A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV
Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distri...
        Saved in:
      
    
          | Published in | Robotics and autonomous systems Vol. 177; p. 104678 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0921-8890 1872-793X  | 
| DOI | 10.1016/j.robot.2024.104678 | 
Cover
| Abstract | Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the ϵ−greedy and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety.
[Display omitted]
•A hybrid algorithm SOA-ACO-2Opt is proposed to solve TSP.•A multi-population mechanism is used to reduce redundant computation and avoid early convergence.•The desired-path-based avoidance strategy is efficient and of low complexity.•The proposed algorithm is practical and efficient for AUV engineering applications. | 
    
|---|---|
| AbstractList | Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO parameter combination through Seagull Optimization Algorithm (SOA) to strengthen ACO’s search capability. To obtain a uniform initial distribution of the ACO parameter combination, we incorporated the Kent Chaos Map (KCM) to randomly initialize the seagull’s position, reducing the tendency of SOA to fall into the local optimum. To avoid slow calculation speed and premature convergence of ACO, we improved the adaptive multi-population mechanism to reduce repeated redundant calculations and used the ϵ−greedy and default strategy, respectively, to update the ants’ position. 2Opt is applied to find shorter paths in each iteration. In addition, when AUV navigates on the planned path, it may encounter obstacles. Therefore, this paper proposes an autonomous obstacle avoidance algorithm based on forward-looking sonar to ensure safety during tasks. SOA-ACO-2Opt is verified against twelve different problems extracted from TSPLIB and compared with some state-of-the-art algorithms. Furthermore, sea trials were carried out for several representative marine engineering applications of TSP and obstacle avoidance. Experimental results show that this work can significantly improve AUV’s work efficiency and intelligence and protect the AUV’s safety.
[Display omitted]
•A hybrid algorithm SOA-ACO-2Opt is proposed to solve TSP.•A multi-population mechanism is used to reduce redundant computation and avoid early convergence.•The desired-path-based avoidance strategy is efficient and of low complexity.•The proposed algorithm is practical and efficient for AUV engineering applications. | 
    
| ArticleNumber | 104678 | 
    
| Author | Wang, Qi Zhang, Yixiao Song, Chao He, Bo Shen, Yue Dai, Ning  | 
    
| Author_xml | – sequence: 1 givenname: Yixiao surname: Zhang fullname: Zhang, Yixiao email: zyx_unique@stu.ouc.edu.cn – sequence: 2 givenname: Yue surname: Shen fullname: Shen, Yue email: shenyue@ouc.edu.cn – sequence: 3 givenname: Qi surname: Wang fullname: Wang, Qi email: wangqi7757@stu.ouc.edu.cn – sequence: 4 givenname: Chao surname: Song fullname: Song, Chao email: songchao@stu.ouc.edu.cn – sequence: 5 givenname: Ning surname: Dai fullname: Dai, Ning email: dn5700@stu.ouc.edu.cn – sequence: 6 givenname: Bo orcidid: 0000-0001-9092-9152 surname: He fullname: He, Bo email: bhe@ouc.edu.cn  | 
    
| BookMark | eNqFkMFqGzEURUVIIU7aL-hGPzCOZjRjSYsujGmTgqGF2iE78TR6Y8vIkpGEixf9947trrpIVg8enAP33JPbEAMS8rlm05rVs8fdNEUTy7RhTTt-2pmQN2RSS9FUQvHXWzJhqqkrKRW7I_c57xhjvBN8Qv7MaYhH9HR7MslZmn9D2lMXCnrvNhh6pOA3Mbmy3dMhJpqjP7qwoatfPykESy1ml9BWByjbykBGS2PwLiCNJhfo_Sg4RmfhrMolQcHN6WKar18-kg8D-Iyf_t0Hsv72dbV4rpY_nr4v5suq54yXSs6kQdsCcMGVEVKAQQGtga6TSlmGneprMIYLsKwduhk2SshaNI1CNO3AHwi_evsUc0446ENye0gnXTN9Lqh3-lJQnwvqa8GRUv9RvStQXAzjDOffYb9cWRxnHR0mnXt3zmnHWn3RNro3-b_aTJLP | 
    
| CitedBy_id | crossref_primary_10_1007_s40747_025_01791_2 crossref_primary_10_1007_s11227_024_06581_0 crossref_primary_10_1016_j_oceaneng_2024_120128 crossref_primary_10_3390_agronomy14122947 crossref_primary_10_1016_j_aei_2024_102757 crossref_primary_10_1007_s11831_025_10249_0 crossref_primary_10_1016_j_robot_2024_104909  | 
    
| Cites_doi | 10.1016/j.asoc.2022.108653 10.1007/s13042-020-01189-1 10.3906/elk-1109-44 10.11591/ijeecs.v12.i3.pp1054-1062 10.1016/j.tcs.2005.05.020 10.1016/j.oceaneng.2021.109355 10.1016/j.asoc.2019.105887 10.1109/JAS.2021.1004129 10.1016/j.asoc.2014.09.031 10.1109/IOTM.0011.2000057 10.1007/s11721-007-0002-0 10.1016/j.engappai.2020.103649 10.4018/IJCINI.20211001.oa31 10.1287/ijoc.3.4.376 10.3390/app11114780 10.1016/j.asoc.2015.01.068 10.1016/j.asoc.2017.12.045 10.1109/ISIE51582.2022.9831512 10.1109/ISIE.2017.8001488 10.1016/j.knosys.2018.11.024 10.1109/3477.484436 10.1109/ACCESS.2019.2931910 10.1057/jors.2010.74 10.1007/s10462-012-9342-2 10.1016/j.asoc.2021.107275 10.1016/j.margeo.2019.106009 10.1109/MCS.2002.1004010 10.1016/j.jocs.2018.02.004 10.1109/ACCESS.2019.2909945 10.1007/s00500-016-2432-3 10.1016/j.robot.2013.09.004 10.1109/ACCESS.2019.2950214 10.1016/j.asoc.2021.108058 10.1016/j.asoc.2021.107298 10.1016/j.asoc.2021.107439 10.1109/OCEANSAP.2016.7485696 10.1016/S0925-7721(00)00015-8 10.1007/s40747-020-00138-3 10.1016/j.energy.2022.123760 10.1109/ACCESS.2021.3133493 10.1016/j.cie.2019.106040  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 | 
    
| Copyright_xml | – notice: 2024 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.robot.2024.104678 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1872-793X | 
    
| ExternalDocumentID | 10_1016_j_robot_2024_104678 S0921889024000617  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c303t-868bed4aa3739b787abe7a4ba55899d0e59c1abb37ad04f56e297817229eeb4f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0921-8890 | 
    
| IngestDate | Thu Apr 24 23:02:01 EDT 2025 Wed Oct 01 02:20:37 EDT 2025 Sat May 25 15:41:34 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Seagull optimization algorithm Ant colony optimization Traveling salesman problem Parameters optimization Obstacle avoidance  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c303t-868bed4aa3739b787abe7a4ba55899d0e59c1abb37ad04f56e297817229eeb4f3 | 
    
| ORCID | 0000-0001-9092-9152 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_robot_2024_104678 crossref_citationtrail_10_1016_j_robot_2024_104678 elsevier_sciencedirect_doi_10_1016_j_robot_2024_104678  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2024 2024-07-00  | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Robotics and autonomous systems | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Cheng, Sha, He, Li (b1) 2021; 235 Akhand, Ayon, Shahriyar, Siddique, Adeli (b7) 2020; 86 Dorigo, Maniezzo, Colorni (b51) 1996; 26 Ebadinezhad (b20) 2020; 92 Qamar, Tu, Ali, Armghan, Munir, Alenezi, Muhammad, Ali, Alnaim (b30) 2021; 11 Jia, Xing, Song (b47) 2019; 7 X.d.J. Garcıa-Gutierrez, R. Alaniz-Plata, G. Trujillo-Hernández, I.Y. Alba-Corpus, W. Flores-Fuentes, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, O. Sergiyenko, F.F. González-Navarro, P. Mercorelli, J.E. Miranda-Vega, F.N. Murrieta-Rico, Obstacle Coordinates Transformation from TVS Body-Frame to AGV Navigation-Frame, in: 2022 IEEE 31st International Symposium on Industrial Electronics, ISIE, 2022, pp. 589–593. Ahmadi, Goldengorin, Süer, Mosadegh (b23) 2018; 65 Gülcü, Mahi, Baykan, Kodaz (b39) 2018; 22 Panwar, Deep (b22) 2021; 105 Chakraborty, Kar (b18) 2017 Du, Pardalos (b10) 1998 Chebihi, Riffi, Agharghor, Semlali, Haily (b21) 2018; 12 Dhiman, Kumar (b40) 2019; 165 Arkin, Fekete, Mitchell (b52) 2000; 17 Liu, Shen, Chen (b32) 2012 Cao, Ren, Sun (b44) 2022 Poli, Kennedy, Blackwell (b14) 2007; 1 Galceran, Carreras (b9) 2013; 61 Qiao, Yang (b49) 2019; 7 Dorigo, Blum (b13) 2005; 344 Jacobi, Karimanzira (b5) 2014 Gambardella, Dorigo (b45) 1995 Sasaki, Biro (b11) 2017; 8 Long, Jiao, Liang, Xu, Tang, Cai (b41) 2022; 249 Emambocus, Jasser, Hamzah, Mustapha, Amphawan (b26) 2021; 9 Skinderowicz (b8) 2022; 120 Aranganathan (b3) 2022 Yousefikhoshbakht, Sedighpour (b29) 2012; 13 Reinelt (b50) 1991; 3 Dhiman, Singh, Slowik, Chang, Yildiz, Kaur, Garg (b48) 2021; 12 Flores, Motlagh, Zuniga, Liyanage, Passananti, Tarkoma, Youssef, Nurmi (b2) 2021; 4 Neshat, Sepidnam, Sargolzaei, Toosi (b15) 2014; 42 Zhang, You (b34) 2019; 7 Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b12) 2019; 137 Liu, Cao, Li (b31) 2021; 7 Mahi, Baykan, Kodaz (b25) 2015; 30 Wang, Han (b38) 2021; 107 Rokbani, Kromer, Twir, Alimi (b37) 2019; 7 Gunduz, Aslan (b24) 2021; 105 Passino (b16) 2002; 22 L. Lindner, O. Sergiyenko, M. Rivas-López, M. Ivanov, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, W. Flores-Fuentes, V. Tyrsa, F.N. Muerrieta-Rico, P. Mercorelli, Machine vision system errors for unmanned aerial vehicle navigation, in: 2017 IEEE 26th International Symposium on Industrial Electronics, ISIE, 2017, pp. 1615–1620. Tang, Liu, Pan (b17) 2021; 8 Sutton, Barto (b46) 2018 González, Osorio, Pardo, Banga, Doallo (b6) 2022; 114 K.Y. Wong, Komarudin, Parameter tuning for ant colony optimization: A review, in: 2008 International Conference on Computer and Communication Engineering, 2008, pp. 542–545. Elloumi, El Abed, Abraham, Alimi (b19) 2014; 25 Vasko, Bobeck, Governale, Rieksts, Keffer (b28) 2011; 62 Wei, Xing, Xia, Gui (b27) 2021; 15 Howe, Husum, Inall, Coogan, Luckman, Arosio, Abernethy, Verchili (b4) 2019; 417 Peker, Şen, Kumru (b36) 2013; 21 R. Chang, Y. Wang, J. Hou, S. Qiu, R. Nian, B. He, A. Lendasse, Underwater object detection with efficient shadow-removal for side scan sonar images, in: OCEANS 2016 - Shanghai, 2016, pp. 1–5. Jiao, Ma, Rong, Wang, Zhang, Wang (b33) 2018; 25 Howe (10.1016/j.robot.2024.104678_b4) 2019; 417 10.1016/j.robot.2024.104678_b35 Dhiman (10.1016/j.robot.2024.104678_b40) 2019; 165 Elloumi (10.1016/j.robot.2024.104678_b19) 2014; 25 Arkin (10.1016/j.robot.2024.104678_b52) 2000; 17 Long (10.1016/j.robot.2024.104678_b41) 2022; 249 Gambardella (10.1016/j.robot.2024.104678_b45) 1995 Ebadinezhad (10.1016/j.robot.2024.104678_b20) 2020; 92 Wei (10.1016/j.robot.2024.104678_b27) 2021; 15 Cao (10.1016/j.robot.2024.104678_b44) 2022 Gülcü (10.1016/j.robot.2024.104678_b39) 2018; 22 Dhiman (10.1016/j.robot.2024.104678_b48) 2021; 12 Skinderowicz (10.1016/j.robot.2024.104678_b8) 2022; 120 Cheng (10.1016/j.robot.2024.104678_b1) 2021; 235 Chakraborty (10.1016/j.robot.2024.104678_b18) 2017 Akhand (10.1016/j.robot.2024.104678_b7) 2020; 86 Qamar (10.1016/j.robot.2024.104678_b30) 2021; 11 Gunduz (10.1016/j.robot.2024.104678_b24) 2021; 105 Chebihi (10.1016/j.robot.2024.104678_b21) 2018; 12 Sutton (10.1016/j.robot.2024.104678_b46) 2018 Aranganathan (10.1016/j.robot.2024.104678_b3) 2022 Dorigo (10.1016/j.robot.2024.104678_b13) 2005; 344 Peker (10.1016/j.robot.2024.104678_b36) 2013; 21 Ahmadi (10.1016/j.robot.2024.104678_b23) 2018; 65 10.1016/j.robot.2024.104678_b43 10.1016/j.robot.2024.104678_b42 Galceran (10.1016/j.robot.2024.104678_b9) 2013; 61 Jiao (10.1016/j.robot.2024.104678_b33) 2018; 25 Qiao (10.1016/j.robot.2024.104678_b49) 2019; 7 Liu (10.1016/j.robot.2024.104678_b32) 2012 Rokbani (10.1016/j.robot.2024.104678_b37) 2019; 7 Emambocus (10.1016/j.robot.2024.104678_b26) 2021; 9 Poli (10.1016/j.robot.2024.104678_b14) 2007; 1 Reinelt (10.1016/j.robot.2024.104678_b50) 1991; 3 Du (10.1016/j.robot.2024.104678_b10) 1998 10.1016/j.robot.2024.104678_b53 Yousefikhoshbakht (10.1016/j.robot.2024.104678_b29) 2012; 13 Liu (10.1016/j.robot.2024.104678_b31) 2021; 7 Dorigo (10.1016/j.robot.2024.104678_b51) 1996; 26 Neshat (10.1016/j.robot.2024.104678_b15) 2014; 42 González (10.1016/j.robot.2024.104678_b6) 2022; 114 Passino (10.1016/j.robot.2024.104678_b16) 2002; 22 Zhang (10.1016/j.robot.2024.104678_b34) 2019; 7 Tang (10.1016/j.robot.2024.104678_b17) 2021; 8 Mahi (10.1016/j.robot.2024.104678_b25) 2015; 30 Dokeroglu (10.1016/j.robot.2024.104678_b12) 2019; 137 Jia (10.1016/j.robot.2024.104678_b47) 2019; 7 Panwar (10.1016/j.robot.2024.104678_b22) 2021; 105 Sasaki (10.1016/j.robot.2024.104678_b11) 2017; 8 Vasko (10.1016/j.robot.2024.104678_b28) 2011; 62 Flores (10.1016/j.robot.2024.104678_b2) 2021; 4 Wang (10.1016/j.robot.2024.104678_b38) 2021; 107 Jacobi (10.1016/j.robot.2024.104678_b5) 2014  | 
    
| References_xml | – reference: R. Chang, Y. Wang, J. Hou, S. Qiu, R. Nian, B. He, A. Lendasse, Underwater object detection with efficient shadow-removal for side scan sonar images, in: OCEANS 2016 - Shanghai, 2016, pp. 1–5. – volume: 22 start-page: 1669 year: 2018 end-page: 1685 ident: b39 article-title: A parallel cooperative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem publication-title: Soft Comput. – volume: 344 start-page: 243 year: 2005 end-page: 278 ident: b13 article-title: Ant colony optimization theory: A survey publication-title: Theoret. Comput. Sci. – volume: 25 start-page: 234 year: 2014 end-page: 241 ident: b19 article-title: A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP publication-title: Appl. Soft Comput. – volume: 30 start-page: 484 year: 2015 end-page: 490 ident: b25 article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem publication-title: Appl. Soft Comput. – volume: 42 start-page: 965 year: 2014 end-page: 997 ident: b15 article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications publication-title: Artif. Intell. Rev. – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: b14 article-title: Particle swarm optimization publication-title: Swarm Intell. – volume: 62 start-page: 1169 year: 2011 end-page: 1176 ident: b28 article-title: A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem publication-title: J. Oper. Res. Soc. – volume: 21 start-page: 2015 year: 2013 end-page: 2036 ident: b36 article-title: An efficient solving of the traveling salesman problem: The ant colony system having parameters optimized by the Taguchi method publication-title: Turk. J. Electr. Eng. Comput. Sci. – reference: K.Y. Wong, Komarudin, Parameter tuning for ant colony optimization: A review, in: 2008 International Conference on Computer and Communication Engineering, 2008, pp. 542–545. – volume: 15 start-page: 1 year: 2021 end-page: 17 ident: b27 article-title: A novel particle swarm optimization with genetic operator and its application to tsp publication-title: Int. J. Cogn. Inf. Nat. Intell. (IJCINI) – volume: 25 start-page: 50 year: 2018 end-page: 57 ident: b33 article-title: A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs publication-title: J. Comput. Sci. – reference: X.d.J. Garcıa-Gutierrez, R. Alaniz-Plata, G. Trujillo-Hernández, I.Y. Alba-Corpus, W. Flores-Fuentes, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, O. Sergiyenko, F.F. González-Navarro, P. Mercorelli, J.E. Miranda-Vega, F.N. Murrieta-Rico, Obstacle Coordinates Transformation from TVS Body-Frame to AGV Navigation-Frame, in: 2022 IEEE 31st International Symposium on Industrial Electronics, ISIE, 2022, pp. 589–593. – year: 1998 ident: b10 publication-title: Handbook of Combinatorial Optimization – volume: 12 start-page: 571 year: 2021 end-page: 596 ident: b48 article-title: EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization publication-title: Int. J. Mach. Learn. Cybern. – volume: 12 start-page: 1054 year: 2018 end-page: 1062 ident: b21 article-title: Improved chicken swarm optimization algorithm to solve the travelling salesman problem publication-title: Indonesian J. Electr. Eng. Comput. Sci. – volume: 107 year: 2021 ident: b38 article-title: Ant colony optimization for traveling salesman problem based on parameters optimization publication-title: Appl. Soft Comput. – volume: 17 start-page: 25 year: 2000 end-page: 50 ident: b52 article-title: Approximation algorithms for lawn mowing and milling a preliminary version of this paper was entitled “the lawnmower problem” and appears in the Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 461–466 publication-title: Comput. Geometry – year: 2022 ident: b44 article-title: Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 120 year: 2022 ident: b8 article-title: Improving ant colony optimization efficiency for solving large TSP instances publication-title: Appl. Soft Comput. – volume: 417 year: 2019 ident: b4 article-title: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard publication-title: Mar. Geol. – volume: 7 start-page: 384 year: 2019 end-page: 398 ident: b37 article-title: A new hybrid gravitational particle swarm optimisation-ACO with local search mechanism, PSOGSA-ACO-Ls for TSP publication-title: Int. J. Intell. Eng. Inform. – volume: 86 year: 2020 ident: b7 article-title: Discrete spider monkey optimization for travelling salesman problem publication-title: Appl. Soft Comput. – volume: 105 year: 2021 ident: b22 article-title: Discrete Grey Wolf Optimizer for symmetric travelling salesman problem publication-title: Appl. Soft Comput. – volume: 11 start-page: 4780 year: 2021 ident: b30 article-title: Improvement of traveling salesman problem solution using hybrid algorithm based on best-worst ant system and particle swarm optimization publication-title: Appl. Sci. – volume: 4 start-page: 40 year: 2021 end-page: 45 ident: b2 article-title: Toward large-scale autonomous marine pollution monitoring publication-title: IEEE Internet Things Mag. – volume: 13 start-page: 295 year: 2012 end-page: 302 ident: b29 article-title: A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem publication-title: Proc. Roman. Acad. A – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b51 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 7 start-page: 1711 year: 2021 end-page: 1722 ident: b31 article-title: Improving ant colony optimization algorithm with epsilon greedy and levy flight publication-title: Complex Intell. Syst. – volume: 7 start-page: 158160 year: 2019 end-page: 158169 ident: b34 article-title: Multi-population ant colony optimization algorithm based on congestion factor and co-evolution mechanism publication-title: IEEE Access – reference: L. Lindner, O. Sergiyenko, M. Rivas-López, M. Ivanov, J.C. Rodríguez-Quiñonez, D. Hernández-Balbuena, W. Flores-Fuentes, V. Tyrsa, F.N. Muerrieta-Rico, P. Mercorelli, Machine vision system errors for unmanned aerial vehicle navigation, in: 2017 IEEE 26th International Symposium on Industrial Electronics, ISIE, 2017, pp. 1615–1620. – volume: 114 year: 2022 ident: b6 article-title: An efficient ant colony optimization framework for HPC environments publication-title: Appl. Soft Comput. – volume: 235 year: 2021 ident: b1 article-title: Path planning and obstacle avoidance for AUV: A review publication-title: Ocean Eng. – volume: 7 start-page: 49614 year: 2019 end-page: 49631 ident: b47 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access – start-page: 475 year: 2017 end-page: 494 ident: b18 article-title: Swarm intelligence: A review of algorithms publication-title: Nature-Inspired Computing and Optimization – volume: 92 year: 2020 ident: b20 article-title: DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 1627 year: 2021 end-page: 1643 ident: b17 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends publication-title: IEEE/CAA J. Autom. Sin. – volume: 3 start-page: 376 year: 1991 end-page: 384 ident: b50 article-title: TSPLIB–A traveling salesman problem library publication-title: ORSA J. Comput. – volume: 61 start-page: 1258 year: 2013 end-page: 1276 ident: b9 article-title: A survey on coverage path planning for robotics publication-title: Robot. Auton. Syst. – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: b16 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. – volume: 137 year: 2019 ident: b12 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. – volume: 9 start-page: 164820 year: 2021 end-page: 164836 ident: b26 article-title: An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP publication-title: IEEE Access – year: 2022 ident: b3 article-title: Analytical techniques in marine biotechnology – volume: 8 start-page: 1 year: 2017 end-page: 6 ident: b11 article-title: Cumulative culture can emerge from collective intelligence in animal groups publication-title: Natu. Commun. – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b40 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Syst. – volume: 105 year: 2021 ident: b24 article-title: DJAYA: A discrete jaya algorithm for solving traveling salesman problem publication-title: Appl. Soft Comput. – year: 2018 ident: b46 article-title: Reinforcement Learning: An Introduction – volume: 249 year: 2022 ident: b41 article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm publication-title: Energy – volume: 65 start-page: 214 year: 2018 end-page: 229 ident: b23 article-title: A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem publication-title: Appl. Soft Comput. – start-page: 252 year: 1995 end-page: 260 ident: b45 article-title: Ant-q: A reinforcement learning approach to the traveling salesman problem publication-title: Machine Learning Proceedings 1995 – volume: 7 start-page: 110472 year: 2019 end-page: 110486 ident: b49 article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems publication-title: IEEE Access – start-page: 1 year: 2014 end-page: 6 ident: b5 article-title: Multi sensor underwater pipeline tracking with AUVs publication-title: 2014 Oceans-St. John’s – start-page: 763 year: 2012 end-page: 766 ident: b32 article-title: An adaptive ant colony algorithm based on common information for solving the traveling salesman problem publication-title: 2012 International Conference on Systems and Informatics – volume: 120 year: 2022 ident: 10.1016/j.robot.2024.104678_b8 article-title: Improving ant colony optimization efficiency for solving large TSP instances publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108653 – volume: 12 start-page: 571 issue: 2 year: 2021 ident: 10.1016/j.robot.2024.104678_b48 article-title: EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01189-1 – volume: 21 start-page: 2015 issue: 7 year: 2013 ident: 10.1016/j.robot.2024.104678_b36 article-title: An efficient solving of the traveling salesman problem: The ant colony system having parameters optimized by the Taguchi method publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1109-44 – volume: 12 start-page: 1054 issue: 3 year: 2018 ident: 10.1016/j.robot.2024.104678_b21 article-title: Improved chicken swarm optimization algorithm to solve the travelling salesman problem publication-title: Indonesian J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v12.i3.pp1054-1062 – volume: 344 start-page: 243 issue: 2–3 year: 2005 ident: 10.1016/j.robot.2024.104678_b13 article-title: Ant colony optimization theory: A survey publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2005.05.020 – volume: 235 year: 2021 ident: 10.1016/j.robot.2024.104678_b1 article-title: Path planning and obstacle avoidance for AUV: A review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109355 – volume: 86 year: 2020 ident: 10.1016/j.robot.2024.104678_b7 article-title: Discrete spider monkey optimization for travelling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105887 – year: 2022 ident: 10.1016/j.robot.2024.104678_b3 – volume: 7 start-page: 384 issue: 4 year: 2019 ident: 10.1016/j.robot.2024.104678_b37 article-title: A new hybrid gravitational particle swarm optimisation-ACO with local search mechanism, PSOGSA-ACO-Ls for TSP publication-title: Int. J. Intell. Eng. Inform. – volume: 8 start-page: 1627 issue: 10 year: 2021 ident: 10.1016/j.robot.2024.104678_b17 article-title: A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004129 – volume: 25 start-page: 234 year: 2014 ident: 10.1016/j.robot.2024.104678_b19 article-title: A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.09.031 – volume: 4 start-page: 40 issue: 1 year: 2021 ident: 10.1016/j.robot.2024.104678_b2 article-title: Toward large-scale autonomous marine pollution monitoring publication-title: IEEE Internet Things Mag. doi: 10.1109/IOTM.0011.2000057 – volume: 8 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.robot.2024.104678_b11 article-title: Cumulative culture can emerge from collective intelligence in animal groups publication-title: Natu. Commun. – ident: 10.1016/j.robot.2024.104678_b35 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.robot.2024.104678_b14 article-title: Particle swarm optimization publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume: 92 year: 2020 ident: 10.1016/j.robot.2024.104678_b20 article-title: DEACO: Adopting dynamic evaporation strategy to enhance ACO algorithm for the traveling salesman problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103649 – volume: 15 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.robot.2024.104678_b27 article-title: A novel particle swarm optimization with genetic operator and its application to tsp publication-title: Int. J. Cogn. Inf. Nat. Intell. (IJCINI) doi: 10.4018/IJCINI.20211001.oa31 – volume: 13 start-page: 295 issue: 4 year: 2012 ident: 10.1016/j.robot.2024.104678_b29 article-title: A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem publication-title: Proc. Roman. Acad. A – volume: 3 start-page: 376 issue: 4 year: 1991 ident: 10.1016/j.robot.2024.104678_b50 article-title: TSPLIB–A traveling salesman problem library publication-title: ORSA J. Comput. doi: 10.1287/ijoc.3.4.376 – volume: 11 start-page: 4780 issue: 11 year: 2021 ident: 10.1016/j.robot.2024.104678_b30 article-title: Improvement of traveling salesman problem solution using hybrid algorithm based on best-worst ant system and particle swarm optimization publication-title: Appl. Sci. doi: 10.3390/app11114780 – volume: 30 start-page: 484 year: 2015 ident: 10.1016/j.robot.2024.104678_b25 article-title: A new hybrid method based on particle swarm optimization, ant colony optimization and 3-Opt algorithms for traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.01.068 – volume: 65 start-page: 214 year: 2018 ident: 10.1016/j.robot.2024.104678_b23 article-title: A hybrid method of 2-TSP and novel learning-based GA for job sequencing and tool switching problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.045 – ident: 10.1016/j.robot.2024.104678_b43 doi: 10.1109/ISIE51582.2022.9831512 – ident: 10.1016/j.robot.2024.104678_b42 doi: 10.1109/ISIE.2017.8001488 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.robot.2024.104678_b40 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.robot.2024.104678_b51 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.484436 – volume: 7 start-page: 110472 year: 2019 ident: 10.1016/j.robot.2024.104678_b49 article-title: Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931910 – volume: 62 start-page: 1169 issue: 6 year: 2011 ident: 10.1016/j.robot.2024.104678_b28 article-title: A statistical analysis of parameter values for the rank-based ant colony optimization algorithm for the traveling salesperson problem publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2010.74 – volume: 42 start-page: 965 issue: 4 year: 2014 ident: 10.1016/j.robot.2024.104678_b15 article-title: Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9342-2 – volume: 105 year: 2021 ident: 10.1016/j.robot.2024.104678_b24 article-title: DJAYA: A discrete jaya algorithm for solving traveling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107275 – start-page: 763 year: 2012 ident: 10.1016/j.robot.2024.104678_b32 article-title: An adaptive ant colony algorithm based on common information for solving the traveling salesman problem – year: 2018 ident: 10.1016/j.robot.2024.104678_b46 – volume: 417 year: 2019 ident: 10.1016/j.robot.2024.104678_b4 article-title: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western Svalbard publication-title: Mar. Geol. doi: 10.1016/j.margeo.2019.106009 – volume: 22 start-page: 52 issue: 3 year: 2002 ident: 10.1016/j.robot.2024.104678_b16 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1004010 – volume: 25 start-page: 50 year: 2018 ident: 10.1016/j.robot.2024.104678_b33 article-title: A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.02.004 – volume: 7 start-page: 49614 year: 2019 ident: 10.1016/j.robot.2024.104678_b47 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909945 – volume: 22 start-page: 1669 issue: 5 year: 2018 ident: 10.1016/j.robot.2024.104678_b39 article-title: A parallel cooperative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem publication-title: Soft Comput. doi: 10.1007/s00500-016-2432-3 – volume: 61 start-page: 1258 issue: 12 year: 2013 ident: 10.1016/j.robot.2024.104678_b9 article-title: A survey on coverage path planning for robotics publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.09.004 – volume: 7 start-page: 158160 year: 2019 ident: 10.1016/j.robot.2024.104678_b34 article-title: Multi-population ant colony optimization algorithm based on congestion factor and co-evolution mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950214 – start-page: 1 year: 2014 ident: 10.1016/j.robot.2024.104678_b5 article-title: Multi sensor underwater pipeline tracking with AUVs – volume: 114 year: 2022 ident: 10.1016/j.robot.2024.104678_b6 article-title: An efficient ant colony optimization framework for HPC environments publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108058 – start-page: 252 year: 1995 ident: 10.1016/j.robot.2024.104678_b45 article-title: Ant-q: A reinforcement learning approach to the traveling salesman problem – year: 1998 ident: 10.1016/j.robot.2024.104678_b10 – volume: 105 year: 2021 ident: 10.1016/j.robot.2024.104678_b22 article-title: Discrete Grey Wolf Optimizer for symmetric travelling salesman problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107298 – volume: 107 year: 2021 ident: 10.1016/j.robot.2024.104678_b38 article-title: Ant colony optimization for traveling salesman problem based on parameters optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107439 – ident: 10.1016/j.robot.2024.104678_b53 doi: 10.1109/OCEANSAP.2016.7485696 – volume: 17 start-page: 25 issue: 1 year: 2000 ident: 10.1016/j.robot.2024.104678_b52 article-title: Approximation algorithms for lawn mowing and milling a preliminary version of this paper was entitled “the lawnmower problem” and appears in the Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 461–466 publication-title: Comput. Geometry doi: 10.1016/S0925-7721(00)00015-8 – volume: 7 start-page: 1711 issue: 4 year: 2021 ident: 10.1016/j.robot.2024.104678_b31 article-title: Improving ant colony optimization algorithm with epsilon greedy and levy flight publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00138-3 – year: 2022 ident: 10.1016/j.robot.2024.104678_b44 article-title: Research on obstacle detection and avoidance of autonomous underwater vehicle based on forward-looking sonar publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 249 year: 2022 ident: 10.1016/j.robot.2024.104678_b41 article-title: Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2022.123760 – volume: 9 start-page: 164820 year: 2021 ident: 10.1016/j.robot.2024.104678_b26 article-title: An enhanced swap sequence-based particle swarm optimization algorithm to solve TSP publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3133493 – volume: 137 year: 2019 ident: 10.1016/j.robot.2024.104678_b12 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106040 – start-page: 475 year: 2017 ident: 10.1016/j.robot.2024.104678_b18 article-title: Swarm intelligence: A review of algorithms  | 
    
| SSID | ssj0003573 | 
    
| Score | 2.5005996 | 
    
| Snippet | Aiming at the problem that Ant Colony Optimization (ACO) is subject primarily to the parameters, we propose a hybrid algorithm SOA-ACO-2Opt to optimize the ACO... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 104678 | 
    
| SubjectTerms | Ant colony optimization Obstacle avoidance Parameters optimization Seagull optimization algorithm Traveling salesman problem  | 
    
| Title | A novel hybrid swarm intelligence algorithm for solving TSP and desired-path-based online obstacle avoidance strategy for AUV | 
    
| URI | https://dx.doi.org/10.1016/j.robot.2024.104678 | 
    
| Volume | 177 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-793X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003573 issn: 0921-8890 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMVbHhgxLfGrGSsEKlQgRCmwRXbsQFCbVG0pYoDfji9OoEiIgSlKdM7jcrnvHN99h9CBm-k43Ig5cegcE-YwhujkWJGENgNGFQ-UhALnyyvR7rGLB_5QQydVLQykVZa-3_v0wluXR-qlNuvDNK13G6GDJ1gmYx6IoYKdSehicPTxneZBuV9ldsIEpCvmoSLHa5TrHBIqA1asdUKvtd_QaQZxzpbRUhkq4pa_mxVUs9kqWpwhEFxD7y2c5VPbx09vUHmFx69qNMDpDM0mVv3HfJROngbYhafYWRr8QcC33WusMoONHbvnNwQaExNANIM9dwbOtYsb3XWxmuapAdvAY89k-1acqdW7W0e9s9PbkzYpGyqQ2CHVhDRFU1vDlKKShtp9qkpbqZhWnLtpl2lYHsbHSmsqlWmwhAsbACWWDILQWs0SuoHmsjyzmwg3Y8toIhMphWAhi0NhpTEJDQXnQlq9hYJKkVFcso1D04t-VKWVPUeF9iPQfuS1v4UOvwYNPdnG3-KiekPRD5uJHBz8NXD7vwN30ALs-XTdXTQ3Gb3YPReUTPR-YXX7aL513mlfwbZzc9_5BJTC5DQ | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIo3HhgxbeNXMlYVVXkKiRaxRXbs0KCSVG0p6gC_HTtOoEioA2tyTqIvF3_n3Pk7AE7NSsfwRkSRYecIEcMxSMZ1gWLsewQL6gluNzjf3rF2l1w90acF0Cz3wtiyymLud3N6PlsXR6oFmtVBklQfaoGhJ5smI46IF8ESoR63K7Dzz586D0xdmtlYI2teSg_lRV7DTGa2otIjebLTNlv7i55mKKe1DtaKWBE23ONsgAWdboLVGQXBLfDRgGk20X3Ym9qtV3D0LoavMJnR2YSi_5wNk3HvFZr4FBpXs78QYOfhHopUQaVHBgCFbGdiZClNQSeeATNpAkdzXygmWaKsc8CRk7Kd5ldqdB-3Qbd10Wm2UdFRAUWGqsbIZ77UigiBOQ6k-VaF1FwQKSg16y5V0zSI6kJKzIWqkZgy7VlNLO55gdaSxHgHVNIs1bsA-pEmOOYx54yRgEQB01ypGAeMUsa13ANeCWQYFXLjtutFPyzryl7CHP3Qoh869PfA2feggVPbmG_OyjcU_nKa0PDBvIH7_x14Apbbndub8Oby7voArNgzrnb3EFTGwzd9ZCKUsTzOPfALzh3kJg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+swarm+intelligence+algorithm+for+solving+TSP+and+desired-path-based+online+obstacle+avoidance+strategy+for+AUV&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Zhang%2C+Yixiao&rft.au=Shen%2C+Yue&rft.au=Wang%2C+Qi&rft.au=Song%2C+Chao&rft.date=2024-07-01&rft.issn=0921-8890&rft.volume=177&rft.spage=104678&rft_id=info:doi/10.1016%2Fj.robot.2024.104678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_robot_2024_104678 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |