_ad4d64
crossref_primary_10_1007_s11071_024_10605_y
crossref_primary_10_1007_s11071_023_08388_9
crossref_primary_10_1016_j_chaos_2025_116177
crossref_primary_10_1088_1402_4896_ad6e3c
crossref_primary_10_1016_j_nuclphysb_2024_116742
crossref_primary_10_1088_1402_4896_ad3695
crossref_primary_10_1007_s10255_024_1121_8
crossref_primary_10_1007_s11071_024_09648_y
crossref_primary_10_1016_j_physd_2023_133851
crossref_primary_10_1016_j_aml_2023_108885
crossref_primary_10_1016_j_physd_2024_134284
crossref_primary_10_1016_j_physd_2022_133430
crossref_primary_10_1016_j_physd_2023_134023
crossref_primary_10_1016_j_chaos_2022_112787
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1016_j_physleta_2022_128536
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_1007_s11071_023_09192_1
crossref_primary_10_1088_1572_9494_ad6b1c
crossref_primary_10_1016_j_chaos_2023_114085
crossref_primary_10_1007_s11071_023_08628_y
crossref_primary_10_1016_j_wavemoti_2024_103322
crossref_primary_10_1016_j_physd_2024_134413
crossref_primary_10_1016_j_physleta_2023_128773
crossref_primary_10_1016_j_physleta_2022_128373
crossref_primary_10_1016_j_wavemoti_2023_103243
crossref_primary_10_1016_j_physd_2022_133528
crossref_primary_10_1016_j_physd_2023_133945
crossref_primary_10_1063_5_0197939
crossref_primary_10_1016_j_physd_2023_133986
crossref_primary_10_1016_j_chaos_2023_113362
crossref_primary_10_1088_1572_9494_ad806e
crossref_primary_10_1142_S021812742350164X
crossref_primary_10_1007_s00033_024_02395_5
crossref_primary_10_1088_1402_4896_acde12
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1007_s11071_023_09229_5
crossref_primary_10_1016_j_physd_2024_134262
crossref_primary_10_1016_j_rinp_2023_106842
Cites_doi 10.1016/j.physd.2016.04.003
10.1016/j.geomphys.2019.103508
10.1364/OL.32.002632
10.1111/sapm.12222
10.1007/BF01589116
10.1103/PhysRevLett.110.064105
10.1016/j.nonrwa.2018.08.004
10.1007/s11071-021-06556-3
10.1103/PhysRevLett.19.1095
10.1016/j.jcp.2022.111053
10.1002/cpa.21819
10.1111/sapm.12219
10.1007/s11071-021-06953-8
10.1016/j.aml.2019.06.014
10.1063/5.0046806
10.1080/00401706.1987.10488205
10.1016/j.cnsns.2021.106067
10.1063/1.5018294
10.1134/S0040577918090015
10.1063/1.4732464
10.1016/j.physd.2019.05.008
10.1103/PhysRevA.93.062124
10.1016/j.physleta.2019.125906
10.1016/j.wavemoti.2015.09.003
10.1016/j.physd.2019.132170
10.1063/1.3290736
10.1007/s11071-021-06421-3
10.1016/j.jmaa.2017.04.042
10.1007/s11071-021-06554-5
10.1088/1361-6544/aae031
10.1088/0951-7715/29/2/319
10.1063/1.4868483
10.1016/S0375-9601(00)00512-0
10.1007/s11071-020-05521-w
10.1111/sapm.12178
10.1215/00127094-2019-0066
10.1111/sapm.12153
10.1016/j.jcp.2018.10.045
10.1088/0951-7715/29/3/915
10.1119/1.4789549
10.1063/1.5013154
10.1016/j.physd.2022.133162
10.1111/sapm.12338
10.1016/j.cnsns.2021.105896
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physd.2022.133274
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_physd_2022_133274
S0167278922000744
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
AAYWO
AAYXX
ACLOT
AGQPQ
AIIUN
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-90ff43162713bf0cecdb2624cdaed3822653445c104d47296494c4fec490052a3
IEDL.DBID .~1
ISSN 0167-2789
IngestDate Thu Oct 02 04:28:25 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Sun Apr 06 06:54:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Nonlocal Hirota equation
Riemann–Hilbert method
Physics-informed neural networks
Nonzero boundary conditions
Simple/double poles solutions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-90ff43162713bf0cecdb2624cdaed3822653445c104d47296494c4fec490052a3
ORCID 0000-0002-6008-6542
ParticipantIDs crossref_primary_10_1016_j_physd_2022_133274
crossref_citationtrail_10_1016_j_physd_2022_133274
elsevier_sciencedirect_doi_10_1016_j_physd_2022_133274
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Physica. D
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ablowitz, Musslimani (b43) 2013; 110
Zhang, Fan (b18) 2020
Guo, Ling (b8) 2012; 53
Ablowitz, Luo, Musslimani (b52) 2018; 59
Bilman, Ling, Miller (b27) 2020; 169
Zhang, Yan (b56) 2020; 402
Chen, Yan (b20) 2019; 383
Ablowitz, Feng, Luo, Musslimani (b54) 2018; 196
Pu, Li, Chen (b30) 2021; 105
Geng, Wu (b11) 2016; 60
Liu, Nocedal (b63) 1989; 45
Peng, Pu, Chen (b31) 2022; 105
Fokas (b44) 2016; 29
Fang, Wu, Wang, Dai (b34) 2021
Hirota (b2) 2004
El-Ganainy, Makris, Christodoulides, Musslimani (b37) 2007; 32
Ablowitz, Musslimani (b50) 2017; 139
Wang, Yan (b33) 2021
Zhou, Chen (b48) 2021
Xia, Yao, Xin (b60) 2021
Matveev, Salle (b3) 1991
Rao, Cheng, He (b45) 2017; 139
Zhou (b46) 2018; 141
Wang, Chen (b47) 2021; 104
Yang, Tian, Li (b23) 2022; 432
Raissi, Perdikaris, Karniadakis (b28) 2019; 378
Yang (b6) 2010
Li, Chen (b29) 2020; 72
Ji, Zhu (b51) 2017; 453
Zhang, Rao, Cheng, He (b12) 2019; 399
Ablowitz, Musslimani (b49) 2016; 29
Biondini, Kovačič (b14) 2014; 55
Bender, Berntson, Parker, Parker (b38) 2013; 81
Li, Tian, Yang (b7) 2021
Stein (b64) 1987; 29
Liu, Guo (b17) 2020; 100
Gadzhimuradov, Agalarov (b39) 2016; 93
Wang, Tian, Cheng (b24) 2021; 62
Biondini, Fagerstrom, Prinari (b15) 2016; 333
Zhang, Yan (b16) 2019; 402
Ablowitz, Feng, Luo, Musslimani (b53) 2018; 141
Zhang, Chen (b21) 2019; 98
Yang, Chen (b10) 2019; 45
Wang, Ling, Zeng, Feng (b35) 2021; 101
Bender, Boettcher, Jones, Meisinger, Simsek (b40) 2003; 71
Ling, Zhang (b26) 2021
Cen, Francisco, Andreas (b58) 2019; 60
Zakharov, Manakov, Novikov, Pitaevskii (b5) 1984
Bilman, Miller (b19) 2019; 72
Li, Tian (b59) 2021
Lin, Chen (b32) 2022
Feng, Luo, Ablowitz, Musslimani (b55) 2018; 31
Gardner, Greene, Kruskal, Miura (b4) 1967; 19
Peng, Tian, Wang (b9) 2019; 146
Wang, Zhang, Yang (b13) 2010; 51
Ablowitz, Clarkson (b1) 1991
Mo, Ling, Zeng (b36) 2021
Tian (b25) 2021; 51
Bagchi, Quesne (b41) 2000; 273
Zhang, Tian, Yang (b57) 2021
Baydin, Pearlmutter, Radul, Siskind (b62) 2018; 18
Li, Guo (b61) 2021; 105
Mihalache (b42) 2017; 69
Zhang, Tao, Yao, He (b22) 2020; 145
Bender (10.1016/j.physd.2022.133274_b38) 2013; 81
Bagchi (10.1016/j.physd.2022.133274_b41) 2000; 273
Zhang (10.1016/j.physd.2022.133274_b22) 2020; 145
Wang (10.1016/j.physd.2022.133274_b24) 2021; 62
Lin (10.1016/j.physd.2022.133274_b32) 2022
Wang (10.1016/j.physd.2022.133274_b33) 2021
Rao (10.1016/j.physd.2022.133274_b45) 2017; 139
Li (10.1016/j.physd.2022.133274_b29) 2020; 72
El-Ganainy (10.1016/j.physd.2022.133274_b37) 2007; 32
Wang (10.1016/j.physd.2022.133274_b13) 2010; 51
Peng (10.1016/j.physd.2022.133274_b9) 2019; 146
Wang (10.1016/j.physd.2022.133274_b47) 2021; 104
Zhang (10.1016/j.physd.2022.133274_b18) 2020
Yang (10.1016/j.physd.2022.133274_b23) 2022; 432
Pu (10.1016/j.physd.2022.133274_b30) 2021; 105
Zhang (10.1016/j.physd.2022.133274_b12) 2019; 399
Ablowitz (10.1016/j.physd.2022.133274_b53) 2018; 141
Mo (10.1016/j.physd.2022.133274_b36) 2021
Yang (10.1016/j.physd.2022.133274_b6) 2010
Bilman (10.1016/j.physd.2022.133274_b27) 2020; 169
Gadzhimuradov (10.1016/j.physd.2022.133274_b39) 2016; 93
Li (10.1016/j.physd.2022.133274_b61) 2021; 105
Fang (10.1016/j.physd.2022.133274_b34) 2021
Zhang (10.1016/j.physd.2022.133274_b21) 2019; 98
Fokas (10.1016/j.physd.2022.133274_b44) 2016; 29
Ablowitz (10.1016/j.physd.2022.133274_b50) 2017; 139
Ji (10.1016/j.physd.2022.133274_b51) 2017; 453
Zhang (10.1016/j.physd.2022.133274_b56) 2020; 402
Li (10.1016/j.physd.2022.133274_b59) 2021
Wang (10.1016/j.physd.2022.133274_b35) 2021; 101
Stein (10.1016/j.physd.2022.133274_b64) 1987; 29
Yang (10.1016/j.physd.2022.133274_b10) 2019; 45
Gardner (10.1016/j.physd.2022.133274_b4) 1967; 19
Baydin (10.1016/j.physd.2022.133274_b62) 2018; 18
Liu (10.1016/j.physd.2022.133274_b17) 2020; 100
Bender (10.1016/j.physd.2022.133274_b40) 2003; 71
Zhou (10.1016/j.physd.2022.133274_b48) 2021
Ablowitz (10.1016/j.physd.2022.133274_b1) 1991
Cen (10.1016/j.physd.2022.133274_b58) 2019; 60
Zakharov (10.1016/j.physd.2022.133274_b5) 1984
Geng (10.1016/j.physd.2022.133274_b11) 2016; 60
Peng (10.1016/j.physd.2022.133274_b31) 2022; 105
Raissi (10.1016/j.physd.2022.133274_b28) 2019; 378
Ablowitz (10.1016/j.physd.2022.133274_b43) 2013; 110
Chen (10.1016/j.physd.2022.133274_b20) 2019; 383
Guo (10.1016/j.physd.2022.133274_b8) 2012; 53
Mihalache (10.1016/j.physd.2022.133274_b42) 2017; 69
Hirota (10.1016/j.physd.2022.133274_b2) 2004
Zhou (10.1016/j.physd.2022.133274_b46) 2018; 141
Tian (10.1016/j.physd.2022.133274_b25) 2021; 51
Feng (10.1016/j.physd.2022.133274_b55) 2018; 31
Matveev (10.1016/j.physd.2022.133274_b3) 1991
Biondini (10.1016/j.physd.2022.133274_b14) 2014; 55
Ablowitz (10.1016/j.physd.2022.133274_b54) 2018; 196
Ablowitz (10.1016/j.physd.2022.133274_b52) 2018; 59
Xia (10.1016/j.physd.2022.133274_b60) 2021
Ling (10.1016/j.physd.2022.133274_b26) 2021
Ablowitz (10.1016/j.physd.2022.133274_b49) 2016; 29
Biondini (10.1016/j.physd.2022.133274_b15) 2016; 333
Zhang (10.1016/j.physd.2022.133274_b57) 2021
Zhang (10.1016/j.physd.2022.133274_b16) 2019; 402
Bilman (10.1016/j.physd.2022.133274_b19) 2019; 72
Li (10.1016/j.physd.2022.133274_b7) 2021
Liu (10.1016/j.physd.2022.133274_b63) 1989; 45
References_xml – volume: 51
  start-page: 1
  year: 2021
  end-page: 38
  ident: b25
  article-title: Riemann-Hilbert problem to a generalized derivative nonlinear Schrödinger equation: Long-time asymptotic behavior
  publication-title: Sci. Sin Math.
– volume: 432
  year: 2022
  ident: b23
  article-title: Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions
  publication-title: Physica D
– volume: 101
  year: 2021
  ident: b35
  article-title: A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrödinger equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 2021
  ident: b60
  article-title: Darboux transformation and soliton solutions of a nonlocal Hirota equation
  publication-title: Chin. Phys. B
– volume: 31
  start-page: 5385
  year: 2018
  ident: b55
  article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
  publication-title: Nonlinearity
– volume: 59
  year: 2018
  ident: b52
  article-title: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions
  publication-title: J. Math. Phys.
– year: 2021
  ident: b7
  article-title: Riemann-Hilbert problem and interactions of solitons in the
  publication-title: Stud. Appl. Math.
– volume: 32
  start-page: 2632
  year: 2007
  ident: b37
  article-title: Theory of coupled optical
  publication-title: Opt. Lett.
– volume: 29
  start-page: 915
  year: 2016
  end-page: 946
  ident: b49
  article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinearity
– volume: 19
  start-page: 1095
  year: 1967
  ident: b4
  article-title: Method for solving the KortewegdeVries equation
  publication-title: Phys. Rev. Lett.
– volume: 60
  year: 2019
  ident: b58
  article-title: Integrable nonlocal Hirota equations
  publication-title: J. Math. Phys.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b63
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program
– year: 2021
  ident: b48
  article-title: Breathers and rogue waves on the double-periodic background for the reverse-space–time derivative nonlinear Schrödinger equation
  publication-title: Nonlinear Dynam.
– volume: 81
  start-page: 173
  year: 2013
  ident: b38
  article-title: Observation of PT phase transition in a simple mechanical system
  publication-title: Amer. J. Phys.
– volume: 333
  start-page: 117
  year: 2016
  end-page: 136
  ident: b15
  article-title: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions
  publication-title: Physica D
– volume: 146
  year: 2019
  ident: b9
  article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J. Geom. Phys.
– volume: 98
  start-page: 306
  year: 2019
  end-page: 313
  ident: b21
  article-title: Inverse scattering transformation for generalized nonlinear Schrödinger equation
  publication-title: Appl. Math. Lett.
– volume: 196
  start-page: 1241
  year: 2018
  end-page: 1267
  ident: b54
  article-title: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation
  publication-title: Theoret. Math. Phys.
– year: 1984
  ident: b5
  article-title: The Theory of Solitons: The Inverse Scattering Method
– volume: 72
  start-page: 1722
  year: 2019
  end-page: 1805
  ident: b19
  article-title: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation
  publication-title: Comm. Pure Appl. Math.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b28
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 60
  start-page: 62
  year: 2016
  end-page: 72
  ident: b11
  article-title: Riemann-Hilbert approach and
  publication-title: Wave Motion.
– volume: 105
  year: 2022
  ident: b31
  article-title: PINN deep learning for the chen-lee-liu equation: rogue wave on the periodic background
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 51
  year: 2010
  ident: b13
  article-title: Integrable properties of the general coupled nonlinear Schrödinger equations
  publication-title: J. Math. Phys.
– year: 2021
  ident: b57
  article-title: Inverse scattering transform and multiple high-order pole solutions for the nonlocal focusing and defocusing modified Korteweg–de Vries equation with the nonzero boundary conditions
– volume: 139
  start-page: 7
  year: 2017
  end-page: 59
  ident: b50
  article-title: Integrable nonlocal nonlinear equations
  publication-title: Stud. Appl. Math.
– year: 2021
  ident: b36
  article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm
  publication-title: Phys. Lett. A
– volume: 399
  start-page: 173
  year: 2019
  end-page: 185
  ident: b12
  article-title: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation N simple poles and one higher-order pole
  publication-title: Physica D
– year: 2021
  ident: b33
  article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning
  publication-title: Phys. Lett. A
– volume: 453
  start-page: 973
  year: 2017
  end-page: 984
  ident: b51
  article-title: Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform
  publication-title: J. Math. Anal. Appl.
– start-page: 71
  year: 2020
  ident: b18
  article-title: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions
  publication-title: Z. Angew. Math. Phys.
– volume: 72
  year: 2020
  ident: b29
  article-title: Solving second-order nonlinear evolution partial differential equations using deep learning
  publication-title: Commun. Theor. Phys.
– volume: 45
  start-page: 918
  year: 2019
  end-page: 941
  ident: b10
  article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem
  publication-title: Nonlinear Anal. RWA
– volume: 110
  start-page: 64105
  year: 2013
  ident: b43
  article-title: Integrable nonlocal nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
– volume: 145
  start-page: 812
  year: 2020
  end-page: 827
  ident: b22
  article-title: The regularity of the multiple higher-order poles solitons of the NLS equation
  publication-title: Stud. Appl. Math.
– volume: 141
  start-page: 267
  year: 2018
  end-page: 307
  ident: b53
  article-title: Reverse space–time nonlocal sine-gordon/sinh-gordon equations with nonzero boundary conditions
  publication-title: Stud. Appl. Math.
– volume: 55
  year: 2014
  ident: b14
  article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions
  publication-title: J. Math. Phys.
– year: 2021
  ident: b26
  article-title: Large and infinite order solitons of the coupled nonlinear Schrödinger equation
– volume: 139
  start-page: 568
  year: 2017
  ident: b45
  article-title: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations
  publication-title: Stud. Appl. Math.
– volume: 141
  start-page: 186
  year: 2018
  ident: b46
  article-title: Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation
  publication-title: Stud. Appl. Math.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b62
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 402
  year: 2020
  ident: b56
  article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with nonzero boundary conditions
  publication-title: Physica D
– volume: 29
  start-page: 143
  year: 1987
  end-page: 151
  ident: b64
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
– volume: 383
  year: 2019
  ident: b20
  article-title: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons
  publication-title: Phys. Lett. A.
– volume: 273
  start-page: 285
  year: 2000
  ident: b41
  article-title: Sl(2, C) as a complex Lie algebra and the associated non-hermitian Hamiltonians with real eigenvalues
  publication-title: Phys. Lett. A.
– volume: 62
  year: 2021
  ident: b24
  article-title: The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations
  publication-title: J. Math. Phys.
– volume: 29
  start-page: 319
  year: 2016
  ident: b44
  article-title: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinearity
– year: 2010
  ident: b6
  article-title: Nonlinear waves in integrable and non-integrable systems
  publication-title: Soc. Ind. Appl. Math.
– volume: 100
  start-page: 629
  year: 2020
  end-page: 646
  ident: b17
  article-title: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach
  publication-title: Nonlinear. Dyn.
– volume: 53
  start-page: 133
  year: 2012
  end-page: 3966
  ident: b8
  article-title: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation
  publication-title: J. Math. Phys.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b34
  article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN
  publication-title: Nonlinear Dynam.
– volume: 93
  start-page: 62124
  year: 2016
  ident: b39
  article-title: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation
  publication-title: Phys. Rev. A.
– volume: 71
  start-page: 1095
  year: 2003
  ident: b40
  article-title: Bound states of non-Hermitian quantum field theories
  publication-title: Phys. Lett. A.
– volume: 104
  start-page: 2621
  year: 2021
  end-page: 2638
  ident: b47
  article-title: Dynamic behaviors of general
  publication-title: Nonlinear Dynam.
– year: 2022
  ident: b32
  article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions
  publication-title: J. Comput. Phys.
– year: 2021
  ident: b59
  article-title: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation
  publication-title: Commun. Pure Appl. Anal.
– volume: 169
  start-page: 671
  year: 2020
  end-page: 760
  ident: b27
  article-title: Extreme superposition: Rogue waves of infinite order and the painlev-III hierarchy
  publication-title: Duke Math. J.
– volume: 105
  start-page: 617
  year: 2021
  end-page: 628
  ident: b61
  article-title: Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions
  publication-title: Nonlinear Dyn.
– volume: 402
  year: 2019
  ident: b16
  article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions
  publication-title: Physica D.
– volume: 69
  start-page: 403
  year: 2017
  ident: b42
  article-title: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature
  publication-title: Rom. Rep. Phys.
– year: 1991
  ident: b1
  article-title: Solitons; Nonlinear Evolution Equations and Inverse Scattering
– volume: 105
  start-page: 1
  year: 2021
  end-page: 17
  ident: b30
  article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method
  publication-title: Nonlinear Dynam.
– year: 2004
  ident: b2
  article-title: Direct Methods in Soliton Theory
– year: 1991
  ident: b3
  article-title: Darboux Transformation and Solitons
– volume: 333
  start-page: 117
  year: 2016
  ident: 10.1016/j.physd.2022.133274_b15
  article-title: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions
  publication-title: Physica D
  doi: 10.1016/j.physd.2016.04.003
– volume: 146
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b9
  article-title: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2019.103508
– volume: 32
  start-page: 2632
  year: 2007
  ident: 10.1016/j.physd.2022.133274_b37
  article-title: Theory of coupled optical PT-symmetric structures
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.002632
– volume: 141
  start-page: 267
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b53
  article-title: Reverse space–time nonlocal sine-gordon/sinh-gordon equations with nonzero boundary conditions
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12222
– volume: 45
  start-page: 503
  year: 1989
  ident: 10.1016/j.physd.2022.133274_b63
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program
  doi: 10.1007/BF01589116
– volume: 110
  start-page: 64105
  year: 2013
  ident: 10.1016/j.physd.2022.133274_b43
  article-title: Integrable nonlocal nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.064105
– volume: 45
  start-page: 918
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b10
  article-title: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2018.08.004
– volume: 105
  start-page: 617
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b61
  article-title: Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06556-3
– volume: 19
  start-page: 1095
  year: 1967
  ident: 10.1016/j.physd.2022.133274_b4
  article-title: Method for solving the KortewegdeVries equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.19.1095
– year: 2010
  ident: 10.1016/j.physd.2022.133274_b6
  article-title: Nonlinear waves in integrable and non-integrable systems
  publication-title: Soc. Ind. Appl. Math.
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b7
  article-title: Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations
  publication-title: Stud. Appl. Math.
– year: 2022
  ident: 10.1016/j.physd.2022.133274_b32
  article-title: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111053
– volume: 72
  start-page: 1722
  issue: 8
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b19
  article-title: A robust inverse scattering transform for the focusing nonlinear Schrödinger equation
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21819
– year: 2004
  ident: 10.1016/j.physd.2022.133274_b2
– volume: 141
  start-page: 186
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b46
  article-title: Darboux transformations and global explicit solutions for nonlocal Davey–Stewartson I equation
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12219
– volume: 51
  start-page: 1
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b25
  article-title: Riemann-Hilbert problem to a generalized derivative nonlinear Schrödinger equation: Long-time asymptotic behavior
  publication-title: Sci. Sin Math.
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b48
  article-title: Breathers and rogue waves on the double-periodic background for the reverse-space–time derivative nonlinear Schrödinger equation
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-021-06953-8
– volume: 98
  start-page: 306
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b21
  article-title: Inverse scattering transformation for generalized nonlinear Schrödinger equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.06.014
– volume: 62
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b24
  article-title: The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations
  publication-title: J. Math. Phys.
  doi: 10.1063/5.0046806
– volume: 29
  start-page: 143
  year: 1987
  ident: 10.1016/j.physd.2022.133274_b64
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b26
– volume: 105
  year: 2022
  ident: 10.1016/j.physd.2022.133274_b31
  article-title: PINN deep learning for the chen-lee-liu equation: rogue wave on the periodic background
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.106067
– volume: 59
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b52
  article-title: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5018294
– volume: 196
  start-page: 1241
  issue: 3
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b54
  article-title: Inverse scattering transform for the nonlocal reverse space-time nonlinear Schrödinger equation
  publication-title: Theoret. Math. Phys.
  doi: 10.1134/S0040577918090015
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b59
  article-title: Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation
  publication-title: Commun. Pure Appl. Anal.
– volume: 53
  start-page: 133
  year: 2012
  ident: 10.1016/j.physd.2022.133274_b8
  article-title: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4732464
– volume: 399
  start-page: 173
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b12
  article-title: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation N simple poles and one higher-order pole
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.05.008
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b60
  article-title: Darboux transformation and soliton solutions of a nonlocal Hirota equation
  publication-title: Chin. Phys. B
– volume: 93
  start-page: 62124
  year: 2016
  ident: 10.1016/j.physd.2022.133274_b39
  article-title: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.93.062124
– volume: 383
  issue: 29
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b20
  article-title: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons
  publication-title: Phys. Lett. A.
  doi: 10.1016/j.physleta.2019.125906
– volume: 69
  start-page: 403
  year: 2017
  ident: 10.1016/j.physd.2022.133274_b42
  article-title: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature
  publication-title: Rom. Rep. Phys.
– volume: 402
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b16
  article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions
  publication-title: Physica D.
– volume: 60
  start-page: 62
  year: 2016
  ident: 10.1016/j.physd.2022.133274_b11
  article-title: Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation
  publication-title: Wave Motion.
  doi: 10.1016/j.wavemoti.2015.09.003
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b36
  article-title: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm
  publication-title: Phys. Lett. A
– volume: 402
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b56
  article-title: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with nonzero boundary conditions
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.132170
– volume: 72
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b29
  article-title: Solving second-order nonlinear evolution partial differential equations using deep learning
  publication-title: Commun. Theor. Phys.
– volume: 51
  year: 2010
  ident: 10.1016/j.physd.2022.133274_b13
  article-title: Integrable properties of the general coupled nonlinear Schrödinger equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3290736
– year: 1991
  ident: 10.1016/j.physd.2022.133274_b3
– volume: 104
  start-page: 2621
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b47
  article-title: Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-021-06421-3
– volume: 453
  start-page: 973
  year: 2017
  ident: 10.1016/j.physd.2022.133274_b51
  article-title: Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.04.042
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b57
– volume: 105
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b30
  article-title: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-021-06554-5
– year: 1991
  ident: 10.1016/j.physd.2022.133274_b1
– year: 2021
  ident: 10.1016/j.physd.2022.133274_b33
  article-title: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning
  publication-title: Phys. Lett. A
– volume: 71
  start-page: 1095
  year: 2003
  ident: 10.1016/j.physd.2022.133274_b40
  article-title: Bound states of non-Hermitian quantum field theories
  publication-title: Phys. Lett. A.
– volume: 31
  start-page: 5385
  issue: 12
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b55
  article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aae031
– start-page: 1
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b34
  article-title: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN
  publication-title: Nonlinear Dynam.
– volume: 29
  start-page: 319
  year: 2016
  ident: 10.1016/j.physd.2022.133274_b44
  article-title: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/2/319
– volume: 55
  year: 2014
  ident: 10.1016/j.physd.2022.133274_b14
  article-title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4868483
– year: 1984
  ident: 10.1016/j.physd.2022.133274_b5
– start-page: 71
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b18
  article-title: Inverse scattering transform for the Gerdjikov-Ivanov equation with nonzero boundary conditions
  publication-title: Z. Angew. Math. Phys.
– volume: 273
  start-page: 285
  year: 2000
  ident: 10.1016/j.physd.2022.133274_b41
  article-title: Sl(2, C) as a complex Lie algebra and the associated non-hermitian Hamiltonians with real eigenvalues
  publication-title: Phys. Lett. A.
  doi: 10.1016/S0375-9601(00)00512-0
– volume: 100
  start-page: 629
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b17
  article-title: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach
  publication-title: Nonlinear. Dyn.
  doi: 10.1007/s11071-020-05521-w
– volume: 139
  start-page: 568
  year: 2017
  ident: 10.1016/j.physd.2022.133274_b45
  article-title: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12178
– volume: 169
  start-page: 671
  issue: 4
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b27
  article-title: Extreme superposition: Rogue waves of infinite order and the painlev-III hierarchy
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2019-0066
– volume: 139
  start-page: 7
  year: 2017
  ident: 10.1016/j.physd.2022.133274_b50
  article-title: Integrable nonlocal nonlinear equations
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12153
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b28
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 29
  start-page: 915
  year: 2016
  ident: 10.1016/j.physd.2022.133274_b49
  article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/915
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.physd.2022.133274_b62
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 173
  year: 2013
  ident: 10.1016/j.physd.2022.133274_b38
  article-title: Observation of PT phase transition in a simple mechanical system
  publication-title: Amer. J. Phys.
  doi: 10.1119/1.4789549
– volume: 60
  issue: 8
  year: 2019
  ident: 10.1016/j.physd.2022.133274_b58
  article-title: Integrable nonlocal Hirota equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5013154
– volume: 432
  year: 2022
  ident: 10.1016/j.physd.2022.133274_b23
  article-title: Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions
  publication-title: Physica D
  doi: 10.1016/j.physd.2022.133162
– volume: 145
  start-page: 812
  issue: 4
  year: 2020
  ident: 10.1016/j.physd.2022.133274_b22
  article-title: The regularity of the multiple higher-order poles solitons of the NLS equation
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12338
– volume: 101
  year: 2021
  ident: 10.1016/j.physd.2022.133274_b35
  article-title: A deep learning improved numerical method for the simulation of rogue waves of nonlinear Schrödinger equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.105896
SSID ssj0001737
Score 2.5851564
Snippet In this paper, we systematically investigate the nonlocal Hirota equation with nonzero boundary conditions via Riemann–Hilbert method and multi-layer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 133274
SubjectTerms Nonlocal Hirota equation
Nonzero boundary conditions
Physics-informed neural networks
Riemann–Hilbert method
Simple/double poles solutions
Title N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm
URI https://dx.doi.org/10.1016/j.physd.2022.133274
Volume 435
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0167-2789
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001737
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0167-2789
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001737
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0167-2789
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001737
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0167-2789
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001737
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCHoQn7g-ljl4tG43m3bboywuXcUiPsBbafOQyr6s9aAH8ejdf-gvMZO0PkA8eGyblDAT8s0kX74hZI8pHaV7suNoOHAdhulOEArhZCHnbpsrt2skNk5jP7pix9fe9Qzp1XdhkFZZrf12TTerdfWmVVmzNc3z1gUS6PEeJ6UGCFETlLEuVjE4eP6iebS7VjcT9b2xda08ZDheuHuAcqGUHuhcjXbZ7-j0DXH6y2SpChXh0I5mhczI8SpZ_CYguErmDYGT36-R19gRk4dsKGGKEk3wOaVAR6Wgc3wDWhDlxaRMQd5ZhW_AbVj8-iSLCWSmxFLxCDpHFpbKBciLv4HzXI7S8fj95S3KURSrBFt5GtKxgLNBHEM6vJkU-mejdXLVP7rsRU5VZcHhGr5KJ3SVwvvwVKermXK55CKjPmVcpFJ0dPzgex3tTq7zNqHNG_osZJwpyVmIe8ppZ4PM6nHKTQKpp9puwNuBnwZMcRoGCtVi8ChRKF_xBqG1dRNeSZBjJYxhUnPNbhPjkgRdkliXNMj-Z6epVeD4u7lfuy35MZESjRF_ddz6b8dtsoBPlsO7Q2bL4kHu6kilzJpmKjbJ3OHgJIo_AC0X6kQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xEKI9oEJblUfLHDg2bNbrvI4IFYVXhChI3KLEDxS07G5DOMCh4sidf8gvqcdOKEiIA9fYjiyP5ZnP_uYbgA2uTZQeqIFn3IHvcYI7cSKlVyZC-H2h_chKbBxmYXrK986CsynY7nJhiFbZnv3uTLendful165mb1JVvd9EoKc8TsasI-TTMMsDFhEC2_z7n-fRj5xwJgl8U_dOesiSvOj6gPRCGds0YI1F_HX39Mzl7HyChTZWxC03nUWYUqMl-PhMQXAJ5iyDU1x9hvvMk-PrcqhwQhpN-LSn0ISlaEC-9VqYVvW4KVD9cRLfSPew1Hqr6jGWtsZSfYMGJEvH5UIixp_jcaUui9Ho8e4hrUgVq0FXehqLkcSj3SzDYng-rs3PLr_A6c6vk-3Ua8sseML4r8ZLfK0pIZ4ZvFpqXyghSxYyLmSh5MAEEGEwMPYUBrhJHtEzbcIF10rwhC6Vi8FXmDHzVN8Ai0D3_Vj047CIuRYsiTXJxdBbotShFsvAutXNRatBTqUwhnlHNrvIrUlyMknuTLIMP58GTZwEx9vdw85s-YudlBsn8dbAlfcOXIf59OTwID_YzfZX4QO1OELvGsw09bX6bsKWpvxht-U_pGvr2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-double+poles+solutions+for+nonlocal+Hirota+equation+with+nonzero+boundary+conditions+using+Riemann%E2%80%93Hilbert+method+and+PINN+algorithm&rft.jtitle=Physica.+D&rft.au=Peng%2C+Wei-Qi&rft.au=Chen%2C+Yong&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.volume=435&rft_id=info:doi/10.1016%2Fj.physd.2022.133274&rft.externalDocID=S0167278922000744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon