Robust prediction for CH4/CO2 competitive adsorption by genetic algorithm pruned neural network
Saved in:
| Published in | Geoenergy Science and Engineering Vol. 234; p. 212618 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.03.2024
|
| Online Access | Get full text |
| ISSN | 2949-8910 2949-8910 |
| DOI | 10.1016/j.geoen.2023.212618 |
Cover
| ArticleNumber | 212618 |
|---|---|
| Author | Wang, Hai Hui, Gang Chen, Shengnan Pang, Yu Wang, Muming |
| Author_xml | – sequence: 1 givenname: Hai orcidid: 0000-0002-0592-9834 surname: Wang fullname: Wang, Hai – sequence: 2 givenname: Yu orcidid: 0000-0002-7247-1632 surname: Pang fullname: Pang, Yu – sequence: 3 givenname: Shengnan orcidid: 0000-0002-1704-1007 surname: Chen fullname: Chen, Shengnan – sequence: 4 givenname: Muming orcidid: 0000-0002-1558-5799 surname: Wang fullname: Wang, Muming – sequence: 5 givenname: Gang orcidid: 0000-0002-0120-5994 surname: Hui fullname: Hui, Gang |
| BookMark | eNp9kM1KAzEUhYNUsNY-gZu8wEzz12mylEGtUCiIrkOa3Kmp08mQpErf3ml1IS5cncu99xwO3zUadaEDhG4pKSmh1WxXbiFAVzLCeMkoq6i8QGOmhCqkomT0a75C05R2hBDOuCKkGiP9HDaHlHEfwXmbfehwEyKul2JWrxm2Yd9D9tl_ADYuhdifXzZHvIVuOFhs2m2IPr_th4hDBw53cIimHSR_hvh-gy4b0yaY_ugEvT7cv9TLYrV-fKrvVoXlhOdCOquYMQtplQEhuWlAGDUsK0ocEWQBwjou5lXFjBRztrASVAPAHLMGYMMnSH3n2hhSitBo67M5lc3R-FZTok-w9E6fYekTLP0Na_DyP94--r2Jx39dX5Axc-w |
| CitedBy_id | crossref_primary_10_3390_en18051238 crossref_primary_10_3390_en18030739 |
| Cites_doi | 10.1016/j.plrev.2014.03.005 10.1007/s00521-020-05035-x 10.1016/j.cej.2022.135865 10.3390/s21196410 10.1016/j.csda.2007.08.015 10.1016/j.jngse.2021.104045 10.1016/0893-6080(89)90020-8 10.1023/A:1010933404324 10.1016/j.juogr.2016.02.003 10.1016/j.petrol.2017.03.017 10.3390/en15072548 10.1016/j.fuel.2020.118358 10.1088/0957-0233/15/5/010 10.1016/j.eml.2016.05.014 10.1007/s11222-016-9646-1 10.1038/35065725 10.1016/j.coal.2017.06.006 10.1021/acs.energyfuels.5b02088 10.1016/j.jngse.2018.02.034 10.1007/s11042-020-10139-6 10.1016/j.jngse.2016.03.097 10.1039/C6RA05083B 10.1016/j.petrol.2021.108899 10.1038/s41598-021-92278-w 10.1016/j.apt.2021.09.015 10.1016/j.coal.2015.09.004 10.1016/j.cej.2021.133151 10.1016/j.petrol.2017.09.038 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.geoen.2023.212618 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-8910 |
| ExternalDocumentID | 10_1016_j_geoen_2023_212618 |
| GroupedDBID | 0R~ AALRI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIKHN AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP CITATION FDB M41 ROL |
| ID | FETCH-LOGICAL-c303t-8dc92aa78c9ae483afe4a9dc9610d0407e4cd345662a84527c8e9fee2d2caeeb3 |
| ISSN | 2949-8910 |
| IngestDate | Thu Apr 24 22:51:50 EDT 2025 Wed Oct 01 05:31:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-8dc92aa78c9ae483afe4a9dc9610d0407e4cd345662a84527c8e9fee2d2caeeb3 |
| ORCID | 0000-0002-0120-5994 0000-0002-1558-5799 0000-0002-1704-1007 0000-0002-0592-9834 0000-0002-7247-1632 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.geoen.2023.212618 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_geoen_2023_212618 crossref_primary_10_1016_j_geoen_2023_212618 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Geoenergy Science and Engineering |
| PublicationYear | 2024 |
| References | Guo (10.1016/j.geoen.2023.212618_bib12) 2018; 31 Fisher (10.1016/j.geoen.2023.212618_bib10) 2019; 20 Cancino (10.1016/j.geoen.2023.212618_bib5) 2017; 159 Lu (10.1016/j.geoen.2023.212618_bib26) 2022; 440 Huang (10.1016/j.geoen.2023.212618_bib18) 2022 Hong (10.1016/j.geoen.2023.212618_bib15) 2016; 14 Sui (10.1016/j.geoen.2023.212618_bib34) 2016; 31 Kundu (10.1016/j.geoen.2023.212618_bib21) 2021 Desai (10.1016/j.geoen.2023.212618_bib7) 2021; 11 Sun (10.1016/j.geoen.2023.212618_bib35) 2016; 6 Zeng (10.1016/j.geoen.2023.212618_bib39) 2022; 430 Wang (10.1016/j.geoen.2023.212618_bib37) 2021; 203 Dang (10.1016/j.geoen.2023.212618_bib6) 2017; 152 Hornik (10.1016/j.geoen.2023.212618_bib16) 1989; 2 Katoch (10.1016/j.geoen.2023.212618_bib20) 2021; 80 Liu (10.1016/j.geoen.2023.212618_bib23) 2017; 179 Zang (10.1016/j.geoen.2023.212618_bib38) 2021; 21 Duan (10.1016/j.geoen.2023.212618_bib9) 2016; 30 Liu (10.1016/j.geoen.2023.212618_bib24) 2018; 53 Murray-Smith (10.1016/j.geoen.2023.212618_bib29) 2012 Sankararaman (10.1016/j.geoen.2023.212618_bib32) 2020 Szegedy (10.1016/j.geoen.2023.212618_bib36) 2013 Archer (10.1016/j.geoen.2023.212618_bib1) 2008; 52 Breiman (10.1016/j.geoen.2023.212618_bib3) 2001; 45 Hoefler (10.1016/j.geoen.2023.212618_bib14) 2021; 22 Lin (10.1016/j.geoen.2023.212618_bib22) 2016; 9 Pessoa (10.1016/j.geoen.2023.212618_bib31) 2014; 11 Hamdia (10.1016/j.geoen.2023.212618_bib13) 2021; 33 Hu (10.1016/j.geoen.2023.212618_bib17) 2021; 32 Strogatz (10.1016/j.geoen.2023.212618_bib33) 2001; 410 Luo (10.1016/j.geoen.2023.212618_bib27) 2015; 150 Buitinck (10.1016/j.geoen.2023.212618_bib4) 2013 10.1016/j.geoen.2023.212618_bib8 Hui (10.1016/j.geoen.2023.212618_bib19) 2021; 94 Lu (10.1016/j.geoen.2023.212618_bib25) 2011 Gregorutti (10.1016/j.geoen.2023.212618_bib11) 2017; 27 Belmabkhout (10.1016/j.geoen.2023.212618_bib2) 2004; 15 Meng (10.1016/j.geoen.2023.212618_bib28) 2020; 278 Pang (10.1016/j.geoen.2023.212618_bib30) 2022; 15 |
| References_xml | – volume: 11 start-page: 400 year: 2014 ident: 10.1016/j.geoen.2023.212618_bib31 article-title: Understanding brain networks and brain organization publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2014.03.005 – volume: 33 start-page: 1923 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib13 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05035-x – volume: 440 year: 2022 ident: 10.1016/j.geoen.2023.212618_bib26 article-title: Competitive adsorption in CO2 enhancing shale gas: low-field NMR measurement combined with molecular simulation for selectivity and displacement efficiency model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135865 – volume: 21 start-page: 6410 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib38 article-title: Deep sparse learning for automatic modulation classification using Recurrent Neural Networks publication-title: Sensors doi: 10.3390/s21196410 – volume: 52 start-page: 2249 year: 2008 ident: 10.1016/j.geoen.2023.212618_bib1 article-title: Empirical characterization of random forest variable importance measures publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.08.015 – volume: 94 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib19 article-title: Machine learning-based production forecast for shale gas in unconventional reservoirs via integration of geological and operational factors publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.104045 – year: 2013 ident: 10.1016/j.geoen.2023.212618_bib36 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.geoen.2023.212618_bib16 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network. doi: 10.1016/0893-6080(89)90020-8 – start-page: 8469 year: 2020 ident: 10.1016/j.geoen.2023.212618_bib32 article-title: The impact of neural network overparameterization on gradient confusion and stochastic gradient descent – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geoen.2023.212618_bib3 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2011 ident: 10.1016/j.geoen.2023.212618_bib25 – volume: 14 start-page: 99 year: 2016 ident: 10.1016/j.geoen.2023.212618_bib15 article-title: An investigation of factors affecting the interaction of CO2 and CH4 on shale in Appalachian Basin publication-title: Journal of Unconventional Oil and Gas Resources doi: 10.1016/j.juogr.2016.02.003 – volume: 152 start-page: 456 year: 2017 ident: 10.1016/j.geoen.2023.212618_bib6 article-title: Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the Southern North China Basin, Central China: experimental results and geological implications publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.03.017 – year: 2012 ident: 10.1016/j.geoen.2023.212618_bib29 – volume: 15 start-page: 2548 year: 2022 ident: 10.1016/j.geoen.2023.212618_bib30 article-title: Predicting adsorption of methane and carbon dioxide mixture in shale using simplified local-density model: implications for enhanced gas recovery and carbon dioxide sequestration publication-title: Energies doi: 10.3390/en15072548 – volume: 278 year: 2020 ident: 10.1016/j.geoen.2023.212618_bib28 article-title: Prediction of methane adsorption in shale: classical models and machine learning based models publication-title: Fuel doi: 10.1016/j.fuel.2020.118358 – volume: 15 start-page: 848 year: 2004 ident: 10.1016/j.geoen.2023.212618_bib2 article-title: High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/15/5/010 – volume: 9 start-page: 127 year: 2016 ident: 10.1016/j.geoen.2023.212618_bib22 article-title: Which is the most efficient candidate for the recovery of confined methane: water, carbon dioxide or nitrogen? publication-title: Extreme Mechanics Letters doi: 10.1016/j.eml.2016.05.014 – volume: 27 start-page: 659 year: 2017 ident: 10.1016/j.geoen.2023.212618_bib11 article-title: Correlation and variable importance in random forests publication-title: Stat. Comput. doi: 10.1007/s11222-016-9646-1 – volume: 410 start-page: 268 year: 2001 ident: 10.1016/j.geoen.2023.212618_bib33 article-title: Exploring complex networks publication-title: Nature doi: 10.1038/35065725 – start-page: 344 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib21 article-title: Dnr: a tunable robust pruning framework through dynamic network rewiring of dnns – volume: 179 start-page: 211 year: 2017 ident: 10.1016/j.geoen.2023.212618_bib23 article-title: Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2017.06.006 – volume: 30 start-page: 2248 year: 2016 ident: 10.1016/j.geoen.2023.212618_bib9 article-title: Adsorption equilibrium of CO2 and CH4 and their mixture on Sichuan Basin shale publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b02088 – volume: 53 start-page: 329 year: 2018 ident: 10.1016/j.geoen.2023.212618_bib24 article-title: Competitive adsorption and diffusion of CH4/CO2 binary mixture within shale organic nanochannels publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2018.02.034 – ident: 10.1016/j.geoen.2023.212618_bib8 – year: 2013 ident: 10.1016/j.geoen.2023.212618_bib4 – volume: 80 start-page: 8091 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib20 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-020-10139-6 – volume: 31 start-page: 738 year: 2016 ident: 10.1016/j.geoen.2023.212618_bib34 article-title: Effect of surface chemistry for CH4/CO2 adsorption in kerogen: a molecular simulation study publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.03.097 – volume: 22 start-page: 1 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib14 article-title: Sparsity in Deep Learning: pruning and growth for efficient inference and training in neural networks publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.geoen.2023.212618_bib10 article-title: All models are wrong, but many are useful: learning a variable's importance by studying an entire class of prediction models simultaneously publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 32770 year: 2016 ident: 10.1016/j.geoen.2023.212618_bib35 article-title: Adsorption properties of CH 4 and CO 2 in quartz nanopores studied by molecular simulation publication-title: RSC Adv. doi: 10.1039/C6RA05083B – volume: 203 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib37 article-title: Production forecast and optimization for parent-child well pattern in unconventional reservoirs publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.108899 – volume: 11 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib7 article-title: Parsimonious neural networks learn interpretable physical laws publication-title: Sci. Rep. doi: 10.1038/s41598-021-92278-w – volume: 31 year: 2018 ident: 10.1016/j.geoen.2023.212618_bib12 article-title: Sparse dnns with improved adversarial robustness publication-title: Adv. Neural Inf. Process. Syst. – volume: 32 start-page: 4110 year: 2021 ident: 10.1016/j.geoen.2023.212618_bib17 article-title: Experimental study on influence of adsorption equilibrium time on methane adsorption isotherm and Langmuir parameter publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2021.09.015 – year: 2022 ident: 10.1016/j.geoen.2023.212618_bib18 article-title: Fast prediction of methane adsorption in shale nanopores using kinetic theory and machine learning algorithm publication-title: Chem. Eng. J. – volume: 150 start-page: 210 year: 2015 ident: 10.1016/j.geoen.2023.212618_bib27 article-title: Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2015.09.004 – volume: 430 year: 2022 ident: 10.1016/j.geoen.2023.212618_bib39 article-title: Methane adsorption capacity measurement in shale matrix nanopores at high pressure by low-field NMR and molecular simulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133151 – volume: 159 start-page: 307 year: 2017 ident: 10.1016/j.geoen.2023.212618_bib5 article-title: Adsorption of pure CO2 and a CO2/CH4 mixture on a black shale sample: Manometry and microcalorimetry measurements publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2017.09.038 |
| SSID | ssj0003239006 |
| Score | 2.2788332 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 212618 |
| Title | Robust prediction for CH4/CO2 competitive adsorption by genetic algorithm pruned neural network |
| Volume | 234 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: ACRLP dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 2949-8910 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003239006 issn: 2949-8910 databaseCode: AIKHN dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELa68rKXCcSmMQbywx6XrnPc1H5EFayaxkAMJPYUOfaFFUEyleQBHvbbd46dOIMKwV7S6OSc0tyXy-Xy3R0hH5QtDGDmc2TsVBMOkEXZRKgoAYwWNJ-aOLf1zoffk_kZ_3o-OR8M_vSrS6pspO9W1pX8j1VRhna1VbLPsGynFAW4j_bFLVoYt0-y8UmZ1TeVrfM3C92RBmdzbrveHrGGL26ryCw7SJmbcun8A0acqBKaVq1XF-VyUf26RiV1YakA0PThKBw7vB-6foESXKFg6w9szr3XzzDk5p3_mKtF-EDlRD_rQCdw_u4H_l4UAaLtwYf1davS5yQYD6Qs57qY5DIS0hNWYYXM-17mM5mt98T3ObHSsbscwyVecfyvIzvzfRRW_9tG-97jrSMdtny2y7RRklolqVPygqwxfCqMh2Rtb3by7bjL0sUsluNmQGt3-m3rqoYk-OB0euFNL045XSev_AsG3XNo2SADKDZJ6pBCA1IoIoUiUj4hTmgPJzTghGa31OOEdjihDifU4YR6nLwmZwf7p7N55EdrRBpjlioSRkum1FRoqYCLWOXAlUQhRtMG_foUuDYxBtcJU4JP2FQLkDkAM0wrvKHjN2RYlAW8JXSS5DwBjYvihOt8nNkWiVoIAyrmWS63CGuvSKp933k7_uQqfcQgW-Rjd9Bv13blseXvnrd8m7wMqH1PhtWyhh2MLats1wPgL3Ule5A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+prediction+for+CH4%2FCO2+competitive+adsorption+by+genetic+algorithm+pruned+neural+network&rft.jtitle=Geoenergy+Science+and+Engineering&rft.au=Wang%2C+Hai&rft.au=Pang%2C+Yu&rft.au=Chen%2C+Shengnan&rft.au=Wang%2C+Muming&rft.date=2024-03-01&rft.issn=2949-8910&rft.eissn=2949-8910&rft.volume=234&rft.spage=212618&rft_id=info:doi/10.1016%2Fj.geoen.2023.212618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoen_2023_212618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-8910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-8910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-8910&client=summon |