A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV

Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distri...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 177; p. 104678
Main Authors Zhang, Yixiao, Shen, Yue, Wang, Qi, Song, Chao, Dai, Ning, He, Bo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text
ISSN0921-8890
1872-793X
DOI10.1016/j.robot.2024.104678

Cover

Abstract Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the ϵ−greedy and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety. [Display omitted] •A hybrid algorithm SOA-ACO-2Opt is proposed to solve TSP.•A multi-population mechanism is used to reduce redundant computation and avoid early convergence.•The desired-path-based avoidance strategy is efficient and of low complexity.•The proposed algorithm is practical and efficient for AUV engineering applications.
AbstractList Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the ϵ−greedy and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety. [Display omitted] •A hybrid algorithm SOA-ACO-2Opt is proposed to solve TSP.•A multi-population mechanism is used to reduce redundant computation and avoid early convergence.•The desired-path-based avoidance strategy is efficient and of low complexity.•The proposed algorithm is practical and efficient for AUV engineering applications.
ArticleNumber 104678
Author Wang, Qi
Zhang, Yixiao
Song, Chao
He, Bo
Shen, Yue
Dai, Ning
Author_xml – sequence: 1
  givenname: Yixiao
  surname: Zhang
  fullname: Zhang, Yixiao
  email: zyx_unique@stu.ouc.edu.cn
– sequence: 2
  givenname: Yue
  surname: Shen
  fullname: Shen, Yue
  email: shenyue@ouc.edu.cn
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: wangqi7757@stu.ouc.edu.cn
– sequence: 4
  givenname: Chao
  surname: Song
  fullname: Song, Chao
  email: songchao@stu.ouc.edu.cn
– sequence: 5
  givenname: Ning
  surname: Dai
  fullname: Dai, Ning
  email: dn5700@stu.ouc.edu.cn
– sequence: 6
  givenname: Bo
  orcidid: 0000-0001-9092-9152
  surname: He
  fullname: He, Bo
  email: bhe@ouc.edu.cn
BookMark eNqFkMFqGzEURUVIIU7aL-hGPzCOZjRjSYsujGmTgqGF2iE78TR6Y8vIkpGEixf9947trrpIVg8enAP33JPbEAMS8rlm05rVs8fdNEUTy7RhTTt-2pmQN2RSS9FUQvHXWzJhqqkrKRW7I_c57xhjvBN8Qv7MaYhH9HR7MslZmn9D2lMXCnrvNhh6pOA3Mbmy3dMhJpqjP7qwoatfPykESy1ml9BWByjbykBGS2PwLiCNJhfo_Sg4RmfhrMolQcHN6WKar18-kg8D-Iyf_t0Hsv72dbV4rpY_nr4v5suq54yXSs6kQdsCcMGVEVKAQQGtga6TSlmGneprMIYLsKwduhk2SshaNI1CNO3AHwi_evsUc0446ENye0gnXTN9Lqh3-lJQnwvqa8GRUv9RvStQXAzjDOffYb9cWRxnHR0mnXt3zmnHWn3RNro3-b_aTJLP
CitedBy_id crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1007_s11227_024_06581_0
crossref_primary_10_1016_j_oceaneng_2024_120128
crossref_primary_10_3390_agronomy14122947
crossref_primary_10_1016_j_aei_2024_102757
crossref_primary_10_1007_s11831_025_10249_0
crossref_primary_10_1016_j_robot_2024_104909
Cites_doi 10.1016/j.asoc.2022.108653
10.1007/s13042-020-01189-1
10.3906/elk-1109-44
10.11591/ijeecs.v12.i3.pp1054-1062
10.1016/j.tcs.2005.05.020
10.1016/j.oceaneng.2021.109355
10.1016/j.asoc.2019.105887
10.1109/JAS.2021.1004129
10.1016/j.asoc.2014.09.031
10.1109/IOTM.0011.2000057
10.1007/s11721-007-0002-0
10.1016/j.engappai.2020.103649
10.4018/IJCINI.20211001.oa31
10.1287/ijoc.3.4.376
10.3390/app11114780
10.1016/j.asoc.2015.01.068
10.1016/j.asoc.2017.12.045
10.1109/ISIE51582.2022.9831512
10.1109/ISIE.2017.8001488
10.1016/j.knosys.2018.11.024
10.1109/3477.484436
10.1109/ACCESS.2019.2931910
10.1057/jors.2010.74
10.1007/s10462-012-9342-2
10.1016/j.asoc.2021.107275
10.1016/j.margeo.2019.106009
10.1109/MCS.2002.1004010
10.1016/j.jocs.2018.02.004
10.1109/ACCESS.2019.2909945
10.1007/s00500-016-2432-3
10.1016/j.robot.2013.09.004
10.1109/ACCESS.2019.2950214
10.1016/j.asoc.2021.108058
10.1016/j.asoc.2021.107298
10.1016/j.asoc.2021.107439
10.1109/OCEANSAP.2016.7485696
10.1016/S0925-7721(00)00015-8
10.1007/s40747-020-00138-3
10.1016/j.energy.2022.123760
10.1109/ACCESS.2021.3133493
10.1016/j.cie.2019.106040
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2024.104678
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
ExternalDocumentID 10_1016_j_robot_2024_104678
S0921889024000617
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c303t-868bed4aa3739b787abe7a4ba55899d0e59c1abb37ad04f56e297817229eeb4f3
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Thu Apr 24 23:02:01 EDT 2025
Wed Oct 01 02:20:37 EDT 2025
Sat May 25 15:41:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Seagull optimization algorithm
Ant colony optimization
Traveling salesman problem
Parameters optimization
Obstacle avoidance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-868bed4aa3739b787abe7a4ba55899d0e59c1abb37ad04f56e297817229eeb4f3
ORCID 0000-0001-9092-9152
ParticipantIDs crossref_primary_10_1016_j_robot_2024_104678
crossref_citationtrail_10_1016_j_robot_2024_104678
elsevier_sciencedirect_doi_10_1016_j_robot_2024_104678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Robotics and autonomous systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cheng, Sha, He, Li (b1) 2021; 235
Akhand, Ayon, Shahriyar, Siddique, Adeli (b7) 2020; 86
Dorigo, Maniezzo, Colorni (b51) 1996; 26
Ebadinezhad (b20) 2020; 92
Qamar, Tu, Ali, Armghan, Munir, Alenezi, Muhammad, Ali, Alnaim (b30) 2021; 11
Jia, Xing, Song (b47) 2019; 7
X.d.J. Garcıa-Gutierrez, R. Alaniz-Plata, G. Trujillo-Hernández, I.Y. Alba-Corpus, W. Flores-Fuentes, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, O. Sergiyenko, F.F. González-Navarro, P. Mercorelli, J.E. Miranda-Vega, F.N. Murrieta-Rico, Obstacle Coordinates Transformation from TVS Body-Frame to AGV Navigation-Frame, in: 2022 IEEE 31st International Symposium on Industrial Electronics, ISIE, 2022, pp. 589–593.
Ahmadi, Goldengorin, Süer, Mosadegh (b23) 2018; 65
Gülcü, Mahi, Baykan, Kodaz (b39) 2018; 22
Panwar, Deep (b22) 2021; 105
Chakraborty, Kar (b18) 2017
Du, Pardalos (b10) 1998
Chebihi, Riffi, Agharghor, Semlali, Haily (b21) 2018; 12
Dhiman, Kumar (b40) 2019; 165
Arkin, Fekete, Mitchell (b52) 2000; 17
Liu, Shen, Chen (b32) 2012
Cao, Ren, Sun (b44) 2022
Poli, Kennedy, Blackwell (b14) 2007; 1
Galceran, Carreras (b9) 2013; 61
Qiao, Yang (b49) 2019; 7
Dorigo, Blum (b13) 2005; 344
Jacobi, Karimanzira (b5) 2014
Gambardella, Dorigo (b45) 1995
Sasaki, Biro (b11) 2017; 8
Long, Jiao, Liang, Xu, Tang, Cai (b41) 2022; 249
Emambocus, Jasser, Hamzah, Mustapha, Amphawan (b26) 2021; 9
Skinderowicz (b8) 2022; 120
Aranganathan (b3) 2022
Yousefikhoshbakht, Sedighpour (b29) 2012; 13
Reinelt (b50) 1991; 3
Dhiman, Singh, Slowik, Chang, Yildiz, Kaur, Garg (b48) 2021; 12
Flores, Motlagh, Zuniga, Liyanage, Passananti, Tarkoma, Youssef, Nurmi (b2) 2021; 4
Neshat, Sepidnam, Sargolzaei, Toosi (b15) 2014; 42
Zhang, You (b34) 2019; 7
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b12) 2019; 137
Liu, Cao, Li (b31) 2021; 7
Mahi, Baykan, Kodaz (b25) 2015; 30
Wang, Han (b38) 2021; 107
Rokbani, Kromer, Twir, Alimi (b37) 2019; 7
Gunduz, Aslan (b24) 2021; 105
Passino (b16) 2002; 22
L. Lindner, O. Sergiyenko, M. Rivas-López, M. Ivanov, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, W. Flores-Fuentes, V. Tyrsa, F.N. Muerrieta-Rico, P. Mercorelli, Machine vision system errors for unmanned aerial vehicle navigation, in: 2017 IEEE 26th International Symposium on Industrial Electronics, ISIE, 2017, pp. 1615–1620.
Tang, Liu, Pan (b17) 2021; 8
Sutton, Barto (b46) 2018
González, Osorio, Pardo, Banga, Doallo (b6) 2022; 114
K.Y. Wong, Komarudin, Parameter tuning for ant colony optimization: A review, in: 2008 International Conference on Computer and Communication Engineering, 2008, pp. 542–545.
Elloumi, El Abed, Abraham, Alimi (b19) 2014; 25
Vasko, Bobeck, Governale, Rieksts, Keffer (b28) 2011; 62
Wei, Xing, Xia, Gui (b27) 2021; 15
Howe, Husum, Inall, Coogan, Luckman, Arosio, Abernethy, Verchili (b4) 2019; 417
Peker, Şen, Kumru (b36) 2013; 21
R. Chang, Y. Wang, J. Hou, S. Qiu, R. Nian, B. He, A. Lendasse, Underwater object detection with efficient shadow-removal for side scan sonar images, in: OCEANS 2016 - Shanghai, 2016, pp. 1–5.
Jiao, Ma, Rong, Wang, Zhang, Wang (b33) 2018; 25
Howe (10.1016/j.robot.2024.104678_b4) 2019; 417
10.1016/j.robot.2024.104678_b35
Dhiman (10.1016/j.robot.2024.104678_b40) 2019; 165
Elloumi (10.1016/j.robot.2024.104678_b19) 2014; 25
Arkin (10.1016/j.robot.2024.104678_b52) 2000; 17
Long (10.1016/j.robot.2024.104678_b41) 2022; 249
Gambardella (10.1016/j.robot.2024.104678_b45) 1995
Ebadinezhad (10.1016/j.robot.2024.104678_b20) 2020; 92
Wei (10.1016/j.robot.2024.104678_b27) 2021; 15
Cao (10.1016/j.robot.2024.104678_b44) 2022
Gülcü (10.1016/j.robot.2024.104678_b39) 2018; 22
Dhiman (10.1016/j.robot.2024.104678_b48) 2021; 12
Skinderowicz (10.1016/j.robot.2024.104678_b8) 2022; 120
Cheng (10.1016/j.robot.2024.104678_b1) 2021; 235
Chakraborty (10.1016/j.robot.2024.104678_b18) 2017
Akhand (10.1016/j.robot.2024.104678_b7) 2020; 86
Qamar (10.1016/j.robot.2024.104678_b30) 2021; 11
Gunduz (10.1016/j.robot.2024.104678_b24) 2021; 105
Chebihi (10.1016/j.robot.2024.104678_b21) 2018; 12
Sutton (10.1016/j.robot.2024.104678_b46) 2018
Aranganathan (10.1016/j.robot.2024.104678_b3) 2022
Dorigo (10.1016/j.robot.2024.104678_b13) 2005; 344
Peker (10.1016/j.robot.2024.104678_b36) 2013; 21
Ahmadi (10.1016/j.robot.2024.104678_b23) 2018; 65
10.1016/j.robot.2024.104678_b43
10.1016/j.robot.2024.104678_b42
Galceran (10.1016/j.robot.2024.104678_b9) 2013; 61
Jiao (10.1016/j.robot.2024.104678_b33) 2018; 25
Qiao (10.1016/j.robot.2024.104678_b49) 2019; 7
Liu (10.1016/j.robot.2024.104678_b32) 2012
Rokbani (10.1016/j.robot.2024.104678_b37) 2019; 7
Emambocus (10.1016/j.robot.2024.104678_b26) 2021; 9
Poli (10.1016/j.robot.2024.104678_b14) 2007; 1
Reinelt (10.1016/j.robot.2024.104678_b50) 1991; 3
Du (10.1016/j.robot.2024.104678_b10) 1998
10.1016/j.robot.2024.104678_b53
Yousefikhoshbakht (10.1016/j.robot.2024.104678_b29) 2012; 13
Liu (10.1016/j.robot.2024.104678_b31) 2021; 7
Dorigo (10.1016/j.robot.2024.104678_b51) 1996; 26
Neshat (10.1016/j.robot.2024.104678_b15) 2014; 42
González (10.1016/j.robot.2024.104678_b6) 2022; 114
Passino (10.1016/j.robot.2024.104678_b16) 2002; 22
Zhang (10.1016/j.robot.2024.104678_b34) 2019; 7
Tang (10.1016/j.robot.2024.104678_b17) 2021; 8
Mahi (10.1016/j.robot.2024.104678_b25) 2015; 30
Dokeroglu (10.1016/j.robot.2024.104678_b12) 2019; 137
Jia (10.1016/j.robot.2024.104678_b47) 2019; 7
Panwar (10.1016/j.robot.2024.104678_b22) 2021; 105
Sasaki (10.1016/j.robot.2024.104678_b11) 2017; 8
Vasko (10.1016/j.robot.2024.104678_b28) 2011; 62
Flores (10.1016/j.robot.2024.104678_b2) 2021; 4
Wang (10.1016/j.robot.2024.104678_b38) 2021; 107
Jacobi (10.1016/j.robot.2024.104678_b5) 2014
References_xml – reference: R. Chang, Y. Wang, J. Hou, S. Qiu, R. Nian, B. He, A. Lendasse, Underwater object detection with efficient shadow-removal for side scan sonar images, in: OCEANS 2016 - Shanghai, 2016, pp. 1–5.
– volume: 22
  start-page: 1669
  year: 2018
  end-page: 1685
  ident: b39
  article-title: A parallel cooperative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem
  publication-title: Soft Comput.
– volume: 344
  start-page: 243
  year: 2005
  end-page: 278
  ident: b13
  article-title: Ant colony optimization theory: A survey
  publication-title: Theoret. Comput. Sci.
– volume: 25
  start-page: 234
  year: 2014
  end-page: 241
  ident: b19
  article-title: A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP
  publication-title: Appl. Soft Comput.
– volume: 30
  start-page: 484
  year: 2015
  end-page: 490
  ident: b25
  article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 42
  start-page: 965
  year: 2014
  end-page: 997
  ident: b15
  article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications
  publication-title: Artif. Intell. Rev.
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: b14
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: 62
  start-page: 1169
  year: 2011
  end-page: 1176
  ident: b28
  article-title: A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem
  publication-title: J. Oper. Res. Soc.
– volume: 21
  start-page: 2015
  year: 2013
  end-page: 2036
  ident: b36
  article-title: An efficient solving of the traveling salesman problem: The ant colony system having parameters optimized by the Taguchi method
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– reference: K.Y. Wong, Komarudin, Parameter tuning for ant colony optimization: A review, in: 2008 International Conference on Computer and Communication Engineering, 2008, pp. 542–545.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 17
  ident: b27
  article-title: A novel particle swarm optimization with genetic operator and its application to tsp
  publication-title: Int. J. Cogn. Inf. Nat. Intell. (IJCINI)
– volume: 25
  start-page: 50
  year: 2018
  end-page: 57
  ident: b33
  article-title: A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs
  publication-title: J. Comput. Sci.
– reference: X.d.J. Garcıa-Gutierrez, R. Alaniz-Plata, G. Trujillo-Hernández, I.Y. Alba-Corpus, W. Flores-Fuentes, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, O. Sergiyenko, F.F. González-Navarro, P. Mercorelli, J.E. Miranda-Vega, F.N. Murrieta-Rico, Obstacle Coordinates Transformation from TVS Body-Frame to AGV Navigation-Frame, in: 2022 IEEE 31st International Symposium on Industrial Electronics, ISIE, 2022, pp. 589–593.
– year: 1998
  ident: b10
  publication-title: Handbook of Combinatorial Optimization
– volume: 12
  start-page: 571
  year: 2021
  end-page: 596
  ident: b48
  article-title: EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 12
  start-page: 1054
  year: 2018
  end-page: 1062
  ident: b21
  article-title: Improved chicken swarm optimization algorithm to solve the travelling salesman problem
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
– volume: 107
  year: 2021
  ident: b38
  article-title: Ant colony optimization for traveling salesman problem based on parameters optimization
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 25
  year: 2000
  end-page: 50
  ident: b52
  article-title: Approximation algorithms for lawn mowing and milling a preliminary version of this paper was entitled “the lawnmower problem” and appears in the Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 461–466
  publication-title: Comput. Geometry
– year: 2022
  ident: b44
  article-title: Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 120
  year: 2022
  ident: b8
  article-title: Improving ant colony optimization efficiency for solving large TSP instances
  publication-title: Appl. Soft Comput.
– volume: 417
  year: 2019
  ident: b4
  article-title: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard
  publication-title: Mar. Geol.
– volume: 7
  start-page: 384
  year: 2019
  end-page: 398
  ident: b37
  article-title: A new hybrid gravitational particle swarm optimisation-ACO with local search mechanism, PSOGSA-ACO-Ls for TSP
  publication-title: Int. J. Intell. Eng. Inform.
– volume: 86
  year: 2020
  ident: b7
  article-title: Discrete spider monkey optimization for travelling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 105
  year: 2021
  ident: b22
  article-title: Discrete Grey Wolf Optimizer for symmetric travelling salesman problem
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 4780
  year: 2021
  ident: b30
  article-title: Improvement of traveling salesman problem solution using hybrid algorithm based on best-worst ant system and particle swarm optimization
  publication-title: Appl. Sci.
– volume: 4
  start-page: 40
  year: 2021
  end-page: 45
  ident: b2
  article-title: Toward large-scale autonomous marine pollution monitoring
  publication-title: IEEE Internet Things Mag.
– volume: 13
  start-page: 295
  year: 2012
  end-page: 302
  ident: b29
  article-title: A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem
  publication-title: Proc. Roman. Acad. A
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b51
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 7
  start-page: 1711
  year: 2021
  end-page: 1722
  ident: b31
  article-title: Improving ant colony optimization algorithm with epsilon greedy and levy flight
  publication-title: Complex Intell. Syst.
– volume: 7
  start-page: 158160
  year: 2019
  end-page: 158169
  ident: b34
  article-title: Multi-population ant colony optimization algorithm based on congestion factor and co-evolution mechanism
  publication-title: IEEE Access
– reference: L. Lindner, O. Sergiyenko, M. Rivas-López, M. Ivanov, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, W. Flores-Fuentes, V. Tyrsa, F.N. Muerrieta-Rico, P. Mercorelli, Machine vision system errors for unmanned aerial vehicle navigation, in: 2017 IEEE 26th International Symposium on Industrial Electronics, ISIE, 2017, pp. 1615–1620.
– volume: 114
  year: 2022
  ident: b6
  article-title: An efficient ant colony optimization framework for HPC environments
  publication-title: Appl. Soft Comput.
– volume: 235
  year: 2021
  ident: b1
  article-title: Path planning and obstacle avoidance for AUV: A review
  publication-title: Ocean Eng.
– volume: 7
  start-page: 49614
  year: 2019
  end-page: 49631
  ident: b47
  article-title: A new hybrid seagull optimization algorithm for feature selection
  publication-title: IEEE Access
– start-page: 475
  year: 2017
  end-page: 494
  ident: b18
  article-title: Swarm intelligence: A review of algorithms
  publication-title: Nature-Inspired Computing and Optimization
– volume: 92
  year: 2020
  ident: b20
  article-title: DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 1627
  year: 2021
  end-page: 1643
  ident: b17
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 3
  start-page: 376
  year: 1991
  end-page: 384
  ident: b50
  article-title: TSPLIB–A traveling salesman problem library
  publication-title: ORSA J. Comput.
– volume: 61
  start-page: 1258
  year: 2013
  end-page: 1276
  ident: b9
  article-title: A survey on coverage path planning for robotics
  publication-title: Robot. Auton. Syst.
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: b16
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
– volume: 137
  year: 2019
  ident: b12
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
– volume: 9
  start-page: 164820
  year: 2021
  end-page: 164836
  ident: b26
  article-title: An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP
  publication-title: IEEE Access
– year: 2022
  ident: b3
  article-title: Analytical techniques in marine biotechnology
– volume: 8
  start-page: 1
  year: 2017
  end-page: 6
  ident: b11
  article-title: Cumulative culture can emerge from collective intelligence in animal groups
  publication-title: Natu. Commun.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b40
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Syst.
– volume: 105
  year: 2021
  ident: b24
  article-title: DJAYA: A discrete jaya algorithm for solving traveling salesman problem
  publication-title: Appl. Soft Comput.
– year: 2018
  ident: b46
  article-title: Reinforcement Learning: An Introduction
– volume: 249
  year: 2022
  ident: b41
  article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm
  publication-title: Energy
– volume: 65
  start-page: 214
  year: 2018
  end-page: 229
  ident: b23
  article-title: A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem
  publication-title: Appl. Soft Comput.
– start-page: 252
  year: 1995
  end-page: 260
  ident: b45
  article-title: Ant-q: A reinforcement learning approach to the traveling salesman problem
  publication-title: Machine Learning Proceedings 1995
– volume: 7
  start-page: 110472
  year: 2019
  end-page: 110486
  ident: b49
  article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems
  publication-title: IEEE Access
– start-page: 1
  year: 2014
  end-page: 6
  ident: b5
  article-title: Multi sensor underwater pipeline tracking with AUVs
  publication-title: 2014 Oceans-St. John’s
– start-page: 763
  year: 2012
  end-page: 766
  ident: b32
  article-title: An adaptive ant colony algorithm based on common information for solving the traveling salesman problem
  publication-title: 2012 International Conference on Systems and Informatics
– volume: 120
  year: 2022
  ident: 10.1016/j.robot.2024.104678_b8
  article-title: Improving ant colony optimization efficiency for solving large TSP instances
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108653
– volume: 12
  start-page: 571
  issue: 2
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b48
  article-title: EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01189-1
– volume: 21
  start-page: 2015
  issue: 7
  year: 2013
  ident: 10.1016/j.robot.2024.104678_b36
  article-title: An efficient solving of the traveling salesman problem: The ant colony system having parameters optimized by the Taguchi method
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1109-44
– volume: 12
  start-page: 1054
  issue: 3
  year: 2018
  ident: 10.1016/j.robot.2024.104678_b21
  article-title: Improved chicken swarm optimization algorithm to solve the travelling salesman problem
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v12.i3.pp1054-1062
– volume: 344
  start-page: 243
  issue: 2–3
  year: 2005
  ident: 10.1016/j.robot.2024.104678_b13
  article-title: Ant colony optimization theory: A survey
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– volume: 235
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b1
  article-title: Path planning and obstacle avoidance for AUV: A review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109355
– volume: 86
  year: 2020
  ident: 10.1016/j.robot.2024.104678_b7
  article-title: Discrete spider monkey optimization for travelling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105887
– year: 2022
  ident: 10.1016/j.robot.2024.104678_b3
– volume: 7
  start-page: 384
  issue: 4
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b37
  article-title: A new hybrid gravitational particle swarm optimisation-ACO with local search mechanism, PSOGSA-ACO-Ls for TSP
  publication-title: Int. J. Intell. Eng. Inform.
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b17
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– volume: 25
  start-page: 234
  year: 2014
  ident: 10.1016/j.robot.2024.104678_b19
  article-title: A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.031
– volume: 4
  start-page: 40
  issue: 1
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b2
  article-title: Toward large-scale autonomous marine pollution monitoring
  publication-title: IEEE Internet Things Mag.
  doi: 10.1109/IOTM.0011.2000057
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.robot.2024.104678_b11
  article-title: Cumulative culture can emerge from collective intelligence in animal groups
  publication-title: Natu. Commun.
– ident: 10.1016/j.robot.2024.104678_b35
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.robot.2024.104678_b14
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 92
  year: 2020
  ident: 10.1016/j.robot.2024.104678_b20
  article-title: DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103649
– volume: 15
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b27
  article-title: A novel particle swarm optimization with genetic operator and its application to tsp
  publication-title: Int. J. Cogn. Inf. Nat. Intell. (IJCINI)
  doi: 10.4018/IJCINI.20211001.oa31
– volume: 13
  start-page: 295
  issue: 4
  year: 2012
  ident: 10.1016/j.robot.2024.104678_b29
  article-title: A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem
  publication-title: Proc. Roman. Acad. A
– volume: 3
  start-page: 376
  issue: 4
  year: 1991
  ident: 10.1016/j.robot.2024.104678_b50
  article-title: TSPLIB–A traveling salesman problem library
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.4.376
– volume: 11
  start-page: 4780
  issue: 11
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b30
  article-title: Improvement of traveling salesman problem solution using hybrid algorithm based on best-worst ant system and particle swarm optimization
  publication-title: Appl. Sci.
  doi: 10.3390/app11114780
– volume: 30
  start-page: 484
  year: 2015
  ident: 10.1016/j.robot.2024.104678_b25
  article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.068
– volume: 65
  start-page: 214
  year: 2018
  ident: 10.1016/j.robot.2024.104678_b23
  article-title: A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.045
– ident: 10.1016/j.robot.2024.104678_b43
  doi: 10.1109/ISIE51582.2022.9831512
– ident: 10.1016/j.robot.2024.104678_b42
  doi: 10.1109/ISIE.2017.8001488
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b40
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.robot.2024.104678_b51
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.484436
– volume: 7
  start-page: 110472
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b49
  article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931910
– volume: 62
  start-page: 1169
  issue: 6
  year: 2011
  ident: 10.1016/j.robot.2024.104678_b28
  article-title: A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2010.74
– volume: 42
  start-page: 965
  issue: 4
  year: 2014
  ident: 10.1016/j.robot.2024.104678_b15
  article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9342-2
– volume: 105
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b24
  article-title: DJAYA: A discrete jaya algorithm for solving traveling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107275
– start-page: 763
  year: 2012
  ident: 10.1016/j.robot.2024.104678_b32
  article-title: An adaptive ant colony algorithm based on common information for solving the traveling salesman problem
– year: 2018
  ident: 10.1016/j.robot.2024.104678_b46
– volume: 417
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b4
  article-title: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2019.106009
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.robot.2024.104678_b16
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1004010
– volume: 25
  start-page: 50
  year: 2018
  ident: 10.1016/j.robot.2024.104678_b33
  article-title: A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.02.004
– volume: 7
  start-page: 49614
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b47
  article-title: A new hybrid seagull optimization algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909945
– volume: 22
  start-page: 1669
  issue: 5
  year: 2018
  ident: 10.1016/j.robot.2024.104678_b39
  article-title: A parallel cooperative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2432-3
– volume: 61
  start-page: 1258
  issue: 12
  year: 2013
  ident: 10.1016/j.robot.2024.104678_b9
  article-title: A survey on coverage path planning for robotics
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.09.004
– volume: 7
  start-page: 158160
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b34
  article-title: Multi-population ant colony optimization algorithm based on congestion factor and co-evolution mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950214
– start-page: 1
  year: 2014
  ident: 10.1016/j.robot.2024.104678_b5
  article-title: Multi sensor underwater pipeline tracking with AUVs
– volume: 114
  year: 2022
  ident: 10.1016/j.robot.2024.104678_b6
  article-title: An efficient ant colony optimization framework for HPC environments
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108058
– start-page: 252
  year: 1995
  ident: 10.1016/j.robot.2024.104678_b45
  article-title: Ant-q: A reinforcement learning approach to the traveling salesman problem
– year: 1998
  ident: 10.1016/j.robot.2024.104678_b10
– volume: 105
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b22
  article-title: Discrete Grey Wolf Optimizer for symmetric travelling salesman problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107298
– volume: 107
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b38
  article-title: Ant colony optimization for traveling salesman problem based on parameters optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107439
– ident: 10.1016/j.robot.2024.104678_b53
  doi: 10.1109/OCEANSAP.2016.7485696
– volume: 17
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.robot.2024.104678_b52
  article-title: Approximation algorithms for lawn mowing and milling a preliminary version of this paper was entitled “the lawnmower problem” and appears in the Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 461–466
  publication-title: Comput. Geometry
  doi: 10.1016/S0925-7721(00)00015-8
– volume: 7
  start-page: 1711
  issue: 4
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b31
  article-title: Improving ant colony optimization algorithm with epsilon greedy and levy flight
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00138-3
– year: 2022
  ident: 10.1016/j.robot.2024.104678_b44
  article-title: Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 249
  year: 2022
  ident: 10.1016/j.robot.2024.104678_b41
  article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123760
– volume: 9
  start-page: 164820
  year: 2021
  ident: 10.1016/j.robot.2024.104678_b26
  article-title: An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133493
– volume: 137
  year: 2019
  ident: 10.1016/j.robot.2024.104678_b12
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106040
– start-page: 475
  year: 2017
  ident: 10.1016/j.robot.2024.104678_b18
  article-title: Swarm intelligence: A review of algorithms
SSID ssj0003573
Score 2.5005996
Snippet Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104678
SubjectTerms Ant colony optimization
Obstacle avoidance
Parameters optimization
Seagull optimization algorithm
Traveling salesman problem
Title A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV
URI https://dx.doi.org/10.1016/j.robot.2024.104678
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-793X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003573
  issn: 0921-8890
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMVbHhgxLfGrGSsEKlQgRCmwRXbsQFCbVG0pYoDfji9OoEiIgSlKdM7jcrnvHN99h9CBm-k43Ig5cegcE-YwhujkWJGENgNGFQ-UhALnyyvR7rGLB_5QQydVLQykVZa-3_v0wluXR-qlNuvDNK13G6GDJ1gmYx6IoYKdSehicPTxneZBuV9ldsIEpCvmoSLHa5TrHBIqA1asdUKvtd_QaQZxzpbRUhkq4pa_mxVUs9kqWpwhEFxD7y2c5VPbx09vUHmFx69qNMDpDM0mVv3HfJROngbYhafYWRr8QcC33WusMoONHbvnNwQaExNANIM9dwbOtYsb3XWxmuapAdvAY89k-1acqdW7W0e9s9PbkzYpGyqQ2CHVhDRFU1vDlKKShtp9qkpbqZhWnLtpl2lYHsbHSmsqlWmwhAsbACWWDILQWs0SuoHmsjyzmwg3Y8toIhMphWAhi0NhpTEJDQXnQlq9hYJKkVFcso1D04t-VKWVPUeF9iPQfuS1v4UOvwYNPdnG3-KiekPRD5uJHBz8NXD7vwN30ALs-XTdXTQ3Gb3YPReUTPR-YXX7aL513mlfwbZzc9_5BJTC5DQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhgxbeNXMlYVVXkKiRaxRXbs0KCSVG0p6gC_HTtOoEioA2tyTqIvF3_n3Pk7AE7NSsfwRkSRYecIEcMxSMZ1gWLsewQL6gluNzjf3rF2l1w90acF0Cz3wtiyymLud3N6PlsXR6oFmtVBklQfaoGhJ5smI46IF8ESoR63K7Dzz586D0xdmtlYI2teSg_lRV7DTGa2otIjebLTNlv7i55mKKe1DtaKWBE23ONsgAWdboLVGQXBLfDRgGk20X3Ym9qtV3D0LoavMJnR2YSi_5wNk3HvFZr4FBpXs78QYOfhHopUQaVHBgCFbGdiZClNQSeeATNpAkdzXygmWaKsc8CRk7Kd5ldqdB-3Qbd10Wm2UdFRAUWGqsbIZ77UigiBOQ6k-VaF1FwQKSg16y5V0zSI6kJKzIWqkZgy7VlNLO55gdaSxHgHVNIs1bsA-pEmOOYx54yRgEQB01ypGAeMUsa13ANeCWQYFXLjtutFPyzryl7CHP3Qoh869PfA2feggVPbmG_OyjcU_nKa0PDBvIH7_x14Apbbndub8Oby7voArNgzrnb3EFTGwzd9ZCKUsTzOPfALzh3kJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+swarm+intelligence+algorithm+for+solving+TSP+and+desired-path-based+online+obstacle+avoidance+strategy+for+AUV&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Zhang%2C+Yixiao&rft.au=Shen%2C+Yue&rft.au=Wang%2C+Qi&rft.au=Song%2C+Chao&rft.date=2024-07-01&rft.issn=0921-8890&rft.volume=177&rft.spage=104678&rft_id=info:doi/10.1016%2Fj.robot.2024.104678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2024_104678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon